]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/sfc/falcon/falcon.c
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_...
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / sfc / falcon / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include <linux/sched/signal.h>
20
21 #include "net_driver.h"
22 #include "bitfield.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "farch_regs.h"
26 #include "io.h"
27 #include "phy.h"
28 #include "workarounds.h"
29 #include "selftest.h"
30 #include "mdio_10g.h"
31
32 /* Hardware control for SFC4000 (aka Falcon). */
33
34 /**************************************************************************
35 *
36 * NIC stats
37 *
38 **************************************************************************
39 */
40
41 #define FALCON_MAC_STATS_SIZE 0x100
42
43 #define XgRxOctets_offset 0x0
44 #define XgRxOctets_WIDTH 48
45 #define XgRxOctetsOK_offset 0x8
46 #define XgRxOctetsOK_WIDTH 48
47 #define XgRxPkts_offset 0x10
48 #define XgRxPkts_WIDTH 32
49 #define XgRxPktsOK_offset 0x14
50 #define XgRxPktsOK_WIDTH 32
51 #define XgRxBroadcastPkts_offset 0x18
52 #define XgRxBroadcastPkts_WIDTH 32
53 #define XgRxMulticastPkts_offset 0x1C
54 #define XgRxMulticastPkts_WIDTH 32
55 #define XgRxUnicastPkts_offset 0x20
56 #define XgRxUnicastPkts_WIDTH 32
57 #define XgRxUndersizePkts_offset 0x24
58 #define XgRxUndersizePkts_WIDTH 32
59 #define XgRxOversizePkts_offset 0x28
60 #define XgRxOversizePkts_WIDTH 32
61 #define XgRxJabberPkts_offset 0x2C
62 #define XgRxJabberPkts_WIDTH 32
63 #define XgRxUndersizeFCSerrorPkts_offset 0x30
64 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
65 #define XgRxDropEvents_offset 0x34
66 #define XgRxDropEvents_WIDTH 32
67 #define XgRxFCSerrorPkts_offset 0x38
68 #define XgRxFCSerrorPkts_WIDTH 32
69 #define XgRxAlignError_offset 0x3C
70 #define XgRxAlignError_WIDTH 32
71 #define XgRxSymbolError_offset 0x40
72 #define XgRxSymbolError_WIDTH 32
73 #define XgRxInternalMACError_offset 0x44
74 #define XgRxInternalMACError_WIDTH 32
75 #define XgRxControlPkts_offset 0x48
76 #define XgRxControlPkts_WIDTH 32
77 #define XgRxPausePkts_offset 0x4C
78 #define XgRxPausePkts_WIDTH 32
79 #define XgRxPkts64Octets_offset 0x50
80 #define XgRxPkts64Octets_WIDTH 32
81 #define XgRxPkts65to127Octets_offset 0x54
82 #define XgRxPkts65to127Octets_WIDTH 32
83 #define XgRxPkts128to255Octets_offset 0x58
84 #define XgRxPkts128to255Octets_WIDTH 32
85 #define XgRxPkts256to511Octets_offset 0x5C
86 #define XgRxPkts256to511Octets_WIDTH 32
87 #define XgRxPkts512to1023Octets_offset 0x60
88 #define XgRxPkts512to1023Octets_WIDTH 32
89 #define XgRxPkts1024to15xxOctets_offset 0x64
90 #define XgRxPkts1024to15xxOctets_WIDTH 32
91 #define XgRxPkts15xxtoMaxOctets_offset 0x68
92 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
93 #define XgRxLengthError_offset 0x6C
94 #define XgRxLengthError_WIDTH 32
95 #define XgTxPkts_offset 0x80
96 #define XgTxPkts_WIDTH 32
97 #define XgTxOctets_offset 0x88
98 #define XgTxOctets_WIDTH 48
99 #define XgTxMulticastPkts_offset 0x90
100 #define XgTxMulticastPkts_WIDTH 32
101 #define XgTxBroadcastPkts_offset 0x94
102 #define XgTxBroadcastPkts_WIDTH 32
103 #define XgTxUnicastPkts_offset 0x98
104 #define XgTxUnicastPkts_WIDTH 32
105 #define XgTxControlPkts_offset 0x9C
106 #define XgTxControlPkts_WIDTH 32
107 #define XgTxPausePkts_offset 0xA0
108 #define XgTxPausePkts_WIDTH 32
109 #define XgTxPkts64Octets_offset 0xA4
110 #define XgTxPkts64Octets_WIDTH 32
111 #define XgTxPkts65to127Octets_offset 0xA8
112 #define XgTxPkts65to127Octets_WIDTH 32
113 #define XgTxPkts128to255Octets_offset 0xAC
114 #define XgTxPkts128to255Octets_WIDTH 32
115 #define XgTxPkts256to511Octets_offset 0xB0
116 #define XgTxPkts256to511Octets_WIDTH 32
117 #define XgTxPkts512to1023Octets_offset 0xB4
118 #define XgTxPkts512to1023Octets_WIDTH 32
119 #define XgTxPkts1024to15xxOctets_offset 0xB8
120 #define XgTxPkts1024to15xxOctets_WIDTH 32
121 #define XgTxPkts1519toMaxOctets_offset 0xBC
122 #define XgTxPkts1519toMaxOctets_WIDTH 32
123 #define XgTxUndersizePkts_offset 0xC0
124 #define XgTxUndersizePkts_WIDTH 32
125 #define XgTxOversizePkts_offset 0xC4
126 #define XgTxOversizePkts_WIDTH 32
127 #define XgTxNonTcpUdpPkt_offset 0xC8
128 #define XgTxNonTcpUdpPkt_WIDTH 16
129 #define XgTxMacSrcErrPkt_offset 0xCC
130 #define XgTxMacSrcErrPkt_WIDTH 16
131 #define XgTxIpSrcErrPkt_offset 0xD0
132 #define XgTxIpSrcErrPkt_WIDTH 16
133 #define XgDmaDone_offset 0xD4
134 #define XgDmaDone_WIDTH 32
135
136 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
137 (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
138
139 #define FALCON_DMA_STAT(ext_name, hw_name) \
140 [FALCON_STAT_ ## ext_name] = \
141 { #ext_name, \
142 /* 48-bit stats are zero-padded to 64 on DMA */ \
143 hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
144 hw_name ## _ ## offset }
145 #define FALCON_OTHER_STAT(ext_name) \
146 [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147 #define GENERIC_SW_STAT(ext_name) \
148 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
149
150 static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
151 FALCON_DMA_STAT(tx_bytes, XgTxOctets),
152 FALCON_DMA_STAT(tx_packets, XgTxPkts),
153 FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
154 FALCON_DMA_STAT(tx_control, XgTxControlPkts),
155 FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
156 FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
157 FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
158 FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
159 FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
160 FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
161 FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
162 FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
163 FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
164 FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
165 FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
166 FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
167 FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
168 FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
169 FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
170 FALCON_DMA_STAT(rx_bytes, XgRxOctets),
171 FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
172 FALCON_OTHER_STAT(rx_bad_bytes),
173 FALCON_DMA_STAT(rx_packets, XgRxPkts),
174 FALCON_DMA_STAT(rx_good, XgRxPktsOK),
175 FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
176 FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
177 FALCON_DMA_STAT(rx_control, XgRxControlPkts),
178 FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
179 FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
180 FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
181 FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
182 FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
183 FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
184 FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
185 FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
186 FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
187 FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
188 FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
189 FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
190 FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
191 FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
192 FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
193 FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
194 FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
195 FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
196 FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
197 FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
198 GENERIC_SW_STAT(rx_nodesc_trunc),
199 GENERIC_SW_STAT(rx_noskb_drops),
200 };
201 static const unsigned long falcon_stat_mask[] = {
202 [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
203 };
204
205 /**************************************************************************
206 *
207 * Basic SPI command set and bit definitions
208 *
209 *************************************************************************/
210
211 #define SPI_WRSR 0x01 /* Write status register */
212 #define SPI_WRITE 0x02 /* Write data to memory array */
213 #define SPI_READ 0x03 /* Read data from memory array */
214 #define SPI_WRDI 0x04 /* Reset write enable latch */
215 #define SPI_RDSR 0x05 /* Read status register */
216 #define SPI_WREN 0x06 /* Set write enable latch */
217 #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
218
219 #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
220 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
221 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
222 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
223 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
224 #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
225
226 /**************************************************************************
227 *
228 * Non-volatile memory layout
229 *
230 **************************************************************************
231 */
232
233 /* SFC4000 flash is partitioned into:
234 * 0-0x400 chip and board config (see struct falcon_nvconfig)
235 * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
236 * 0x8000-end boot code (mapped to PCI expansion ROM)
237 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
238 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
239 * 0-0x400 chip and board config
240 * configurable VPD
241 * 0x800-0x1800 boot config
242 * Aside from the chip and board config, all of these are optional and may
243 * be absent or truncated depending on the devices used.
244 */
245 #define FALCON_NVCONFIG_END 0x400U
246 #define FALCON_FLASH_BOOTCODE_START 0x8000U
247 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
248 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
249
250 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
251 struct falcon_nvconfig_board_v2 {
252 __le16 nports;
253 u8 port0_phy_addr;
254 u8 port0_phy_type;
255 u8 port1_phy_addr;
256 u8 port1_phy_type;
257 __le16 asic_sub_revision;
258 __le16 board_revision;
259 } __packed;
260
261 /* Board configuration v3 extra information */
262 struct falcon_nvconfig_board_v3 {
263 __le32 spi_device_type[2];
264 } __packed;
265
266 /* Bit numbers for spi_device_type */
267 #define SPI_DEV_TYPE_SIZE_LBN 0
268 #define SPI_DEV_TYPE_SIZE_WIDTH 5
269 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
270 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
271 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
272 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
273 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
274 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
276 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
277 #define SPI_DEV_TYPE_FIELD(type, field) \
278 (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
279
280 #define FALCON_NVCONFIG_OFFSET 0x300
281
282 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
283 struct falcon_nvconfig {
284 ef4_oword_t ee_vpd_cfg_reg; /* 0x300 */
285 u8 mac_address[2][8]; /* 0x310 */
286 ef4_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
287 ef4_oword_t pcie_sd_ctl45_reg; /* 0x330 */
288 ef4_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
289 ef4_oword_t hw_init_reg; /* 0x350 */
290 ef4_oword_t nic_stat_reg; /* 0x360 */
291 ef4_oword_t glb_ctl_reg; /* 0x370 */
292 ef4_oword_t srm_cfg_reg; /* 0x380 */
293 ef4_oword_t spare_reg; /* 0x390 */
294 __le16 board_magic_num; /* 0x3A0 */
295 __le16 board_struct_ver;
296 __le16 board_checksum;
297 struct falcon_nvconfig_board_v2 board_v2;
298 ef4_oword_t ee_base_page_reg; /* 0x3B0 */
299 struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */
300 } __packed;
301
302 /*************************************************************************/
303
304 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
305 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
306
307 static const unsigned int
308 /* "Large" EEPROM device: Atmel AT25640 or similar
309 * 8 KB, 16-bit address, 32 B write block */
310 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
311 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
312 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
313 /* Default flash device: Atmel AT25F1024
314 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
315 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
316 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
317 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
318 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
319 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
320
321 /**************************************************************************
322 *
323 * I2C bus - this is a bit-bashing interface using GPIO pins
324 * Note that it uses the output enables to tristate the outputs
325 * SDA is the data pin and SCL is the clock
326 *
327 **************************************************************************
328 */
329 static void falcon_setsda(void *data, int state)
330 {
331 struct ef4_nic *efx = (struct ef4_nic *)data;
332 ef4_oword_t reg;
333
334 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
335 EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
336 ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
337 }
338
339 static void falcon_setscl(void *data, int state)
340 {
341 struct ef4_nic *efx = (struct ef4_nic *)data;
342 ef4_oword_t reg;
343
344 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
345 EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
346 ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
347 }
348
349 static int falcon_getsda(void *data)
350 {
351 struct ef4_nic *efx = (struct ef4_nic *)data;
352 ef4_oword_t reg;
353
354 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
355 return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
356 }
357
358 static int falcon_getscl(void *data)
359 {
360 struct ef4_nic *efx = (struct ef4_nic *)data;
361 ef4_oword_t reg;
362
363 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
364 return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
365 }
366
367 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
368 .setsda = falcon_setsda,
369 .setscl = falcon_setscl,
370 .getsda = falcon_getsda,
371 .getscl = falcon_getscl,
372 .udelay = 5,
373 /* Wait up to 50 ms for slave to let us pull SCL high */
374 .timeout = DIV_ROUND_UP(HZ, 20),
375 };
376
377 static void falcon_push_irq_moderation(struct ef4_channel *channel)
378 {
379 ef4_dword_t timer_cmd;
380 struct ef4_nic *efx = channel->efx;
381
382 /* Set timer register */
383 if (channel->irq_moderation_us) {
384 unsigned int ticks;
385
386 ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
387 EF4_POPULATE_DWORD_2(timer_cmd,
388 FRF_AB_TC_TIMER_MODE,
389 FFE_BB_TIMER_MODE_INT_HLDOFF,
390 FRF_AB_TC_TIMER_VAL,
391 ticks - 1);
392 } else {
393 EF4_POPULATE_DWORD_2(timer_cmd,
394 FRF_AB_TC_TIMER_MODE,
395 FFE_BB_TIMER_MODE_DIS,
396 FRF_AB_TC_TIMER_VAL, 0);
397 }
398 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
399 ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
400 channel->channel);
401 }
402
403 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
404
405 static void falcon_prepare_flush(struct ef4_nic *efx)
406 {
407 falcon_deconfigure_mac_wrapper(efx);
408
409 /* Wait for the tx and rx fifo's to get to the next packet boundary
410 * (~1ms without back-pressure), then to drain the remainder of the
411 * fifo's at data path speeds (negligible), with a healthy margin. */
412 msleep(10);
413 }
414
415 /* Acknowledge a legacy interrupt from Falcon
416 *
417 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
418 *
419 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
420 * BIU. Interrupt acknowledge is read sensitive so must write instead
421 * (then read to ensure the BIU collector is flushed)
422 *
423 * NB most hardware supports MSI interrupts
424 */
425 static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
426 {
427 ef4_dword_t reg;
428
429 EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
430 ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
431 ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
432 }
433
434 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
435 {
436 struct ef4_nic *efx = dev_id;
437 ef4_oword_t *int_ker = efx->irq_status.addr;
438 int syserr;
439 int queues;
440
441 /* Check to see if this is our interrupt. If it isn't, we
442 * exit without having touched the hardware.
443 */
444 if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
445 netif_vdbg(efx, intr, efx->net_dev,
446 "IRQ %d on CPU %d not for me\n", irq,
447 raw_smp_processor_id());
448 return IRQ_NONE;
449 }
450 efx->last_irq_cpu = raw_smp_processor_id();
451 netif_vdbg(efx, intr, efx->net_dev,
452 "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
453 irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
454
455 if (!likely(READ_ONCE(efx->irq_soft_enabled)))
456 return IRQ_HANDLED;
457
458 /* Check to see if we have a serious error condition */
459 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
460 if (unlikely(syserr))
461 return ef4_farch_fatal_interrupt(efx);
462
463 /* Determine interrupting queues, clear interrupt status
464 * register and acknowledge the device interrupt.
465 */
466 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
467 queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
468 EF4_ZERO_OWORD(*int_ker);
469 wmb(); /* Ensure the vector is cleared before interrupt ack */
470 falcon_irq_ack_a1(efx);
471
472 if (queues & 1)
473 ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
474 if (queues & 2)
475 ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
476 return IRQ_HANDLED;
477 }
478
479 /**************************************************************************
480 *
481 * RSS
482 *
483 **************************************************************************
484 */
485 static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
486 const u32 *rx_indir_table)
487 {
488 (void) efx;
489 (void) user;
490 (void) rx_indir_table;
491 return -ENOSYS;
492 }
493
494 static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
495 const u32 *rx_indir_table)
496 {
497 ef4_oword_t temp;
498
499 (void) user;
500 /* Set hash key for IPv4 */
501 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
502 ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
503
504 memcpy(efx->rx_indir_table, rx_indir_table,
505 sizeof(efx->rx_indir_table));
506 ef4_farch_rx_push_indir_table(efx);
507 return 0;
508 }
509
510 /**************************************************************************
511 *
512 * EEPROM/flash
513 *
514 **************************************************************************
515 */
516
517 #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
518
519 static int falcon_spi_poll(struct ef4_nic *efx)
520 {
521 ef4_oword_t reg;
522 ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
523 return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
524 }
525
526 /* Wait for SPI command completion */
527 static int falcon_spi_wait(struct ef4_nic *efx)
528 {
529 /* Most commands will finish quickly, so we start polling at
530 * very short intervals. Sometimes the command may have to
531 * wait for VPD or expansion ROM access outside of our
532 * control, so we allow up to 100 ms. */
533 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
534 int i;
535
536 for (i = 0; i < 10; i++) {
537 if (!falcon_spi_poll(efx))
538 return 0;
539 udelay(10);
540 }
541
542 for (;;) {
543 if (!falcon_spi_poll(efx))
544 return 0;
545 if (time_after_eq(jiffies, timeout)) {
546 netif_err(efx, hw, efx->net_dev,
547 "timed out waiting for SPI\n");
548 return -ETIMEDOUT;
549 }
550 schedule_timeout_uninterruptible(1);
551 }
552 }
553
554 static int
555 falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
556 unsigned int command, int address,
557 const void *in, void *out, size_t len)
558 {
559 bool addressed = (address >= 0);
560 bool reading = (out != NULL);
561 ef4_oword_t reg;
562 int rc;
563
564 /* Input validation */
565 if (len > FALCON_SPI_MAX_LEN)
566 return -EINVAL;
567
568 /* Check that previous command is not still running */
569 rc = falcon_spi_poll(efx);
570 if (rc)
571 return rc;
572
573 /* Program address register, if we have an address */
574 if (addressed) {
575 EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
576 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
577 }
578
579 /* Program data register, if we have data */
580 if (in != NULL) {
581 memcpy(&reg, in, len);
582 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
583 }
584
585 /* Issue read/write command */
586 EF4_POPULATE_OWORD_7(reg,
587 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
588 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
589 FRF_AB_EE_SPI_HCMD_DABCNT, len,
590 FRF_AB_EE_SPI_HCMD_READ, reading,
591 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
592 FRF_AB_EE_SPI_HCMD_ADBCNT,
593 (addressed ? spi->addr_len : 0),
594 FRF_AB_EE_SPI_HCMD_ENC, command);
595 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
596
597 /* Wait for read/write to complete */
598 rc = falcon_spi_wait(efx);
599 if (rc)
600 return rc;
601
602 /* Read data */
603 if (out != NULL) {
604 ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
605 memcpy(out, &reg, len);
606 }
607
608 return 0;
609 }
610
611 static inline u8
612 falcon_spi_munge_command(const struct falcon_spi_device *spi,
613 const u8 command, const unsigned int address)
614 {
615 return command | (((address >> 8) & spi->munge_address) << 3);
616 }
617
618 static int
619 falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
620 loff_t start, size_t len, size_t *retlen, u8 *buffer)
621 {
622 size_t block_len, pos = 0;
623 unsigned int command;
624 int rc = 0;
625
626 while (pos < len) {
627 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
628
629 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
630 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
631 buffer + pos, block_len);
632 if (rc)
633 break;
634 pos += block_len;
635
636 /* Avoid locking up the system */
637 cond_resched();
638 if (signal_pending(current)) {
639 rc = -EINTR;
640 break;
641 }
642 }
643
644 if (retlen)
645 *retlen = pos;
646 return rc;
647 }
648
649 #ifdef CONFIG_SFC_FALCON_MTD
650
651 struct falcon_mtd_partition {
652 struct ef4_mtd_partition common;
653 const struct falcon_spi_device *spi;
654 size_t offset;
655 };
656
657 #define to_falcon_mtd_partition(mtd) \
658 container_of(mtd, struct falcon_mtd_partition, common.mtd)
659
660 static size_t
661 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
662 {
663 return min(FALCON_SPI_MAX_LEN,
664 (spi->block_size - (start & (spi->block_size - 1))));
665 }
666
667 /* Wait up to 10 ms for buffered write completion */
668 static int
669 falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
670 {
671 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
672 u8 status;
673 int rc;
674
675 for (;;) {
676 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
677 &status, sizeof(status));
678 if (rc)
679 return rc;
680 if (!(status & SPI_STATUS_NRDY))
681 return 0;
682 if (time_after_eq(jiffies, timeout)) {
683 netif_err(efx, hw, efx->net_dev,
684 "SPI write timeout on device %d"
685 " last status=0x%02x\n",
686 spi->device_id, status);
687 return -ETIMEDOUT;
688 }
689 schedule_timeout_uninterruptible(1);
690 }
691 }
692
693 static int
694 falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
695 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
696 {
697 u8 verify_buffer[FALCON_SPI_MAX_LEN];
698 size_t block_len, pos = 0;
699 unsigned int command;
700 int rc = 0;
701
702 while (pos < len) {
703 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
704 if (rc)
705 break;
706
707 block_len = min(len - pos,
708 falcon_spi_write_limit(spi, start + pos));
709 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
710 rc = falcon_spi_cmd(efx, spi, command, start + pos,
711 buffer + pos, NULL, block_len);
712 if (rc)
713 break;
714
715 rc = falcon_spi_wait_write(efx, spi);
716 if (rc)
717 break;
718
719 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
720 rc = falcon_spi_cmd(efx, spi, command, start + pos,
721 NULL, verify_buffer, block_len);
722 if (memcmp(verify_buffer, buffer + pos, block_len)) {
723 rc = -EIO;
724 break;
725 }
726
727 pos += block_len;
728
729 /* Avoid locking up the system */
730 cond_resched();
731 if (signal_pending(current)) {
732 rc = -EINTR;
733 break;
734 }
735 }
736
737 if (retlen)
738 *retlen = pos;
739 return rc;
740 }
741
742 static int
743 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
744 {
745 const struct falcon_spi_device *spi = part->spi;
746 struct ef4_nic *efx = part->common.mtd.priv;
747 u8 status;
748 int rc, i;
749
750 /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
751 for (i = 0; i < 40; i++) {
752 __set_current_state(uninterruptible ?
753 TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
754 schedule_timeout(HZ / 10);
755 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
756 &status, sizeof(status));
757 if (rc)
758 return rc;
759 if (!(status & SPI_STATUS_NRDY))
760 return 0;
761 if (signal_pending(current))
762 return -EINTR;
763 }
764 pr_err("%s: timed out waiting for %s\n",
765 part->common.name, part->common.dev_type_name);
766 return -ETIMEDOUT;
767 }
768
769 static int
770 falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
771 {
772 const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
773 SPI_STATUS_BP0);
774 u8 status;
775 int rc;
776
777 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
778 &status, sizeof(status));
779 if (rc)
780 return rc;
781
782 if (!(status & unlock_mask))
783 return 0; /* already unlocked */
784
785 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
786 if (rc)
787 return rc;
788 rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
789 if (rc)
790 return rc;
791
792 status &= ~unlock_mask;
793 rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
794 NULL, sizeof(status));
795 if (rc)
796 return rc;
797 rc = falcon_spi_wait_write(efx, spi);
798 if (rc)
799 return rc;
800
801 return 0;
802 }
803
804 #define FALCON_SPI_VERIFY_BUF_LEN 16
805
806 static int
807 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
808 {
809 const struct falcon_spi_device *spi = part->spi;
810 struct ef4_nic *efx = part->common.mtd.priv;
811 unsigned pos, block_len;
812 u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
813 u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
814 int rc;
815
816 if (len != spi->erase_size)
817 return -EINVAL;
818
819 if (spi->erase_command == 0)
820 return -EOPNOTSUPP;
821
822 rc = falcon_spi_unlock(efx, spi);
823 if (rc)
824 return rc;
825 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
826 if (rc)
827 return rc;
828 rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
829 NULL, 0);
830 if (rc)
831 return rc;
832 rc = falcon_spi_slow_wait(part, false);
833
834 /* Verify the entire region has been wiped */
835 memset(empty, 0xff, sizeof(empty));
836 for (pos = 0; pos < len; pos += block_len) {
837 block_len = min(len - pos, sizeof(buffer));
838 rc = falcon_spi_read(efx, spi, start + pos, block_len,
839 NULL, buffer);
840 if (rc)
841 return rc;
842 if (memcmp(empty, buffer, block_len))
843 return -EIO;
844
845 /* Avoid locking up the system */
846 cond_resched();
847 if (signal_pending(current))
848 return -EINTR;
849 }
850
851 return rc;
852 }
853
854 static void falcon_mtd_rename(struct ef4_mtd_partition *part)
855 {
856 struct ef4_nic *efx = part->mtd.priv;
857
858 snprintf(part->name, sizeof(part->name), "%s %s",
859 efx->name, part->type_name);
860 }
861
862 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
863 size_t len, size_t *retlen, u8 *buffer)
864 {
865 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
866 struct ef4_nic *efx = mtd->priv;
867 struct falcon_nic_data *nic_data = efx->nic_data;
868 int rc;
869
870 rc = mutex_lock_interruptible(&nic_data->spi_lock);
871 if (rc)
872 return rc;
873 rc = falcon_spi_read(efx, part->spi, part->offset + start,
874 len, retlen, buffer);
875 mutex_unlock(&nic_data->spi_lock);
876 return rc;
877 }
878
879 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
880 {
881 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
882 struct ef4_nic *efx = mtd->priv;
883 struct falcon_nic_data *nic_data = efx->nic_data;
884 int rc;
885
886 rc = mutex_lock_interruptible(&nic_data->spi_lock);
887 if (rc)
888 return rc;
889 rc = falcon_spi_erase(part, part->offset + start, len);
890 mutex_unlock(&nic_data->spi_lock);
891 return rc;
892 }
893
894 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
895 size_t len, size_t *retlen, const u8 *buffer)
896 {
897 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
898 struct ef4_nic *efx = mtd->priv;
899 struct falcon_nic_data *nic_data = efx->nic_data;
900 int rc;
901
902 rc = mutex_lock_interruptible(&nic_data->spi_lock);
903 if (rc)
904 return rc;
905 rc = falcon_spi_write(efx, part->spi, part->offset + start,
906 len, retlen, buffer);
907 mutex_unlock(&nic_data->spi_lock);
908 return rc;
909 }
910
911 static int falcon_mtd_sync(struct mtd_info *mtd)
912 {
913 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
914 struct ef4_nic *efx = mtd->priv;
915 struct falcon_nic_data *nic_data = efx->nic_data;
916 int rc;
917
918 mutex_lock(&nic_data->spi_lock);
919 rc = falcon_spi_slow_wait(part, true);
920 mutex_unlock(&nic_data->spi_lock);
921 return rc;
922 }
923
924 static int falcon_mtd_probe(struct ef4_nic *efx)
925 {
926 struct falcon_nic_data *nic_data = efx->nic_data;
927 struct falcon_mtd_partition *parts;
928 struct falcon_spi_device *spi;
929 size_t n_parts;
930 int rc = -ENODEV;
931
932 ASSERT_RTNL();
933
934 /* Allocate space for maximum number of partitions */
935 parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
936 if (!parts)
937 return -ENOMEM;
938 n_parts = 0;
939
940 spi = &nic_data->spi_flash;
941 if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
942 parts[n_parts].spi = spi;
943 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
944 parts[n_parts].common.dev_type_name = "flash";
945 parts[n_parts].common.type_name = "sfc_flash_bootrom";
946 parts[n_parts].common.mtd.type = MTD_NORFLASH;
947 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
948 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
949 parts[n_parts].common.mtd.erasesize = spi->erase_size;
950 n_parts++;
951 }
952
953 spi = &nic_data->spi_eeprom;
954 if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
955 parts[n_parts].spi = spi;
956 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
957 parts[n_parts].common.dev_type_name = "EEPROM";
958 parts[n_parts].common.type_name = "sfc_bootconfig";
959 parts[n_parts].common.mtd.type = MTD_RAM;
960 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
961 parts[n_parts].common.mtd.size =
962 min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
963 FALCON_EEPROM_BOOTCONFIG_START;
964 parts[n_parts].common.mtd.erasesize = spi->erase_size;
965 n_parts++;
966 }
967
968 rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
969 if (rc)
970 kfree(parts);
971 return rc;
972 }
973
974 #endif /* CONFIG_SFC_FALCON_MTD */
975
976 /**************************************************************************
977 *
978 * XMAC operations
979 *
980 **************************************************************************
981 */
982
983 /* Configure the XAUI driver that is an output from Falcon */
984 static void falcon_setup_xaui(struct ef4_nic *efx)
985 {
986 ef4_oword_t sdctl, txdrv;
987
988 /* Move the XAUI into low power, unless there is no PHY, in
989 * which case the XAUI will have to drive a cable. */
990 if (efx->phy_type == PHY_TYPE_NONE)
991 return;
992
993 ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
994 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
995 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
996 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
997 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
998 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
999 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
1000 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1001 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1002 ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1003
1004 EF4_POPULATE_OWORD_8(txdrv,
1005 FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1006 FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1007 FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1008 FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1009 FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1010 FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1011 FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1012 FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1013 ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1014 }
1015
1016 int falcon_reset_xaui(struct ef4_nic *efx)
1017 {
1018 struct falcon_nic_data *nic_data = efx->nic_data;
1019 ef4_oword_t reg;
1020 int count;
1021
1022 /* Don't fetch MAC statistics over an XMAC reset */
1023 WARN_ON(nic_data->stats_disable_count == 0);
1024
1025 /* Start reset sequence */
1026 EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1027 ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1028
1029 /* Wait up to 10 ms for completion, then reinitialise */
1030 for (count = 0; count < 1000; count++) {
1031 ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1032 if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1033 EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1034 falcon_setup_xaui(efx);
1035 return 0;
1036 }
1037 udelay(10);
1038 }
1039 netif_err(efx, hw, efx->net_dev,
1040 "timed out waiting for XAUI/XGXS reset\n");
1041 return -ETIMEDOUT;
1042 }
1043
1044 static void falcon_ack_status_intr(struct ef4_nic *efx)
1045 {
1046 struct falcon_nic_data *nic_data = efx->nic_data;
1047 ef4_oword_t reg;
1048
1049 if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1050 return;
1051
1052 /* We expect xgmii faults if the wireside link is down */
1053 if (!efx->link_state.up)
1054 return;
1055
1056 /* We can only use this interrupt to signal the negative edge of
1057 * xaui_align [we have to poll the positive edge]. */
1058 if (nic_data->xmac_poll_required)
1059 return;
1060
1061 ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1062 }
1063
1064 static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1065 {
1066 ef4_oword_t reg;
1067 bool align_done, link_ok = false;
1068 int sync_status;
1069
1070 /* Read link status */
1071 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1072
1073 align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1074 sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1075 if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1076 link_ok = true;
1077
1078 /* Clear link status ready for next read */
1079 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1080 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1081 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1082 ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1083
1084 return link_ok;
1085 }
1086
1087 static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1088 {
1089 /*
1090 * Check MAC's XGXS link status except when using XGMII loopback
1091 * which bypasses the XGXS block.
1092 * If possible, check PHY's XGXS link status except when using
1093 * MAC loopback.
1094 */
1095 return (efx->loopback_mode == LOOPBACK_XGMII ||
1096 falcon_xgxs_link_ok(efx)) &&
1097 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1098 LOOPBACK_INTERNAL(efx) ||
1099 ef4_mdio_phyxgxs_lane_sync(efx));
1100 }
1101
1102 static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1103 {
1104 unsigned int max_frame_len;
1105 ef4_oword_t reg;
1106 bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1107 bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1108
1109 /* Configure MAC - cut-thru mode is hard wired on */
1110 EF4_POPULATE_OWORD_3(reg,
1111 FRF_AB_XM_RX_JUMBO_MODE, 1,
1112 FRF_AB_XM_TX_STAT_EN, 1,
1113 FRF_AB_XM_RX_STAT_EN, 1);
1114 ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1115
1116 /* Configure TX */
1117 EF4_POPULATE_OWORD_6(reg,
1118 FRF_AB_XM_TXEN, 1,
1119 FRF_AB_XM_TX_PRMBL, 1,
1120 FRF_AB_XM_AUTO_PAD, 1,
1121 FRF_AB_XM_TXCRC, 1,
1122 FRF_AB_XM_FCNTL, tx_fc,
1123 FRF_AB_XM_IPG, 0x3);
1124 ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1125
1126 /* Configure RX */
1127 EF4_POPULATE_OWORD_5(reg,
1128 FRF_AB_XM_RXEN, 1,
1129 FRF_AB_XM_AUTO_DEPAD, 0,
1130 FRF_AB_XM_ACPT_ALL_MCAST, 1,
1131 FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1132 FRF_AB_XM_PASS_CRC_ERR, 1);
1133 ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1134
1135 /* Set frame length */
1136 max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1137 EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1138 ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1139 EF4_POPULATE_OWORD_2(reg,
1140 FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1141 FRF_AB_XM_TX_JUMBO_MODE, 1);
1142 ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1143
1144 EF4_POPULATE_OWORD_2(reg,
1145 FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1146 FRF_AB_XM_DIS_FCNTL, !rx_fc);
1147 ef4_writeo(efx, &reg, FR_AB_XM_FC);
1148
1149 /* Set MAC address */
1150 memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1151 ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1152 memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1153 ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1154 }
1155
1156 static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1157 {
1158 ef4_oword_t reg;
1159 bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1160 bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1161 bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1162 bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1163
1164 /* XGXS block is flaky and will need to be reset if moving
1165 * into our out of XGMII, XGXS or XAUI loopbacks. */
1166 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1167 old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1168 old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1169
1170 ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1171 old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1172
1173 /* The PHY driver may have turned XAUI off */
1174 if ((xgxs_loopback != old_xgxs_loopback) ||
1175 (xaui_loopback != old_xaui_loopback) ||
1176 (xgmii_loopback != old_xgmii_loopback))
1177 falcon_reset_xaui(efx);
1178
1179 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1180 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1181 (xgxs_loopback || xaui_loopback) ?
1182 FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1183 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1184 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1185 ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1186
1187 ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1188 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1189 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1190 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1191 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1192 ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1193 }
1194
1195
1196 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1197 static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1198 {
1199 bool mac_up = falcon_xmac_link_ok(efx);
1200
1201 if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1202 ef4_phy_mode_disabled(efx->phy_mode))
1203 /* XAUI link is expected to be down */
1204 return mac_up;
1205
1206 falcon_stop_nic_stats(efx);
1207
1208 while (!mac_up && tries) {
1209 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1210 falcon_reset_xaui(efx);
1211 udelay(200);
1212
1213 mac_up = falcon_xmac_link_ok(efx);
1214 --tries;
1215 }
1216
1217 falcon_start_nic_stats(efx);
1218
1219 return mac_up;
1220 }
1221
1222 static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1223 {
1224 return !falcon_xmac_link_ok_retry(efx, 5);
1225 }
1226
1227 static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1228 {
1229 struct falcon_nic_data *nic_data = efx->nic_data;
1230
1231 ef4_farch_filter_sync_rx_mode(efx);
1232
1233 falcon_reconfigure_xgxs_core(efx);
1234 falcon_reconfigure_xmac_core(efx);
1235
1236 falcon_reconfigure_mac_wrapper(efx);
1237
1238 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1239 falcon_ack_status_intr(efx);
1240
1241 return 0;
1242 }
1243
1244 static void falcon_poll_xmac(struct ef4_nic *efx)
1245 {
1246 struct falcon_nic_data *nic_data = efx->nic_data;
1247
1248 /* We expect xgmii faults if the wireside link is down */
1249 if (!efx->link_state.up || !nic_data->xmac_poll_required)
1250 return;
1251
1252 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1253 falcon_ack_status_intr(efx);
1254 }
1255
1256 /**************************************************************************
1257 *
1258 * MAC wrapper
1259 *
1260 **************************************************************************
1261 */
1262
1263 static void falcon_push_multicast_hash(struct ef4_nic *efx)
1264 {
1265 union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1266
1267 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1268
1269 ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1270 ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1271 }
1272
1273 static void falcon_reset_macs(struct ef4_nic *efx)
1274 {
1275 struct falcon_nic_data *nic_data = efx->nic_data;
1276 ef4_oword_t reg, mac_ctrl;
1277 int count;
1278
1279 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1280 /* It's not safe to use GLB_CTL_REG to reset the
1281 * macs, so instead use the internal MAC resets
1282 */
1283 EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1284 ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1285
1286 for (count = 0; count < 10000; count++) {
1287 ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1288 if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1289 0)
1290 return;
1291 udelay(10);
1292 }
1293
1294 netif_err(efx, hw, efx->net_dev,
1295 "timed out waiting for XMAC core reset\n");
1296 }
1297
1298 /* Mac stats will fail whist the TX fifo is draining */
1299 WARN_ON(nic_data->stats_disable_count == 0);
1300
1301 ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1302 EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1303 ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1304
1305 ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1306 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1307 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1308 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1309 ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1310
1311 count = 0;
1312 while (1) {
1313 ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1314 if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1315 !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1316 !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1317 netif_dbg(efx, hw, efx->net_dev,
1318 "Completed MAC reset after %d loops\n",
1319 count);
1320 break;
1321 }
1322 if (count > 20) {
1323 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1324 break;
1325 }
1326 count++;
1327 udelay(10);
1328 }
1329
1330 /* Ensure the correct MAC is selected before statistics
1331 * are re-enabled by the caller */
1332 ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1333
1334 falcon_setup_xaui(efx);
1335 }
1336
1337 static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1338 {
1339 ef4_oword_t reg;
1340
1341 if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1342 (efx->loopback_mode != LOOPBACK_NONE))
1343 return;
1344
1345 ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1346 /* There is no point in draining more than once */
1347 if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1348 return;
1349
1350 falcon_reset_macs(efx);
1351 }
1352
1353 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1354 {
1355 ef4_oword_t reg;
1356
1357 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1358 return;
1359
1360 /* Isolate the MAC -> RX */
1361 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1362 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1363 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1364
1365 /* Isolate TX -> MAC */
1366 falcon_drain_tx_fifo(efx);
1367 }
1368
1369 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1370 {
1371 struct ef4_link_state *link_state = &efx->link_state;
1372 ef4_oword_t reg;
1373 int link_speed, isolate;
1374
1375 isolate = !!READ_ONCE(efx->reset_pending);
1376
1377 switch (link_state->speed) {
1378 case 10000: link_speed = 3; break;
1379 case 1000: link_speed = 2; break;
1380 case 100: link_speed = 1; break;
1381 default: link_speed = 0; break;
1382 }
1383
1384 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1385 * as advertised. Disable to ensure packets are not
1386 * indefinitely held and TX queue can be flushed at any point
1387 * while the link is down. */
1388 EF4_POPULATE_OWORD_5(reg,
1389 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1390 FRF_AB_MAC_BCAD_ACPT, 1,
1391 FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1392 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1393 FRF_AB_MAC_SPEED, link_speed);
1394 /* On B0, MAC backpressure can be disabled and packets get
1395 * discarded. */
1396 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1397 EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1398 !link_state->up || isolate);
1399 }
1400
1401 ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1402
1403 /* Restore the multicast hash registers. */
1404 falcon_push_multicast_hash(efx);
1405
1406 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1407 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1408 * initialisation but it may read back as 0) */
1409 EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1410 /* Unisolate the MAC -> RX */
1411 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1412 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1413 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1414 }
1415
1416 static void falcon_stats_request(struct ef4_nic *efx)
1417 {
1418 struct falcon_nic_data *nic_data = efx->nic_data;
1419 ef4_oword_t reg;
1420
1421 WARN_ON(nic_data->stats_pending);
1422 WARN_ON(nic_data->stats_disable_count);
1423
1424 FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1425 nic_data->stats_pending = true;
1426 wmb(); /* ensure done flag is clear */
1427
1428 /* Initiate DMA transfer of stats */
1429 EF4_POPULATE_OWORD_2(reg,
1430 FRF_AB_MAC_STAT_DMA_CMD, 1,
1431 FRF_AB_MAC_STAT_DMA_ADR,
1432 efx->stats_buffer.dma_addr);
1433 ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1434
1435 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1436 }
1437
1438 static void falcon_stats_complete(struct ef4_nic *efx)
1439 {
1440 struct falcon_nic_data *nic_data = efx->nic_data;
1441
1442 if (!nic_data->stats_pending)
1443 return;
1444
1445 nic_data->stats_pending = false;
1446 if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1447 rmb(); /* read the done flag before the stats */
1448 ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1449 falcon_stat_mask, nic_data->stats,
1450 efx->stats_buffer.addr, true);
1451 } else {
1452 netif_err(efx, hw, efx->net_dev,
1453 "timed out waiting for statistics\n");
1454 }
1455 }
1456
1457 static void falcon_stats_timer_func(unsigned long context)
1458 {
1459 struct ef4_nic *efx = (struct ef4_nic *)context;
1460 struct falcon_nic_data *nic_data = efx->nic_data;
1461
1462 spin_lock(&efx->stats_lock);
1463
1464 falcon_stats_complete(efx);
1465 if (nic_data->stats_disable_count == 0)
1466 falcon_stats_request(efx);
1467
1468 spin_unlock(&efx->stats_lock);
1469 }
1470
1471 static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1472 {
1473 struct ef4_link_state old_state = efx->link_state;
1474
1475 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1476 WARN_ON(!LOOPBACK_INTERNAL(efx));
1477
1478 efx->link_state.fd = true;
1479 efx->link_state.fc = efx->wanted_fc;
1480 efx->link_state.up = true;
1481 efx->link_state.speed = 10000;
1482
1483 return !ef4_link_state_equal(&efx->link_state, &old_state);
1484 }
1485
1486 static int falcon_reconfigure_port(struct ef4_nic *efx)
1487 {
1488 int rc;
1489
1490 WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1491
1492 /* Poll the PHY link state *before* reconfiguring it. This means we
1493 * will pick up the correct speed (in loopback) to select the correct
1494 * MAC.
1495 */
1496 if (LOOPBACK_INTERNAL(efx))
1497 falcon_loopback_link_poll(efx);
1498 else
1499 efx->phy_op->poll(efx);
1500
1501 falcon_stop_nic_stats(efx);
1502 falcon_deconfigure_mac_wrapper(efx);
1503
1504 falcon_reset_macs(efx);
1505
1506 efx->phy_op->reconfigure(efx);
1507 rc = falcon_reconfigure_xmac(efx);
1508 BUG_ON(rc);
1509
1510 falcon_start_nic_stats(efx);
1511
1512 /* Synchronise efx->link_state with the kernel */
1513 ef4_link_status_changed(efx);
1514
1515 return 0;
1516 }
1517
1518 /* TX flow control may automatically turn itself off if the link
1519 * partner (intermittently) stops responding to pause frames. There
1520 * isn't any indication that this has happened, so the best we do is
1521 * leave it up to the user to spot this and fix it by cycling transmit
1522 * flow control on this end.
1523 */
1524
1525 static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1526 {
1527 /* Schedule a reset to recover */
1528 ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1529 }
1530
1531 static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1532 {
1533 /* Recover by resetting the EM block */
1534 falcon_stop_nic_stats(efx);
1535 falcon_drain_tx_fifo(efx);
1536 falcon_reconfigure_xmac(efx);
1537 falcon_start_nic_stats(efx);
1538 }
1539
1540 /**************************************************************************
1541 *
1542 * PHY access via GMII
1543 *
1544 **************************************************************************
1545 */
1546
1547 /* Wait for GMII access to complete */
1548 static int falcon_gmii_wait(struct ef4_nic *efx)
1549 {
1550 ef4_oword_t md_stat;
1551 int count;
1552
1553 /* wait up to 50ms - taken max from datasheet */
1554 for (count = 0; count < 5000; count++) {
1555 ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1556 if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1557 if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1558 EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1559 netif_err(efx, hw, efx->net_dev,
1560 "error from GMII access "
1561 EF4_OWORD_FMT"\n",
1562 EF4_OWORD_VAL(md_stat));
1563 return -EIO;
1564 }
1565 return 0;
1566 }
1567 udelay(10);
1568 }
1569 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1570 return -ETIMEDOUT;
1571 }
1572
1573 /* Write an MDIO register of a PHY connected to Falcon. */
1574 static int falcon_mdio_write(struct net_device *net_dev,
1575 int prtad, int devad, u16 addr, u16 value)
1576 {
1577 struct ef4_nic *efx = netdev_priv(net_dev);
1578 struct falcon_nic_data *nic_data = efx->nic_data;
1579 ef4_oword_t reg;
1580 int rc;
1581
1582 netif_vdbg(efx, hw, efx->net_dev,
1583 "writing MDIO %d register %d.%d with 0x%04x\n",
1584 prtad, devad, addr, value);
1585
1586 mutex_lock(&nic_data->mdio_lock);
1587
1588 /* Check MDIO not currently being accessed */
1589 rc = falcon_gmii_wait(efx);
1590 if (rc)
1591 goto out;
1592
1593 /* Write the address/ID register */
1594 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1595 ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1596
1597 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1598 FRF_AB_MD_DEV_ADR, devad);
1599 ef4_writeo(efx, &reg, FR_AB_MD_ID);
1600
1601 /* Write data */
1602 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1603 ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1604
1605 EF4_POPULATE_OWORD_2(reg,
1606 FRF_AB_MD_WRC, 1,
1607 FRF_AB_MD_GC, 0);
1608 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1609
1610 /* Wait for data to be written */
1611 rc = falcon_gmii_wait(efx);
1612 if (rc) {
1613 /* Abort the write operation */
1614 EF4_POPULATE_OWORD_2(reg,
1615 FRF_AB_MD_WRC, 0,
1616 FRF_AB_MD_GC, 1);
1617 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1618 udelay(10);
1619 }
1620
1621 out:
1622 mutex_unlock(&nic_data->mdio_lock);
1623 return rc;
1624 }
1625
1626 /* Read an MDIO register of a PHY connected to Falcon. */
1627 static int falcon_mdio_read(struct net_device *net_dev,
1628 int prtad, int devad, u16 addr)
1629 {
1630 struct ef4_nic *efx = netdev_priv(net_dev);
1631 struct falcon_nic_data *nic_data = efx->nic_data;
1632 ef4_oword_t reg;
1633 int rc;
1634
1635 mutex_lock(&nic_data->mdio_lock);
1636
1637 /* Check MDIO not currently being accessed */
1638 rc = falcon_gmii_wait(efx);
1639 if (rc)
1640 goto out;
1641
1642 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1643 ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1644
1645 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1646 FRF_AB_MD_DEV_ADR, devad);
1647 ef4_writeo(efx, &reg, FR_AB_MD_ID);
1648
1649 /* Request data to be read */
1650 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1651 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1652
1653 /* Wait for data to become available */
1654 rc = falcon_gmii_wait(efx);
1655 if (rc == 0) {
1656 ef4_reado(efx, &reg, FR_AB_MD_RXD);
1657 rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1658 netif_vdbg(efx, hw, efx->net_dev,
1659 "read from MDIO %d register %d.%d, got %04x\n",
1660 prtad, devad, addr, rc);
1661 } else {
1662 /* Abort the read operation */
1663 EF4_POPULATE_OWORD_2(reg,
1664 FRF_AB_MD_RIC, 0,
1665 FRF_AB_MD_GC, 1);
1666 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1667
1668 netif_dbg(efx, hw, efx->net_dev,
1669 "read from MDIO %d register %d.%d, got error %d\n",
1670 prtad, devad, addr, rc);
1671 }
1672
1673 out:
1674 mutex_unlock(&nic_data->mdio_lock);
1675 return rc;
1676 }
1677
1678 /* This call is responsible for hooking in the MAC and PHY operations */
1679 static int falcon_probe_port(struct ef4_nic *efx)
1680 {
1681 struct falcon_nic_data *nic_data = efx->nic_data;
1682 int rc;
1683
1684 switch (efx->phy_type) {
1685 case PHY_TYPE_SFX7101:
1686 efx->phy_op = &falcon_sfx7101_phy_ops;
1687 break;
1688 case PHY_TYPE_QT2022C2:
1689 case PHY_TYPE_QT2025C:
1690 efx->phy_op = &falcon_qt202x_phy_ops;
1691 break;
1692 case PHY_TYPE_TXC43128:
1693 efx->phy_op = &falcon_txc_phy_ops;
1694 break;
1695 default:
1696 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1697 efx->phy_type);
1698 return -ENODEV;
1699 }
1700
1701 /* Fill out MDIO structure and loopback modes */
1702 mutex_init(&nic_data->mdio_lock);
1703 efx->mdio.mdio_read = falcon_mdio_read;
1704 efx->mdio.mdio_write = falcon_mdio_write;
1705 rc = efx->phy_op->probe(efx);
1706 if (rc != 0)
1707 return rc;
1708
1709 /* Initial assumption */
1710 efx->link_state.speed = 10000;
1711 efx->link_state.fd = true;
1712
1713 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1714 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1715 efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1716 else
1717 efx->wanted_fc = EF4_FC_RX;
1718 if (efx->mdio.mmds & MDIO_DEVS_AN)
1719 efx->wanted_fc |= EF4_FC_AUTO;
1720
1721 /* Allocate buffer for stats */
1722 rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1723 FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1724 if (rc)
1725 return rc;
1726 netif_dbg(efx, probe, efx->net_dev,
1727 "stats buffer at %llx (virt %p phys %llx)\n",
1728 (u64)efx->stats_buffer.dma_addr,
1729 efx->stats_buffer.addr,
1730 (u64)virt_to_phys(efx->stats_buffer.addr));
1731
1732 return 0;
1733 }
1734
1735 static void falcon_remove_port(struct ef4_nic *efx)
1736 {
1737 efx->phy_op->remove(efx);
1738 ef4_nic_free_buffer(efx, &efx->stats_buffer);
1739 }
1740
1741 /* Global events are basically PHY events */
1742 static bool
1743 falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1744 {
1745 struct ef4_nic *efx = channel->efx;
1746 struct falcon_nic_data *nic_data = efx->nic_data;
1747
1748 if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1749 EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1750 EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1751 /* Ignored */
1752 return true;
1753
1754 if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1755 EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1756 nic_data->xmac_poll_required = true;
1757 return true;
1758 }
1759
1760 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1761 EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1762 EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1763 netif_err(efx, rx_err, efx->net_dev,
1764 "channel %d seen global RX_RESET event. Resetting.\n",
1765 channel->channel);
1766
1767 atomic_inc(&efx->rx_reset);
1768 ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1769 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1770 return true;
1771 }
1772
1773 return false;
1774 }
1775
1776 /**************************************************************************
1777 *
1778 * Falcon test code
1779 *
1780 **************************************************************************/
1781
1782 static int
1783 falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1784 {
1785 struct falcon_nic_data *nic_data = efx->nic_data;
1786 struct falcon_nvconfig *nvconfig;
1787 struct falcon_spi_device *spi;
1788 void *region;
1789 int rc, magic_num, struct_ver;
1790 __le16 *word, *limit;
1791 u32 csum;
1792
1793 if (falcon_spi_present(&nic_data->spi_flash))
1794 spi = &nic_data->spi_flash;
1795 else if (falcon_spi_present(&nic_data->spi_eeprom))
1796 spi = &nic_data->spi_eeprom;
1797 else
1798 return -EINVAL;
1799
1800 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1801 if (!region)
1802 return -ENOMEM;
1803 nvconfig = region + FALCON_NVCONFIG_OFFSET;
1804
1805 mutex_lock(&nic_data->spi_lock);
1806 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1807 mutex_unlock(&nic_data->spi_lock);
1808 if (rc) {
1809 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1810 falcon_spi_present(&nic_data->spi_flash) ?
1811 "flash" : "EEPROM");
1812 rc = -EIO;
1813 goto out;
1814 }
1815
1816 magic_num = le16_to_cpu(nvconfig->board_magic_num);
1817 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1818
1819 rc = -EINVAL;
1820 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1821 netif_err(efx, hw, efx->net_dev,
1822 "NVRAM bad magic 0x%x\n", magic_num);
1823 goto out;
1824 }
1825 if (struct_ver < 2) {
1826 netif_err(efx, hw, efx->net_dev,
1827 "NVRAM has ancient version 0x%x\n", struct_ver);
1828 goto out;
1829 } else if (struct_ver < 4) {
1830 word = &nvconfig->board_magic_num;
1831 limit = (__le16 *) (nvconfig + 1);
1832 } else {
1833 word = region;
1834 limit = region + FALCON_NVCONFIG_END;
1835 }
1836 for (csum = 0; word < limit; ++word)
1837 csum += le16_to_cpu(*word);
1838
1839 if (~csum & 0xffff) {
1840 netif_err(efx, hw, efx->net_dev,
1841 "NVRAM has incorrect checksum\n");
1842 goto out;
1843 }
1844
1845 rc = 0;
1846 if (nvconfig_out)
1847 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1848
1849 out:
1850 kfree(region);
1851 return rc;
1852 }
1853
1854 static int falcon_test_nvram(struct ef4_nic *efx)
1855 {
1856 return falcon_read_nvram(efx, NULL);
1857 }
1858
1859 static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1860 { FR_AZ_ADR_REGION,
1861 EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1862 { FR_AZ_RX_CFG,
1863 EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1864 { FR_AZ_TX_CFG,
1865 EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1866 { FR_AZ_TX_RESERVED,
1867 EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1868 { FR_AB_MAC_CTRL,
1869 EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1870 { FR_AZ_SRM_TX_DC_CFG,
1871 EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1872 { FR_AZ_RX_DC_CFG,
1873 EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1874 { FR_AZ_RX_DC_PF_WM,
1875 EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1876 { FR_BZ_DP_CTRL,
1877 EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1878 { FR_AB_GM_CFG2,
1879 EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1880 { FR_AB_GMF_CFG0,
1881 EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1882 { FR_AB_XM_GLB_CFG,
1883 EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1884 { FR_AB_XM_TX_CFG,
1885 EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1886 { FR_AB_XM_RX_CFG,
1887 EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1888 { FR_AB_XM_RX_PARAM,
1889 EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1890 { FR_AB_XM_FC,
1891 EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1892 { FR_AB_XM_ADR_LO,
1893 EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1894 { FR_AB_XX_SD_CTL,
1895 EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1896 };
1897
1898 static int
1899 falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1900 {
1901 enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1902 int rc, rc2;
1903
1904 mutex_lock(&efx->mac_lock);
1905 if (efx->loopback_modes) {
1906 /* We need the 312 clock from the PHY to test the XMAC
1907 * registers, so move into XGMII loopback if available */
1908 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1909 efx->loopback_mode = LOOPBACK_XGMII;
1910 else
1911 efx->loopback_mode = __ffs(efx->loopback_modes);
1912 }
1913 __ef4_reconfigure_port(efx);
1914 mutex_unlock(&efx->mac_lock);
1915
1916 ef4_reset_down(efx, reset_method);
1917
1918 tests->registers =
1919 ef4_farch_test_registers(efx, falcon_b0_register_tests,
1920 ARRAY_SIZE(falcon_b0_register_tests))
1921 ? -1 : 1;
1922
1923 rc = falcon_reset_hw(efx, reset_method);
1924 rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1925 return rc ? rc : rc2;
1926 }
1927
1928 /**************************************************************************
1929 *
1930 * Device reset
1931 *
1932 **************************************************************************
1933 */
1934
1935 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1936 {
1937 switch (reason) {
1938 case RESET_TYPE_RX_RECOVERY:
1939 case RESET_TYPE_DMA_ERROR:
1940 case RESET_TYPE_TX_SKIP:
1941 /* These can occasionally occur due to hardware bugs.
1942 * We try to reset without disrupting the link.
1943 */
1944 return RESET_TYPE_INVISIBLE;
1945 default:
1946 return RESET_TYPE_ALL;
1947 }
1948 }
1949
1950 static int falcon_map_reset_flags(u32 *flags)
1951 {
1952 enum {
1953 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1954 ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1955 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1956 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1957 };
1958
1959 if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1960 *flags &= ~FALCON_RESET_WORLD;
1961 return RESET_TYPE_WORLD;
1962 }
1963
1964 if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1965 *flags &= ~FALCON_RESET_ALL;
1966 return RESET_TYPE_ALL;
1967 }
1968
1969 if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1970 *flags &= ~FALCON_RESET_INVISIBLE;
1971 return RESET_TYPE_INVISIBLE;
1972 }
1973
1974 return -EINVAL;
1975 }
1976
1977 /* Resets NIC to known state. This routine must be called in process
1978 * context and is allowed to sleep. */
1979 static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1980 {
1981 struct falcon_nic_data *nic_data = efx->nic_data;
1982 ef4_oword_t glb_ctl_reg_ker;
1983 int rc;
1984
1985 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1986 RESET_TYPE(method));
1987
1988 /* Initiate device reset */
1989 if (method == RESET_TYPE_WORLD) {
1990 rc = pci_save_state(efx->pci_dev);
1991 if (rc) {
1992 netif_err(efx, drv, efx->net_dev,
1993 "failed to backup PCI state of primary "
1994 "function prior to hardware reset\n");
1995 goto fail1;
1996 }
1997 if (ef4_nic_is_dual_func(efx)) {
1998 rc = pci_save_state(nic_data->pci_dev2);
1999 if (rc) {
2000 netif_err(efx, drv, efx->net_dev,
2001 "failed to backup PCI state of "
2002 "secondary function prior to "
2003 "hardware reset\n");
2004 goto fail2;
2005 }
2006 }
2007
2008 EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2009 FRF_AB_EXT_PHY_RST_DUR,
2010 FFE_AB_EXT_PHY_RST_DUR_10240US,
2011 FRF_AB_SWRST, 1);
2012 } else {
2013 EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2014 /* exclude PHY from "invisible" reset */
2015 FRF_AB_EXT_PHY_RST_CTL,
2016 method == RESET_TYPE_INVISIBLE,
2017 /* exclude EEPROM/flash and PCIe */
2018 FRF_AB_PCIE_CORE_RST_CTL, 1,
2019 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2020 FRF_AB_PCIE_SD_RST_CTL, 1,
2021 FRF_AB_EE_RST_CTL, 1,
2022 FRF_AB_EXT_PHY_RST_DUR,
2023 FFE_AB_EXT_PHY_RST_DUR_10240US,
2024 FRF_AB_SWRST, 1);
2025 }
2026 ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2027
2028 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2029 schedule_timeout_uninterruptible(HZ / 20);
2030
2031 /* Restore PCI configuration if needed */
2032 if (method == RESET_TYPE_WORLD) {
2033 if (ef4_nic_is_dual_func(efx))
2034 pci_restore_state(nic_data->pci_dev2);
2035 pci_restore_state(efx->pci_dev);
2036 netif_dbg(efx, drv, efx->net_dev,
2037 "successfully restored PCI config\n");
2038 }
2039
2040 /* Assert that reset complete */
2041 ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2042 if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2043 rc = -ETIMEDOUT;
2044 netif_err(efx, hw, efx->net_dev,
2045 "timed out waiting for hardware reset\n");
2046 goto fail3;
2047 }
2048 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2049
2050 return 0;
2051
2052 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2053 fail2:
2054 pci_restore_state(efx->pci_dev);
2055 fail1:
2056 fail3:
2057 return rc;
2058 }
2059
2060 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2061 {
2062 struct falcon_nic_data *nic_data = efx->nic_data;
2063 int rc;
2064
2065 mutex_lock(&nic_data->spi_lock);
2066 rc = __falcon_reset_hw(efx, method);
2067 mutex_unlock(&nic_data->spi_lock);
2068
2069 return rc;
2070 }
2071
2072 static void falcon_monitor(struct ef4_nic *efx)
2073 {
2074 bool link_changed;
2075 int rc;
2076
2077 BUG_ON(!mutex_is_locked(&efx->mac_lock));
2078
2079 rc = falcon_board(efx)->type->monitor(efx);
2080 if (rc) {
2081 netif_err(efx, hw, efx->net_dev,
2082 "Board sensor %s; shutting down PHY\n",
2083 (rc == -ERANGE) ? "reported fault" : "failed");
2084 efx->phy_mode |= PHY_MODE_LOW_POWER;
2085 rc = __ef4_reconfigure_port(efx);
2086 WARN_ON(rc);
2087 }
2088
2089 if (LOOPBACK_INTERNAL(efx))
2090 link_changed = falcon_loopback_link_poll(efx);
2091 else
2092 link_changed = efx->phy_op->poll(efx);
2093
2094 if (link_changed) {
2095 falcon_stop_nic_stats(efx);
2096 falcon_deconfigure_mac_wrapper(efx);
2097
2098 falcon_reset_macs(efx);
2099 rc = falcon_reconfigure_xmac(efx);
2100 BUG_ON(rc);
2101
2102 falcon_start_nic_stats(efx);
2103
2104 ef4_link_status_changed(efx);
2105 }
2106
2107 falcon_poll_xmac(efx);
2108 }
2109
2110 /* Zeroes out the SRAM contents. This routine must be called in
2111 * process context and is allowed to sleep.
2112 */
2113 static int falcon_reset_sram(struct ef4_nic *efx)
2114 {
2115 ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2116 int count;
2117
2118 /* Set the SRAM wake/sleep GPIO appropriately. */
2119 ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2120 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2121 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2122 ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2123
2124 /* Initiate SRAM reset */
2125 EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2126 FRF_AZ_SRM_INIT_EN, 1,
2127 FRF_AZ_SRM_NB_SZ, 0);
2128 ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2129
2130 /* Wait for SRAM reset to complete */
2131 count = 0;
2132 do {
2133 netif_dbg(efx, hw, efx->net_dev,
2134 "waiting for SRAM reset (attempt %d)...\n", count);
2135
2136 /* SRAM reset is slow; expect around 16ms */
2137 schedule_timeout_uninterruptible(HZ / 50);
2138
2139 /* Check for reset complete */
2140 ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2141 if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2142 netif_dbg(efx, hw, efx->net_dev,
2143 "SRAM reset complete\n");
2144
2145 return 0;
2146 }
2147 } while (++count < 20); /* wait up to 0.4 sec */
2148
2149 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2150 return -ETIMEDOUT;
2151 }
2152
2153 static void falcon_spi_device_init(struct ef4_nic *efx,
2154 struct falcon_spi_device *spi_device,
2155 unsigned int device_id, u32 device_type)
2156 {
2157 if (device_type != 0) {
2158 spi_device->device_id = device_id;
2159 spi_device->size =
2160 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2161 spi_device->addr_len =
2162 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2163 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2164 spi_device->addr_len == 1);
2165 spi_device->erase_command =
2166 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2167 spi_device->erase_size =
2168 1 << SPI_DEV_TYPE_FIELD(device_type,
2169 SPI_DEV_TYPE_ERASE_SIZE);
2170 spi_device->block_size =
2171 1 << SPI_DEV_TYPE_FIELD(device_type,
2172 SPI_DEV_TYPE_BLOCK_SIZE);
2173 } else {
2174 spi_device->size = 0;
2175 }
2176 }
2177
2178 /* Extract non-volatile configuration */
2179 static int falcon_probe_nvconfig(struct ef4_nic *efx)
2180 {
2181 struct falcon_nic_data *nic_data = efx->nic_data;
2182 struct falcon_nvconfig *nvconfig;
2183 int rc;
2184
2185 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2186 if (!nvconfig)
2187 return -ENOMEM;
2188
2189 rc = falcon_read_nvram(efx, nvconfig);
2190 if (rc)
2191 goto out;
2192
2193 efx->phy_type = nvconfig->board_v2.port0_phy_type;
2194 efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2195
2196 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2197 falcon_spi_device_init(
2198 efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2199 le32_to_cpu(nvconfig->board_v3
2200 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2201 falcon_spi_device_init(
2202 efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2203 le32_to_cpu(nvconfig->board_v3
2204 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2205 }
2206
2207 /* Read the MAC addresses */
2208 ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2209
2210 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2211 efx->phy_type, efx->mdio.prtad);
2212
2213 rc = falcon_probe_board(efx,
2214 le16_to_cpu(nvconfig->board_v2.board_revision));
2215 out:
2216 kfree(nvconfig);
2217 return rc;
2218 }
2219
2220 static int falcon_dimension_resources(struct ef4_nic *efx)
2221 {
2222 efx->rx_dc_base = 0x20000;
2223 efx->tx_dc_base = 0x26000;
2224 return 0;
2225 }
2226
2227 /* Probe all SPI devices on the NIC */
2228 static void falcon_probe_spi_devices(struct ef4_nic *efx)
2229 {
2230 struct falcon_nic_data *nic_data = efx->nic_data;
2231 ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2232 int boot_dev;
2233
2234 ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2235 ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2236 ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2237
2238 if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2239 boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2240 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2241 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2242 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2243 "flash" : "EEPROM");
2244 } else {
2245 /* Disable VPD and set clock dividers to safe
2246 * values for initial programming. */
2247 boot_dev = -1;
2248 netif_dbg(efx, probe, efx->net_dev,
2249 "Booted from internal ASIC settings;"
2250 " setting SPI config\n");
2251 EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2252 /* 125 MHz / 7 ~= 20 MHz */
2253 FRF_AB_EE_SF_CLOCK_DIV, 7,
2254 /* 125 MHz / 63 ~= 2 MHz */
2255 FRF_AB_EE_EE_CLOCK_DIV, 63);
2256 ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2257 }
2258
2259 mutex_init(&nic_data->spi_lock);
2260
2261 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2262 falcon_spi_device_init(efx, &nic_data->spi_flash,
2263 FFE_AB_SPI_DEVICE_FLASH,
2264 default_flash_type);
2265 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2266 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2267 FFE_AB_SPI_DEVICE_EEPROM,
2268 large_eeprom_type);
2269 }
2270
2271 static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2272 {
2273 return 0x20000;
2274 }
2275
2276 static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2277 {
2278 /* Map everything up to and including the RSS indirection table.
2279 * The PCI core takes care of mapping the MSI-X tables.
2280 */
2281 return FR_BZ_RX_INDIRECTION_TBL +
2282 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2283 }
2284
2285 static int falcon_probe_nic(struct ef4_nic *efx)
2286 {
2287 struct falcon_nic_data *nic_data;
2288 struct falcon_board *board;
2289 int rc;
2290
2291 efx->primary = efx; /* only one usable function per controller */
2292
2293 /* Allocate storage for hardware specific data */
2294 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2295 if (!nic_data)
2296 return -ENOMEM;
2297 efx->nic_data = nic_data;
2298
2299 rc = -ENODEV;
2300
2301 if (ef4_farch_fpga_ver(efx) != 0) {
2302 netif_err(efx, probe, efx->net_dev,
2303 "Falcon FPGA not supported\n");
2304 goto fail1;
2305 }
2306
2307 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2308 ef4_oword_t nic_stat;
2309 struct pci_dev *dev;
2310 u8 pci_rev = efx->pci_dev->revision;
2311
2312 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2313 netif_err(efx, probe, efx->net_dev,
2314 "Falcon rev A0 not supported\n");
2315 goto fail1;
2316 }
2317 ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2318 if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2319 netif_err(efx, probe, efx->net_dev,
2320 "Falcon rev A1 1G not supported\n");
2321 goto fail1;
2322 }
2323 if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2324 netif_err(efx, probe, efx->net_dev,
2325 "Falcon rev A1 PCI-X not supported\n");
2326 goto fail1;
2327 }
2328
2329 dev = pci_dev_get(efx->pci_dev);
2330 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2331 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2332 dev))) {
2333 if (dev->bus == efx->pci_dev->bus &&
2334 dev->devfn == efx->pci_dev->devfn + 1) {
2335 nic_data->pci_dev2 = dev;
2336 break;
2337 }
2338 }
2339 if (!nic_data->pci_dev2) {
2340 netif_err(efx, probe, efx->net_dev,
2341 "failed to find secondary function\n");
2342 rc = -ENODEV;
2343 goto fail2;
2344 }
2345 }
2346
2347 /* Now we can reset the NIC */
2348 rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2349 if (rc) {
2350 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2351 goto fail3;
2352 }
2353
2354 /* Allocate memory for INT_KER */
2355 rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2356 GFP_KERNEL);
2357 if (rc)
2358 goto fail4;
2359 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2360
2361 netif_dbg(efx, probe, efx->net_dev,
2362 "INT_KER at %llx (virt %p phys %llx)\n",
2363 (u64)efx->irq_status.dma_addr,
2364 efx->irq_status.addr,
2365 (u64)virt_to_phys(efx->irq_status.addr));
2366
2367 falcon_probe_spi_devices(efx);
2368
2369 /* Read in the non-volatile configuration */
2370 rc = falcon_probe_nvconfig(efx);
2371 if (rc) {
2372 if (rc == -EINVAL)
2373 netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2374 goto fail5;
2375 }
2376
2377 efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2378 EF4_MAX_CHANNELS);
2379 efx->max_tx_channels = efx->max_channels;
2380 efx->timer_quantum_ns = 4968; /* 621 cycles */
2381 efx->timer_max_ns = efx->type->timer_period_max *
2382 efx->timer_quantum_ns;
2383
2384 /* Initialise I2C adapter */
2385 board = falcon_board(efx);
2386 board->i2c_adap.owner = THIS_MODULE;
2387 board->i2c_data = falcon_i2c_bit_operations;
2388 board->i2c_data.data = efx;
2389 board->i2c_adap.algo_data = &board->i2c_data;
2390 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2391 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2392 sizeof(board->i2c_adap.name));
2393 rc = i2c_bit_add_bus(&board->i2c_adap);
2394 if (rc)
2395 goto fail5;
2396
2397 rc = falcon_board(efx)->type->init(efx);
2398 if (rc) {
2399 netif_err(efx, probe, efx->net_dev,
2400 "failed to initialise board\n");
2401 goto fail6;
2402 }
2403
2404 nic_data->stats_disable_count = 1;
2405 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2406 (unsigned long)efx);
2407
2408 return 0;
2409
2410 fail6:
2411 i2c_del_adapter(&board->i2c_adap);
2412 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2413 fail5:
2414 ef4_nic_free_buffer(efx, &efx->irq_status);
2415 fail4:
2416 fail3:
2417 if (nic_data->pci_dev2) {
2418 pci_dev_put(nic_data->pci_dev2);
2419 nic_data->pci_dev2 = NULL;
2420 }
2421 fail2:
2422 fail1:
2423 kfree(efx->nic_data);
2424 return rc;
2425 }
2426
2427 static void falcon_init_rx_cfg(struct ef4_nic *efx)
2428 {
2429 /* RX control FIFO thresholds (32 entries) */
2430 const unsigned ctrl_xon_thr = 20;
2431 const unsigned ctrl_xoff_thr = 25;
2432 ef4_oword_t reg;
2433
2434 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2435 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2436 /* Data FIFO size is 5.5K. The RX DMA engine only
2437 * supports scattering for user-mode queues, but will
2438 * split DMA writes at intervals of RX_USR_BUF_SIZE
2439 * (32-byte units) even for kernel-mode queues. We
2440 * set it to be so large that that never happens.
2441 */
2442 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2443 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2444 (3 * 4096) >> 5);
2445 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2446 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2447 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2448 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2449 } else {
2450 /* Data FIFO size is 80K; register fields moved */
2451 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2452 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2453 EF4_RX_USR_BUF_SIZE >> 5);
2454 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2455 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2456 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2457 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2458 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2459 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2460
2461 /* Enable hash insertion. This is broken for the
2462 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2463 * IPv4 hashes. */
2464 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2465 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2466 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2467 }
2468 /* Always enable XOFF signal from RX FIFO. We enable
2469 * or disable transmission of pause frames at the MAC. */
2470 EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2471 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2472 }
2473
2474 /* This call performs hardware-specific global initialisation, such as
2475 * defining the descriptor cache sizes and number of RSS channels.
2476 * It does not set up any buffers, descriptor rings or event queues.
2477 */
2478 static int falcon_init_nic(struct ef4_nic *efx)
2479 {
2480 ef4_oword_t temp;
2481 int rc;
2482
2483 /* Use on-chip SRAM */
2484 ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2485 EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2486 ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2487
2488 rc = falcon_reset_sram(efx);
2489 if (rc)
2490 return rc;
2491
2492 /* Clear the parity enables on the TX data fifos as
2493 * they produce false parity errors because of timing issues
2494 */
2495 if (EF4_WORKAROUND_5129(efx)) {
2496 ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2497 EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2498 ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2499 }
2500
2501 if (EF4_WORKAROUND_7244(efx)) {
2502 ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2503 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2504 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2505 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2506 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2507 ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2508 }
2509
2510 /* XXX This is documented only for Falcon A0/A1 */
2511 /* Setup RX. Wait for descriptor is broken and must
2512 * be disabled. RXDP recovery shouldn't be needed, but is.
2513 */
2514 ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2515 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2516 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2517 if (EF4_WORKAROUND_5583(efx))
2518 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2519 ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2520
2521 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2522 * descriptors (which is bad).
2523 */
2524 ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2525 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2526 ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2527
2528 falcon_init_rx_cfg(efx);
2529
2530 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2531 falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2532
2533 /* Set destination of both TX and RX Flush events */
2534 EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2535 ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2536 }
2537
2538 ef4_farch_init_common(efx);
2539
2540 return 0;
2541 }
2542
2543 static void falcon_remove_nic(struct ef4_nic *efx)
2544 {
2545 struct falcon_nic_data *nic_data = efx->nic_data;
2546 struct falcon_board *board = falcon_board(efx);
2547
2548 board->type->fini(efx);
2549
2550 /* Remove I2C adapter and clear it in preparation for a retry */
2551 i2c_del_adapter(&board->i2c_adap);
2552 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2553
2554 ef4_nic_free_buffer(efx, &efx->irq_status);
2555
2556 __falcon_reset_hw(efx, RESET_TYPE_ALL);
2557
2558 /* Release the second function after the reset */
2559 if (nic_data->pci_dev2) {
2560 pci_dev_put(nic_data->pci_dev2);
2561 nic_data->pci_dev2 = NULL;
2562 }
2563
2564 /* Tear down the private nic state */
2565 kfree(efx->nic_data);
2566 efx->nic_data = NULL;
2567 }
2568
2569 static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2570 {
2571 return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2572 falcon_stat_mask, names);
2573 }
2574
2575 static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2576 struct rtnl_link_stats64 *core_stats)
2577 {
2578 struct falcon_nic_data *nic_data = efx->nic_data;
2579 u64 *stats = nic_data->stats;
2580 ef4_oword_t cnt;
2581
2582 if (!nic_data->stats_disable_count) {
2583 ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2584 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2585 EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2586
2587 if (nic_data->stats_pending &&
2588 FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2589 nic_data->stats_pending = false;
2590 rmb(); /* read the done flag before the stats */
2591 ef4_nic_update_stats(
2592 falcon_stat_desc, FALCON_STAT_COUNT,
2593 falcon_stat_mask,
2594 stats, efx->stats_buffer.addr, true);
2595 }
2596
2597 /* Update derived statistic */
2598 ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2599 stats[FALCON_STAT_rx_bytes] -
2600 stats[FALCON_STAT_rx_good_bytes] -
2601 stats[FALCON_STAT_rx_control] * 64);
2602 ef4_update_sw_stats(efx, stats);
2603 }
2604
2605 if (full_stats)
2606 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2607
2608 if (core_stats) {
2609 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2610 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2611 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2612 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2613 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2614 stats[GENERIC_STAT_rx_nodesc_trunc] +
2615 stats[GENERIC_STAT_rx_noskb_drops];
2616 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2617 core_stats->rx_length_errors =
2618 stats[FALCON_STAT_rx_gtjumbo] +
2619 stats[FALCON_STAT_rx_length_error];
2620 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2621 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2622 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2623
2624 core_stats->rx_errors = (core_stats->rx_length_errors +
2625 core_stats->rx_crc_errors +
2626 core_stats->rx_frame_errors +
2627 stats[FALCON_STAT_rx_symbol_error]);
2628 }
2629
2630 return FALCON_STAT_COUNT;
2631 }
2632
2633 void falcon_start_nic_stats(struct ef4_nic *efx)
2634 {
2635 struct falcon_nic_data *nic_data = efx->nic_data;
2636
2637 spin_lock_bh(&efx->stats_lock);
2638 if (--nic_data->stats_disable_count == 0)
2639 falcon_stats_request(efx);
2640 spin_unlock_bh(&efx->stats_lock);
2641 }
2642
2643 /* We don't acutally pull stats on falcon. Wait 10ms so that
2644 * they arrive when we call this just after start_stats
2645 */
2646 static void falcon_pull_nic_stats(struct ef4_nic *efx)
2647 {
2648 msleep(10);
2649 }
2650
2651 void falcon_stop_nic_stats(struct ef4_nic *efx)
2652 {
2653 struct falcon_nic_data *nic_data = efx->nic_data;
2654 int i;
2655
2656 might_sleep();
2657
2658 spin_lock_bh(&efx->stats_lock);
2659 ++nic_data->stats_disable_count;
2660 spin_unlock_bh(&efx->stats_lock);
2661
2662 del_timer_sync(&nic_data->stats_timer);
2663
2664 /* Wait enough time for the most recent transfer to
2665 * complete. */
2666 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2667 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2668 break;
2669 msleep(1);
2670 }
2671
2672 spin_lock_bh(&efx->stats_lock);
2673 falcon_stats_complete(efx);
2674 spin_unlock_bh(&efx->stats_lock);
2675 }
2676
2677 static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2678 {
2679 falcon_board(efx)->type->set_id_led(efx, mode);
2680 }
2681
2682 /**************************************************************************
2683 *
2684 * Wake on LAN
2685 *
2686 **************************************************************************
2687 */
2688
2689 static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2690 {
2691 wol->supported = 0;
2692 wol->wolopts = 0;
2693 memset(&wol->sopass, 0, sizeof(wol->sopass));
2694 }
2695
2696 static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2697 {
2698 if (type != 0)
2699 return -EINVAL;
2700 return 0;
2701 }
2702
2703 /**************************************************************************
2704 *
2705 * Revision-dependent attributes used by efx.c and nic.c
2706 *
2707 **************************************************************************
2708 */
2709
2710 const struct ef4_nic_type falcon_a1_nic_type = {
2711 .mem_bar = EF4_MEM_BAR,
2712 .mem_map_size = falcon_a1_mem_map_size,
2713 .probe = falcon_probe_nic,
2714 .remove = falcon_remove_nic,
2715 .init = falcon_init_nic,
2716 .dimension_resources = falcon_dimension_resources,
2717 .fini = falcon_irq_ack_a1,
2718 .monitor = falcon_monitor,
2719 .map_reset_reason = falcon_map_reset_reason,
2720 .map_reset_flags = falcon_map_reset_flags,
2721 .reset = falcon_reset_hw,
2722 .probe_port = falcon_probe_port,
2723 .remove_port = falcon_remove_port,
2724 .handle_global_event = falcon_handle_global_event,
2725 .fini_dmaq = ef4_farch_fini_dmaq,
2726 .prepare_flush = falcon_prepare_flush,
2727 .finish_flush = ef4_port_dummy_op_void,
2728 .prepare_flr = ef4_port_dummy_op_void,
2729 .finish_flr = ef4_farch_finish_flr,
2730 .describe_stats = falcon_describe_nic_stats,
2731 .update_stats = falcon_update_nic_stats,
2732 .start_stats = falcon_start_nic_stats,
2733 .pull_stats = falcon_pull_nic_stats,
2734 .stop_stats = falcon_stop_nic_stats,
2735 .set_id_led = falcon_set_id_led,
2736 .push_irq_moderation = falcon_push_irq_moderation,
2737 .reconfigure_port = falcon_reconfigure_port,
2738 .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2739 .reconfigure_mac = falcon_reconfigure_xmac,
2740 .check_mac_fault = falcon_xmac_check_fault,
2741 .get_wol = falcon_get_wol,
2742 .set_wol = falcon_set_wol,
2743 .resume_wol = ef4_port_dummy_op_void,
2744 .test_nvram = falcon_test_nvram,
2745 .irq_enable_master = ef4_farch_irq_enable_master,
2746 .irq_test_generate = ef4_farch_irq_test_generate,
2747 .irq_disable_non_ev = ef4_farch_irq_disable_master,
2748 .irq_handle_msi = ef4_farch_msi_interrupt,
2749 .irq_handle_legacy = falcon_legacy_interrupt_a1,
2750 .tx_probe = ef4_farch_tx_probe,
2751 .tx_init = ef4_farch_tx_init,
2752 .tx_remove = ef4_farch_tx_remove,
2753 .tx_write = ef4_farch_tx_write,
2754 .tx_limit_len = ef4_farch_tx_limit_len,
2755 .rx_push_rss_config = dummy_rx_push_rss_config,
2756 .rx_probe = ef4_farch_rx_probe,
2757 .rx_init = ef4_farch_rx_init,
2758 .rx_remove = ef4_farch_rx_remove,
2759 .rx_write = ef4_farch_rx_write,
2760 .rx_defer_refill = ef4_farch_rx_defer_refill,
2761 .ev_probe = ef4_farch_ev_probe,
2762 .ev_init = ef4_farch_ev_init,
2763 .ev_fini = ef4_farch_ev_fini,
2764 .ev_remove = ef4_farch_ev_remove,
2765 .ev_process = ef4_farch_ev_process,
2766 .ev_read_ack = ef4_farch_ev_read_ack,
2767 .ev_test_generate = ef4_farch_ev_test_generate,
2768
2769 /* We don't expose the filter table on Falcon A1 as it is not
2770 * mapped into function 0, but these implementations still
2771 * work with a degenerate case of all tables set to size 0.
2772 */
2773 .filter_table_probe = ef4_farch_filter_table_probe,
2774 .filter_table_restore = ef4_farch_filter_table_restore,
2775 .filter_table_remove = ef4_farch_filter_table_remove,
2776 .filter_insert = ef4_farch_filter_insert,
2777 .filter_remove_safe = ef4_farch_filter_remove_safe,
2778 .filter_get_safe = ef4_farch_filter_get_safe,
2779 .filter_clear_rx = ef4_farch_filter_clear_rx,
2780 .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2781 .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2782 .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2783
2784 #ifdef CONFIG_SFC_FALCON_MTD
2785 .mtd_probe = falcon_mtd_probe,
2786 .mtd_rename = falcon_mtd_rename,
2787 .mtd_read = falcon_mtd_read,
2788 .mtd_erase = falcon_mtd_erase,
2789 .mtd_write = falcon_mtd_write,
2790 .mtd_sync = falcon_mtd_sync,
2791 #endif
2792
2793 .revision = EF4_REV_FALCON_A1,
2794 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2795 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2796 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2797 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2798 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2799 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2800 .rx_buffer_padding = 0x24,
2801 .can_rx_scatter = false,
2802 .max_interrupt_mode = EF4_INT_MODE_MSI,
2803 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2804 .offload_features = NETIF_F_IP_CSUM,
2805 };
2806
2807 const struct ef4_nic_type falcon_b0_nic_type = {
2808 .mem_bar = EF4_MEM_BAR,
2809 .mem_map_size = falcon_b0_mem_map_size,
2810 .probe = falcon_probe_nic,
2811 .remove = falcon_remove_nic,
2812 .init = falcon_init_nic,
2813 .dimension_resources = falcon_dimension_resources,
2814 .fini = ef4_port_dummy_op_void,
2815 .monitor = falcon_monitor,
2816 .map_reset_reason = falcon_map_reset_reason,
2817 .map_reset_flags = falcon_map_reset_flags,
2818 .reset = falcon_reset_hw,
2819 .probe_port = falcon_probe_port,
2820 .remove_port = falcon_remove_port,
2821 .handle_global_event = falcon_handle_global_event,
2822 .fini_dmaq = ef4_farch_fini_dmaq,
2823 .prepare_flush = falcon_prepare_flush,
2824 .finish_flush = ef4_port_dummy_op_void,
2825 .prepare_flr = ef4_port_dummy_op_void,
2826 .finish_flr = ef4_farch_finish_flr,
2827 .describe_stats = falcon_describe_nic_stats,
2828 .update_stats = falcon_update_nic_stats,
2829 .start_stats = falcon_start_nic_stats,
2830 .pull_stats = falcon_pull_nic_stats,
2831 .stop_stats = falcon_stop_nic_stats,
2832 .set_id_led = falcon_set_id_led,
2833 .push_irq_moderation = falcon_push_irq_moderation,
2834 .reconfigure_port = falcon_reconfigure_port,
2835 .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2836 .reconfigure_mac = falcon_reconfigure_xmac,
2837 .check_mac_fault = falcon_xmac_check_fault,
2838 .get_wol = falcon_get_wol,
2839 .set_wol = falcon_set_wol,
2840 .resume_wol = ef4_port_dummy_op_void,
2841 .test_chip = falcon_b0_test_chip,
2842 .test_nvram = falcon_test_nvram,
2843 .irq_enable_master = ef4_farch_irq_enable_master,
2844 .irq_test_generate = ef4_farch_irq_test_generate,
2845 .irq_disable_non_ev = ef4_farch_irq_disable_master,
2846 .irq_handle_msi = ef4_farch_msi_interrupt,
2847 .irq_handle_legacy = ef4_farch_legacy_interrupt,
2848 .tx_probe = ef4_farch_tx_probe,
2849 .tx_init = ef4_farch_tx_init,
2850 .tx_remove = ef4_farch_tx_remove,
2851 .tx_write = ef4_farch_tx_write,
2852 .tx_limit_len = ef4_farch_tx_limit_len,
2853 .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2854 .rx_probe = ef4_farch_rx_probe,
2855 .rx_init = ef4_farch_rx_init,
2856 .rx_remove = ef4_farch_rx_remove,
2857 .rx_write = ef4_farch_rx_write,
2858 .rx_defer_refill = ef4_farch_rx_defer_refill,
2859 .ev_probe = ef4_farch_ev_probe,
2860 .ev_init = ef4_farch_ev_init,
2861 .ev_fini = ef4_farch_ev_fini,
2862 .ev_remove = ef4_farch_ev_remove,
2863 .ev_process = ef4_farch_ev_process,
2864 .ev_read_ack = ef4_farch_ev_read_ack,
2865 .ev_test_generate = ef4_farch_ev_test_generate,
2866 .filter_table_probe = ef4_farch_filter_table_probe,
2867 .filter_table_restore = ef4_farch_filter_table_restore,
2868 .filter_table_remove = ef4_farch_filter_table_remove,
2869 .filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2870 .filter_insert = ef4_farch_filter_insert,
2871 .filter_remove_safe = ef4_farch_filter_remove_safe,
2872 .filter_get_safe = ef4_farch_filter_get_safe,
2873 .filter_clear_rx = ef4_farch_filter_clear_rx,
2874 .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2875 .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2876 .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2877 #ifdef CONFIG_RFS_ACCEL
2878 .filter_rfs_insert = ef4_farch_filter_rfs_insert,
2879 .filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2880 #endif
2881 #ifdef CONFIG_SFC_FALCON_MTD
2882 .mtd_probe = falcon_mtd_probe,
2883 .mtd_rename = falcon_mtd_rename,
2884 .mtd_read = falcon_mtd_read,
2885 .mtd_erase = falcon_mtd_erase,
2886 .mtd_write = falcon_mtd_write,
2887 .mtd_sync = falcon_mtd_sync,
2888 #endif
2889
2890 .revision = EF4_REV_FALCON_B0,
2891 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2892 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2893 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2894 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2895 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2896 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2897 .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2898 .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2899 .rx_buffer_padding = 0,
2900 .can_rx_scatter = true,
2901 .max_interrupt_mode = EF4_INT_MODE_MSIX,
2902 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2903 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2904 .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2905 };