]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/sfc/falcon/falcon.c
Merge branch 'work.thaw' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / sfc / falcon / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include <linux/sched/signal.h>
20
21 #include "net_driver.h"
22 #include "bitfield.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "farch_regs.h"
26 #include "io.h"
27 #include "phy.h"
28 #include "workarounds.h"
29 #include "selftest.h"
30 #include "mdio_10g.h"
31
32 /* Hardware control for SFC4000 (aka Falcon). */
33
34 /**************************************************************************
35 *
36 * NIC stats
37 *
38 **************************************************************************
39 */
40
41 #define FALCON_MAC_STATS_SIZE 0x100
42
43 #define XgRxOctets_offset 0x0
44 #define XgRxOctets_WIDTH 48
45 #define XgRxOctetsOK_offset 0x8
46 #define XgRxOctetsOK_WIDTH 48
47 #define XgRxPkts_offset 0x10
48 #define XgRxPkts_WIDTH 32
49 #define XgRxPktsOK_offset 0x14
50 #define XgRxPktsOK_WIDTH 32
51 #define XgRxBroadcastPkts_offset 0x18
52 #define XgRxBroadcastPkts_WIDTH 32
53 #define XgRxMulticastPkts_offset 0x1C
54 #define XgRxMulticastPkts_WIDTH 32
55 #define XgRxUnicastPkts_offset 0x20
56 #define XgRxUnicastPkts_WIDTH 32
57 #define XgRxUndersizePkts_offset 0x24
58 #define XgRxUndersizePkts_WIDTH 32
59 #define XgRxOversizePkts_offset 0x28
60 #define XgRxOversizePkts_WIDTH 32
61 #define XgRxJabberPkts_offset 0x2C
62 #define XgRxJabberPkts_WIDTH 32
63 #define XgRxUndersizeFCSerrorPkts_offset 0x30
64 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
65 #define XgRxDropEvents_offset 0x34
66 #define XgRxDropEvents_WIDTH 32
67 #define XgRxFCSerrorPkts_offset 0x38
68 #define XgRxFCSerrorPkts_WIDTH 32
69 #define XgRxAlignError_offset 0x3C
70 #define XgRxAlignError_WIDTH 32
71 #define XgRxSymbolError_offset 0x40
72 #define XgRxSymbolError_WIDTH 32
73 #define XgRxInternalMACError_offset 0x44
74 #define XgRxInternalMACError_WIDTH 32
75 #define XgRxControlPkts_offset 0x48
76 #define XgRxControlPkts_WIDTH 32
77 #define XgRxPausePkts_offset 0x4C
78 #define XgRxPausePkts_WIDTH 32
79 #define XgRxPkts64Octets_offset 0x50
80 #define XgRxPkts64Octets_WIDTH 32
81 #define XgRxPkts65to127Octets_offset 0x54
82 #define XgRxPkts65to127Octets_WIDTH 32
83 #define XgRxPkts128to255Octets_offset 0x58
84 #define XgRxPkts128to255Octets_WIDTH 32
85 #define XgRxPkts256to511Octets_offset 0x5C
86 #define XgRxPkts256to511Octets_WIDTH 32
87 #define XgRxPkts512to1023Octets_offset 0x60
88 #define XgRxPkts512to1023Octets_WIDTH 32
89 #define XgRxPkts1024to15xxOctets_offset 0x64
90 #define XgRxPkts1024to15xxOctets_WIDTH 32
91 #define XgRxPkts15xxtoMaxOctets_offset 0x68
92 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
93 #define XgRxLengthError_offset 0x6C
94 #define XgRxLengthError_WIDTH 32
95 #define XgTxPkts_offset 0x80
96 #define XgTxPkts_WIDTH 32
97 #define XgTxOctets_offset 0x88
98 #define XgTxOctets_WIDTH 48
99 #define XgTxMulticastPkts_offset 0x90
100 #define XgTxMulticastPkts_WIDTH 32
101 #define XgTxBroadcastPkts_offset 0x94
102 #define XgTxBroadcastPkts_WIDTH 32
103 #define XgTxUnicastPkts_offset 0x98
104 #define XgTxUnicastPkts_WIDTH 32
105 #define XgTxControlPkts_offset 0x9C
106 #define XgTxControlPkts_WIDTH 32
107 #define XgTxPausePkts_offset 0xA0
108 #define XgTxPausePkts_WIDTH 32
109 #define XgTxPkts64Octets_offset 0xA4
110 #define XgTxPkts64Octets_WIDTH 32
111 #define XgTxPkts65to127Octets_offset 0xA8
112 #define XgTxPkts65to127Octets_WIDTH 32
113 #define XgTxPkts128to255Octets_offset 0xAC
114 #define XgTxPkts128to255Octets_WIDTH 32
115 #define XgTxPkts256to511Octets_offset 0xB0
116 #define XgTxPkts256to511Octets_WIDTH 32
117 #define XgTxPkts512to1023Octets_offset 0xB4
118 #define XgTxPkts512to1023Octets_WIDTH 32
119 #define XgTxPkts1024to15xxOctets_offset 0xB8
120 #define XgTxPkts1024to15xxOctets_WIDTH 32
121 #define XgTxPkts1519toMaxOctets_offset 0xBC
122 #define XgTxPkts1519toMaxOctets_WIDTH 32
123 #define XgTxUndersizePkts_offset 0xC0
124 #define XgTxUndersizePkts_WIDTH 32
125 #define XgTxOversizePkts_offset 0xC4
126 #define XgTxOversizePkts_WIDTH 32
127 #define XgTxNonTcpUdpPkt_offset 0xC8
128 #define XgTxNonTcpUdpPkt_WIDTH 16
129 #define XgTxMacSrcErrPkt_offset 0xCC
130 #define XgTxMacSrcErrPkt_WIDTH 16
131 #define XgTxIpSrcErrPkt_offset 0xD0
132 #define XgTxIpSrcErrPkt_WIDTH 16
133 #define XgDmaDone_offset 0xD4
134 #define XgDmaDone_WIDTH 32
135
136 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
137 (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
138
139 #define FALCON_DMA_STAT(ext_name, hw_name) \
140 [FALCON_STAT_ ## ext_name] = \
141 { #ext_name, \
142 /* 48-bit stats are zero-padded to 64 on DMA */ \
143 hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
144 hw_name ## _ ## offset }
145 #define FALCON_OTHER_STAT(ext_name) \
146 [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147 #define GENERIC_SW_STAT(ext_name) \
148 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
149
150 static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
151 FALCON_DMA_STAT(tx_bytes, XgTxOctets),
152 FALCON_DMA_STAT(tx_packets, XgTxPkts),
153 FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
154 FALCON_DMA_STAT(tx_control, XgTxControlPkts),
155 FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
156 FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
157 FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
158 FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
159 FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
160 FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
161 FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
162 FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
163 FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
164 FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
165 FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
166 FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
167 FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
168 FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
169 FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
170 FALCON_DMA_STAT(rx_bytes, XgRxOctets),
171 FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
172 FALCON_OTHER_STAT(rx_bad_bytes),
173 FALCON_DMA_STAT(rx_packets, XgRxPkts),
174 FALCON_DMA_STAT(rx_good, XgRxPktsOK),
175 FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
176 FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
177 FALCON_DMA_STAT(rx_control, XgRxControlPkts),
178 FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
179 FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
180 FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
181 FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
182 FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
183 FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
184 FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
185 FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
186 FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
187 FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
188 FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
189 FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
190 FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
191 FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
192 FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
193 FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
194 FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
195 FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
196 FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
197 FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
198 GENERIC_SW_STAT(rx_nodesc_trunc),
199 GENERIC_SW_STAT(rx_noskb_drops),
200 };
201 static const unsigned long falcon_stat_mask[] = {
202 [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
203 };
204
205 /**************************************************************************
206 *
207 * Basic SPI command set and bit definitions
208 *
209 *************************************************************************/
210
211 #define SPI_WRSR 0x01 /* Write status register */
212 #define SPI_WRITE 0x02 /* Write data to memory array */
213 #define SPI_READ 0x03 /* Read data from memory array */
214 #define SPI_WRDI 0x04 /* Reset write enable latch */
215 #define SPI_RDSR 0x05 /* Read status register */
216 #define SPI_WREN 0x06 /* Set write enable latch */
217 #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
218
219 #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
220 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
221 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
222 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
223 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
224 #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
225
226 /**************************************************************************
227 *
228 * Non-volatile memory layout
229 *
230 **************************************************************************
231 */
232
233 /* SFC4000 flash is partitioned into:
234 * 0-0x400 chip and board config (see struct falcon_nvconfig)
235 * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
236 * 0x8000-end boot code (mapped to PCI expansion ROM)
237 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
238 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
239 * 0-0x400 chip and board config
240 * configurable VPD
241 * 0x800-0x1800 boot config
242 * Aside from the chip and board config, all of these are optional and may
243 * be absent or truncated depending on the devices used.
244 */
245 #define FALCON_NVCONFIG_END 0x400U
246 #define FALCON_FLASH_BOOTCODE_START 0x8000U
247 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
248 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
249
250 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
251 struct falcon_nvconfig_board_v2 {
252 __le16 nports;
253 u8 port0_phy_addr;
254 u8 port0_phy_type;
255 u8 port1_phy_addr;
256 u8 port1_phy_type;
257 __le16 asic_sub_revision;
258 __le16 board_revision;
259 } __packed;
260
261 /* Board configuration v3 extra information */
262 struct falcon_nvconfig_board_v3 {
263 __le32 spi_device_type[2];
264 } __packed;
265
266 /* Bit numbers for spi_device_type */
267 #define SPI_DEV_TYPE_SIZE_LBN 0
268 #define SPI_DEV_TYPE_SIZE_WIDTH 5
269 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
270 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
271 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
272 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
273 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
274 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
276 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
277 #define SPI_DEV_TYPE_FIELD(type, field) \
278 (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
279
280 #define FALCON_NVCONFIG_OFFSET 0x300
281
282 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
283 struct falcon_nvconfig {
284 ef4_oword_t ee_vpd_cfg_reg; /* 0x300 */
285 u8 mac_address[2][8]; /* 0x310 */
286 ef4_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
287 ef4_oword_t pcie_sd_ctl45_reg; /* 0x330 */
288 ef4_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
289 ef4_oword_t hw_init_reg; /* 0x350 */
290 ef4_oword_t nic_stat_reg; /* 0x360 */
291 ef4_oword_t glb_ctl_reg; /* 0x370 */
292 ef4_oword_t srm_cfg_reg; /* 0x380 */
293 ef4_oword_t spare_reg; /* 0x390 */
294 __le16 board_magic_num; /* 0x3A0 */
295 __le16 board_struct_ver;
296 __le16 board_checksum;
297 struct falcon_nvconfig_board_v2 board_v2;
298 ef4_oword_t ee_base_page_reg; /* 0x3B0 */
299 struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */
300 } __packed;
301
302 /*************************************************************************/
303
304 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
305 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
306
307 static const unsigned int
308 /* "Large" EEPROM device: Atmel AT25640 or similar
309 * 8 KB, 16-bit address, 32 B write block */
310 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
311 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
312 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
313 /* Default flash device: Atmel AT25F1024
314 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
315 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
316 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
317 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
318 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
319 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
320
321 /**************************************************************************
322 *
323 * I2C bus - this is a bit-bashing interface using GPIO pins
324 * Note that it uses the output enables to tristate the outputs
325 * SDA is the data pin and SCL is the clock
326 *
327 **************************************************************************
328 */
329 static void falcon_setsda(void *data, int state)
330 {
331 struct ef4_nic *efx = (struct ef4_nic *)data;
332 ef4_oword_t reg;
333
334 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
335 EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
336 ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
337 }
338
339 static void falcon_setscl(void *data, int state)
340 {
341 struct ef4_nic *efx = (struct ef4_nic *)data;
342 ef4_oword_t reg;
343
344 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
345 EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
346 ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
347 }
348
349 static int falcon_getsda(void *data)
350 {
351 struct ef4_nic *efx = (struct ef4_nic *)data;
352 ef4_oword_t reg;
353
354 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
355 return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
356 }
357
358 static int falcon_getscl(void *data)
359 {
360 struct ef4_nic *efx = (struct ef4_nic *)data;
361 ef4_oword_t reg;
362
363 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
364 return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
365 }
366
367 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
368 .setsda = falcon_setsda,
369 .setscl = falcon_setscl,
370 .getsda = falcon_getsda,
371 .getscl = falcon_getscl,
372 .udelay = 5,
373 /* Wait up to 50 ms for slave to let us pull SCL high */
374 .timeout = DIV_ROUND_UP(HZ, 20),
375 };
376
377 static void falcon_push_irq_moderation(struct ef4_channel *channel)
378 {
379 ef4_dword_t timer_cmd;
380 struct ef4_nic *efx = channel->efx;
381
382 /* Set timer register */
383 if (channel->irq_moderation_us) {
384 unsigned int ticks;
385
386 ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
387 EF4_POPULATE_DWORD_2(timer_cmd,
388 FRF_AB_TC_TIMER_MODE,
389 FFE_BB_TIMER_MODE_INT_HLDOFF,
390 FRF_AB_TC_TIMER_VAL,
391 ticks - 1);
392 } else {
393 EF4_POPULATE_DWORD_2(timer_cmd,
394 FRF_AB_TC_TIMER_MODE,
395 FFE_BB_TIMER_MODE_DIS,
396 FRF_AB_TC_TIMER_VAL, 0);
397 }
398 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
399 ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
400 channel->channel);
401 }
402
403 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
404
405 static void falcon_prepare_flush(struct ef4_nic *efx)
406 {
407 falcon_deconfigure_mac_wrapper(efx);
408
409 /* Wait for the tx and rx fifo's to get to the next packet boundary
410 * (~1ms without back-pressure), then to drain the remainder of the
411 * fifo's at data path speeds (negligible), with a healthy margin. */
412 msleep(10);
413 }
414
415 /* Acknowledge a legacy interrupt from Falcon
416 *
417 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
418 *
419 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
420 * BIU. Interrupt acknowledge is read sensitive so must write instead
421 * (then read to ensure the BIU collector is flushed)
422 *
423 * NB most hardware supports MSI interrupts
424 */
425 static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
426 {
427 ef4_dword_t reg;
428
429 EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
430 ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
431 ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
432 }
433
434 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
435 {
436 struct ef4_nic *efx = dev_id;
437 ef4_oword_t *int_ker = efx->irq_status.addr;
438 int syserr;
439 int queues;
440
441 /* Check to see if this is our interrupt. If it isn't, we
442 * exit without having touched the hardware.
443 */
444 if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
445 netif_vdbg(efx, intr, efx->net_dev,
446 "IRQ %d on CPU %d not for me\n", irq,
447 raw_smp_processor_id());
448 return IRQ_NONE;
449 }
450 efx->last_irq_cpu = raw_smp_processor_id();
451 netif_vdbg(efx, intr, efx->net_dev,
452 "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
453 irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
454
455 if (!likely(READ_ONCE(efx->irq_soft_enabled)))
456 return IRQ_HANDLED;
457
458 /* Check to see if we have a serious error condition */
459 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
460 if (unlikely(syserr))
461 return ef4_farch_fatal_interrupt(efx);
462
463 /* Determine interrupting queues, clear interrupt status
464 * register and acknowledge the device interrupt.
465 */
466 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
467 queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
468 EF4_ZERO_OWORD(*int_ker);
469 wmb(); /* Ensure the vector is cleared before interrupt ack */
470 falcon_irq_ack_a1(efx);
471
472 if (queues & 1)
473 ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
474 if (queues & 2)
475 ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
476 return IRQ_HANDLED;
477 }
478
479 /**************************************************************************
480 *
481 * RSS
482 *
483 **************************************************************************
484 */
485 static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
486 const u32 *rx_indir_table)
487 {
488 (void) efx;
489 (void) user;
490 (void) rx_indir_table;
491 return -ENOSYS;
492 }
493
494 static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
495 const u32 *rx_indir_table)
496 {
497 ef4_oword_t temp;
498
499 (void) user;
500 /* Set hash key for IPv4 */
501 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
502 ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
503
504 memcpy(efx->rx_indir_table, rx_indir_table,
505 sizeof(efx->rx_indir_table));
506 ef4_farch_rx_push_indir_table(efx);
507 return 0;
508 }
509
510 /**************************************************************************
511 *
512 * EEPROM/flash
513 *
514 **************************************************************************
515 */
516
517 #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
518
519 static int falcon_spi_poll(struct ef4_nic *efx)
520 {
521 ef4_oword_t reg;
522 ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
523 return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
524 }
525
526 /* Wait for SPI command completion */
527 static int falcon_spi_wait(struct ef4_nic *efx)
528 {
529 /* Most commands will finish quickly, so we start polling at
530 * very short intervals. Sometimes the command may have to
531 * wait for VPD or expansion ROM access outside of our
532 * control, so we allow up to 100 ms. */
533 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
534 int i;
535
536 for (i = 0; i < 10; i++) {
537 if (!falcon_spi_poll(efx))
538 return 0;
539 udelay(10);
540 }
541
542 for (;;) {
543 if (!falcon_spi_poll(efx))
544 return 0;
545 if (time_after_eq(jiffies, timeout)) {
546 netif_err(efx, hw, efx->net_dev,
547 "timed out waiting for SPI\n");
548 return -ETIMEDOUT;
549 }
550 schedule_timeout_uninterruptible(1);
551 }
552 }
553
554 static int
555 falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
556 unsigned int command, int address,
557 const void *in, void *out, size_t len)
558 {
559 bool addressed = (address >= 0);
560 bool reading = (out != NULL);
561 ef4_oword_t reg;
562 int rc;
563
564 /* Input validation */
565 if (len > FALCON_SPI_MAX_LEN)
566 return -EINVAL;
567
568 /* Check that previous command is not still running */
569 rc = falcon_spi_poll(efx);
570 if (rc)
571 return rc;
572
573 /* Program address register, if we have an address */
574 if (addressed) {
575 EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
576 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
577 }
578
579 /* Program data register, if we have data */
580 if (in != NULL) {
581 memcpy(&reg, in, len);
582 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
583 }
584
585 /* Issue read/write command */
586 EF4_POPULATE_OWORD_7(reg,
587 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
588 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
589 FRF_AB_EE_SPI_HCMD_DABCNT, len,
590 FRF_AB_EE_SPI_HCMD_READ, reading,
591 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
592 FRF_AB_EE_SPI_HCMD_ADBCNT,
593 (addressed ? spi->addr_len : 0),
594 FRF_AB_EE_SPI_HCMD_ENC, command);
595 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
596
597 /* Wait for read/write to complete */
598 rc = falcon_spi_wait(efx);
599 if (rc)
600 return rc;
601
602 /* Read data */
603 if (out != NULL) {
604 ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
605 memcpy(out, &reg, len);
606 }
607
608 return 0;
609 }
610
611 static inline u8
612 falcon_spi_munge_command(const struct falcon_spi_device *spi,
613 const u8 command, const unsigned int address)
614 {
615 return command | (((address >> 8) & spi->munge_address) << 3);
616 }
617
618 static int
619 falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
620 loff_t start, size_t len, size_t *retlen, u8 *buffer)
621 {
622 size_t block_len, pos = 0;
623 unsigned int command;
624 int rc = 0;
625
626 while (pos < len) {
627 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
628
629 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
630 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
631 buffer + pos, block_len);
632 if (rc)
633 break;
634 pos += block_len;
635
636 /* Avoid locking up the system */
637 cond_resched();
638 if (signal_pending(current)) {
639 rc = -EINTR;
640 break;
641 }
642 }
643
644 if (retlen)
645 *retlen = pos;
646 return rc;
647 }
648
649 #ifdef CONFIG_SFC_FALCON_MTD
650
651 struct falcon_mtd_partition {
652 struct ef4_mtd_partition common;
653 const struct falcon_spi_device *spi;
654 size_t offset;
655 };
656
657 #define to_falcon_mtd_partition(mtd) \
658 container_of(mtd, struct falcon_mtd_partition, common.mtd)
659
660 static size_t
661 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
662 {
663 return min(FALCON_SPI_MAX_LEN,
664 (spi->block_size - (start & (spi->block_size - 1))));
665 }
666
667 /* Wait up to 10 ms for buffered write completion */
668 static int
669 falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
670 {
671 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
672 u8 status;
673 int rc;
674
675 for (;;) {
676 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
677 &status, sizeof(status));
678 if (rc)
679 return rc;
680 if (!(status & SPI_STATUS_NRDY))
681 return 0;
682 if (time_after_eq(jiffies, timeout)) {
683 netif_err(efx, hw, efx->net_dev,
684 "SPI write timeout on device %d"
685 " last status=0x%02x\n",
686 spi->device_id, status);
687 return -ETIMEDOUT;
688 }
689 schedule_timeout_uninterruptible(1);
690 }
691 }
692
693 static int
694 falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
695 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
696 {
697 u8 verify_buffer[FALCON_SPI_MAX_LEN];
698 size_t block_len, pos = 0;
699 unsigned int command;
700 int rc = 0;
701
702 while (pos < len) {
703 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
704 if (rc)
705 break;
706
707 block_len = min(len - pos,
708 falcon_spi_write_limit(spi, start + pos));
709 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
710 rc = falcon_spi_cmd(efx, spi, command, start + pos,
711 buffer + pos, NULL, block_len);
712 if (rc)
713 break;
714
715 rc = falcon_spi_wait_write(efx, spi);
716 if (rc)
717 break;
718
719 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
720 rc = falcon_spi_cmd(efx, spi, command, start + pos,
721 NULL, verify_buffer, block_len);
722 if (memcmp(verify_buffer, buffer + pos, block_len)) {
723 rc = -EIO;
724 break;
725 }
726
727 pos += block_len;
728
729 /* Avoid locking up the system */
730 cond_resched();
731 if (signal_pending(current)) {
732 rc = -EINTR;
733 break;
734 }
735 }
736
737 if (retlen)
738 *retlen = pos;
739 return rc;
740 }
741
742 static int
743 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
744 {
745 const struct falcon_spi_device *spi = part->spi;
746 struct ef4_nic *efx = part->common.mtd.priv;
747 u8 status;
748 int rc, i;
749
750 /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
751 for (i = 0; i < 40; i++) {
752 __set_current_state(uninterruptible ?
753 TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
754 schedule_timeout(HZ / 10);
755 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
756 &status, sizeof(status));
757 if (rc)
758 return rc;
759 if (!(status & SPI_STATUS_NRDY))
760 return 0;
761 if (signal_pending(current))
762 return -EINTR;
763 }
764 pr_err("%s: timed out waiting for %s\n",
765 part->common.name, part->common.dev_type_name);
766 return -ETIMEDOUT;
767 }
768
769 static int
770 falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
771 {
772 const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
773 SPI_STATUS_BP0);
774 u8 status;
775 int rc;
776
777 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
778 &status, sizeof(status));
779 if (rc)
780 return rc;
781
782 if (!(status & unlock_mask))
783 return 0; /* already unlocked */
784
785 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
786 if (rc)
787 return rc;
788 rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
789 if (rc)
790 return rc;
791
792 status &= ~unlock_mask;
793 rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
794 NULL, sizeof(status));
795 if (rc)
796 return rc;
797 rc = falcon_spi_wait_write(efx, spi);
798 if (rc)
799 return rc;
800
801 return 0;
802 }
803
804 #define FALCON_SPI_VERIFY_BUF_LEN 16
805
806 static int
807 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
808 {
809 const struct falcon_spi_device *spi = part->spi;
810 struct ef4_nic *efx = part->common.mtd.priv;
811 unsigned pos, block_len;
812 u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
813 u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
814 int rc;
815
816 if (len != spi->erase_size)
817 return -EINVAL;
818
819 if (spi->erase_command == 0)
820 return -EOPNOTSUPP;
821
822 rc = falcon_spi_unlock(efx, spi);
823 if (rc)
824 return rc;
825 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
826 if (rc)
827 return rc;
828 rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
829 NULL, 0);
830 if (rc)
831 return rc;
832 rc = falcon_spi_slow_wait(part, false);
833
834 /* Verify the entire region has been wiped */
835 memset(empty, 0xff, sizeof(empty));
836 for (pos = 0; pos < len; pos += block_len) {
837 block_len = min(len - pos, sizeof(buffer));
838 rc = falcon_spi_read(efx, spi, start + pos, block_len,
839 NULL, buffer);
840 if (rc)
841 return rc;
842 if (memcmp(empty, buffer, block_len))
843 return -EIO;
844
845 /* Avoid locking up the system */
846 cond_resched();
847 if (signal_pending(current))
848 return -EINTR;
849 }
850
851 return rc;
852 }
853
854 static void falcon_mtd_rename(struct ef4_mtd_partition *part)
855 {
856 struct ef4_nic *efx = part->mtd.priv;
857
858 snprintf(part->name, sizeof(part->name), "%s %s",
859 efx->name, part->type_name);
860 }
861
862 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
863 size_t len, size_t *retlen, u8 *buffer)
864 {
865 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
866 struct ef4_nic *efx = mtd->priv;
867 struct falcon_nic_data *nic_data = efx->nic_data;
868 int rc;
869
870 rc = mutex_lock_interruptible(&nic_data->spi_lock);
871 if (rc)
872 return rc;
873 rc = falcon_spi_read(efx, part->spi, part->offset + start,
874 len, retlen, buffer);
875 mutex_unlock(&nic_data->spi_lock);
876 return rc;
877 }
878
879 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
880 {
881 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
882 struct ef4_nic *efx = mtd->priv;
883 struct falcon_nic_data *nic_data = efx->nic_data;
884 int rc;
885
886 rc = mutex_lock_interruptible(&nic_data->spi_lock);
887 if (rc)
888 return rc;
889 rc = falcon_spi_erase(part, part->offset + start, len);
890 mutex_unlock(&nic_data->spi_lock);
891 return rc;
892 }
893
894 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
895 size_t len, size_t *retlen, const u8 *buffer)
896 {
897 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
898 struct ef4_nic *efx = mtd->priv;
899 struct falcon_nic_data *nic_data = efx->nic_data;
900 int rc;
901
902 rc = mutex_lock_interruptible(&nic_data->spi_lock);
903 if (rc)
904 return rc;
905 rc = falcon_spi_write(efx, part->spi, part->offset + start,
906 len, retlen, buffer);
907 mutex_unlock(&nic_data->spi_lock);
908 return rc;
909 }
910
911 static int falcon_mtd_sync(struct mtd_info *mtd)
912 {
913 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
914 struct ef4_nic *efx = mtd->priv;
915 struct falcon_nic_data *nic_data = efx->nic_data;
916 int rc;
917
918 mutex_lock(&nic_data->spi_lock);
919 rc = falcon_spi_slow_wait(part, true);
920 mutex_unlock(&nic_data->spi_lock);
921 return rc;
922 }
923
924 static int falcon_mtd_probe(struct ef4_nic *efx)
925 {
926 struct falcon_nic_data *nic_data = efx->nic_data;
927 struct falcon_mtd_partition *parts;
928 struct falcon_spi_device *spi;
929 size_t n_parts;
930 int rc = -ENODEV;
931
932 ASSERT_RTNL();
933
934 /* Allocate space for maximum number of partitions */
935 parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
936 if (!parts)
937 return -ENOMEM;
938 n_parts = 0;
939
940 spi = &nic_data->spi_flash;
941 if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
942 parts[n_parts].spi = spi;
943 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
944 parts[n_parts].common.dev_type_name = "flash";
945 parts[n_parts].common.type_name = "sfc_flash_bootrom";
946 parts[n_parts].common.mtd.type = MTD_NORFLASH;
947 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
948 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
949 parts[n_parts].common.mtd.erasesize = spi->erase_size;
950 n_parts++;
951 }
952
953 spi = &nic_data->spi_eeprom;
954 if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
955 parts[n_parts].spi = spi;
956 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
957 parts[n_parts].common.dev_type_name = "EEPROM";
958 parts[n_parts].common.type_name = "sfc_bootconfig";
959 parts[n_parts].common.mtd.type = MTD_RAM;
960 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
961 parts[n_parts].common.mtd.size =
962 min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
963 FALCON_EEPROM_BOOTCONFIG_START;
964 parts[n_parts].common.mtd.erasesize = spi->erase_size;
965 n_parts++;
966 }
967
968 rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
969 if (rc)
970 kfree(parts);
971 return rc;
972 }
973
974 #endif /* CONFIG_SFC_FALCON_MTD */
975
976 /**************************************************************************
977 *
978 * XMAC operations
979 *
980 **************************************************************************
981 */
982
983 /* Configure the XAUI driver that is an output from Falcon */
984 static void falcon_setup_xaui(struct ef4_nic *efx)
985 {
986 ef4_oword_t sdctl, txdrv;
987
988 /* Move the XAUI into low power, unless there is no PHY, in
989 * which case the XAUI will have to drive a cable. */
990 if (efx->phy_type == PHY_TYPE_NONE)
991 return;
992
993 ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
994 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
995 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
996 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
997 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
998 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
999 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
1000 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1001 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1002 ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1003
1004 EF4_POPULATE_OWORD_8(txdrv,
1005 FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1006 FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1007 FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1008 FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1009 FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1010 FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1011 FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1012 FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1013 ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1014 }
1015
1016 int falcon_reset_xaui(struct ef4_nic *efx)
1017 {
1018 struct falcon_nic_data *nic_data = efx->nic_data;
1019 ef4_oword_t reg;
1020 int count;
1021
1022 /* Don't fetch MAC statistics over an XMAC reset */
1023 WARN_ON(nic_data->stats_disable_count == 0);
1024
1025 /* Start reset sequence */
1026 EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1027 ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1028
1029 /* Wait up to 10 ms for completion, then reinitialise */
1030 for (count = 0; count < 1000; count++) {
1031 ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1032 if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1033 EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1034 falcon_setup_xaui(efx);
1035 return 0;
1036 }
1037 udelay(10);
1038 }
1039 netif_err(efx, hw, efx->net_dev,
1040 "timed out waiting for XAUI/XGXS reset\n");
1041 return -ETIMEDOUT;
1042 }
1043
1044 static void falcon_ack_status_intr(struct ef4_nic *efx)
1045 {
1046 struct falcon_nic_data *nic_data = efx->nic_data;
1047 ef4_oword_t reg;
1048
1049 if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1050 return;
1051
1052 /* We expect xgmii faults if the wireside link is down */
1053 if (!efx->link_state.up)
1054 return;
1055
1056 /* We can only use this interrupt to signal the negative edge of
1057 * xaui_align [we have to poll the positive edge]. */
1058 if (nic_data->xmac_poll_required)
1059 return;
1060
1061 ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1062 }
1063
1064 static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1065 {
1066 ef4_oword_t reg;
1067 bool align_done, link_ok = false;
1068 int sync_status;
1069
1070 /* Read link status */
1071 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1072
1073 align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1074 sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1075 if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1076 link_ok = true;
1077
1078 /* Clear link status ready for next read */
1079 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1080 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1081 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1082 ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1083
1084 return link_ok;
1085 }
1086
1087 static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1088 {
1089 /*
1090 * Check MAC's XGXS link status except when using XGMII loopback
1091 * which bypasses the XGXS block.
1092 * If possible, check PHY's XGXS link status except when using
1093 * MAC loopback.
1094 */
1095 return (efx->loopback_mode == LOOPBACK_XGMII ||
1096 falcon_xgxs_link_ok(efx)) &&
1097 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1098 LOOPBACK_INTERNAL(efx) ||
1099 ef4_mdio_phyxgxs_lane_sync(efx));
1100 }
1101
1102 static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1103 {
1104 unsigned int max_frame_len;
1105 ef4_oword_t reg;
1106 bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1107 bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1108
1109 /* Configure MAC - cut-thru mode is hard wired on */
1110 EF4_POPULATE_OWORD_3(reg,
1111 FRF_AB_XM_RX_JUMBO_MODE, 1,
1112 FRF_AB_XM_TX_STAT_EN, 1,
1113 FRF_AB_XM_RX_STAT_EN, 1);
1114 ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1115
1116 /* Configure TX */
1117 EF4_POPULATE_OWORD_6(reg,
1118 FRF_AB_XM_TXEN, 1,
1119 FRF_AB_XM_TX_PRMBL, 1,
1120 FRF_AB_XM_AUTO_PAD, 1,
1121 FRF_AB_XM_TXCRC, 1,
1122 FRF_AB_XM_FCNTL, tx_fc,
1123 FRF_AB_XM_IPG, 0x3);
1124 ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1125
1126 /* Configure RX */
1127 EF4_POPULATE_OWORD_5(reg,
1128 FRF_AB_XM_RXEN, 1,
1129 FRF_AB_XM_AUTO_DEPAD, 0,
1130 FRF_AB_XM_ACPT_ALL_MCAST, 1,
1131 FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1132 FRF_AB_XM_PASS_CRC_ERR, 1);
1133 ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1134
1135 /* Set frame length */
1136 max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1137 EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1138 ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1139 EF4_POPULATE_OWORD_2(reg,
1140 FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1141 FRF_AB_XM_TX_JUMBO_MODE, 1);
1142 ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1143
1144 EF4_POPULATE_OWORD_2(reg,
1145 FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1146 FRF_AB_XM_DIS_FCNTL, !rx_fc);
1147 ef4_writeo(efx, &reg, FR_AB_XM_FC);
1148
1149 /* Set MAC address */
1150 memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1151 ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1152 memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1153 ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1154 }
1155
1156 static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1157 {
1158 ef4_oword_t reg;
1159 bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1160 bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1161 bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1162 bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1163
1164 /* XGXS block is flaky and will need to be reset if moving
1165 * into our out of XGMII, XGXS or XAUI loopbacks. */
1166 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1167 old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1168 old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1169
1170 ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1171 old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1172
1173 /* The PHY driver may have turned XAUI off */
1174 if ((xgxs_loopback != old_xgxs_loopback) ||
1175 (xaui_loopback != old_xaui_loopback) ||
1176 (xgmii_loopback != old_xgmii_loopback))
1177 falcon_reset_xaui(efx);
1178
1179 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1180 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1181 (xgxs_loopback || xaui_loopback) ?
1182 FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1183 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1184 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1185 ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1186
1187 ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1188 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1189 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1190 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1191 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1192 ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1193 }
1194
1195
1196 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1197 static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1198 {
1199 bool mac_up = falcon_xmac_link_ok(efx);
1200
1201 if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1202 ef4_phy_mode_disabled(efx->phy_mode))
1203 /* XAUI link is expected to be down */
1204 return mac_up;
1205
1206 falcon_stop_nic_stats(efx);
1207
1208 while (!mac_up && tries) {
1209 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1210 falcon_reset_xaui(efx);
1211 udelay(200);
1212
1213 mac_up = falcon_xmac_link_ok(efx);
1214 --tries;
1215 }
1216
1217 falcon_start_nic_stats(efx);
1218
1219 return mac_up;
1220 }
1221
1222 static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1223 {
1224 return !falcon_xmac_link_ok_retry(efx, 5);
1225 }
1226
1227 static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1228 {
1229 struct falcon_nic_data *nic_data = efx->nic_data;
1230
1231 ef4_farch_filter_sync_rx_mode(efx);
1232
1233 falcon_reconfigure_xgxs_core(efx);
1234 falcon_reconfigure_xmac_core(efx);
1235
1236 falcon_reconfigure_mac_wrapper(efx);
1237
1238 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1239 falcon_ack_status_intr(efx);
1240
1241 return 0;
1242 }
1243
1244 static void falcon_poll_xmac(struct ef4_nic *efx)
1245 {
1246 struct falcon_nic_data *nic_data = efx->nic_data;
1247
1248 /* We expect xgmii faults if the wireside link is down */
1249 if (!efx->link_state.up || !nic_data->xmac_poll_required)
1250 return;
1251
1252 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1253 falcon_ack_status_intr(efx);
1254 }
1255
1256 /**************************************************************************
1257 *
1258 * MAC wrapper
1259 *
1260 **************************************************************************
1261 */
1262
1263 static void falcon_push_multicast_hash(struct ef4_nic *efx)
1264 {
1265 union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1266
1267 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1268
1269 ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1270 ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1271 }
1272
1273 static void falcon_reset_macs(struct ef4_nic *efx)
1274 {
1275 struct falcon_nic_data *nic_data = efx->nic_data;
1276 ef4_oword_t reg, mac_ctrl;
1277 int count;
1278
1279 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1280 /* It's not safe to use GLB_CTL_REG to reset the
1281 * macs, so instead use the internal MAC resets
1282 */
1283 EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1284 ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1285
1286 for (count = 0; count < 10000; count++) {
1287 ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1288 if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1289 0)
1290 return;
1291 udelay(10);
1292 }
1293
1294 netif_err(efx, hw, efx->net_dev,
1295 "timed out waiting for XMAC core reset\n");
1296 }
1297
1298 /* Mac stats will fail whist the TX fifo is draining */
1299 WARN_ON(nic_data->stats_disable_count == 0);
1300
1301 ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1302 EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1303 ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1304
1305 ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1306 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1307 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1308 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1309 ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1310
1311 count = 0;
1312 while (1) {
1313 ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1314 if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1315 !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1316 !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1317 netif_dbg(efx, hw, efx->net_dev,
1318 "Completed MAC reset after %d loops\n",
1319 count);
1320 break;
1321 }
1322 if (count > 20) {
1323 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1324 break;
1325 }
1326 count++;
1327 udelay(10);
1328 }
1329
1330 /* Ensure the correct MAC is selected before statistics
1331 * are re-enabled by the caller */
1332 ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1333
1334 falcon_setup_xaui(efx);
1335 }
1336
1337 static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1338 {
1339 ef4_oword_t reg;
1340
1341 if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1342 (efx->loopback_mode != LOOPBACK_NONE))
1343 return;
1344
1345 ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1346 /* There is no point in draining more than once */
1347 if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1348 return;
1349
1350 falcon_reset_macs(efx);
1351 }
1352
1353 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1354 {
1355 ef4_oword_t reg;
1356
1357 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1358 return;
1359
1360 /* Isolate the MAC -> RX */
1361 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1362 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1363 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1364
1365 /* Isolate TX -> MAC */
1366 falcon_drain_tx_fifo(efx);
1367 }
1368
1369 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1370 {
1371 struct ef4_link_state *link_state = &efx->link_state;
1372 ef4_oword_t reg;
1373 int link_speed, isolate;
1374
1375 isolate = !!READ_ONCE(efx->reset_pending);
1376
1377 switch (link_state->speed) {
1378 case 10000: link_speed = 3; break;
1379 case 1000: link_speed = 2; break;
1380 case 100: link_speed = 1; break;
1381 default: link_speed = 0; break;
1382 }
1383
1384 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1385 * as advertised. Disable to ensure packets are not
1386 * indefinitely held and TX queue can be flushed at any point
1387 * while the link is down. */
1388 EF4_POPULATE_OWORD_5(reg,
1389 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1390 FRF_AB_MAC_BCAD_ACPT, 1,
1391 FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1392 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1393 FRF_AB_MAC_SPEED, link_speed);
1394 /* On B0, MAC backpressure can be disabled and packets get
1395 * discarded. */
1396 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1397 EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1398 !link_state->up || isolate);
1399 }
1400
1401 ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1402
1403 /* Restore the multicast hash registers. */
1404 falcon_push_multicast_hash(efx);
1405
1406 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1407 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1408 * initialisation but it may read back as 0) */
1409 EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1410 /* Unisolate the MAC -> RX */
1411 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1412 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1413 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1414 }
1415
1416 static void falcon_stats_request(struct ef4_nic *efx)
1417 {
1418 struct falcon_nic_data *nic_data = efx->nic_data;
1419 ef4_oword_t reg;
1420
1421 WARN_ON(nic_data->stats_pending);
1422 WARN_ON(nic_data->stats_disable_count);
1423
1424 FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1425 nic_data->stats_pending = true;
1426 wmb(); /* ensure done flag is clear */
1427
1428 /* Initiate DMA transfer of stats */
1429 EF4_POPULATE_OWORD_2(reg,
1430 FRF_AB_MAC_STAT_DMA_CMD, 1,
1431 FRF_AB_MAC_STAT_DMA_ADR,
1432 efx->stats_buffer.dma_addr);
1433 ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1434
1435 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1436 }
1437
1438 static void falcon_stats_complete(struct ef4_nic *efx)
1439 {
1440 struct falcon_nic_data *nic_data = efx->nic_data;
1441
1442 if (!nic_data->stats_pending)
1443 return;
1444
1445 nic_data->stats_pending = false;
1446 if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1447 rmb(); /* read the done flag before the stats */
1448 ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1449 falcon_stat_mask, nic_data->stats,
1450 efx->stats_buffer.addr, true);
1451 } else {
1452 netif_err(efx, hw, efx->net_dev,
1453 "timed out waiting for statistics\n");
1454 }
1455 }
1456
1457 static void falcon_stats_timer_func(struct timer_list *t)
1458 {
1459 struct falcon_nic_data *nic_data = from_timer(nic_data, t,
1460 stats_timer);
1461 struct ef4_nic *efx = nic_data->efx;
1462
1463 spin_lock(&efx->stats_lock);
1464
1465 falcon_stats_complete(efx);
1466 if (nic_data->stats_disable_count == 0)
1467 falcon_stats_request(efx);
1468
1469 spin_unlock(&efx->stats_lock);
1470 }
1471
1472 static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1473 {
1474 struct ef4_link_state old_state = efx->link_state;
1475
1476 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1477 WARN_ON(!LOOPBACK_INTERNAL(efx));
1478
1479 efx->link_state.fd = true;
1480 efx->link_state.fc = efx->wanted_fc;
1481 efx->link_state.up = true;
1482 efx->link_state.speed = 10000;
1483
1484 return !ef4_link_state_equal(&efx->link_state, &old_state);
1485 }
1486
1487 static int falcon_reconfigure_port(struct ef4_nic *efx)
1488 {
1489 int rc;
1490
1491 WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1492
1493 /* Poll the PHY link state *before* reconfiguring it. This means we
1494 * will pick up the correct speed (in loopback) to select the correct
1495 * MAC.
1496 */
1497 if (LOOPBACK_INTERNAL(efx))
1498 falcon_loopback_link_poll(efx);
1499 else
1500 efx->phy_op->poll(efx);
1501
1502 falcon_stop_nic_stats(efx);
1503 falcon_deconfigure_mac_wrapper(efx);
1504
1505 falcon_reset_macs(efx);
1506
1507 efx->phy_op->reconfigure(efx);
1508 rc = falcon_reconfigure_xmac(efx);
1509 BUG_ON(rc);
1510
1511 falcon_start_nic_stats(efx);
1512
1513 /* Synchronise efx->link_state with the kernel */
1514 ef4_link_status_changed(efx);
1515
1516 return 0;
1517 }
1518
1519 /* TX flow control may automatically turn itself off if the link
1520 * partner (intermittently) stops responding to pause frames. There
1521 * isn't any indication that this has happened, so the best we do is
1522 * leave it up to the user to spot this and fix it by cycling transmit
1523 * flow control on this end.
1524 */
1525
1526 static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1527 {
1528 /* Schedule a reset to recover */
1529 ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1530 }
1531
1532 static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1533 {
1534 /* Recover by resetting the EM block */
1535 falcon_stop_nic_stats(efx);
1536 falcon_drain_tx_fifo(efx);
1537 falcon_reconfigure_xmac(efx);
1538 falcon_start_nic_stats(efx);
1539 }
1540
1541 /**************************************************************************
1542 *
1543 * PHY access via GMII
1544 *
1545 **************************************************************************
1546 */
1547
1548 /* Wait for GMII access to complete */
1549 static int falcon_gmii_wait(struct ef4_nic *efx)
1550 {
1551 ef4_oword_t md_stat;
1552 int count;
1553
1554 /* wait up to 50ms - taken max from datasheet */
1555 for (count = 0; count < 5000; count++) {
1556 ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1557 if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1558 if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1559 EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1560 netif_err(efx, hw, efx->net_dev,
1561 "error from GMII access "
1562 EF4_OWORD_FMT"\n",
1563 EF4_OWORD_VAL(md_stat));
1564 return -EIO;
1565 }
1566 return 0;
1567 }
1568 udelay(10);
1569 }
1570 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1571 return -ETIMEDOUT;
1572 }
1573
1574 /* Write an MDIO register of a PHY connected to Falcon. */
1575 static int falcon_mdio_write(struct net_device *net_dev,
1576 int prtad, int devad, u16 addr, u16 value)
1577 {
1578 struct ef4_nic *efx = netdev_priv(net_dev);
1579 struct falcon_nic_data *nic_data = efx->nic_data;
1580 ef4_oword_t reg;
1581 int rc;
1582
1583 netif_vdbg(efx, hw, efx->net_dev,
1584 "writing MDIO %d register %d.%d with 0x%04x\n",
1585 prtad, devad, addr, value);
1586
1587 mutex_lock(&nic_data->mdio_lock);
1588
1589 /* Check MDIO not currently being accessed */
1590 rc = falcon_gmii_wait(efx);
1591 if (rc)
1592 goto out;
1593
1594 /* Write the address/ID register */
1595 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1596 ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1597
1598 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1599 FRF_AB_MD_DEV_ADR, devad);
1600 ef4_writeo(efx, &reg, FR_AB_MD_ID);
1601
1602 /* Write data */
1603 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1604 ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1605
1606 EF4_POPULATE_OWORD_2(reg,
1607 FRF_AB_MD_WRC, 1,
1608 FRF_AB_MD_GC, 0);
1609 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1610
1611 /* Wait for data to be written */
1612 rc = falcon_gmii_wait(efx);
1613 if (rc) {
1614 /* Abort the write operation */
1615 EF4_POPULATE_OWORD_2(reg,
1616 FRF_AB_MD_WRC, 0,
1617 FRF_AB_MD_GC, 1);
1618 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1619 udelay(10);
1620 }
1621
1622 out:
1623 mutex_unlock(&nic_data->mdio_lock);
1624 return rc;
1625 }
1626
1627 /* Read an MDIO register of a PHY connected to Falcon. */
1628 static int falcon_mdio_read(struct net_device *net_dev,
1629 int prtad, int devad, u16 addr)
1630 {
1631 struct ef4_nic *efx = netdev_priv(net_dev);
1632 struct falcon_nic_data *nic_data = efx->nic_data;
1633 ef4_oword_t reg;
1634 int rc;
1635
1636 mutex_lock(&nic_data->mdio_lock);
1637
1638 /* Check MDIO not currently being accessed */
1639 rc = falcon_gmii_wait(efx);
1640 if (rc)
1641 goto out;
1642
1643 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1644 ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1645
1646 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1647 FRF_AB_MD_DEV_ADR, devad);
1648 ef4_writeo(efx, &reg, FR_AB_MD_ID);
1649
1650 /* Request data to be read */
1651 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1652 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1653
1654 /* Wait for data to become available */
1655 rc = falcon_gmii_wait(efx);
1656 if (rc == 0) {
1657 ef4_reado(efx, &reg, FR_AB_MD_RXD);
1658 rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1659 netif_vdbg(efx, hw, efx->net_dev,
1660 "read from MDIO %d register %d.%d, got %04x\n",
1661 prtad, devad, addr, rc);
1662 } else {
1663 /* Abort the read operation */
1664 EF4_POPULATE_OWORD_2(reg,
1665 FRF_AB_MD_RIC, 0,
1666 FRF_AB_MD_GC, 1);
1667 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1668
1669 netif_dbg(efx, hw, efx->net_dev,
1670 "read from MDIO %d register %d.%d, got error %d\n",
1671 prtad, devad, addr, rc);
1672 }
1673
1674 out:
1675 mutex_unlock(&nic_data->mdio_lock);
1676 return rc;
1677 }
1678
1679 /* This call is responsible for hooking in the MAC and PHY operations */
1680 static int falcon_probe_port(struct ef4_nic *efx)
1681 {
1682 struct falcon_nic_data *nic_data = efx->nic_data;
1683 int rc;
1684
1685 switch (efx->phy_type) {
1686 case PHY_TYPE_SFX7101:
1687 efx->phy_op = &falcon_sfx7101_phy_ops;
1688 break;
1689 case PHY_TYPE_QT2022C2:
1690 case PHY_TYPE_QT2025C:
1691 efx->phy_op = &falcon_qt202x_phy_ops;
1692 break;
1693 case PHY_TYPE_TXC43128:
1694 efx->phy_op = &falcon_txc_phy_ops;
1695 break;
1696 default:
1697 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1698 efx->phy_type);
1699 return -ENODEV;
1700 }
1701
1702 /* Fill out MDIO structure and loopback modes */
1703 mutex_init(&nic_data->mdio_lock);
1704 efx->mdio.mdio_read = falcon_mdio_read;
1705 efx->mdio.mdio_write = falcon_mdio_write;
1706 rc = efx->phy_op->probe(efx);
1707 if (rc != 0)
1708 return rc;
1709
1710 /* Initial assumption */
1711 efx->link_state.speed = 10000;
1712 efx->link_state.fd = true;
1713
1714 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1715 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1716 efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1717 else
1718 efx->wanted_fc = EF4_FC_RX;
1719 if (efx->mdio.mmds & MDIO_DEVS_AN)
1720 efx->wanted_fc |= EF4_FC_AUTO;
1721
1722 /* Allocate buffer for stats */
1723 rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1724 FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1725 if (rc)
1726 return rc;
1727 netif_dbg(efx, probe, efx->net_dev,
1728 "stats buffer at %llx (virt %p phys %llx)\n",
1729 (u64)efx->stats_buffer.dma_addr,
1730 efx->stats_buffer.addr,
1731 (u64)virt_to_phys(efx->stats_buffer.addr));
1732
1733 return 0;
1734 }
1735
1736 static void falcon_remove_port(struct ef4_nic *efx)
1737 {
1738 efx->phy_op->remove(efx);
1739 ef4_nic_free_buffer(efx, &efx->stats_buffer);
1740 }
1741
1742 /* Global events are basically PHY events */
1743 static bool
1744 falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1745 {
1746 struct ef4_nic *efx = channel->efx;
1747 struct falcon_nic_data *nic_data = efx->nic_data;
1748
1749 if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1750 EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1751 EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1752 /* Ignored */
1753 return true;
1754
1755 if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1756 EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1757 nic_data->xmac_poll_required = true;
1758 return true;
1759 }
1760
1761 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1762 EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1763 EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1764 netif_err(efx, rx_err, efx->net_dev,
1765 "channel %d seen global RX_RESET event. Resetting.\n",
1766 channel->channel);
1767
1768 atomic_inc(&efx->rx_reset);
1769 ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1770 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1771 return true;
1772 }
1773
1774 return false;
1775 }
1776
1777 /**************************************************************************
1778 *
1779 * Falcon test code
1780 *
1781 **************************************************************************/
1782
1783 static int
1784 falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1785 {
1786 struct falcon_nic_data *nic_data = efx->nic_data;
1787 struct falcon_nvconfig *nvconfig;
1788 struct falcon_spi_device *spi;
1789 void *region;
1790 int rc, magic_num, struct_ver;
1791 __le16 *word, *limit;
1792 u32 csum;
1793
1794 if (falcon_spi_present(&nic_data->spi_flash))
1795 spi = &nic_data->spi_flash;
1796 else if (falcon_spi_present(&nic_data->spi_eeprom))
1797 spi = &nic_data->spi_eeprom;
1798 else
1799 return -EINVAL;
1800
1801 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1802 if (!region)
1803 return -ENOMEM;
1804 nvconfig = region + FALCON_NVCONFIG_OFFSET;
1805
1806 mutex_lock(&nic_data->spi_lock);
1807 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1808 mutex_unlock(&nic_data->spi_lock);
1809 if (rc) {
1810 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1811 falcon_spi_present(&nic_data->spi_flash) ?
1812 "flash" : "EEPROM");
1813 rc = -EIO;
1814 goto out;
1815 }
1816
1817 magic_num = le16_to_cpu(nvconfig->board_magic_num);
1818 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1819
1820 rc = -EINVAL;
1821 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1822 netif_err(efx, hw, efx->net_dev,
1823 "NVRAM bad magic 0x%x\n", magic_num);
1824 goto out;
1825 }
1826 if (struct_ver < 2) {
1827 netif_err(efx, hw, efx->net_dev,
1828 "NVRAM has ancient version 0x%x\n", struct_ver);
1829 goto out;
1830 } else if (struct_ver < 4) {
1831 word = &nvconfig->board_magic_num;
1832 limit = (__le16 *) (nvconfig + 1);
1833 } else {
1834 word = region;
1835 limit = region + FALCON_NVCONFIG_END;
1836 }
1837 for (csum = 0; word < limit; ++word)
1838 csum += le16_to_cpu(*word);
1839
1840 if (~csum & 0xffff) {
1841 netif_err(efx, hw, efx->net_dev,
1842 "NVRAM has incorrect checksum\n");
1843 goto out;
1844 }
1845
1846 rc = 0;
1847 if (nvconfig_out)
1848 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1849
1850 out:
1851 kfree(region);
1852 return rc;
1853 }
1854
1855 static int falcon_test_nvram(struct ef4_nic *efx)
1856 {
1857 return falcon_read_nvram(efx, NULL);
1858 }
1859
1860 static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1861 { FR_AZ_ADR_REGION,
1862 EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1863 { FR_AZ_RX_CFG,
1864 EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1865 { FR_AZ_TX_CFG,
1866 EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1867 { FR_AZ_TX_RESERVED,
1868 EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1869 { FR_AB_MAC_CTRL,
1870 EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1871 { FR_AZ_SRM_TX_DC_CFG,
1872 EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1873 { FR_AZ_RX_DC_CFG,
1874 EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1875 { FR_AZ_RX_DC_PF_WM,
1876 EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1877 { FR_BZ_DP_CTRL,
1878 EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1879 { FR_AB_GM_CFG2,
1880 EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1881 { FR_AB_GMF_CFG0,
1882 EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1883 { FR_AB_XM_GLB_CFG,
1884 EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1885 { FR_AB_XM_TX_CFG,
1886 EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1887 { FR_AB_XM_RX_CFG,
1888 EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1889 { FR_AB_XM_RX_PARAM,
1890 EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1891 { FR_AB_XM_FC,
1892 EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1893 { FR_AB_XM_ADR_LO,
1894 EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1895 { FR_AB_XX_SD_CTL,
1896 EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1897 };
1898
1899 static int
1900 falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1901 {
1902 enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1903 int rc, rc2;
1904
1905 mutex_lock(&efx->mac_lock);
1906 if (efx->loopback_modes) {
1907 /* We need the 312 clock from the PHY to test the XMAC
1908 * registers, so move into XGMII loopback if available */
1909 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1910 efx->loopback_mode = LOOPBACK_XGMII;
1911 else
1912 efx->loopback_mode = __ffs(efx->loopback_modes);
1913 }
1914 __ef4_reconfigure_port(efx);
1915 mutex_unlock(&efx->mac_lock);
1916
1917 ef4_reset_down(efx, reset_method);
1918
1919 tests->registers =
1920 ef4_farch_test_registers(efx, falcon_b0_register_tests,
1921 ARRAY_SIZE(falcon_b0_register_tests))
1922 ? -1 : 1;
1923
1924 rc = falcon_reset_hw(efx, reset_method);
1925 rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1926 return rc ? rc : rc2;
1927 }
1928
1929 /**************************************************************************
1930 *
1931 * Device reset
1932 *
1933 **************************************************************************
1934 */
1935
1936 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1937 {
1938 switch (reason) {
1939 case RESET_TYPE_RX_RECOVERY:
1940 case RESET_TYPE_DMA_ERROR:
1941 case RESET_TYPE_TX_SKIP:
1942 /* These can occasionally occur due to hardware bugs.
1943 * We try to reset without disrupting the link.
1944 */
1945 return RESET_TYPE_INVISIBLE;
1946 default:
1947 return RESET_TYPE_ALL;
1948 }
1949 }
1950
1951 static int falcon_map_reset_flags(u32 *flags)
1952 {
1953 enum {
1954 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1955 ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1956 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1957 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1958 };
1959
1960 if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1961 *flags &= ~FALCON_RESET_WORLD;
1962 return RESET_TYPE_WORLD;
1963 }
1964
1965 if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1966 *flags &= ~FALCON_RESET_ALL;
1967 return RESET_TYPE_ALL;
1968 }
1969
1970 if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1971 *flags &= ~FALCON_RESET_INVISIBLE;
1972 return RESET_TYPE_INVISIBLE;
1973 }
1974
1975 return -EINVAL;
1976 }
1977
1978 /* Resets NIC to known state. This routine must be called in process
1979 * context and is allowed to sleep. */
1980 static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1981 {
1982 struct falcon_nic_data *nic_data = efx->nic_data;
1983 ef4_oword_t glb_ctl_reg_ker;
1984 int rc;
1985
1986 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1987 RESET_TYPE(method));
1988
1989 /* Initiate device reset */
1990 if (method == RESET_TYPE_WORLD) {
1991 rc = pci_save_state(efx->pci_dev);
1992 if (rc) {
1993 netif_err(efx, drv, efx->net_dev,
1994 "failed to backup PCI state of primary "
1995 "function prior to hardware reset\n");
1996 goto fail1;
1997 }
1998 if (ef4_nic_is_dual_func(efx)) {
1999 rc = pci_save_state(nic_data->pci_dev2);
2000 if (rc) {
2001 netif_err(efx, drv, efx->net_dev,
2002 "failed to backup PCI state of "
2003 "secondary function prior to "
2004 "hardware reset\n");
2005 goto fail2;
2006 }
2007 }
2008
2009 EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2010 FRF_AB_EXT_PHY_RST_DUR,
2011 FFE_AB_EXT_PHY_RST_DUR_10240US,
2012 FRF_AB_SWRST, 1);
2013 } else {
2014 EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2015 /* exclude PHY from "invisible" reset */
2016 FRF_AB_EXT_PHY_RST_CTL,
2017 method == RESET_TYPE_INVISIBLE,
2018 /* exclude EEPROM/flash and PCIe */
2019 FRF_AB_PCIE_CORE_RST_CTL, 1,
2020 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2021 FRF_AB_PCIE_SD_RST_CTL, 1,
2022 FRF_AB_EE_RST_CTL, 1,
2023 FRF_AB_EXT_PHY_RST_DUR,
2024 FFE_AB_EXT_PHY_RST_DUR_10240US,
2025 FRF_AB_SWRST, 1);
2026 }
2027 ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2028
2029 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2030 schedule_timeout_uninterruptible(HZ / 20);
2031
2032 /* Restore PCI configuration if needed */
2033 if (method == RESET_TYPE_WORLD) {
2034 if (ef4_nic_is_dual_func(efx))
2035 pci_restore_state(nic_data->pci_dev2);
2036 pci_restore_state(efx->pci_dev);
2037 netif_dbg(efx, drv, efx->net_dev,
2038 "successfully restored PCI config\n");
2039 }
2040
2041 /* Assert that reset complete */
2042 ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2043 if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2044 rc = -ETIMEDOUT;
2045 netif_err(efx, hw, efx->net_dev,
2046 "timed out waiting for hardware reset\n");
2047 goto fail3;
2048 }
2049 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2050
2051 return 0;
2052
2053 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2054 fail2:
2055 pci_restore_state(efx->pci_dev);
2056 fail1:
2057 fail3:
2058 return rc;
2059 }
2060
2061 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2062 {
2063 struct falcon_nic_data *nic_data = efx->nic_data;
2064 int rc;
2065
2066 mutex_lock(&nic_data->spi_lock);
2067 rc = __falcon_reset_hw(efx, method);
2068 mutex_unlock(&nic_data->spi_lock);
2069
2070 return rc;
2071 }
2072
2073 static void falcon_monitor(struct ef4_nic *efx)
2074 {
2075 bool link_changed;
2076 int rc;
2077
2078 BUG_ON(!mutex_is_locked(&efx->mac_lock));
2079
2080 rc = falcon_board(efx)->type->monitor(efx);
2081 if (rc) {
2082 netif_err(efx, hw, efx->net_dev,
2083 "Board sensor %s; shutting down PHY\n",
2084 (rc == -ERANGE) ? "reported fault" : "failed");
2085 efx->phy_mode |= PHY_MODE_LOW_POWER;
2086 rc = __ef4_reconfigure_port(efx);
2087 WARN_ON(rc);
2088 }
2089
2090 if (LOOPBACK_INTERNAL(efx))
2091 link_changed = falcon_loopback_link_poll(efx);
2092 else
2093 link_changed = efx->phy_op->poll(efx);
2094
2095 if (link_changed) {
2096 falcon_stop_nic_stats(efx);
2097 falcon_deconfigure_mac_wrapper(efx);
2098
2099 falcon_reset_macs(efx);
2100 rc = falcon_reconfigure_xmac(efx);
2101 BUG_ON(rc);
2102
2103 falcon_start_nic_stats(efx);
2104
2105 ef4_link_status_changed(efx);
2106 }
2107
2108 falcon_poll_xmac(efx);
2109 }
2110
2111 /* Zeroes out the SRAM contents. This routine must be called in
2112 * process context and is allowed to sleep.
2113 */
2114 static int falcon_reset_sram(struct ef4_nic *efx)
2115 {
2116 ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2117 int count;
2118
2119 /* Set the SRAM wake/sleep GPIO appropriately. */
2120 ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2122 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2123 ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2124
2125 /* Initiate SRAM reset */
2126 EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2127 FRF_AZ_SRM_INIT_EN, 1,
2128 FRF_AZ_SRM_NB_SZ, 0);
2129 ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2130
2131 /* Wait for SRAM reset to complete */
2132 count = 0;
2133 do {
2134 netif_dbg(efx, hw, efx->net_dev,
2135 "waiting for SRAM reset (attempt %d)...\n", count);
2136
2137 /* SRAM reset is slow; expect around 16ms */
2138 schedule_timeout_uninterruptible(HZ / 50);
2139
2140 /* Check for reset complete */
2141 ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2142 if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2143 netif_dbg(efx, hw, efx->net_dev,
2144 "SRAM reset complete\n");
2145
2146 return 0;
2147 }
2148 } while (++count < 20); /* wait up to 0.4 sec */
2149
2150 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2151 return -ETIMEDOUT;
2152 }
2153
2154 static void falcon_spi_device_init(struct ef4_nic *efx,
2155 struct falcon_spi_device *spi_device,
2156 unsigned int device_id, u32 device_type)
2157 {
2158 if (device_type != 0) {
2159 spi_device->device_id = device_id;
2160 spi_device->size =
2161 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2162 spi_device->addr_len =
2163 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2164 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2165 spi_device->addr_len == 1);
2166 spi_device->erase_command =
2167 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2168 spi_device->erase_size =
2169 1 << SPI_DEV_TYPE_FIELD(device_type,
2170 SPI_DEV_TYPE_ERASE_SIZE);
2171 spi_device->block_size =
2172 1 << SPI_DEV_TYPE_FIELD(device_type,
2173 SPI_DEV_TYPE_BLOCK_SIZE);
2174 } else {
2175 spi_device->size = 0;
2176 }
2177 }
2178
2179 /* Extract non-volatile configuration */
2180 static int falcon_probe_nvconfig(struct ef4_nic *efx)
2181 {
2182 struct falcon_nic_data *nic_data = efx->nic_data;
2183 struct falcon_nvconfig *nvconfig;
2184 int rc;
2185
2186 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2187 if (!nvconfig)
2188 return -ENOMEM;
2189
2190 rc = falcon_read_nvram(efx, nvconfig);
2191 if (rc)
2192 goto out;
2193
2194 efx->phy_type = nvconfig->board_v2.port0_phy_type;
2195 efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2196
2197 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2198 falcon_spi_device_init(
2199 efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2200 le32_to_cpu(nvconfig->board_v3
2201 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2202 falcon_spi_device_init(
2203 efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2204 le32_to_cpu(nvconfig->board_v3
2205 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2206 }
2207
2208 /* Read the MAC addresses */
2209 ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2210
2211 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2212 efx->phy_type, efx->mdio.prtad);
2213
2214 rc = falcon_probe_board(efx,
2215 le16_to_cpu(nvconfig->board_v2.board_revision));
2216 out:
2217 kfree(nvconfig);
2218 return rc;
2219 }
2220
2221 static int falcon_dimension_resources(struct ef4_nic *efx)
2222 {
2223 efx->rx_dc_base = 0x20000;
2224 efx->tx_dc_base = 0x26000;
2225 return 0;
2226 }
2227
2228 /* Probe all SPI devices on the NIC */
2229 static void falcon_probe_spi_devices(struct ef4_nic *efx)
2230 {
2231 struct falcon_nic_data *nic_data = efx->nic_data;
2232 ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2233 int boot_dev;
2234
2235 ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2236 ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2237 ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2238
2239 if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2240 boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2241 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2242 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2243 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2244 "flash" : "EEPROM");
2245 } else {
2246 /* Disable VPD and set clock dividers to safe
2247 * values for initial programming. */
2248 boot_dev = -1;
2249 netif_dbg(efx, probe, efx->net_dev,
2250 "Booted from internal ASIC settings;"
2251 " setting SPI config\n");
2252 EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2253 /* 125 MHz / 7 ~= 20 MHz */
2254 FRF_AB_EE_SF_CLOCK_DIV, 7,
2255 /* 125 MHz / 63 ~= 2 MHz */
2256 FRF_AB_EE_EE_CLOCK_DIV, 63);
2257 ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2258 }
2259
2260 mutex_init(&nic_data->spi_lock);
2261
2262 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2263 falcon_spi_device_init(efx, &nic_data->spi_flash,
2264 FFE_AB_SPI_DEVICE_FLASH,
2265 default_flash_type);
2266 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2267 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2268 FFE_AB_SPI_DEVICE_EEPROM,
2269 large_eeprom_type);
2270 }
2271
2272 static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2273 {
2274 return 0x20000;
2275 }
2276
2277 static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2278 {
2279 /* Map everything up to and including the RSS indirection table.
2280 * The PCI core takes care of mapping the MSI-X tables.
2281 */
2282 return FR_BZ_RX_INDIRECTION_TBL +
2283 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2284 }
2285
2286 static int falcon_probe_nic(struct ef4_nic *efx)
2287 {
2288 struct falcon_nic_data *nic_data;
2289 struct falcon_board *board;
2290 int rc;
2291
2292 efx->primary = efx; /* only one usable function per controller */
2293
2294 /* Allocate storage for hardware specific data */
2295 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2296 if (!nic_data)
2297 return -ENOMEM;
2298 efx->nic_data = nic_data;
2299 nic_data->efx = efx;
2300
2301 rc = -ENODEV;
2302
2303 if (ef4_farch_fpga_ver(efx) != 0) {
2304 netif_err(efx, probe, efx->net_dev,
2305 "Falcon FPGA not supported\n");
2306 goto fail1;
2307 }
2308
2309 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2310 ef4_oword_t nic_stat;
2311 struct pci_dev *dev;
2312 u8 pci_rev = efx->pci_dev->revision;
2313
2314 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2315 netif_err(efx, probe, efx->net_dev,
2316 "Falcon rev A0 not supported\n");
2317 goto fail1;
2318 }
2319 ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2320 if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2321 netif_err(efx, probe, efx->net_dev,
2322 "Falcon rev A1 1G not supported\n");
2323 goto fail1;
2324 }
2325 if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2326 netif_err(efx, probe, efx->net_dev,
2327 "Falcon rev A1 PCI-X not supported\n");
2328 goto fail1;
2329 }
2330
2331 dev = pci_dev_get(efx->pci_dev);
2332 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2333 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2334 dev))) {
2335 if (dev->bus == efx->pci_dev->bus &&
2336 dev->devfn == efx->pci_dev->devfn + 1) {
2337 nic_data->pci_dev2 = dev;
2338 break;
2339 }
2340 }
2341 if (!nic_data->pci_dev2) {
2342 netif_err(efx, probe, efx->net_dev,
2343 "failed to find secondary function\n");
2344 rc = -ENODEV;
2345 goto fail2;
2346 }
2347 }
2348
2349 /* Now we can reset the NIC */
2350 rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2351 if (rc) {
2352 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2353 goto fail3;
2354 }
2355
2356 /* Allocate memory for INT_KER */
2357 rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2358 GFP_KERNEL);
2359 if (rc)
2360 goto fail4;
2361 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2362
2363 netif_dbg(efx, probe, efx->net_dev,
2364 "INT_KER at %llx (virt %p phys %llx)\n",
2365 (u64)efx->irq_status.dma_addr,
2366 efx->irq_status.addr,
2367 (u64)virt_to_phys(efx->irq_status.addr));
2368
2369 falcon_probe_spi_devices(efx);
2370
2371 /* Read in the non-volatile configuration */
2372 rc = falcon_probe_nvconfig(efx);
2373 if (rc) {
2374 if (rc == -EINVAL)
2375 netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2376 goto fail5;
2377 }
2378
2379 efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2380 EF4_MAX_CHANNELS);
2381 efx->max_tx_channels = efx->max_channels;
2382 efx->timer_quantum_ns = 4968; /* 621 cycles */
2383 efx->timer_max_ns = efx->type->timer_period_max *
2384 efx->timer_quantum_ns;
2385
2386 /* Initialise I2C adapter */
2387 board = falcon_board(efx);
2388 board->i2c_adap.owner = THIS_MODULE;
2389 board->i2c_data = falcon_i2c_bit_operations;
2390 board->i2c_data.data = efx;
2391 board->i2c_adap.algo_data = &board->i2c_data;
2392 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2393 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2394 sizeof(board->i2c_adap.name));
2395 rc = i2c_bit_add_bus(&board->i2c_adap);
2396 if (rc)
2397 goto fail5;
2398
2399 rc = falcon_board(efx)->type->init(efx);
2400 if (rc) {
2401 netif_err(efx, probe, efx->net_dev,
2402 "failed to initialise board\n");
2403 goto fail6;
2404 }
2405
2406 nic_data->stats_disable_count = 1;
2407 timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0);
2408
2409 return 0;
2410
2411 fail6:
2412 i2c_del_adapter(&board->i2c_adap);
2413 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2414 fail5:
2415 ef4_nic_free_buffer(efx, &efx->irq_status);
2416 fail4:
2417 fail3:
2418 if (nic_data->pci_dev2) {
2419 pci_dev_put(nic_data->pci_dev2);
2420 nic_data->pci_dev2 = NULL;
2421 }
2422 fail2:
2423 fail1:
2424 kfree(efx->nic_data);
2425 return rc;
2426 }
2427
2428 static void falcon_init_rx_cfg(struct ef4_nic *efx)
2429 {
2430 /* RX control FIFO thresholds (32 entries) */
2431 const unsigned ctrl_xon_thr = 20;
2432 const unsigned ctrl_xoff_thr = 25;
2433 ef4_oword_t reg;
2434
2435 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2436 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2437 /* Data FIFO size is 5.5K. The RX DMA engine only
2438 * supports scattering for user-mode queues, but will
2439 * split DMA writes at intervals of RX_USR_BUF_SIZE
2440 * (32-byte units) even for kernel-mode queues. We
2441 * set it to be so large that that never happens.
2442 */
2443 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2444 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2445 (3 * 4096) >> 5);
2446 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2447 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2448 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2449 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2450 } else {
2451 /* Data FIFO size is 80K; register fields moved */
2452 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2453 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2454 EF4_RX_USR_BUF_SIZE >> 5);
2455 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2456 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2457 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2458 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2459 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2460 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2461
2462 /* Enable hash insertion. This is broken for the
2463 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2464 * IPv4 hashes. */
2465 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2466 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2467 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2468 }
2469 /* Always enable XOFF signal from RX FIFO. We enable
2470 * or disable transmission of pause frames at the MAC. */
2471 EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2472 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2473 }
2474
2475 /* This call performs hardware-specific global initialisation, such as
2476 * defining the descriptor cache sizes and number of RSS channels.
2477 * It does not set up any buffers, descriptor rings or event queues.
2478 */
2479 static int falcon_init_nic(struct ef4_nic *efx)
2480 {
2481 ef4_oword_t temp;
2482 int rc;
2483
2484 /* Use on-chip SRAM */
2485 ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2486 EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2487 ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2488
2489 rc = falcon_reset_sram(efx);
2490 if (rc)
2491 return rc;
2492
2493 /* Clear the parity enables on the TX data fifos as
2494 * they produce false parity errors because of timing issues
2495 */
2496 if (EF4_WORKAROUND_5129(efx)) {
2497 ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2498 EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2499 ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2500 }
2501
2502 if (EF4_WORKAROUND_7244(efx)) {
2503 ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2504 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2505 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2506 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2507 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2508 ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2509 }
2510
2511 /* XXX This is documented only for Falcon A0/A1 */
2512 /* Setup RX. Wait for descriptor is broken and must
2513 * be disabled. RXDP recovery shouldn't be needed, but is.
2514 */
2515 ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2516 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2517 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2518 if (EF4_WORKAROUND_5583(efx))
2519 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2520 ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2521
2522 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2523 * descriptors (which is bad).
2524 */
2525 ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2526 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2527 ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2528
2529 falcon_init_rx_cfg(efx);
2530
2531 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2532 falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2533
2534 /* Set destination of both TX and RX Flush events */
2535 EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2536 ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2537 }
2538
2539 ef4_farch_init_common(efx);
2540
2541 return 0;
2542 }
2543
2544 static void falcon_remove_nic(struct ef4_nic *efx)
2545 {
2546 struct falcon_nic_data *nic_data = efx->nic_data;
2547 struct falcon_board *board = falcon_board(efx);
2548
2549 board->type->fini(efx);
2550
2551 /* Remove I2C adapter and clear it in preparation for a retry */
2552 i2c_del_adapter(&board->i2c_adap);
2553 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2554
2555 ef4_nic_free_buffer(efx, &efx->irq_status);
2556
2557 __falcon_reset_hw(efx, RESET_TYPE_ALL);
2558
2559 /* Release the second function after the reset */
2560 if (nic_data->pci_dev2) {
2561 pci_dev_put(nic_data->pci_dev2);
2562 nic_data->pci_dev2 = NULL;
2563 }
2564
2565 /* Tear down the private nic state */
2566 kfree(efx->nic_data);
2567 efx->nic_data = NULL;
2568 }
2569
2570 static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2571 {
2572 return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2573 falcon_stat_mask, names);
2574 }
2575
2576 static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2577 struct rtnl_link_stats64 *core_stats)
2578 {
2579 struct falcon_nic_data *nic_data = efx->nic_data;
2580 u64 *stats = nic_data->stats;
2581 ef4_oword_t cnt;
2582
2583 if (!nic_data->stats_disable_count) {
2584 ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2585 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2586 EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2587
2588 if (nic_data->stats_pending &&
2589 FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2590 nic_data->stats_pending = false;
2591 rmb(); /* read the done flag before the stats */
2592 ef4_nic_update_stats(
2593 falcon_stat_desc, FALCON_STAT_COUNT,
2594 falcon_stat_mask,
2595 stats, efx->stats_buffer.addr, true);
2596 }
2597
2598 /* Update derived statistic */
2599 ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2600 stats[FALCON_STAT_rx_bytes] -
2601 stats[FALCON_STAT_rx_good_bytes] -
2602 stats[FALCON_STAT_rx_control] * 64);
2603 ef4_update_sw_stats(efx, stats);
2604 }
2605
2606 if (full_stats)
2607 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2608
2609 if (core_stats) {
2610 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2611 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2612 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2613 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2614 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2615 stats[GENERIC_STAT_rx_nodesc_trunc] +
2616 stats[GENERIC_STAT_rx_noskb_drops];
2617 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2618 core_stats->rx_length_errors =
2619 stats[FALCON_STAT_rx_gtjumbo] +
2620 stats[FALCON_STAT_rx_length_error];
2621 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2622 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2623 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2624
2625 core_stats->rx_errors = (core_stats->rx_length_errors +
2626 core_stats->rx_crc_errors +
2627 core_stats->rx_frame_errors +
2628 stats[FALCON_STAT_rx_symbol_error]);
2629 }
2630
2631 return FALCON_STAT_COUNT;
2632 }
2633
2634 void falcon_start_nic_stats(struct ef4_nic *efx)
2635 {
2636 struct falcon_nic_data *nic_data = efx->nic_data;
2637
2638 spin_lock_bh(&efx->stats_lock);
2639 if (--nic_data->stats_disable_count == 0)
2640 falcon_stats_request(efx);
2641 spin_unlock_bh(&efx->stats_lock);
2642 }
2643
2644 /* We don't acutally pull stats on falcon. Wait 10ms so that
2645 * they arrive when we call this just after start_stats
2646 */
2647 static void falcon_pull_nic_stats(struct ef4_nic *efx)
2648 {
2649 msleep(10);
2650 }
2651
2652 void falcon_stop_nic_stats(struct ef4_nic *efx)
2653 {
2654 struct falcon_nic_data *nic_data = efx->nic_data;
2655 int i;
2656
2657 might_sleep();
2658
2659 spin_lock_bh(&efx->stats_lock);
2660 ++nic_data->stats_disable_count;
2661 spin_unlock_bh(&efx->stats_lock);
2662
2663 del_timer_sync(&nic_data->stats_timer);
2664
2665 /* Wait enough time for the most recent transfer to
2666 * complete. */
2667 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2668 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2669 break;
2670 msleep(1);
2671 }
2672
2673 spin_lock_bh(&efx->stats_lock);
2674 falcon_stats_complete(efx);
2675 spin_unlock_bh(&efx->stats_lock);
2676 }
2677
2678 static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2679 {
2680 falcon_board(efx)->type->set_id_led(efx, mode);
2681 }
2682
2683 /**************************************************************************
2684 *
2685 * Wake on LAN
2686 *
2687 **************************************************************************
2688 */
2689
2690 static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2691 {
2692 wol->supported = 0;
2693 wol->wolopts = 0;
2694 memset(&wol->sopass, 0, sizeof(wol->sopass));
2695 }
2696
2697 static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2698 {
2699 if (type != 0)
2700 return -EINVAL;
2701 return 0;
2702 }
2703
2704 /**************************************************************************
2705 *
2706 * Revision-dependent attributes used by efx.c and nic.c
2707 *
2708 **************************************************************************
2709 */
2710
2711 const struct ef4_nic_type falcon_a1_nic_type = {
2712 .mem_bar = EF4_MEM_BAR,
2713 .mem_map_size = falcon_a1_mem_map_size,
2714 .probe = falcon_probe_nic,
2715 .remove = falcon_remove_nic,
2716 .init = falcon_init_nic,
2717 .dimension_resources = falcon_dimension_resources,
2718 .fini = falcon_irq_ack_a1,
2719 .monitor = falcon_monitor,
2720 .map_reset_reason = falcon_map_reset_reason,
2721 .map_reset_flags = falcon_map_reset_flags,
2722 .reset = falcon_reset_hw,
2723 .probe_port = falcon_probe_port,
2724 .remove_port = falcon_remove_port,
2725 .handle_global_event = falcon_handle_global_event,
2726 .fini_dmaq = ef4_farch_fini_dmaq,
2727 .prepare_flush = falcon_prepare_flush,
2728 .finish_flush = ef4_port_dummy_op_void,
2729 .prepare_flr = ef4_port_dummy_op_void,
2730 .finish_flr = ef4_farch_finish_flr,
2731 .describe_stats = falcon_describe_nic_stats,
2732 .update_stats = falcon_update_nic_stats,
2733 .start_stats = falcon_start_nic_stats,
2734 .pull_stats = falcon_pull_nic_stats,
2735 .stop_stats = falcon_stop_nic_stats,
2736 .set_id_led = falcon_set_id_led,
2737 .push_irq_moderation = falcon_push_irq_moderation,
2738 .reconfigure_port = falcon_reconfigure_port,
2739 .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2740 .reconfigure_mac = falcon_reconfigure_xmac,
2741 .check_mac_fault = falcon_xmac_check_fault,
2742 .get_wol = falcon_get_wol,
2743 .set_wol = falcon_set_wol,
2744 .resume_wol = ef4_port_dummy_op_void,
2745 .test_nvram = falcon_test_nvram,
2746 .irq_enable_master = ef4_farch_irq_enable_master,
2747 .irq_test_generate = ef4_farch_irq_test_generate,
2748 .irq_disable_non_ev = ef4_farch_irq_disable_master,
2749 .irq_handle_msi = ef4_farch_msi_interrupt,
2750 .irq_handle_legacy = falcon_legacy_interrupt_a1,
2751 .tx_probe = ef4_farch_tx_probe,
2752 .tx_init = ef4_farch_tx_init,
2753 .tx_remove = ef4_farch_tx_remove,
2754 .tx_write = ef4_farch_tx_write,
2755 .tx_limit_len = ef4_farch_tx_limit_len,
2756 .rx_push_rss_config = dummy_rx_push_rss_config,
2757 .rx_probe = ef4_farch_rx_probe,
2758 .rx_init = ef4_farch_rx_init,
2759 .rx_remove = ef4_farch_rx_remove,
2760 .rx_write = ef4_farch_rx_write,
2761 .rx_defer_refill = ef4_farch_rx_defer_refill,
2762 .ev_probe = ef4_farch_ev_probe,
2763 .ev_init = ef4_farch_ev_init,
2764 .ev_fini = ef4_farch_ev_fini,
2765 .ev_remove = ef4_farch_ev_remove,
2766 .ev_process = ef4_farch_ev_process,
2767 .ev_read_ack = ef4_farch_ev_read_ack,
2768 .ev_test_generate = ef4_farch_ev_test_generate,
2769
2770 /* We don't expose the filter table on Falcon A1 as it is not
2771 * mapped into function 0, but these implementations still
2772 * work with a degenerate case of all tables set to size 0.
2773 */
2774 .filter_table_probe = ef4_farch_filter_table_probe,
2775 .filter_table_restore = ef4_farch_filter_table_restore,
2776 .filter_table_remove = ef4_farch_filter_table_remove,
2777 .filter_insert = ef4_farch_filter_insert,
2778 .filter_remove_safe = ef4_farch_filter_remove_safe,
2779 .filter_get_safe = ef4_farch_filter_get_safe,
2780 .filter_clear_rx = ef4_farch_filter_clear_rx,
2781 .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2782 .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2783 .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2784
2785 #ifdef CONFIG_SFC_FALCON_MTD
2786 .mtd_probe = falcon_mtd_probe,
2787 .mtd_rename = falcon_mtd_rename,
2788 .mtd_read = falcon_mtd_read,
2789 .mtd_erase = falcon_mtd_erase,
2790 .mtd_write = falcon_mtd_write,
2791 .mtd_sync = falcon_mtd_sync,
2792 #endif
2793
2794 .revision = EF4_REV_FALCON_A1,
2795 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2796 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2797 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2798 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2799 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2800 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2801 .rx_buffer_padding = 0x24,
2802 .can_rx_scatter = false,
2803 .max_interrupt_mode = EF4_INT_MODE_MSI,
2804 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2805 .offload_features = NETIF_F_IP_CSUM,
2806 };
2807
2808 const struct ef4_nic_type falcon_b0_nic_type = {
2809 .mem_bar = EF4_MEM_BAR,
2810 .mem_map_size = falcon_b0_mem_map_size,
2811 .probe = falcon_probe_nic,
2812 .remove = falcon_remove_nic,
2813 .init = falcon_init_nic,
2814 .dimension_resources = falcon_dimension_resources,
2815 .fini = ef4_port_dummy_op_void,
2816 .monitor = falcon_monitor,
2817 .map_reset_reason = falcon_map_reset_reason,
2818 .map_reset_flags = falcon_map_reset_flags,
2819 .reset = falcon_reset_hw,
2820 .probe_port = falcon_probe_port,
2821 .remove_port = falcon_remove_port,
2822 .handle_global_event = falcon_handle_global_event,
2823 .fini_dmaq = ef4_farch_fini_dmaq,
2824 .prepare_flush = falcon_prepare_flush,
2825 .finish_flush = ef4_port_dummy_op_void,
2826 .prepare_flr = ef4_port_dummy_op_void,
2827 .finish_flr = ef4_farch_finish_flr,
2828 .describe_stats = falcon_describe_nic_stats,
2829 .update_stats = falcon_update_nic_stats,
2830 .start_stats = falcon_start_nic_stats,
2831 .pull_stats = falcon_pull_nic_stats,
2832 .stop_stats = falcon_stop_nic_stats,
2833 .set_id_led = falcon_set_id_led,
2834 .push_irq_moderation = falcon_push_irq_moderation,
2835 .reconfigure_port = falcon_reconfigure_port,
2836 .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2837 .reconfigure_mac = falcon_reconfigure_xmac,
2838 .check_mac_fault = falcon_xmac_check_fault,
2839 .get_wol = falcon_get_wol,
2840 .set_wol = falcon_set_wol,
2841 .resume_wol = ef4_port_dummy_op_void,
2842 .test_chip = falcon_b0_test_chip,
2843 .test_nvram = falcon_test_nvram,
2844 .irq_enable_master = ef4_farch_irq_enable_master,
2845 .irq_test_generate = ef4_farch_irq_test_generate,
2846 .irq_disable_non_ev = ef4_farch_irq_disable_master,
2847 .irq_handle_msi = ef4_farch_msi_interrupt,
2848 .irq_handle_legacy = ef4_farch_legacy_interrupt,
2849 .tx_probe = ef4_farch_tx_probe,
2850 .tx_init = ef4_farch_tx_init,
2851 .tx_remove = ef4_farch_tx_remove,
2852 .tx_write = ef4_farch_tx_write,
2853 .tx_limit_len = ef4_farch_tx_limit_len,
2854 .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2855 .rx_probe = ef4_farch_rx_probe,
2856 .rx_init = ef4_farch_rx_init,
2857 .rx_remove = ef4_farch_rx_remove,
2858 .rx_write = ef4_farch_rx_write,
2859 .rx_defer_refill = ef4_farch_rx_defer_refill,
2860 .ev_probe = ef4_farch_ev_probe,
2861 .ev_init = ef4_farch_ev_init,
2862 .ev_fini = ef4_farch_ev_fini,
2863 .ev_remove = ef4_farch_ev_remove,
2864 .ev_process = ef4_farch_ev_process,
2865 .ev_read_ack = ef4_farch_ev_read_ack,
2866 .ev_test_generate = ef4_farch_ev_test_generate,
2867 .filter_table_probe = ef4_farch_filter_table_probe,
2868 .filter_table_restore = ef4_farch_filter_table_restore,
2869 .filter_table_remove = ef4_farch_filter_table_remove,
2870 .filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2871 .filter_insert = ef4_farch_filter_insert,
2872 .filter_remove_safe = ef4_farch_filter_remove_safe,
2873 .filter_get_safe = ef4_farch_filter_get_safe,
2874 .filter_clear_rx = ef4_farch_filter_clear_rx,
2875 .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2876 .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2877 .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2878 #ifdef CONFIG_RFS_ACCEL
2879 .filter_rfs_insert = ef4_farch_filter_rfs_insert,
2880 .filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2881 #endif
2882 #ifdef CONFIG_SFC_FALCON_MTD
2883 .mtd_probe = falcon_mtd_probe,
2884 .mtd_rename = falcon_mtd_rename,
2885 .mtd_read = falcon_mtd_read,
2886 .mtd_erase = falcon_mtd_erase,
2887 .mtd_write = falcon_mtd_write,
2888 .mtd_sync = falcon_mtd_sync,
2889 #endif
2890
2891 .revision = EF4_REV_FALCON_B0,
2892 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2893 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2894 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2895 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2896 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2897 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2898 .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2899 .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2900 .rx_buffer_padding = 0,
2901 .can_rx_scatter = true,
2902 .max_interrupt_mode = EF4_INT_MODE_MSIX,
2903 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2904 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2905 .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2906 };