]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/sfc/falcon/falcon.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / sfc / falcon / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33 *
34 * NIC stats
35 *
36 **************************************************************************
37 */
38
39 #define FALCON_MAC_STATS_SIZE 0x100
40
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
135 (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136
137 #define FALCON_DMA_STAT(ext_name, hw_name) \
138 [FALCON_STAT_ ## ext_name] = \
139 { #ext_name, \
140 /* 48-bit stats are zero-padded to 64 on DMA */ \
141 hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
142 hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name) \
144 [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145 #define GENERIC_SW_STAT(ext_name) \
146 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147
148 static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
149 FALCON_DMA_STAT(tx_bytes, XgTxOctets),
150 FALCON_DMA_STAT(tx_packets, XgTxPkts),
151 FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
152 FALCON_DMA_STAT(tx_control, XgTxControlPkts),
153 FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
154 FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
155 FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
156 FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
157 FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
158 FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
159 FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
160 FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
161 FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
162 FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
163 FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
164 FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
165 FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
166 FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
167 FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
168 FALCON_DMA_STAT(rx_bytes, XgRxOctets),
169 FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
170 FALCON_OTHER_STAT(rx_bad_bytes),
171 FALCON_DMA_STAT(rx_packets, XgRxPkts),
172 FALCON_DMA_STAT(rx_good, XgRxPktsOK),
173 FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
174 FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
175 FALCON_DMA_STAT(rx_control, XgRxControlPkts),
176 FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
177 FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
178 FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
179 FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
180 FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
181 FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
182 FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
183 FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
184 FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
185 FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
186 FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
187 FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
188 FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
189 FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
190 FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
191 FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
192 FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
193 FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
194 FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
195 FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
196 GENERIC_SW_STAT(rx_nodesc_trunc),
197 GENERIC_SW_STAT(rx_noskb_drops),
198 };
199 static const unsigned long falcon_stat_mask[] = {
200 [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
201 };
202
203 /**************************************************************************
204 *
205 * Basic SPI command set and bit definitions
206 *
207 *************************************************************************/
208
209 #define SPI_WRSR 0x01 /* Write status register */
210 #define SPI_WRITE 0x02 /* Write data to memory array */
211 #define SPI_READ 0x03 /* Read data from memory array */
212 #define SPI_WRDI 0x04 /* Reset write enable latch */
213 #define SPI_RDSR 0x05 /* Read status register */
214 #define SPI_WREN 0x06 /* Set write enable latch */
215 #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
216
217 #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
218 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
219 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
220 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
221 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
222 #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
223
224 /**************************************************************************
225 *
226 * Non-volatile memory layout
227 *
228 **************************************************************************
229 */
230
231 /* SFC4000 flash is partitioned into:
232 * 0-0x400 chip and board config (see struct falcon_nvconfig)
233 * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
234 * 0x8000-end boot code (mapped to PCI expansion ROM)
235 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
236 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
237 * 0-0x400 chip and board config
238 * configurable VPD
239 * 0x800-0x1800 boot config
240 * Aside from the chip and board config, all of these are optional and may
241 * be absent or truncated depending on the devices used.
242 */
243 #define FALCON_NVCONFIG_END 0x400U
244 #define FALCON_FLASH_BOOTCODE_START 0x8000U
245 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
246 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
247
248 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
249 struct falcon_nvconfig_board_v2 {
250 __le16 nports;
251 u8 port0_phy_addr;
252 u8 port0_phy_type;
253 u8 port1_phy_addr;
254 u8 port1_phy_type;
255 __le16 asic_sub_revision;
256 __le16 board_revision;
257 } __packed;
258
259 /* Board configuration v3 extra information */
260 struct falcon_nvconfig_board_v3 {
261 __le32 spi_device_type[2];
262 } __packed;
263
264 /* Bit numbers for spi_device_type */
265 #define SPI_DEV_TYPE_SIZE_LBN 0
266 #define SPI_DEV_TYPE_SIZE_WIDTH 5
267 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
268 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
269 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
270 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
271 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
272 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
273 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
274 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_FIELD(type, field) \
276 (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
277
278 #define FALCON_NVCONFIG_OFFSET 0x300
279
280 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
281 struct falcon_nvconfig {
282 ef4_oword_t ee_vpd_cfg_reg; /* 0x300 */
283 u8 mac_address[2][8]; /* 0x310 */
284 ef4_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
285 ef4_oword_t pcie_sd_ctl45_reg; /* 0x330 */
286 ef4_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
287 ef4_oword_t hw_init_reg; /* 0x350 */
288 ef4_oword_t nic_stat_reg; /* 0x360 */
289 ef4_oword_t glb_ctl_reg; /* 0x370 */
290 ef4_oword_t srm_cfg_reg; /* 0x380 */
291 ef4_oword_t spare_reg; /* 0x390 */
292 __le16 board_magic_num; /* 0x3A0 */
293 __le16 board_struct_ver;
294 __le16 board_checksum;
295 struct falcon_nvconfig_board_v2 board_v2;
296 ef4_oword_t ee_base_page_reg; /* 0x3B0 */
297 struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */
298 } __packed;
299
300 /*************************************************************************/
301
302 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
303 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
304
305 static const unsigned int
306 /* "Large" EEPROM device: Atmel AT25640 or similar
307 * 8 KB, 16-bit address, 32 B write block */
308 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
309 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
310 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
311 /* Default flash device: Atmel AT25F1024
312 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
313 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
314 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
315 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
316 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
317 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
318
319 /**************************************************************************
320 *
321 * I2C bus - this is a bit-bashing interface using GPIO pins
322 * Note that it uses the output enables to tristate the outputs
323 * SDA is the data pin and SCL is the clock
324 *
325 **************************************************************************
326 */
327 static void falcon_setsda(void *data, int state)
328 {
329 struct ef4_nic *efx = (struct ef4_nic *)data;
330 ef4_oword_t reg;
331
332 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
333 EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
334 ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
335 }
336
337 static void falcon_setscl(void *data, int state)
338 {
339 struct ef4_nic *efx = (struct ef4_nic *)data;
340 ef4_oword_t reg;
341
342 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
343 EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
344 ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
345 }
346
347 static int falcon_getsda(void *data)
348 {
349 struct ef4_nic *efx = (struct ef4_nic *)data;
350 ef4_oword_t reg;
351
352 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
353 return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
354 }
355
356 static int falcon_getscl(void *data)
357 {
358 struct ef4_nic *efx = (struct ef4_nic *)data;
359 ef4_oword_t reg;
360
361 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
362 return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
363 }
364
365 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
366 .setsda = falcon_setsda,
367 .setscl = falcon_setscl,
368 .getsda = falcon_getsda,
369 .getscl = falcon_getscl,
370 .udelay = 5,
371 /* Wait up to 50 ms for slave to let us pull SCL high */
372 .timeout = DIV_ROUND_UP(HZ, 20),
373 };
374
375 static void falcon_push_irq_moderation(struct ef4_channel *channel)
376 {
377 ef4_dword_t timer_cmd;
378 struct ef4_nic *efx = channel->efx;
379
380 /* Set timer register */
381 if (channel->irq_moderation_us) {
382 unsigned int ticks;
383
384 ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
385 EF4_POPULATE_DWORD_2(timer_cmd,
386 FRF_AB_TC_TIMER_MODE,
387 FFE_BB_TIMER_MODE_INT_HLDOFF,
388 FRF_AB_TC_TIMER_VAL,
389 ticks - 1);
390 } else {
391 EF4_POPULATE_DWORD_2(timer_cmd,
392 FRF_AB_TC_TIMER_MODE,
393 FFE_BB_TIMER_MODE_DIS,
394 FRF_AB_TC_TIMER_VAL, 0);
395 }
396 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
397 ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
398 channel->channel);
399 }
400
401 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
402
403 static void falcon_prepare_flush(struct ef4_nic *efx)
404 {
405 falcon_deconfigure_mac_wrapper(efx);
406
407 /* Wait for the tx and rx fifo's to get to the next packet boundary
408 * (~1ms without back-pressure), then to drain the remainder of the
409 * fifo's at data path speeds (negligible), with a healthy margin. */
410 msleep(10);
411 }
412
413 /* Acknowledge a legacy interrupt from Falcon
414 *
415 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
416 *
417 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
418 * BIU. Interrupt acknowledge is read sensitive so must write instead
419 * (then read to ensure the BIU collector is flushed)
420 *
421 * NB most hardware supports MSI interrupts
422 */
423 static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
424 {
425 ef4_dword_t reg;
426
427 EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
428 ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
429 ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
430 }
431
432 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
433 {
434 struct ef4_nic *efx = dev_id;
435 ef4_oword_t *int_ker = efx->irq_status.addr;
436 int syserr;
437 int queues;
438
439 /* Check to see if this is our interrupt. If it isn't, we
440 * exit without having touched the hardware.
441 */
442 if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
443 netif_vdbg(efx, intr, efx->net_dev,
444 "IRQ %d on CPU %d not for me\n", irq,
445 raw_smp_processor_id());
446 return IRQ_NONE;
447 }
448 efx->last_irq_cpu = raw_smp_processor_id();
449 netif_vdbg(efx, intr, efx->net_dev,
450 "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
451 irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
452
453 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
454 return IRQ_HANDLED;
455
456 /* Check to see if we have a serious error condition */
457 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
458 if (unlikely(syserr))
459 return ef4_farch_fatal_interrupt(efx);
460
461 /* Determine interrupting queues, clear interrupt status
462 * register and acknowledge the device interrupt.
463 */
464 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
465 queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
466 EF4_ZERO_OWORD(*int_ker);
467 wmb(); /* Ensure the vector is cleared before interrupt ack */
468 falcon_irq_ack_a1(efx);
469
470 if (queues & 1)
471 ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
472 if (queues & 2)
473 ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
474 return IRQ_HANDLED;
475 }
476
477 /**************************************************************************
478 *
479 * RSS
480 *
481 **************************************************************************
482 */
483 static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
484 const u32 *rx_indir_table)
485 {
486 (void) efx;
487 (void) user;
488 (void) rx_indir_table;
489 return -ENOSYS;
490 }
491
492 static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
493 const u32 *rx_indir_table)
494 {
495 ef4_oword_t temp;
496
497 (void) user;
498 /* Set hash key for IPv4 */
499 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
500 ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
501
502 memcpy(efx->rx_indir_table, rx_indir_table,
503 sizeof(efx->rx_indir_table));
504 ef4_farch_rx_push_indir_table(efx);
505 return 0;
506 }
507
508 /**************************************************************************
509 *
510 * EEPROM/flash
511 *
512 **************************************************************************
513 */
514
515 #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
516
517 static int falcon_spi_poll(struct ef4_nic *efx)
518 {
519 ef4_oword_t reg;
520 ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
521 return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
522 }
523
524 /* Wait for SPI command completion */
525 static int falcon_spi_wait(struct ef4_nic *efx)
526 {
527 /* Most commands will finish quickly, so we start polling at
528 * very short intervals. Sometimes the command may have to
529 * wait for VPD or expansion ROM access outside of our
530 * control, so we allow up to 100 ms. */
531 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
532 int i;
533
534 for (i = 0; i < 10; i++) {
535 if (!falcon_spi_poll(efx))
536 return 0;
537 udelay(10);
538 }
539
540 for (;;) {
541 if (!falcon_spi_poll(efx))
542 return 0;
543 if (time_after_eq(jiffies, timeout)) {
544 netif_err(efx, hw, efx->net_dev,
545 "timed out waiting for SPI\n");
546 return -ETIMEDOUT;
547 }
548 schedule_timeout_uninterruptible(1);
549 }
550 }
551
552 static int
553 falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
554 unsigned int command, int address,
555 const void *in, void *out, size_t len)
556 {
557 bool addressed = (address >= 0);
558 bool reading = (out != NULL);
559 ef4_oword_t reg;
560 int rc;
561
562 /* Input validation */
563 if (len > FALCON_SPI_MAX_LEN)
564 return -EINVAL;
565
566 /* Check that previous command is not still running */
567 rc = falcon_spi_poll(efx);
568 if (rc)
569 return rc;
570
571 /* Program address register, if we have an address */
572 if (addressed) {
573 EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
574 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
575 }
576
577 /* Program data register, if we have data */
578 if (in != NULL) {
579 memcpy(&reg, in, len);
580 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
581 }
582
583 /* Issue read/write command */
584 EF4_POPULATE_OWORD_7(reg,
585 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
586 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
587 FRF_AB_EE_SPI_HCMD_DABCNT, len,
588 FRF_AB_EE_SPI_HCMD_READ, reading,
589 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
590 FRF_AB_EE_SPI_HCMD_ADBCNT,
591 (addressed ? spi->addr_len : 0),
592 FRF_AB_EE_SPI_HCMD_ENC, command);
593 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
594
595 /* Wait for read/write to complete */
596 rc = falcon_spi_wait(efx);
597 if (rc)
598 return rc;
599
600 /* Read data */
601 if (out != NULL) {
602 ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
603 memcpy(out, &reg, len);
604 }
605
606 return 0;
607 }
608
609 static inline u8
610 falcon_spi_munge_command(const struct falcon_spi_device *spi,
611 const u8 command, const unsigned int address)
612 {
613 return command | (((address >> 8) & spi->munge_address) << 3);
614 }
615
616 static int
617 falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
618 loff_t start, size_t len, size_t *retlen, u8 *buffer)
619 {
620 size_t block_len, pos = 0;
621 unsigned int command;
622 int rc = 0;
623
624 while (pos < len) {
625 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
626
627 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
628 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
629 buffer + pos, block_len);
630 if (rc)
631 break;
632 pos += block_len;
633
634 /* Avoid locking up the system */
635 cond_resched();
636 if (signal_pending(current)) {
637 rc = -EINTR;
638 break;
639 }
640 }
641
642 if (retlen)
643 *retlen = pos;
644 return rc;
645 }
646
647 #ifdef CONFIG_SFC_FALCON_MTD
648
649 struct falcon_mtd_partition {
650 struct ef4_mtd_partition common;
651 const struct falcon_spi_device *spi;
652 size_t offset;
653 };
654
655 #define to_falcon_mtd_partition(mtd) \
656 container_of(mtd, struct falcon_mtd_partition, common.mtd)
657
658 static size_t
659 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
660 {
661 return min(FALCON_SPI_MAX_LEN,
662 (spi->block_size - (start & (spi->block_size - 1))));
663 }
664
665 /* Wait up to 10 ms for buffered write completion */
666 static int
667 falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
668 {
669 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
670 u8 status;
671 int rc;
672
673 for (;;) {
674 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
675 &status, sizeof(status));
676 if (rc)
677 return rc;
678 if (!(status & SPI_STATUS_NRDY))
679 return 0;
680 if (time_after_eq(jiffies, timeout)) {
681 netif_err(efx, hw, efx->net_dev,
682 "SPI write timeout on device %d"
683 " last status=0x%02x\n",
684 spi->device_id, status);
685 return -ETIMEDOUT;
686 }
687 schedule_timeout_uninterruptible(1);
688 }
689 }
690
691 static int
692 falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
693 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
694 {
695 u8 verify_buffer[FALCON_SPI_MAX_LEN];
696 size_t block_len, pos = 0;
697 unsigned int command;
698 int rc = 0;
699
700 while (pos < len) {
701 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
702 if (rc)
703 break;
704
705 block_len = min(len - pos,
706 falcon_spi_write_limit(spi, start + pos));
707 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
708 rc = falcon_spi_cmd(efx, spi, command, start + pos,
709 buffer + pos, NULL, block_len);
710 if (rc)
711 break;
712
713 rc = falcon_spi_wait_write(efx, spi);
714 if (rc)
715 break;
716
717 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
718 rc = falcon_spi_cmd(efx, spi, command, start + pos,
719 NULL, verify_buffer, block_len);
720 if (memcmp(verify_buffer, buffer + pos, block_len)) {
721 rc = -EIO;
722 break;
723 }
724
725 pos += block_len;
726
727 /* Avoid locking up the system */
728 cond_resched();
729 if (signal_pending(current)) {
730 rc = -EINTR;
731 break;
732 }
733 }
734
735 if (retlen)
736 *retlen = pos;
737 return rc;
738 }
739
740 static int
741 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
742 {
743 const struct falcon_spi_device *spi = part->spi;
744 struct ef4_nic *efx = part->common.mtd.priv;
745 u8 status;
746 int rc, i;
747
748 /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
749 for (i = 0; i < 40; i++) {
750 __set_current_state(uninterruptible ?
751 TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
752 schedule_timeout(HZ / 10);
753 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
754 &status, sizeof(status));
755 if (rc)
756 return rc;
757 if (!(status & SPI_STATUS_NRDY))
758 return 0;
759 if (signal_pending(current))
760 return -EINTR;
761 }
762 pr_err("%s: timed out waiting for %s\n",
763 part->common.name, part->common.dev_type_name);
764 return -ETIMEDOUT;
765 }
766
767 static int
768 falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
769 {
770 const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
771 SPI_STATUS_BP0);
772 u8 status;
773 int rc;
774
775 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
776 &status, sizeof(status));
777 if (rc)
778 return rc;
779
780 if (!(status & unlock_mask))
781 return 0; /* already unlocked */
782
783 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
784 if (rc)
785 return rc;
786 rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
787 if (rc)
788 return rc;
789
790 status &= ~unlock_mask;
791 rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
792 NULL, sizeof(status));
793 if (rc)
794 return rc;
795 rc = falcon_spi_wait_write(efx, spi);
796 if (rc)
797 return rc;
798
799 return 0;
800 }
801
802 #define FALCON_SPI_VERIFY_BUF_LEN 16
803
804 static int
805 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
806 {
807 const struct falcon_spi_device *spi = part->spi;
808 struct ef4_nic *efx = part->common.mtd.priv;
809 unsigned pos, block_len;
810 u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
811 u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
812 int rc;
813
814 if (len != spi->erase_size)
815 return -EINVAL;
816
817 if (spi->erase_command == 0)
818 return -EOPNOTSUPP;
819
820 rc = falcon_spi_unlock(efx, spi);
821 if (rc)
822 return rc;
823 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
824 if (rc)
825 return rc;
826 rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
827 NULL, 0);
828 if (rc)
829 return rc;
830 rc = falcon_spi_slow_wait(part, false);
831
832 /* Verify the entire region has been wiped */
833 memset(empty, 0xff, sizeof(empty));
834 for (pos = 0; pos < len; pos += block_len) {
835 block_len = min(len - pos, sizeof(buffer));
836 rc = falcon_spi_read(efx, spi, start + pos, block_len,
837 NULL, buffer);
838 if (rc)
839 return rc;
840 if (memcmp(empty, buffer, block_len))
841 return -EIO;
842
843 /* Avoid locking up the system */
844 cond_resched();
845 if (signal_pending(current))
846 return -EINTR;
847 }
848
849 return rc;
850 }
851
852 static void falcon_mtd_rename(struct ef4_mtd_partition *part)
853 {
854 struct ef4_nic *efx = part->mtd.priv;
855
856 snprintf(part->name, sizeof(part->name), "%s %s",
857 efx->name, part->type_name);
858 }
859
860 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
861 size_t len, size_t *retlen, u8 *buffer)
862 {
863 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
864 struct ef4_nic *efx = mtd->priv;
865 struct falcon_nic_data *nic_data = efx->nic_data;
866 int rc;
867
868 rc = mutex_lock_interruptible(&nic_data->spi_lock);
869 if (rc)
870 return rc;
871 rc = falcon_spi_read(efx, part->spi, part->offset + start,
872 len, retlen, buffer);
873 mutex_unlock(&nic_data->spi_lock);
874 return rc;
875 }
876
877 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
878 {
879 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
880 struct ef4_nic *efx = mtd->priv;
881 struct falcon_nic_data *nic_data = efx->nic_data;
882 int rc;
883
884 rc = mutex_lock_interruptible(&nic_data->spi_lock);
885 if (rc)
886 return rc;
887 rc = falcon_spi_erase(part, part->offset + start, len);
888 mutex_unlock(&nic_data->spi_lock);
889 return rc;
890 }
891
892 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
893 size_t len, size_t *retlen, const u8 *buffer)
894 {
895 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
896 struct ef4_nic *efx = mtd->priv;
897 struct falcon_nic_data *nic_data = efx->nic_data;
898 int rc;
899
900 rc = mutex_lock_interruptible(&nic_data->spi_lock);
901 if (rc)
902 return rc;
903 rc = falcon_spi_write(efx, part->spi, part->offset + start,
904 len, retlen, buffer);
905 mutex_unlock(&nic_data->spi_lock);
906 return rc;
907 }
908
909 static int falcon_mtd_sync(struct mtd_info *mtd)
910 {
911 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
912 struct ef4_nic *efx = mtd->priv;
913 struct falcon_nic_data *nic_data = efx->nic_data;
914 int rc;
915
916 mutex_lock(&nic_data->spi_lock);
917 rc = falcon_spi_slow_wait(part, true);
918 mutex_unlock(&nic_data->spi_lock);
919 return rc;
920 }
921
922 static int falcon_mtd_probe(struct ef4_nic *efx)
923 {
924 struct falcon_nic_data *nic_data = efx->nic_data;
925 struct falcon_mtd_partition *parts;
926 struct falcon_spi_device *spi;
927 size_t n_parts;
928 int rc = -ENODEV;
929
930 ASSERT_RTNL();
931
932 /* Allocate space for maximum number of partitions */
933 parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
934 if (!parts)
935 return -ENOMEM;
936 n_parts = 0;
937
938 spi = &nic_data->spi_flash;
939 if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
940 parts[n_parts].spi = spi;
941 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
942 parts[n_parts].common.dev_type_name = "flash";
943 parts[n_parts].common.type_name = "sfc_flash_bootrom";
944 parts[n_parts].common.mtd.type = MTD_NORFLASH;
945 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
946 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
947 parts[n_parts].common.mtd.erasesize = spi->erase_size;
948 n_parts++;
949 }
950
951 spi = &nic_data->spi_eeprom;
952 if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
953 parts[n_parts].spi = spi;
954 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
955 parts[n_parts].common.dev_type_name = "EEPROM";
956 parts[n_parts].common.type_name = "sfc_bootconfig";
957 parts[n_parts].common.mtd.type = MTD_RAM;
958 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
959 parts[n_parts].common.mtd.size =
960 min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
961 FALCON_EEPROM_BOOTCONFIG_START;
962 parts[n_parts].common.mtd.erasesize = spi->erase_size;
963 n_parts++;
964 }
965
966 rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
967 if (rc)
968 kfree(parts);
969 return rc;
970 }
971
972 #endif /* CONFIG_SFC_FALCON_MTD */
973
974 /**************************************************************************
975 *
976 * XMAC operations
977 *
978 **************************************************************************
979 */
980
981 /* Configure the XAUI driver that is an output from Falcon */
982 static void falcon_setup_xaui(struct ef4_nic *efx)
983 {
984 ef4_oword_t sdctl, txdrv;
985
986 /* Move the XAUI into low power, unless there is no PHY, in
987 * which case the XAUI will have to drive a cable. */
988 if (efx->phy_type == PHY_TYPE_NONE)
989 return;
990
991 ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
992 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
993 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
994 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
995 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
996 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
997 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
998 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
999 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1000 ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1001
1002 EF4_POPULATE_OWORD_8(txdrv,
1003 FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1004 FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1005 FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1006 FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1007 FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1008 FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1009 FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1010 FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1011 ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1012 }
1013
1014 int falcon_reset_xaui(struct ef4_nic *efx)
1015 {
1016 struct falcon_nic_data *nic_data = efx->nic_data;
1017 ef4_oword_t reg;
1018 int count;
1019
1020 /* Don't fetch MAC statistics over an XMAC reset */
1021 WARN_ON(nic_data->stats_disable_count == 0);
1022
1023 /* Start reset sequence */
1024 EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1025 ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1026
1027 /* Wait up to 10 ms for completion, then reinitialise */
1028 for (count = 0; count < 1000; count++) {
1029 ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1030 if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1031 EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1032 falcon_setup_xaui(efx);
1033 return 0;
1034 }
1035 udelay(10);
1036 }
1037 netif_err(efx, hw, efx->net_dev,
1038 "timed out waiting for XAUI/XGXS reset\n");
1039 return -ETIMEDOUT;
1040 }
1041
1042 static void falcon_ack_status_intr(struct ef4_nic *efx)
1043 {
1044 struct falcon_nic_data *nic_data = efx->nic_data;
1045 ef4_oword_t reg;
1046
1047 if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1048 return;
1049
1050 /* We expect xgmii faults if the wireside link is down */
1051 if (!efx->link_state.up)
1052 return;
1053
1054 /* We can only use this interrupt to signal the negative edge of
1055 * xaui_align [we have to poll the positive edge]. */
1056 if (nic_data->xmac_poll_required)
1057 return;
1058
1059 ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1060 }
1061
1062 static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1063 {
1064 ef4_oword_t reg;
1065 bool align_done, link_ok = false;
1066 int sync_status;
1067
1068 /* Read link status */
1069 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1070
1071 align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1072 sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1073 if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1074 link_ok = true;
1075
1076 /* Clear link status ready for next read */
1077 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1078 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1079 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1080 ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1081
1082 return link_ok;
1083 }
1084
1085 static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1086 {
1087 /*
1088 * Check MAC's XGXS link status except when using XGMII loopback
1089 * which bypasses the XGXS block.
1090 * If possible, check PHY's XGXS link status except when using
1091 * MAC loopback.
1092 */
1093 return (efx->loopback_mode == LOOPBACK_XGMII ||
1094 falcon_xgxs_link_ok(efx)) &&
1095 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1096 LOOPBACK_INTERNAL(efx) ||
1097 ef4_mdio_phyxgxs_lane_sync(efx));
1098 }
1099
1100 static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1101 {
1102 unsigned int max_frame_len;
1103 ef4_oword_t reg;
1104 bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1105 bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1106
1107 /* Configure MAC - cut-thru mode is hard wired on */
1108 EF4_POPULATE_OWORD_3(reg,
1109 FRF_AB_XM_RX_JUMBO_MODE, 1,
1110 FRF_AB_XM_TX_STAT_EN, 1,
1111 FRF_AB_XM_RX_STAT_EN, 1);
1112 ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1113
1114 /* Configure TX */
1115 EF4_POPULATE_OWORD_6(reg,
1116 FRF_AB_XM_TXEN, 1,
1117 FRF_AB_XM_TX_PRMBL, 1,
1118 FRF_AB_XM_AUTO_PAD, 1,
1119 FRF_AB_XM_TXCRC, 1,
1120 FRF_AB_XM_FCNTL, tx_fc,
1121 FRF_AB_XM_IPG, 0x3);
1122 ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1123
1124 /* Configure RX */
1125 EF4_POPULATE_OWORD_5(reg,
1126 FRF_AB_XM_RXEN, 1,
1127 FRF_AB_XM_AUTO_DEPAD, 0,
1128 FRF_AB_XM_ACPT_ALL_MCAST, 1,
1129 FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1130 FRF_AB_XM_PASS_CRC_ERR, 1);
1131 ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1132
1133 /* Set frame length */
1134 max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1135 EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1136 ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1137 EF4_POPULATE_OWORD_2(reg,
1138 FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1139 FRF_AB_XM_TX_JUMBO_MODE, 1);
1140 ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1141
1142 EF4_POPULATE_OWORD_2(reg,
1143 FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1144 FRF_AB_XM_DIS_FCNTL, !rx_fc);
1145 ef4_writeo(efx, &reg, FR_AB_XM_FC);
1146
1147 /* Set MAC address */
1148 memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1149 ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1150 memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1151 ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1152 }
1153
1154 static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1155 {
1156 ef4_oword_t reg;
1157 bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1158 bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1159 bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1160 bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1161
1162 /* XGXS block is flaky and will need to be reset if moving
1163 * into our out of XGMII, XGXS or XAUI loopbacks. */
1164 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1165 old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1166 old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1167
1168 ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1169 old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1170
1171 /* The PHY driver may have turned XAUI off */
1172 if ((xgxs_loopback != old_xgxs_loopback) ||
1173 (xaui_loopback != old_xaui_loopback) ||
1174 (xgmii_loopback != old_xgmii_loopback))
1175 falcon_reset_xaui(efx);
1176
1177 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1178 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1179 (xgxs_loopback || xaui_loopback) ?
1180 FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1181 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1182 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1183 ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1184
1185 ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1186 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1187 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1188 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1189 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1190 ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1191 }
1192
1193
1194 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1195 static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1196 {
1197 bool mac_up = falcon_xmac_link_ok(efx);
1198
1199 if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1200 ef4_phy_mode_disabled(efx->phy_mode))
1201 /* XAUI link is expected to be down */
1202 return mac_up;
1203
1204 falcon_stop_nic_stats(efx);
1205
1206 while (!mac_up && tries) {
1207 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1208 falcon_reset_xaui(efx);
1209 udelay(200);
1210
1211 mac_up = falcon_xmac_link_ok(efx);
1212 --tries;
1213 }
1214
1215 falcon_start_nic_stats(efx);
1216
1217 return mac_up;
1218 }
1219
1220 static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1221 {
1222 return !falcon_xmac_link_ok_retry(efx, 5);
1223 }
1224
1225 static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1226 {
1227 struct falcon_nic_data *nic_data = efx->nic_data;
1228
1229 ef4_farch_filter_sync_rx_mode(efx);
1230
1231 falcon_reconfigure_xgxs_core(efx);
1232 falcon_reconfigure_xmac_core(efx);
1233
1234 falcon_reconfigure_mac_wrapper(efx);
1235
1236 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1237 falcon_ack_status_intr(efx);
1238
1239 return 0;
1240 }
1241
1242 static void falcon_poll_xmac(struct ef4_nic *efx)
1243 {
1244 struct falcon_nic_data *nic_data = efx->nic_data;
1245
1246 /* We expect xgmii faults if the wireside link is down */
1247 if (!efx->link_state.up || !nic_data->xmac_poll_required)
1248 return;
1249
1250 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1251 falcon_ack_status_intr(efx);
1252 }
1253
1254 /**************************************************************************
1255 *
1256 * MAC wrapper
1257 *
1258 **************************************************************************
1259 */
1260
1261 static void falcon_push_multicast_hash(struct ef4_nic *efx)
1262 {
1263 union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1264
1265 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1266
1267 ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1268 ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1269 }
1270
1271 static void falcon_reset_macs(struct ef4_nic *efx)
1272 {
1273 struct falcon_nic_data *nic_data = efx->nic_data;
1274 ef4_oword_t reg, mac_ctrl;
1275 int count;
1276
1277 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1278 /* It's not safe to use GLB_CTL_REG to reset the
1279 * macs, so instead use the internal MAC resets
1280 */
1281 EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1282 ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1283
1284 for (count = 0; count < 10000; count++) {
1285 ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1286 if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1287 0)
1288 return;
1289 udelay(10);
1290 }
1291
1292 netif_err(efx, hw, efx->net_dev,
1293 "timed out waiting for XMAC core reset\n");
1294 }
1295
1296 /* Mac stats will fail whist the TX fifo is draining */
1297 WARN_ON(nic_data->stats_disable_count == 0);
1298
1299 ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1300 EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1301 ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1302
1303 ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1304 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1305 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1306 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1307 ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1308
1309 count = 0;
1310 while (1) {
1311 ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1312 if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1313 !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1314 !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1315 netif_dbg(efx, hw, efx->net_dev,
1316 "Completed MAC reset after %d loops\n",
1317 count);
1318 break;
1319 }
1320 if (count > 20) {
1321 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1322 break;
1323 }
1324 count++;
1325 udelay(10);
1326 }
1327
1328 /* Ensure the correct MAC is selected before statistics
1329 * are re-enabled by the caller */
1330 ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1331
1332 falcon_setup_xaui(efx);
1333 }
1334
1335 static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1336 {
1337 ef4_oword_t reg;
1338
1339 if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1340 (efx->loopback_mode != LOOPBACK_NONE))
1341 return;
1342
1343 ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1344 /* There is no point in draining more than once */
1345 if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1346 return;
1347
1348 falcon_reset_macs(efx);
1349 }
1350
1351 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1352 {
1353 ef4_oword_t reg;
1354
1355 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1356 return;
1357
1358 /* Isolate the MAC -> RX */
1359 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1360 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1361 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1362
1363 /* Isolate TX -> MAC */
1364 falcon_drain_tx_fifo(efx);
1365 }
1366
1367 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1368 {
1369 struct ef4_link_state *link_state = &efx->link_state;
1370 ef4_oword_t reg;
1371 int link_speed, isolate;
1372
1373 isolate = !!ACCESS_ONCE(efx->reset_pending);
1374
1375 switch (link_state->speed) {
1376 case 10000: link_speed = 3; break;
1377 case 1000: link_speed = 2; break;
1378 case 100: link_speed = 1; break;
1379 default: link_speed = 0; break;
1380 }
1381
1382 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1383 * as advertised. Disable to ensure packets are not
1384 * indefinitely held and TX queue can be flushed at any point
1385 * while the link is down. */
1386 EF4_POPULATE_OWORD_5(reg,
1387 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1388 FRF_AB_MAC_BCAD_ACPT, 1,
1389 FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1390 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1391 FRF_AB_MAC_SPEED, link_speed);
1392 /* On B0, MAC backpressure can be disabled and packets get
1393 * discarded. */
1394 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1395 EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1396 !link_state->up || isolate);
1397 }
1398
1399 ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1400
1401 /* Restore the multicast hash registers. */
1402 falcon_push_multicast_hash(efx);
1403
1404 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1405 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1406 * initialisation but it may read back as 0) */
1407 EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1408 /* Unisolate the MAC -> RX */
1409 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1410 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1411 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1412 }
1413
1414 static void falcon_stats_request(struct ef4_nic *efx)
1415 {
1416 struct falcon_nic_data *nic_data = efx->nic_data;
1417 ef4_oword_t reg;
1418
1419 WARN_ON(nic_data->stats_pending);
1420 WARN_ON(nic_data->stats_disable_count);
1421
1422 FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1423 nic_data->stats_pending = true;
1424 wmb(); /* ensure done flag is clear */
1425
1426 /* Initiate DMA transfer of stats */
1427 EF4_POPULATE_OWORD_2(reg,
1428 FRF_AB_MAC_STAT_DMA_CMD, 1,
1429 FRF_AB_MAC_STAT_DMA_ADR,
1430 efx->stats_buffer.dma_addr);
1431 ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1432
1433 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1434 }
1435
1436 static void falcon_stats_complete(struct ef4_nic *efx)
1437 {
1438 struct falcon_nic_data *nic_data = efx->nic_data;
1439
1440 if (!nic_data->stats_pending)
1441 return;
1442
1443 nic_data->stats_pending = false;
1444 if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1445 rmb(); /* read the done flag before the stats */
1446 ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1447 falcon_stat_mask, nic_data->stats,
1448 efx->stats_buffer.addr, true);
1449 } else {
1450 netif_err(efx, hw, efx->net_dev,
1451 "timed out waiting for statistics\n");
1452 }
1453 }
1454
1455 static void falcon_stats_timer_func(unsigned long context)
1456 {
1457 struct ef4_nic *efx = (struct ef4_nic *)context;
1458 struct falcon_nic_data *nic_data = efx->nic_data;
1459
1460 spin_lock(&efx->stats_lock);
1461
1462 falcon_stats_complete(efx);
1463 if (nic_data->stats_disable_count == 0)
1464 falcon_stats_request(efx);
1465
1466 spin_unlock(&efx->stats_lock);
1467 }
1468
1469 static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1470 {
1471 struct ef4_link_state old_state = efx->link_state;
1472
1473 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1474 WARN_ON(!LOOPBACK_INTERNAL(efx));
1475
1476 efx->link_state.fd = true;
1477 efx->link_state.fc = efx->wanted_fc;
1478 efx->link_state.up = true;
1479 efx->link_state.speed = 10000;
1480
1481 return !ef4_link_state_equal(&efx->link_state, &old_state);
1482 }
1483
1484 static int falcon_reconfigure_port(struct ef4_nic *efx)
1485 {
1486 int rc;
1487
1488 WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1489
1490 /* Poll the PHY link state *before* reconfiguring it. This means we
1491 * will pick up the correct speed (in loopback) to select the correct
1492 * MAC.
1493 */
1494 if (LOOPBACK_INTERNAL(efx))
1495 falcon_loopback_link_poll(efx);
1496 else
1497 efx->phy_op->poll(efx);
1498
1499 falcon_stop_nic_stats(efx);
1500 falcon_deconfigure_mac_wrapper(efx);
1501
1502 falcon_reset_macs(efx);
1503
1504 efx->phy_op->reconfigure(efx);
1505 rc = falcon_reconfigure_xmac(efx);
1506 BUG_ON(rc);
1507
1508 falcon_start_nic_stats(efx);
1509
1510 /* Synchronise efx->link_state with the kernel */
1511 ef4_link_status_changed(efx);
1512
1513 return 0;
1514 }
1515
1516 /* TX flow control may automatically turn itself off if the link
1517 * partner (intermittently) stops responding to pause frames. There
1518 * isn't any indication that this has happened, so the best we do is
1519 * leave it up to the user to spot this and fix it by cycling transmit
1520 * flow control on this end.
1521 */
1522
1523 static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1524 {
1525 /* Schedule a reset to recover */
1526 ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1527 }
1528
1529 static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1530 {
1531 /* Recover by resetting the EM block */
1532 falcon_stop_nic_stats(efx);
1533 falcon_drain_tx_fifo(efx);
1534 falcon_reconfigure_xmac(efx);
1535 falcon_start_nic_stats(efx);
1536 }
1537
1538 /**************************************************************************
1539 *
1540 * PHY access via GMII
1541 *
1542 **************************************************************************
1543 */
1544
1545 /* Wait for GMII access to complete */
1546 static int falcon_gmii_wait(struct ef4_nic *efx)
1547 {
1548 ef4_oword_t md_stat;
1549 int count;
1550
1551 /* wait up to 50ms - taken max from datasheet */
1552 for (count = 0; count < 5000; count++) {
1553 ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1554 if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1555 if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1556 EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1557 netif_err(efx, hw, efx->net_dev,
1558 "error from GMII access "
1559 EF4_OWORD_FMT"\n",
1560 EF4_OWORD_VAL(md_stat));
1561 return -EIO;
1562 }
1563 return 0;
1564 }
1565 udelay(10);
1566 }
1567 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1568 return -ETIMEDOUT;
1569 }
1570
1571 /* Write an MDIO register of a PHY connected to Falcon. */
1572 static int falcon_mdio_write(struct net_device *net_dev,
1573 int prtad, int devad, u16 addr, u16 value)
1574 {
1575 struct ef4_nic *efx = netdev_priv(net_dev);
1576 struct falcon_nic_data *nic_data = efx->nic_data;
1577 ef4_oword_t reg;
1578 int rc;
1579
1580 netif_vdbg(efx, hw, efx->net_dev,
1581 "writing MDIO %d register %d.%d with 0x%04x\n",
1582 prtad, devad, addr, value);
1583
1584 mutex_lock(&nic_data->mdio_lock);
1585
1586 /* Check MDIO not currently being accessed */
1587 rc = falcon_gmii_wait(efx);
1588 if (rc)
1589 goto out;
1590
1591 /* Write the address/ID register */
1592 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1593 ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1594
1595 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1596 FRF_AB_MD_DEV_ADR, devad);
1597 ef4_writeo(efx, &reg, FR_AB_MD_ID);
1598
1599 /* Write data */
1600 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1601 ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1602
1603 EF4_POPULATE_OWORD_2(reg,
1604 FRF_AB_MD_WRC, 1,
1605 FRF_AB_MD_GC, 0);
1606 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1607
1608 /* Wait for data to be written */
1609 rc = falcon_gmii_wait(efx);
1610 if (rc) {
1611 /* Abort the write operation */
1612 EF4_POPULATE_OWORD_2(reg,
1613 FRF_AB_MD_WRC, 0,
1614 FRF_AB_MD_GC, 1);
1615 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1616 udelay(10);
1617 }
1618
1619 out:
1620 mutex_unlock(&nic_data->mdio_lock);
1621 return rc;
1622 }
1623
1624 /* Read an MDIO register of a PHY connected to Falcon. */
1625 static int falcon_mdio_read(struct net_device *net_dev,
1626 int prtad, int devad, u16 addr)
1627 {
1628 struct ef4_nic *efx = netdev_priv(net_dev);
1629 struct falcon_nic_data *nic_data = efx->nic_data;
1630 ef4_oword_t reg;
1631 int rc;
1632
1633 mutex_lock(&nic_data->mdio_lock);
1634
1635 /* Check MDIO not currently being accessed */
1636 rc = falcon_gmii_wait(efx);
1637 if (rc)
1638 goto out;
1639
1640 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1641 ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1642
1643 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1644 FRF_AB_MD_DEV_ADR, devad);
1645 ef4_writeo(efx, &reg, FR_AB_MD_ID);
1646
1647 /* Request data to be read */
1648 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1649 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1650
1651 /* Wait for data to become available */
1652 rc = falcon_gmii_wait(efx);
1653 if (rc == 0) {
1654 ef4_reado(efx, &reg, FR_AB_MD_RXD);
1655 rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1656 netif_vdbg(efx, hw, efx->net_dev,
1657 "read from MDIO %d register %d.%d, got %04x\n",
1658 prtad, devad, addr, rc);
1659 } else {
1660 /* Abort the read operation */
1661 EF4_POPULATE_OWORD_2(reg,
1662 FRF_AB_MD_RIC, 0,
1663 FRF_AB_MD_GC, 1);
1664 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1665
1666 netif_dbg(efx, hw, efx->net_dev,
1667 "read from MDIO %d register %d.%d, got error %d\n",
1668 prtad, devad, addr, rc);
1669 }
1670
1671 out:
1672 mutex_unlock(&nic_data->mdio_lock);
1673 return rc;
1674 }
1675
1676 /* This call is responsible for hooking in the MAC and PHY operations */
1677 static int falcon_probe_port(struct ef4_nic *efx)
1678 {
1679 struct falcon_nic_data *nic_data = efx->nic_data;
1680 int rc;
1681
1682 switch (efx->phy_type) {
1683 case PHY_TYPE_SFX7101:
1684 efx->phy_op = &falcon_sfx7101_phy_ops;
1685 break;
1686 case PHY_TYPE_QT2022C2:
1687 case PHY_TYPE_QT2025C:
1688 efx->phy_op = &falcon_qt202x_phy_ops;
1689 break;
1690 case PHY_TYPE_TXC43128:
1691 efx->phy_op = &falcon_txc_phy_ops;
1692 break;
1693 default:
1694 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1695 efx->phy_type);
1696 return -ENODEV;
1697 }
1698
1699 /* Fill out MDIO structure and loopback modes */
1700 mutex_init(&nic_data->mdio_lock);
1701 efx->mdio.mdio_read = falcon_mdio_read;
1702 efx->mdio.mdio_write = falcon_mdio_write;
1703 rc = efx->phy_op->probe(efx);
1704 if (rc != 0)
1705 return rc;
1706
1707 /* Initial assumption */
1708 efx->link_state.speed = 10000;
1709 efx->link_state.fd = true;
1710
1711 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1712 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1713 efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1714 else
1715 efx->wanted_fc = EF4_FC_RX;
1716 if (efx->mdio.mmds & MDIO_DEVS_AN)
1717 efx->wanted_fc |= EF4_FC_AUTO;
1718
1719 /* Allocate buffer for stats */
1720 rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1721 FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1722 if (rc)
1723 return rc;
1724 netif_dbg(efx, probe, efx->net_dev,
1725 "stats buffer at %llx (virt %p phys %llx)\n",
1726 (u64)efx->stats_buffer.dma_addr,
1727 efx->stats_buffer.addr,
1728 (u64)virt_to_phys(efx->stats_buffer.addr));
1729
1730 return 0;
1731 }
1732
1733 static void falcon_remove_port(struct ef4_nic *efx)
1734 {
1735 efx->phy_op->remove(efx);
1736 ef4_nic_free_buffer(efx, &efx->stats_buffer);
1737 }
1738
1739 /* Global events are basically PHY events */
1740 static bool
1741 falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1742 {
1743 struct ef4_nic *efx = channel->efx;
1744 struct falcon_nic_data *nic_data = efx->nic_data;
1745
1746 if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1747 EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1748 EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1749 /* Ignored */
1750 return true;
1751
1752 if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1753 EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1754 nic_data->xmac_poll_required = true;
1755 return true;
1756 }
1757
1758 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1759 EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1760 EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1761 netif_err(efx, rx_err, efx->net_dev,
1762 "channel %d seen global RX_RESET event. Resetting.\n",
1763 channel->channel);
1764
1765 atomic_inc(&efx->rx_reset);
1766 ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1767 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1768 return true;
1769 }
1770
1771 return false;
1772 }
1773
1774 /**************************************************************************
1775 *
1776 * Falcon test code
1777 *
1778 **************************************************************************/
1779
1780 static int
1781 falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1782 {
1783 struct falcon_nic_data *nic_data = efx->nic_data;
1784 struct falcon_nvconfig *nvconfig;
1785 struct falcon_spi_device *spi;
1786 void *region;
1787 int rc, magic_num, struct_ver;
1788 __le16 *word, *limit;
1789 u32 csum;
1790
1791 if (falcon_spi_present(&nic_data->spi_flash))
1792 spi = &nic_data->spi_flash;
1793 else if (falcon_spi_present(&nic_data->spi_eeprom))
1794 spi = &nic_data->spi_eeprom;
1795 else
1796 return -EINVAL;
1797
1798 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1799 if (!region)
1800 return -ENOMEM;
1801 nvconfig = region + FALCON_NVCONFIG_OFFSET;
1802
1803 mutex_lock(&nic_data->spi_lock);
1804 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1805 mutex_unlock(&nic_data->spi_lock);
1806 if (rc) {
1807 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1808 falcon_spi_present(&nic_data->spi_flash) ?
1809 "flash" : "EEPROM");
1810 rc = -EIO;
1811 goto out;
1812 }
1813
1814 magic_num = le16_to_cpu(nvconfig->board_magic_num);
1815 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1816
1817 rc = -EINVAL;
1818 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1819 netif_err(efx, hw, efx->net_dev,
1820 "NVRAM bad magic 0x%x\n", magic_num);
1821 goto out;
1822 }
1823 if (struct_ver < 2) {
1824 netif_err(efx, hw, efx->net_dev,
1825 "NVRAM has ancient version 0x%x\n", struct_ver);
1826 goto out;
1827 } else if (struct_ver < 4) {
1828 word = &nvconfig->board_magic_num;
1829 limit = (__le16 *) (nvconfig + 1);
1830 } else {
1831 word = region;
1832 limit = region + FALCON_NVCONFIG_END;
1833 }
1834 for (csum = 0; word < limit; ++word)
1835 csum += le16_to_cpu(*word);
1836
1837 if (~csum & 0xffff) {
1838 netif_err(efx, hw, efx->net_dev,
1839 "NVRAM has incorrect checksum\n");
1840 goto out;
1841 }
1842
1843 rc = 0;
1844 if (nvconfig_out)
1845 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1846
1847 out:
1848 kfree(region);
1849 return rc;
1850 }
1851
1852 static int falcon_test_nvram(struct ef4_nic *efx)
1853 {
1854 return falcon_read_nvram(efx, NULL);
1855 }
1856
1857 static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1858 { FR_AZ_ADR_REGION,
1859 EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1860 { FR_AZ_RX_CFG,
1861 EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1862 { FR_AZ_TX_CFG,
1863 EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1864 { FR_AZ_TX_RESERVED,
1865 EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1866 { FR_AB_MAC_CTRL,
1867 EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1868 { FR_AZ_SRM_TX_DC_CFG,
1869 EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1870 { FR_AZ_RX_DC_CFG,
1871 EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1872 { FR_AZ_RX_DC_PF_WM,
1873 EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1874 { FR_BZ_DP_CTRL,
1875 EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1876 { FR_AB_GM_CFG2,
1877 EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1878 { FR_AB_GMF_CFG0,
1879 EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1880 { FR_AB_XM_GLB_CFG,
1881 EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1882 { FR_AB_XM_TX_CFG,
1883 EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1884 { FR_AB_XM_RX_CFG,
1885 EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1886 { FR_AB_XM_RX_PARAM,
1887 EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1888 { FR_AB_XM_FC,
1889 EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1890 { FR_AB_XM_ADR_LO,
1891 EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1892 { FR_AB_XX_SD_CTL,
1893 EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1894 };
1895
1896 static int
1897 falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1898 {
1899 enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1900 int rc, rc2;
1901
1902 mutex_lock(&efx->mac_lock);
1903 if (efx->loopback_modes) {
1904 /* We need the 312 clock from the PHY to test the XMAC
1905 * registers, so move into XGMII loopback if available */
1906 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1907 efx->loopback_mode = LOOPBACK_XGMII;
1908 else
1909 efx->loopback_mode = __ffs(efx->loopback_modes);
1910 }
1911 __ef4_reconfigure_port(efx);
1912 mutex_unlock(&efx->mac_lock);
1913
1914 ef4_reset_down(efx, reset_method);
1915
1916 tests->registers =
1917 ef4_farch_test_registers(efx, falcon_b0_register_tests,
1918 ARRAY_SIZE(falcon_b0_register_tests))
1919 ? -1 : 1;
1920
1921 rc = falcon_reset_hw(efx, reset_method);
1922 rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1923 return rc ? rc : rc2;
1924 }
1925
1926 /**************************************************************************
1927 *
1928 * Device reset
1929 *
1930 **************************************************************************
1931 */
1932
1933 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1934 {
1935 switch (reason) {
1936 case RESET_TYPE_RX_RECOVERY:
1937 case RESET_TYPE_DMA_ERROR:
1938 case RESET_TYPE_TX_SKIP:
1939 /* These can occasionally occur due to hardware bugs.
1940 * We try to reset without disrupting the link.
1941 */
1942 return RESET_TYPE_INVISIBLE;
1943 default:
1944 return RESET_TYPE_ALL;
1945 }
1946 }
1947
1948 static int falcon_map_reset_flags(u32 *flags)
1949 {
1950 enum {
1951 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1952 ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1953 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1954 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1955 };
1956
1957 if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1958 *flags &= ~FALCON_RESET_WORLD;
1959 return RESET_TYPE_WORLD;
1960 }
1961
1962 if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1963 *flags &= ~FALCON_RESET_ALL;
1964 return RESET_TYPE_ALL;
1965 }
1966
1967 if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1968 *flags &= ~FALCON_RESET_INVISIBLE;
1969 return RESET_TYPE_INVISIBLE;
1970 }
1971
1972 return -EINVAL;
1973 }
1974
1975 /* Resets NIC to known state. This routine must be called in process
1976 * context and is allowed to sleep. */
1977 static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1978 {
1979 struct falcon_nic_data *nic_data = efx->nic_data;
1980 ef4_oword_t glb_ctl_reg_ker;
1981 int rc;
1982
1983 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1984 RESET_TYPE(method));
1985
1986 /* Initiate device reset */
1987 if (method == RESET_TYPE_WORLD) {
1988 rc = pci_save_state(efx->pci_dev);
1989 if (rc) {
1990 netif_err(efx, drv, efx->net_dev,
1991 "failed to backup PCI state of primary "
1992 "function prior to hardware reset\n");
1993 goto fail1;
1994 }
1995 if (ef4_nic_is_dual_func(efx)) {
1996 rc = pci_save_state(nic_data->pci_dev2);
1997 if (rc) {
1998 netif_err(efx, drv, efx->net_dev,
1999 "failed to backup PCI state of "
2000 "secondary function prior to "
2001 "hardware reset\n");
2002 goto fail2;
2003 }
2004 }
2005
2006 EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2007 FRF_AB_EXT_PHY_RST_DUR,
2008 FFE_AB_EXT_PHY_RST_DUR_10240US,
2009 FRF_AB_SWRST, 1);
2010 } else {
2011 EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2012 /* exclude PHY from "invisible" reset */
2013 FRF_AB_EXT_PHY_RST_CTL,
2014 method == RESET_TYPE_INVISIBLE,
2015 /* exclude EEPROM/flash and PCIe */
2016 FRF_AB_PCIE_CORE_RST_CTL, 1,
2017 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2018 FRF_AB_PCIE_SD_RST_CTL, 1,
2019 FRF_AB_EE_RST_CTL, 1,
2020 FRF_AB_EXT_PHY_RST_DUR,
2021 FFE_AB_EXT_PHY_RST_DUR_10240US,
2022 FRF_AB_SWRST, 1);
2023 }
2024 ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2025
2026 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2027 schedule_timeout_uninterruptible(HZ / 20);
2028
2029 /* Restore PCI configuration if needed */
2030 if (method == RESET_TYPE_WORLD) {
2031 if (ef4_nic_is_dual_func(efx))
2032 pci_restore_state(nic_data->pci_dev2);
2033 pci_restore_state(efx->pci_dev);
2034 netif_dbg(efx, drv, efx->net_dev,
2035 "successfully restored PCI config\n");
2036 }
2037
2038 /* Assert that reset complete */
2039 ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2040 if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2041 rc = -ETIMEDOUT;
2042 netif_err(efx, hw, efx->net_dev,
2043 "timed out waiting for hardware reset\n");
2044 goto fail3;
2045 }
2046 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2047
2048 return 0;
2049
2050 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2051 fail2:
2052 pci_restore_state(efx->pci_dev);
2053 fail1:
2054 fail3:
2055 return rc;
2056 }
2057
2058 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2059 {
2060 struct falcon_nic_data *nic_data = efx->nic_data;
2061 int rc;
2062
2063 mutex_lock(&nic_data->spi_lock);
2064 rc = __falcon_reset_hw(efx, method);
2065 mutex_unlock(&nic_data->spi_lock);
2066
2067 return rc;
2068 }
2069
2070 static void falcon_monitor(struct ef4_nic *efx)
2071 {
2072 bool link_changed;
2073 int rc;
2074
2075 BUG_ON(!mutex_is_locked(&efx->mac_lock));
2076
2077 rc = falcon_board(efx)->type->monitor(efx);
2078 if (rc) {
2079 netif_err(efx, hw, efx->net_dev,
2080 "Board sensor %s; shutting down PHY\n",
2081 (rc == -ERANGE) ? "reported fault" : "failed");
2082 efx->phy_mode |= PHY_MODE_LOW_POWER;
2083 rc = __ef4_reconfigure_port(efx);
2084 WARN_ON(rc);
2085 }
2086
2087 if (LOOPBACK_INTERNAL(efx))
2088 link_changed = falcon_loopback_link_poll(efx);
2089 else
2090 link_changed = efx->phy_op->poll(efx);
2091
2092 if (link_changed) {
2093 falcon_stop_nic_stats(efx);
2094 falcon_deconfigure_mac_wrapper(efx);
2095
2096 falcon_reset_macs(efx);
2097 rc = falcon_reconfigure_xmac(efx);
2098 BUG_ON(rc);
2099
2100 falcon_start_nic_stats(efx);
2101
2102 ef4_link_status_changed(efx);
2103 }
2104
2105 falcon_poll_xmac(efx);
2106 }
2107
2108 /* Zeroes out the SRAM contents. This routine must be called in
2109 * process context and is allowed to sleep.
2110 */
2111 static int falcon_reset_sram(struct ef4_nic *efx)
2112 {
2113 ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2114 int count;
2115
2116 /* Set the SRAM wake/sleep GPIO appropriately. */
2117 ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2119 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2120 ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121
2122 /* Initiate SRAM reset */
2123 EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2124 FRF_AZ_SRM_INIT_EN, 1,
2125 FRF_AZ_SRM_NB_SZ, 0);
2126 ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2127
2128 /* Wait for SRAM reset to complete */
2129 count = 0;
2130 do {
2131 netif_dbg(efx, hw, efx->net_dev,
2132 "waiting for SRAM reset (attempt %d)...\n", count);
2133
2134 /* SRAM reset is slow; expect around 16ms */
2135 schedule_timeout_uninterruptible(HZ / 50);
2136
2137 /* Check for reset complete */
2138 ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2139 if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2140 netif_dbg(efx, hw, efx->net_dev,
2141 "SRAM reset complete\n");
2142
2143 return 0;
2144 }
2145 } while (++count < 20); /* wait up to 0.4 sec */
2146
2147 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2148 return -ETIMEDOUT;
2149 }
2150
2151 static void falcon_spi_device_init(struct ef4_nic *efx,
2152 struct falcon_spi_device *spi_device,
2153 unsigned int device_id, u32 device_type)
2154 {
2155 if (device_type != 0) {
2156 spi_device->device_id = device_id;
2157 spi_device->size =
2158 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2159 spi_device->addr_len =
2160 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2161 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2162 spi_device->addr_len == 1);
2163 spi_device->erase_command =
2164 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2165 spi_device->erase_size =
2166 1 << SPI_DEV_TYPE_FIELD(device_type,
2167 SPI_DEV_TYPE_ERASE_SIZE);
2168 spi_device->block_size =
2169 1 << SPI_DEV_TYPE_FIELD(device_type,
2170 SPI_DEV_TYPE_BLOCK_SIZE);
2171 } else {
2172 spi_device->size = 0;
2173 }
2174 }
2175
2176 /* Extract non-volatile configuration */
2177 static int falcon_probe_nvconfig(struct ef4_nic *efx)
2178 {
2179 struct falcon_nic_data *nic_data = efx->nic_data;
2180 struct falcon_nvconfig *nvconfig;
2181 int rc;
2182
2183 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2184 if (!nvconfig)
2185 return -ENOMEM;
2186
2187 rc = falcon_read_nvram(efx, nvconfig);
2188 if (rc)
2189 goto out;
2190
2191 efx->phy_type = nvconfig->board_v2.port0_phy_type;
2192 efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2193
2194 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2195 falcon_spi_device_init(
2196 efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2197 le32_to_cpu(nvconfig->board_v3
2198 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2199 falcon_spi_device_init(
2200 efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2201 le32_to_cpu(nvconfig->board_v3
2202 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2203 }
2204
2205 /* Read the MAC addresses */
2206 ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2207
2208 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2209 efx->phy_type, efx->mdio.prtad);
2210
2211 rc = falcon_probe_board(efx,
2212 le16_to_cpu(nvconfig->board_v2.board_revision));
2213 out:
2214 kfree(nvconfig);
2215 return rc;
2216 }
2217
2218 static int falcon_dimension_resources(struct ef4_nic *efx)
2219 {
2220 efx->rx_dc_base = 0x20000;
2221 efx->tx_dc_base = 0x26000;
2222 return 0;
2223 }
2224
2225 /* Probe all SPI devices on the NIC */
2226 static void falcon_probe_spi_devices(struct ef4_nic *efx)
2227 {
2228 struct falcon_nic_data *nic_data = efx->nic_data;
2229 ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2230 int boot_dev;
2231
2232 ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2233 ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2234 ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235
2236 if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2237 boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2238 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2239 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2240 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2241 "flash" : "EEPROM");
2242 } else {
2243 /* Disable VPD and set clock dividers to safe
2244 * values for initial programming. */
2245 boot_dev = -1;
2246 netif_dbg(efx, probe, efx->net_dev,
2247 "Booted from internal ASIC settings;"
2248 " setting SPI config\n");
2249 EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2250 /* 125 MHz / 7 ~= 20 MHz */
2251 FRF_AB_EE_SF_CLOCK_DIV, 7,
2252 /* 125 MHz / 63 ~= 2 MHz */
2253 FRF_AB_EE_EE_CLOCK_DIV, 63);
2254 ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2255 }
2256
2257 mutex_init(&nic_data->spi_lock);
2258
2259 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2260 falcon_spi_device_init(efx, &nic_data->spi_flash,
2261 FFE_AB_SPI_DEVICE_FLASH,
2262 default_flash_type);
2263 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2264 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2265 FFE_AB_SPI_DEVICE_EEPROM,
2266 large_eeprom_type);
2267 }
2268
2269 static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2270 {
2271 return 0x20000;
2272 }
2273
2274 static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2275 {
2276 /* Map everything up to and including the RSS indirection table.
2277 * The PCI core takes care of mapping the MSI-X tables.
2278 */
2279 return FR_BZ_RX_INDIRECTION_TBL +
2280 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2281 }
2282
2283 static int falcon_probe_nic(struct ef4_nic *efx)
2284 {
2285 struct falcon_nic_data *nic_data;
2286 struct falcon_board *board;
2287 int rc;
2288
2289 efx->primary = efx; /* only one usable function per controller */
2290
2291 /* Allocate storage for hardware specific data */
2292 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2293 if (!nic_data)
2294 return -ENOMEM;
2295 efx->nic_data = nic_data;
2296
2297 rc = -ENODEV;
2298
2299 if (ef4_farch_fpga_ver(efx) != 0) {
2300 netif_err(efx, probe, efx->net_dev,
2301 "Falcon FPGA not supported\n");
2302 goto fail1;
2303 }
2304
2305 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2306 ef4_oword_t nic_stat;
2307 struct pci_dev *dev;
2308 u8 pci_rev = efx->pci_dev->revision;
2309
2310 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2311 netif_err(efx, probe, efx->net_dev,
2312 "Falcon rev A0 not supported\n");
2313 goto fail1;
2314 }
2315 ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2316 if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2317 netif_err(efx, probe, efx->net_dev,
2318 "Falcon rev A1 1G not supported\n");
2319 goto fail1;
2320 }
2321 if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2322 netif_err(efx, probe, efx->net_dev,
2323 "Falcon rev A1 PCI-X not supported\n");
2324 goto fail1;
2325 }
2326
2327 dev = pci_dev_get(efx->pci_dev);
2328 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2329 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2330 dev))) {
2331 if (dev->bus == efx->pci_dev->bus &&
2332 dev->devfn == efx->pci_dev->devfn + 1) {
2333 nic_data->pci_dev2 = dev;
2334 break;
2335 }
2336 }
2337 if (!nic_data->pci_dev2) {
2338 netif_err(efx, probe, efx->net_dev,
2339 "failed to find secondary function\n");
2340 rc = -ENODEV;
2341 goto fail2;
2342 }
2343 }
2344
2345 /* Now we can reset the NIC */
2346 rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2347 if (rc) {
2348 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2349 goto fail3;
2350 }
2351
2352 /* Allocate memory for INT_KER */
2353 rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2354 GFP_KERNEL);
2355 if (rc)
2356 goto fail4;
2357 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2358
2359 netif_dbg(efx, probe, efx->net_dev,
2360 "INT_KER at %llx (virt %p phys %llx)\n",
2361 (u64)efx->irq_status.dma_addr,
2362 efx->irq_status.addr,
2363 (u64)virt_to_phys(efx->irq_status.addr));
2364
2365 falcon_probe_spi_devices(efx);
2366
2367 /* Read in the non-volatile configuration */
2368 rc = falcon_probe_nvconfig(efx);
2369 if (rc) {
2370 if (rc == -EINVAL)
2371 netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2372 goto fail5;
2373 }
2374
2375 efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2376 EF4_MAX_CHANNELS);
2377 efx->max_tx_channels = efx->max_channels;
2378 efx->timer_quantum_ns = 4968; /* 621 cycles */
2379 efx->timer_max_ns = efx->type->timer_period_max *
2380 efx->timer_quantum_ns;
2381
2382 /* Initialise I2C adapter */
2383 board = falcon_board(efx);
2384 board->i2c_adap.owner = THIS_MODULE;
2385 board->i2c_data = falcon_i2c_bit_operations;
2386 board->i2c_data.data = efx;
2387 board->i2c_adap.algo_data = &board->i2c_data;
2388 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2389 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2390 sizeof(board->i2c_adap.name));
2391 rc = i2c_bit_add_bus(&board->i2c_adap);
2392 if (rc)
2393 goto fail5;
2394
2395 rc = falcon_board(efx)->type->init(efx);
2396 if (rc) {
2397 netif_err(efx, probe, efx->net_dev,
2398 "failed to initialise board\n");
2399 goto fail6;
2400 }
2401
2402 nic_data->stats_disable_count = 1;
2403 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2404 (unsigned long)efx);
2405
2406 return 0;
2407
2408 fail6:
2409 i2c_del_adapter(&board->i2c_adap);
2410 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2411 fail5:
2412 ef4_nic_free_buffer(efx, &efx->irq_status);
2413 fail4:
2414 fail3:
2415 if (nic_data->pci_dev2) {
2416 pci_dev_put(nic_data->pci_dev2);
2417 nic_data->pci_dev2 = NULL;
2418 }
2419 fail2:
2420 fail1:
2421 kfree(efx->nic_data);
2422 return rc;
2423 }
2424
2425 static void falcon_init_rx_cfg(struct ef4_nic *efx)
2426 {
2427 /* RX control FIFO thresholds (32 entries) */
2428 const unsigned ctrl_xon_thr = 20;
2429 const unsigned ctrl_xoff_thr = 25;
2430 ef4_oword_t reg;
2431
2432 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2433 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2434 /* Data FIFO size is 5.5K. The RX DMA engine only
2435 * supports scattering for user-mode queues, but will
2436 * split DMA writes at intervals of RX_USR_BUF_SIZE
2437 * (32-byte units) even for kernel-mode queues. We
2438 * set it to be so large that that never happens.
2439 */
2440 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2441 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2442 (3 * 4096) >> 5);
2443 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2444 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2445 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2446 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2447 } else {
2448 /* Data FIFO size is 80K; register fields moved */
2449 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2450 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2451 EF4_RX_USR_BUF_SIZE >> 5);
2452 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2453 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2454 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2455 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2456 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2457 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2458
2459 /* Enable hash insertion. This is broken for the
2460 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2461 * IPv4 hashes. */
2462 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2463 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2464 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2465 }
2466 /* Always enable XOFF signal from RX FIFO. We enable
2467 * or disable transmission of pause frames at the MAC. */
2468 EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2469 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2470 }
2471
2472 /* This call performs hardware-specific global initialisation, such as
2473 * defining the descriptor cache sizes and number of RSS channels.
2474 * It does not set up any buffers, descriptor rings or event queues.
2475 */
2476 static int falcon_init_nic(struct ef4_nic *efx)
2477 {
2478 ef4_oword_t temp;
2479 int rc;
2480
2481 /* Use on-chip SRAM */
2482 ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2483 EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2484 ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2485
2486 rc = falcon_reset_sram(efx);
2487 if (rc)
2488 return rc;
2489
2490 /* Clear the parity enables on the TX data fifos as
2491 * they produce false parity errors because of timing issues
2492 */
2493 if (EF4_WORKAROUND_5129(efx)) {
2494 ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2495 EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2496 ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2497 }
2498
2499 if (EF4_WORKAROUND_7244(efx)) {
2500 ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2502 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2503 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2504 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2505 ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2506 }
2507
2508 /* XXX This is documented only for Falcon A0/A1 */
2509 /* Setup RX. Wait for descriptor is broken and must
2510 * be disabled. RXDP recovery shouldn't be needed, but is.
2511 */
2512 ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2513 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2514 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2515 if (EF4_WORKAROUND_5583(efx))
2516 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2517 ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2518
2519 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2520 * descriptors (which is bad).
2521 */
2522 ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2523 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2524 ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2525
2526 falcon_init_rx_cfg(efx);
2527
2528 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2529 falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2530
2531 /* Set destination of both TX and RX Flush events */
2532 EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2533 ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2534 }
2535
2536 ef4_farch_init_common(efx);
2537
2538 return 0;
2539 }
2540
2541 static void falcon_remove_nic(struct ef4_nic *efx)
2542 {
2543 struct falcon_nic_data *nic_data = efx->nic_data;
2544 struct falcon_board *board = falcon_board(efx);
2545
2546 board->type->fini(efx);
2547
2548 /* Remove I2C adapter and clear it in preparation for a retry */
2549 i2c_del_adapter(&board->i2c_adap);
2550 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2551
2552 ef4_nic_free_buffer(efx, &efx->irq_status);
2553
2554 __falcon_reset_hw(efx, RESET_TYPE_ALL);
2555
2556 /* Release the second function after the reset */
2557 if (nic_data->pci_dev2) {
2558 pci_dev_put(nic_data->pci_dev2);
2559 nic_data->pci_dev2 = NULL;
2560 }
2561
2562 /* Tear down the private nic state */
2563 kfree(efx->nic_data);
2564 efx->nic_data = NULL;
2565 }
2566
2567 static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2568 {
2569 return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2570 falcon_stat_mask, names);
2571 }
2572
2573 static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2574 struct rtnl_link_stats64 *core_stats)
2575 {
2576 struct falcon_nic_data *nic_data = efx->nic_data;
2577 u64 *stats = nic_data->stats;
2578 ef4_oword_t cnt;
2579
2580 if (!nic_data->stats_disable_count) {
2581 ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2582 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2583 EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2584
2585 if (nic_data->stats_pending &&
2586 FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2587 nic_data->stats_pending = false;
2588 rmb(); /* read the done flag before the stats */
2589 ef4_nic_update_stats(
2590 falcon_stat_desc, FALCON_STAT_COUNT,
2591 falcon_stat_mask,
2592 stats, efx->stats_buffer.addr, true);
2593 }
2594
2595 /* Update derived statistic */
2596 ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2597 stats[FALCON_STAT_rx_bytes] -
2598 stats[FALCON_STAT_rx_good_bytes] -
2599 stats[FALCON_STAT_rx_control] * 64);
2600 ef4_update_sw_stats(efx, stats);
2601 }
2602
2603 if (full_stats)
2604 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2605
2606 if (core_stats) {
2607 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2608 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2609 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2610 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2611 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2612 stats[GENERIC_STAT_rx_nodesc_trunc] +
2613 stats[GENERIC_STAT_rx_noskb_drops];
2614 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2615 core_stats->rx_length_errors =
2616 stats[FALCON_STAT_rx_gtjumbo] +
2617 stats[FALCON_STAT_rx_length_error];
2618 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2619 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2620 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2621
2622 core_stats->rx_errors = (core_stats->rx_length_errors +
2623 core_stats->rx_crc_errors +
2624 core_stats->rx_frame_errors +
2625 stats[FALCON_STAT_rx_symbol_error]);
2626 }
2627
2628 return FALCON_STAT_COUNT;
2629 }
2630
2631 void falcon_start_nic_stats(struct ef4_nic *efx)
2632 {
2633 struct falcon_nic_data *nic_data = efx->nic_data;
2634
2635 spin_lock_bh(&efx->stats_lock);
2636 if (--nic_data->stats_disable_count == 0)
2637 falcon_stats_request(efx);
2638 spin_unlock_bh(&efx->stats_lock);
2639 }
2640
2641 /* We don't acutally pull stats on falcon. Wait 10ms so that
2642 * they arrive when we call this just after start_stats
2643 */
2644 static void falcon_pull_nic_stats(struct ef4_nic *efx)
2645 {
2646 msleep(10);
2647 }
2648
2649 void falcon_stop_nic_stats(struct ef4_nic *efx)
2650 {
2651 struct falcon_nic_data *nic_data = efx->nic_data;
2652 int i;
2653
2654 might_sleep();
2655
2656 spin_lock_bh(&efx->stats_lock);
2657 ++nic_data->stats_disable_count;
2658 spin_unlock_bh(&efx->stats_lock);
2659
2660 del_timer_sync(&nic_data->stats_timer);
2661
2662 /* Wait enough time for the most recent transfer to
2663 * complete. */
2664 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2665 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2666 break;
2667 msleep(1);
2668 }
2669
2670 spin_lock_bh(&efx->stats_lock);
2671 falcon_stats_complete(efx);
2672 spin_unlock_bh(&efx->stats_lock);
2673 }
2674
2675 static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2676 {
2677 falcon_board(efx)->type->set_id_led(efx, mode);
2678 }
2679
2680 /**************************************************************************
2681 *
2682 * Wake on LAN
2683 *
2684 **************************************************************************
2685 */
2686
2687 static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2688 {
2689 wol->supported = 0;
2690 wol->wolopts = 0;
2691 memset(&wol->sopass, 0, sizeof(wol->sopass));
2692 }
2693
2694 static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2695 {
2696 if (type != 0)
2697 return -EINVAL;
2698 return 0;
2699 }
2700
2701 /**************************************************************************
2702 *
2703 * Revision-dependent attributes used by efx.c and nic.c
2704 *
2705 **************************************************************************
2706 */
2707
2708 const struct ef4_nic_type falcon_a1_nic_type = {
2709 .mem_bar = EF4_MEM_BAR,
2710 .mem_map_size = falcon_a1_mem_map_size,
2711 .probe = falcon_probe_nic,
2712 .remove = falcon_remove_nic,
2713 .init = falcon_init_nic,
2714 .dimension_resources = falcon_dimension_resources,
2715 .fini = falcon_irq_ack_a1,
2716 .monitor = falcon_monitor,
2717 .map_reset_reason = falcon_map_reset_reason,
2718 .map_reset_flags = falcon_map_reset_flags,
2719 .reset = falcon_reset_hw,
2720 .probe_port = falcon_probe_port,
2721 .remove_port = falcon_remove_port,
2722 .handle_global_event = falcon_handle_global_event,
2723 .fini_dmaq = ef4_farch_fini_dmaq,
2724 .prepare_flush = falcon_prepare_flush,
2725 .finish_flush = ef4_port_dummy_op_void,
2726 .prepare_flr = ef4_port_dummy_op_void,
2727 .finish_flr = ef4_farch_finish_flr,
2728 .describe_stats = falcon_describe_nic_stats,
2729 .update_stats = falcon_update_nic_stats,
2730 .start_stats = falcon_start_nic_stats,
2731 .pull_stats = falcon_pull_nic_stats,
2732 .stop_stats = falcon_stop_nic_stats,
2733 .set_id_led = falcon_set_id_led,
2734 .push_irq_moderation = falcon_push_irq_moderation,
2735 .reconfigure_port = falcon_reconfigure_port,
2736 .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2737 .reconfigure_mac = falcon_reconfigure_xmac,
2738 .check_mac_fault = falcon_xmac_check_fault,
2739 .get_wol = falcon_get_wol,
2740 .set_wol = falcon_set_wol,
2741 .resume_wol = ef4_port_dummy_op_void,
2742 .test_nvram = falcon_test_nvram,
2743 .irq_enable_master = ef4_farch_irq_enable_master,
2744 .irq_test_generate = ef4_farch_irq_test_generate,
2745 .irq_disable_non_ev = ef4_farch_irq_disable_master,
2746 .irq_handle_msi = ef4_farch_msi_interrupt,
2747 .irq_handle_legacy = falcon_legacy_interrupt_a1,
2748 .tx_probe = ef4_farch_tx_probe,
2749 .tx_init = ef4_farch_tx_init,
2750 .tx_remove = ef4_farch_tx_remove,
2751 .tx_write = ef4_farch_tx_write,
2752 .tx_limit_len = ef4_farch_tx_limit_len,
2753 .rx_push_rss_config = dummy_rx_push_rss_config,
2754 .rx_probe = ef4_farch_rx_probe,
2755 .rx_init = ef4_farch_rx_init,
2756 .rx_remove = ef4_farch_rx_remove,
2757 .rx_write = ef4_farch_rx_write,
2758 .rx_defer_refill = ef4_farch_rx_defer_refill,
2759 .ev_probe = ef4_farch_ev_probe,
2760 .ev_init = ef4_farch_ev_init,
2761 .ev_fini = ef4_farch_ev_fini,
2762 .ev_remove = ef4_farch_ev_remove,
2763 .ev_process = ef4_farch_ev_process,
2764 .ev_read_ack = ef4_farch_ev_read_ack,
2765 .ev_test_generate = ef4_farch_ev_test_generate,
2766
2767 /* We don't expose the filter table on Falcon A1 as it is not
2768 * mapped into function 0, but these implementations still
2769 * work with a degenerate case of all tables set to size 0.
2770 */
2771 .filter_table_probe = ef4_farch_filter_table_probe,
2772 .filter_table_restore = ef4_farch_filter_table_restore,
2773 .filter_table_remove = ef4_farch_filter_table_remove,
2774 .filter_insert = ef4_farch_filter_insert,
2775 .filter_remove_safe = ef4_farch_filter_remove_safe,
2776 .filter_get_safe = ef4_farch_filter_get_safe,
2777 .filter_clear_rx = ef4_farch_filter_clear_rx,
2778 .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2779 .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2780 .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2781
2782 #ifdef CONFIG_SFC_FALCON_MTD
2783 .mtd_probe = falcon_mtd_probe,
2784 .mtd_rename = falcon_mtd_rename,
2785 .mtd_read = falcon_mtd_read,
2786 .mtd_erase = falcon_mtd_erase,
2787 .mtd_write = falcon_mtd_write,
2788 .mtd_sync = falcon_mtd_sync,
2789 #endif
2790
2791 .revision = EF4_REV_FALCON_A1,
2792 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2793 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2794 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2795 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2796 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2797 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2798 .rx_buffer_padding = 0x24,
2799 .can_rx_scatter = false,
2800 .max_interrupt_mode = EF4_INT_MODE_MSI,
2801 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2802 .offload_features = NETIF_F_IP_CSUM,
2803 };
2804
2805 const struct ef4_nic_type falcon_b0_nic_type = {
2806 .mem_bar = EF4_MEM_BAR,
2807 .mem_map_size = falcon_b0_mem_map_size,
2808 .probe = falcon_probe_nic,
2809 .remove = falcon_remove_nic,
2810 .init = falcon_init_nic,
2811 .dimension_resources = falcon_dimension_resources,
2812 .fini = ef4_port_dummy_op_void,
2813 .monitor = falcon_monitor,
2814 .map_reset_reason = falcon_map_reset_reason,
2815 .map_reset_flags = falcon_map_reset_flags,
2816 .reset = falcon_reset_hw,
2817 .probe_port = falcon_probe_port,
2818 .remove_port = falcon_remove_port,
2819 .handle_global_event = falcon_handle_global_event,
2820 .fini_dmaq = ef4_farch_fini_dmaq,
2821 .prepare_flush = falcon_prepare_flush,
2822 .finish_flush = ef4_port_dummy_op_void,
2823 .prepare_flr = ef4_port_dummy_op_void,
2824 .finish_flr = ef4_farch_finish_flr,
2825 .describe_stats = falcon_describe_nic_stats,
2826 .update_stats = falcon_update_nic_stats,
2827 .start_stats = falcon_start_nic_stats,
2828 .pull_stats = falcon_pull_nic_stats,
2829 .stop_stats = falcon_stop_nic_stats,
2830 .set_id_led = falcon_set_id_led,
2831 .push_irq_moderation = falcon_push_irq_moderation,
2832 .reconfigure_port = falcon_reconfigure_port,
2833 .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2834 .reconfigure_mac = falcon_reconfigure_xmac,
2835 .check_mac_fault = falcon_xmac_check_fault,
2836 .get_wol = falcon_get_wol,
2837 .set_wol = falcon_set_wol,
2838 .resume_wol = ef4_port_dummy_op_void,
2839 .test_chip = falcon_b0_test_chip,
2840 .test_nvram = falcon_test_nvram,
2841 .irq_enable_master = ef4_farch_irq_enable_master,
2842 .irq_test_generate = ef4_farch_irq_test_generate,
2843 .irq_disable_non_ev = ef4_farch_irq_disable_master,
2844 .irq_handle_msi = ef4_farch_msi_interrupt,
2845 .irq_handle_legacy = ef4_farch_legacy_interrupt,
2846 .tx_probe = ef4_farch_tx_probe,
2847 .tx_init = ef4_farch_tx_init,
2848 .tx_remove = ef4_farch_tx_remove,
2849 .tx_write = ef4_farch_tx_write,
2850 .tx_limit_len = ef4_farch_tx_limit_len,
2851 .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2852 .rx_probe = ef4_farch_rx_probe,
2853 .rx_init = ef4_farch_rx_init,
2854 .rx_remove = ef4_farch_rx_remove,
2855 .rx_write = ef4_farch_rx_write,
2856 .rx_defer_refill = ef4_farch_rx_defer_refill,
2857 .ev_probe = ef4_farch_ev_probe,
2858 .ev_init = ef4_farch_ev_init,
2859 .ev_fini = ef4_farch_ev_fini,
2860 .ev_remove = ef4_farch_ev_remove,
2861 .ev_process = ef4_farch_ev_process,
2862 .ev_read_ack = ef4_farch_ev_read_ack,
2863 .ev_test_generate = ef4_farch_ev_test_generate,
2864 .filter_table_probe = ef4_farch_filter_table_probe,
2865 .filter_table_restore = ef4_farch_filter_table_restore,
2866 .filter_table_remove = ef4_farch_filter_table_remove,
2867 .filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2868 .filter_insert = ef4_farch_filter_insert,
2869 .filter_remove_safe = ef4_farch_filter_remove_safe,
2870 .filter_get_safe = ef4_farch_filter_get_safe,
2871 .filter_clear_rx = ef4_farch_filter_clear_rx,
2872 .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2873 .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2874 .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2875 #ifdef CONFIG_RFS_ACCEL
2876 .filter_rfs_insert = ef4_farch_filter_rfs_insert,
2877 .filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2878 #endif
2879 #ifdef CONFIG_SFC_FALCON_MTD
2880 .mtd_probe = falcon_mtd_probe,
2881 .mtd_rename = falcon_mtd_rename,
2882 .mtd_read = falcon_mtd_read,
2883 .mtd_erase = falcon_mtd_erase,
2884 .mtd_write = falcon_mtd_write,
2885 .mtd_sync = falcon_mtd_sync,
2886 #endif
2887
2888 .revision = EF4_REV_FALCON_B0,
2889 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2890 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2891 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2892 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2893 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2894 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2895 .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2896 .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2897 .rx_buffer_padding = 0,
2898 .can_rx_scatter = true,
2899 .max_interrupt_mode = EF4_INT_MODE_MSIX,
2900 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2901 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2902 .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2903 };