]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/sfc/falcon/farch.c
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / sfc / falcon / farch.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25
26 /* Falcon-architecture (SFC4000) support */
27
28 /**************************************************************************
29 *
30 * Configurable values
31 *
32 **************************************************************************
33 */
34
35 /* This is set to 16 for a good reason. In summary, if larger than
36 * 16, the descriptor cache holds more than a default socket
37 * buffer's worth of packets (for UDP we can only have at most one
38 * socket buffer's worth outstanding). This combined with the fact
39 * that we only get 1 TX event per descriptor cache means the NIC
40 * goes idle.
41 */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47
48 /* If EF4_MAX_INT_ERRORS internal errors occur within
49 * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50 * disable it.
51 */
52 #define EF4_INT_ERROR_EXPIRE 3600
53 #define EF4_MAX_INT_ERRORS 5
54
55 /* Depth of RX flush request fifo */
56 #define EF4_RX_FLUSH_COUNT 4
57
58 /* Driver generated events */
59 #define _EF4_CHANNEL_MAGIC_TEST 0x000101
60 #define _EF4_CHANNEL_MAGIC_FILL 0x000102
61 #define _EF4_CHANNEL_MAGIC_RX_DRAIN 0x000103
62 #define _EF4_CHANNEL_MAGIC_TX_DRAIN 0x000104
63
64 #define _EF4_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
65 #define _EF4_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
66
67 #define EF4_CHANNEL_MAGIC_TEST(_channel) \
68 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EF4_CHANNEL_MAGIC_FILL(_rx_queue) \
70 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL, \
71 ef4_rx_queue_index(_rx_queue))
72 #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
73 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN, \
74 ef4_rx_queue_index(_rx_queue))
75 #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
76 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN, \
77 (_tx_queue)->queue)
78
79 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
80
81 /**************************************************************************
82 *
83 * Hardware access
84 *
85 **************************************************************************/
86
87 static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
88 unsigned int index)
89 {
90 ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91 value, index);
92 }
93
94 static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
95 const ef4_oword_t *mask)
96 {
97 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100
101 int ef4_farch_test_registers(struct ef4_nic *efx,
102 const struct ef4_farch_register_test *regs,
103 size_t n_regs)
104 {
105 unsigned address = 0;
106 int i, j;
107 ef4_oword_t mask, imask, original, reg, buf;
108
109 for (i = 0; i < n_regs; ++i) {
110 address = regs[i].address;
111 mask = imask = regs[i].mask;
112 EF4_INVERT_OWORD(imask);
113
114 ef4_reado(efx, &original, address);
115
116 /* bit sweep on and off */
117 for (j = 0; j < 128; j++) {
118 if (!EF4_EXTRACT_OWORD32(mask, j, j))
119 continue;
120
121 /* Test this testable bit can be set in isolation */
122 EF4_AND_OWORD(reg, original, mask);
123 EF4_SET_OWORD32(reg, j, j, 1);
124
125 ef4_writeo(efx, &reg, address);
126 ef4_reado(efx, &buf, address);
127
128 if (ef4_masked_compare_oword(&reg, &buf, &mask))
129 goto fail;
130
131 /* Test this testable bit can be cleared in isolation */
132 EF4_OR_OWORD(reg, original, mask);
133 EF4_SET_OWORD32(reg, j, j, 0);
134
135 ef4_writeo(efx, &reg, address);
136 ef4_reado(efx, &buf, address);
137
138 if (ef4_masked_compare_oword(&reg, &buf, &mask))
139 goto fail;
140 }
141
142 ef4_writeo(efx, &original, address);
143 }
144
145 return 0;
146
147 fail:
148 netif_err(efx, hw, efx->net_dev,
149 "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
150 " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
151 EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
152 return -EIO;
153 }
154
155 /**************************************************************************
156 *
157 * Special buffer handling
158 * Special buffers are used for event queues and the TX and RX
159 * descriptor rings.
160 *
161 *************************************************************************/
162
163 /*
164 * Initialise a special buffer
165 *
166 * This will define a buffer (previously allocated via
167 * ef4_alloc_special_buffer()) in the buffer table, allowing
168 * it to be used for event queues, descriptor rings etc.
169 */
170 static void
171 ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
172 {
173 ef4_qword_t buf_desc;
174 unsigned int index;
175 dma_addr_t dma_addr;
176 int i;
177
178 EF4_BUG_ON_PARANOID(!buffer->buf.addr);
179
180 /* Write buffer descriptors to NIC */
181 for (i = 0; i < buffer->entries; i++) {
182 index = buffer->index + i;
183 dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
184 netif_dbg(efx, probe, efx->net_dev,
185 "mapping special buffer %d at %llx\n",
186 index, (unsigned long long)dma_addr);
187 EF4_POPULATE_QWORD_3(buf_desc,
188 FRF_AZ_BUF_ADR_REGION, 0,
189 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
190 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
191 ef4_write_buf_tbl(efx, &buf_desc, index);
192 }
193 }
194
195 /* Unmaps a buffer and clears the buffer table entries */
196 static void
197 ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
198 {
199 ef4_oword_t buf_tbl_upd;
200 unsigned int start = buffer->index;
201 unsigned int end = (buffer->index + buffer->entries - 1);
202
203 if (!buffer->entries)
204 return;
205
206 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
207 buffer->index, buffer->index + buffer->entries - 1);
208
209 EF4_POPULATE_OWORD_4(buf_tbl_upd,
210 FRF_AZ_BUF_UPD_CMD, 0,
211 FRF_AZ_BUF_CLR_CMD, 1,
212 FRF_AZ_BUF_CLR_END_ID, end,
213 FRF_AZ_BUF_CLR_START_ID, start);
214 ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
215 }
216
217 /*
218 * Allocate a new special buffer
219 *
220 * This allocates memory for a new buffer, clears it and allocates a
221 * new buffer ID range. It does not write into the buffer table.
222 *
223 * This call will allocate 4KB buffers, since 8KB buffers can't be
224 * used for event queues and descriptor rings.
225 */
226 static int ef4_alloc_special_buffer(struct ef4_nic *efx,
227 struct ef4_special_buffer *buffer,
228 unsigned int len)
229 {
230 len = ALIGN(len, EF4_BUF_SIZE);
231
232 if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
233 return -ENOMEM;
234 buffer->entries = len / EF4_BUF_SIZE;
235 BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
236
237 /* Select new buffer ID */
238 buffer->index = efx->next_buffer_table;
239 efx->next_buffer_table += buffer->entries;
240
241 netif_dbg(efx, probe, efx->net_dev,
242 "allocating special buffers %d-%d at %llx+%x "
243 "(virt %p phys %llx)\n", buffer->index,
244 buffer->index + buffer->entries - 1,
245 (u64)buffer->buf.dma_addr, len,
246 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
247
248 return 0;
249 }
250
251 static void
252 ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
253 {
254 if (!buffer->buf.addr)
255 return;
256
257 netif_dbg(efx, hw, efx->net_dev,
258 "deallocating special buffers %d-%d at %llx+%x "
259 "(virt %p phys %llx)\n", buffer->index,
260 buffer->index + buffer->entries - 1,
261 (u64)buffer->buf.dma_addr, buffer->buf.len,
262 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
263
264 ef4_nic_free_buffer(efx, &buffer->buf);
265 buffer->entries = 0;
266 }
267
268 /**************************************************************************
269 *
270 * TX path
271 *
272 **************************************************************************/
273
274 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
275 static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
276 {
277 unsigned write_ptr;
278 ef4_dword_t reg;
279
280 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
281 EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
282 ef4_writed_page(tx_queue->efx, &reg,
283 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
284 }
285
286 /* Write pointer and first descriptor for TX descriptor ring */
287 static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
288 const ef4_qword_t *txd)
289 {
290 unsigned write_ptr;
291 ef4_oword_t reg;
292
293 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
294 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
295
296 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
297 EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
298 FRF_AZ_TX_DESC_WPTR, write_ptr);
299 reg.qword[0] = *txd;
300 ef4_writeo_page(tx_queue->efx, &reg,
301 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
302 }
303
304
305 /* For each entry inserted into the software descriptor ring, create a
306 * descriptor in the hardware TX descriptor ring (in host memory), and
307 * write a doorbell.
308 */
309 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
310 {
311 struct ef4_tx_buffer *buffer;
312 ef4_qword_t *txd;
313 unsigned write_ptr;
314 unsigned old_write_count = tx_queue->write_count;
315
316 tx_queue->xmit_more_available = false;
317 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
318 return;
319
320 do {
321 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
322 buffer = &tx_queue->buffer[write_ptr];
323 txd = ef4_tx_desc(tx_queue, write_ptr);
324 ++tx_queue->write_count;
325
326 EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
327
328 /* Create TX descriptor ring entry */
329 BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
330 EF4_POPULATE_QWORD_4(*txd,
331 FSF_AZ_TX_KER_CONT,
332 buffer->flags & EF4_TX_BUF_CONT,
333 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
334 FSF_AZ_TX_KER_BUF_REGION, 0,
335 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
336 } while (tx_queue->write_count != tx_queue->insert_count);
337
338 wmb(); /* Ensure descriptors are written before they are fetched */
339
340 if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
341 txd = ef4_tx_desc(tx_queue,
342 old_write_count & tx_queue->ptr_mask);
343 ef4_farch_push_tx_desc(tx_queue, txd);
344 ++tx_queue->pushes;
345 } else {
346 ef4_farch_notify_tx_desc(tx_queue);
347 }
348 }
349
350 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
351 dma_addr_t dma_addr, unsigned int len)
352 {
353 /* Don't cross 4K boundaries with descriptors. */
354 unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
355
356 len = min(limit, len);
357
358 if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
359 len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
360
361 return len;
362 }
363
364
365 /* Allocate hardware resources for a TX queue */
366 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
367 {
368 struct ef4_nic *efx = tx_queue->efx;
369 unsigned entries;
370
371 entries = tx_queue->ptr_mask + 1;
372 return ef4_alloc_special_buffer(efx, &tx_queue->txd,
373 entries * sizeof(ef4_qword_t));
374 }
375
376 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
377 {
378 struct ef4_nic *efx = tx_queue->efx;
379 ef4_oword_t reg;
380
381 /* Pin TX descriptor ring */
382 ef4_init_special_buffer(efx, &tx_queue->txd);
383
384 /* Push TX descriptor ring to card */
385 EF4_POPULATE_OWORD_10(reg,
386 FRF_AZ_TX_DESCQ_EN, 1,
387 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
388 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
389 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
390 FRF_AZ_TX_DESCQ_EVQ_ID,
391 tx_queue->channel->channel,
392 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
393 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
394 FRF_AZ_TX_DESCQ_SIZE,
395 __ffs(tx_queue->txd.entries),
396 FRF_AZ_TX_DESCQ_TYPE, 0,
397 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
398
399 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
400 int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
401 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
402 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
403 !csum);
404 }
405
406 ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
407 tx_queue->queue);
408
409 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
410 /* Only 128 bits in this register */
411 BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
412
413 ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
414 if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
415 __clear_bit_le(tx_queue->queue, &reg);
416 else
417 __set_bit_le(tx_queue->queue, &reg);
418 ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
419 }
420
421 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
422 EF4_POPULATE_OWORD_1(reg,
423 FRF_BZ_TX_PACE,
424 (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
425 FFE_BZ_TX_PACE_OFF :
426 FFE_BZ_TX_PACE_RESERVED);
427 ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
428 tx_queue->queue);
429 }
430 }
431
432 static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
433 {
434 struct ef4_nic *efx = tx_queue->efx;
435 ef4_oword_t tx_flush_descq;
436
437 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
438 atomic_set(&tx_queue->flush_outstanding, 1);
439
440 EF4_POPULATE_OWORD_2(tx_flush_descq,
441 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
442 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
443 ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
444 }
445
446 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
447 {
448 struct ef4_nic *efx = tx_queue->efx;
449 ef4_oword_t tx_desc_ptr;
450
451 /* Remove TX descriptor ring from card */
452 EF4_ZERO_OWORD(tx_desc_ptr);
453 ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
454 tx_queue->queue);
455
456 /* Unpin TX descriptor ring */
457 ef4_fini_special_buffer(efx, &tx_queue->txd);
458 }
459
460 /* Free buffers backing TX queue */
461 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
462 {
463 ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
464 }
465
466 /**************************************************************************
467 *
468 * RX path
469 *
470 **************************************************************************/
471
472 /* This creates an entry in the RX descriptor queue */
473 static inline void
474 ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
475 {
476 struct ef4_rx_buffer *rx_buf;
477 ef4_qword_t *rxd;
478
479 rxd = ef4_rx_desc(rx_queue, index);
480 rx_buf = ef4_rx_buffer(rx_queue, index);
481 EF4_POPULATE_QWORD_3(*rxd,
482 FSF_AZ_RX_KER_BUF_SIZE,
483 rx_buf->len -
484 rx_queue->efx->type->rx_buffer_padding,
485 FSF_AZ_RX_KER_BUF_REGION, 0,
486 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
487 }
488
489 /* This writes to the RX_DESC_WPTR register for the specified receive
490 * descriptor ring.
491 */
492 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
493 {
494 struct ef4_nic *efx = rx_queue->efx;
495 ef4_dword_t reg;
496 unsigned write_ptr;
497
498 while (rx_queue->notified_count != rx_queue->added_count) {
499 ef4_farch_build_rx_desc(
500 rx_queue,
501 rx_queue->notified_count & rx_queue->ptr_mask);
502 ++rx_queue->notified_count;
503 }
504
505 wmb();
506 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
507 EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
508 ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
509 ef4_rx_queue_index(rx_queue));
510 }
511
512 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
513 {
514 struct ef4_nic *efx = rx_queue->efx;
515 unsigned entries;
516
517 entries = rx_queue->ptr_mask + 1;
518 return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
519 entries * sizeof(ef4_qword_t));
520 }
521
522 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
523 {
524 ef4_oword_t rx_desc_ptr;
525 struct ef4_nic *efx = rx_queue->efx;
526 bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
527 bool iscsi_digest_en = is_b0;
528 bool jumbo_en;
529
530 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
531 * DMA to continue after a PCIe page boundary (and scattering
532 * is not possible). In Falcon B0 and Siena, it enables
533 * scatter.
534 */
535 jumbo_en = !is_b0 || efx->rx_scatter;
536
537 netif_dbg(efx, hw, efx->net_dev,
538 "RX queue %d ring in special buffers %d-%d\n",
539 ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
540 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
541
542 rx_queue->scatter_n = 0;
543
544 /* Pin RX descriptor ring */
545 ef4_init_special_buffer(efx, &rx_queue->rxd);
546
547 /* Push RX descriptor ring to card */
548 EF4_POPULATE_OWORD_10(rx_desc_ptr,
549 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
550 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
551 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
552 FRF_AZ_RX_DESCQ_EVQ_ID,
553 ef4_rx_queue_channel(rx_queue)->channel,
554 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
555 FRF_AZ_RX_DESCQ_LABEL,
556 ef4_rx_queue_index(rx_queue),
557 FRF_AZ_RX_DESCQ_SIZE,
558 __ffs(rx_queue->rxd.entries),
559 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
560 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
561 FRF_AZ_RX_DESCQ_EN, 1);
562 ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
563 ef4_rx_queue_index(rx_queue));
564 }
565
566 static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
567 {
568 struct ef4_nic *efx = rx_queue->efx;
569 ef4_oword_t rx_flush_descq;
570
571 EF4_POPULATE_OWORD_2(rx_flush_descq,
572 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
573 FRF_AZ_RX_FLUSH_DESCQ,
574 ef4_rx_queue_index(rx_queue));
575 ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
576 }
577
578 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
579 {
580 ef4_oword_t rx_desc_ptr;
581 struct ef4_nic *efx = rx_queue->efx;
582
583 /* Remove RX descriptor ring from card */
584 EF4_ZERO_OWORD(rx_desc_ptr);
585 ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
586 ef4_rx_queue_index(rx_queue));
587
588 /* Unpin RX descriptor ring */
589 ef4_fini_special_buffer(efx, &rx_queue->rxd);
590 }
591
592 /* Free buffers backing RX queue */
593 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
594 {
595 ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
596 }
597
598 /**************************************************************************
599 *
600 * Flush handling
601 *
602 **************************************************************************/
603
604 /* ef4_farch_flush_queues() must be woken up when all flushes are completed,
605 * or more RX flushes can be kicked off.
606 */
607 static bool ef4_farch_flush_wake(struct ef4_nic *efx)
608 {
609 /* Ensure that all updates are visible to ef4_farch_flush_queues() */
610 smp_mb();
611
612 return (atomic_read(&efx->active_queues) == 0 ||
613 (atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
614 && atomic_read(&efx->rxq_flush_pending) > 0));
615 }
616
617 static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
618 {
619 bool i = true;
620 ef4_oword_t txd_ptr_tbl;
621 struct ef4_channel *channel;
622 struct ef4_tx_queue *tx_queue;
623
624 ef4_for_each_channel(channel, efx) {
625 ef4_for_each_channel_tx_queue(tx_queue, channel) {
626 ef4_reado_table(efx, &txd_ptr_tbl,
627 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
628 if (EF4_OWORD_FIELD(txd_ptr_tbl,
629 FRF_AZ_TX_DESCQ_FLUSH) ||
630 EF4_OWORD_FIELD(txd_ptr_tbl,
631 FRF_AZ_TX_DESCQ_EN)) {
632 netif_dbg(efx, hw, efx->net_dev,
633 "flush did not complete on TXQ %d\n",
634 tx_queue->queue);
635 i = false;
636 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
637 1, 0)) {
638 /* The flush is complete, but we didn't
639 * receive a flush completion event
640 */
641 netif_dbg(efx, hw, efx->net_dev,
642 "flush complete on TXQ %d, so drain "
643 "the queue\n", tx_queue->queue);
644 /* Don't need to increment active_queues as it
645 * has already been incremented for the queues
646 * which did not drain
647 */
648 ef4_farch_magic_event(channel,
649 EF4_CHANNEL_MAGIC_TX_DRAIN(
650 tx_queue));
651 }
652 }
653 }
654
655 return i;
656 }
657
658 /* Flush all the transmit queues, and continue flushing receive queues until
659 * they're all flushed. Wait for the DRAIN events to be received so that there
660 * are no more RX and TX events left on any channel. */
661 static int ef4_farch_do_flush(struct ef4_nic *efx)
662 {
663 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
664 struct ef4_channel *channel;
665 struct ef4_rx_queue *rx_queue;
666 struct ef4_tx_queue *tx_queue;
667 int rc = 0;
668
669 ef4_for_each_channel(channel, efx) {
670 ef4_for_each_channel_tx_queue(tx_queue, channel) {
671 ef4_farch_flush_tx_queue(tx_queue);
672 }
673 ef4_for_each_channel_rx_queue(rx_queue, channel) {
674 rx_queue->flush_pending = true;
675 atomic_inc(&efx->rxq_flush_pending);
676 }
677 }
678
679 while (timeout && atomic_read(&efx->active_queues) > 0) {
680 /* The hardware supports four concurrent rx flushes, each of
681 * which may need to be retried if there is an outstanding
682 * descriptor fetch
683 */
684 ef4_for_each_channel(channel, efx) {
685 ef4_for_each_channel_rx_queue(rx_queue, channel) {
686 if (atomic_read(&efx->rxq_flush_outstanding) >=
687 EF4_RX_FLUSH_COUNT)
688 break;
689
690 if (rx_queue->flush_pending) {
691 rx_queue->flush_pending = false;
692 atomic_dec(&efx->rxq_flush_pending);
693 atomic_inc(&efx->rxq_flush_outstanding);
694 ef4_farch_flush_rx_queue(rx_queue);
695 }
696 }
697 }
698
699 timeout = wait_event_timeout(efx->flush_wq,
700 ef4_farch_flush_wake(efx),
701 timeout);
702 }
703
704 if (atomic_read(&efx->active_queues) &&
705 !ef4_check_tx_flush_complete(efx)) {
706 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
707 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
708 atomic_read(&efx->rxq_flush_outstanding),
709 atomic_read(&efx->rxq_flush_pending));
710 rc = -ETIMEDOUT;
711
712 atomic_set(&efx->active_queues, 0);
713 atomic_set(&efx->rxq_flush_pending, 0);
714 atomic_set(&efx->rxq_flush_outstanding, 0);
715 }
716
717 return rc;
718 }
719
720 int ef4_farch_fini_dmaq(struct ef4_nic *efx)
721 {
722 struct ef4_channel *channel;
723 struct ef4_tx_queue *tx_queue;
724 struct ef4_rx_queue *rx_queue;
725 int rc = 0;
726
727 /* Do not attempt to write to the NIC during EEH recovery */
728 if (efx->state != STATE_RECOVERY) {
729 /* Only perform flush if DMA is enabled */
730 if (efx->pci_dev->is_busmaster) {
731 efx->type->prepare_flush(efx);
732 rc = ef4_farch_do_flush(efx);
733 efx->type->finish_flush(efx);
734 }
735
736 ef4_for_each_channel(channel, efx) {
737 ef4_for_each_channel_rx_queue(rx_queue, channel)
738 ef4_farch_rx_fini(rx_queue);
739 ef4_for_each_channel_tx_queue(tx_queue, channel)
740 ef4_farch_tx_fini(tx_queue);
741 }
742 }
743
744 return rc;
745 }
746
747 /* Reset queue and flush accounting after FLR
748 *
749 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
750 * mastering was disabled), in which case we don't receive (RXQ) flush
751 * completion events. This means that efx->rxq_flush_outstanding remained at 4
752 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
753 * events were received, and we didn't go through ef4_check_tx_flush_complete())
754 * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
755 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
756 * for batched flush requests; and the efx->active_queues gets messed up because
757 * we keep incrementing for the newly initialised queues, but it never went to
758 * zero previously. Then we get a timeout every time we try to restart the
759 * queues, as it doesn't go back to zero when we should be flushing the queues.
760 */
761 void ef4_farch_finish_flr(struct ef4_nic *efx)
762 {
763 atomic_set(&efx->rxq_flush_pending, 0);
764 atomic_set(&efx->rxq_flush_outstanding, 0);
765 atomic_set(&efx->active_queues, 0);
766 }
767
768
769 /**************************************************************************
770 *
771 * Event queue processing
772 * Event queues are processed by per-channel tasklets.
773 *
774 **************************************************************************/
775
776 /* Update a channel's event queue's read pointer (RPTR) register
777 *
778 * This writes the EVQ_RPTR_REG register for the specified channel's
779 * event queue.
780 */
781 void ef4_farch_ev_read_ack(struct ef4_channel *channel)
782 {
783 ef4_dword_t reg;
784 struct ef4_nic *efx = channel->efx;
785
786 EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
787 channel->eventq_read_ptr & channel->eventq_mask);
788
789 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
790 * of 4 bytes, but it is really 16 bytes just like later revisions.
791 */
792 ef4_writed(efx, &reg,
793 efx->type->evq_rptr_tbl_base +
794 FR_BZ_EVQ_RPTR_STEP * channel->channel);
795 }
796
797 /* Use HW to insert a SW defined event */
798 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
799 ef4_qword_t *event)
800 {
801 ef4_oword_t drv_ev_reg;
802
803 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
804 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
805 drv_ev_reg.u32[0] = event->u32[0];
806 drv_ev_reg.u32[1] = event->u32[1];
807 drv_ev_reg.u32[2] = 0;
808 drv_ev_reg.u32[3] = 0;
809 EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
810 ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
811 }
812
813 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
814 {
815 ef4_qword_t event;
816
817 EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
818 FSE_AZ_EV_CODE_DRV_GEN_EV,
819 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
820 ef4_farch_generate_event(channel->efx, channel->channel, &event);
821 }
822
823 /* Handle a transmit completion event
824 *
825 * The NIC batches TX completion events; the message we receive is of
826 * the form "complete all TX events up to this index".
827 */
828 static int
829 ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
830 {
831 unsigned int tx_ev_desc_ptr;
832 unsigned int tx_ev_q_label;
833 struct ef4_tx_queue *tx_queue;
834 struct ef4_nic *efx = channel->efx;
835 int tx_packets = 0;
836
837 if (unlikely(READ_ONCE(efx->reset_pending)))
838 return 0;
839
840 if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
841 /* Transmit completion */
842 tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
843 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
844 tx_queue = ef4_channel_get_tx_queue(
845 channel, tx_ev_q_label % EF4_TXQ_TYPES);
846 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
847 tx_queue->ptr_mask);
848 ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
849 } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
850 /* Rewrite the FIFO write pointer */
851 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
852 tx_queue = ef4_channel_get_tx_queue(
853 channel, tx_ev_q_label % EF4_TXQ_TYPES);
854
855 netif_tx_lock(efx->net_dev);
856 ef4_farch_notify_tx_desc(tx_queue);
857 netif_tx_unlock(efx->net_dev);
858 } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
859 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
860 } else {
861 netif_err(efx, tx_err, efx->net_dev,
862 "channel %d unexpected TX event "
863 EF4_QWORD_FMT"\n", channel->channel,
864 EF4_QWORD_VAL(*event));
865 }
866
867 return tx_packets;
868 }
869
870 /* Detect errors included in the rx_evt_pkt_ok bit. */
871 static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
872 const ef4_qword_t *event)
873 {
874 struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
875 struct ef4_nic *efx = rx_queue->efx;
876 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
877 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
878 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
879 bool rx_ev_other_err, rx_ev_pause_frm;
880 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
881 unsigned rx_ev_pkt_type;
882
883 rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
884 rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
885 rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
886 rx_ev_pkt_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
887 rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
888 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
889 rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
890 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
891 rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
892 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
893 rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
894 rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
895 rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
896 0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
897 rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
898
899 /* Every error apart from tobe_disc and pause_frm */
900 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
901 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
902 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
903
904 /* Count errors that are not in MAC stats. Ignore expected
905 * checksum errors during self-test. */
906 if (rx_ev_frm_trunc)
907 ++channel->n_rx_frm_trunc;
908 else if (rx_ev_tobe_disc)
909 ++channel->n_rx_tobe_disc;
910 else if (!efx->loopback_selftest) {
911 if (rx_ev_ip_hdr_chksum_err)
912 ++channel->n_rx_ip_hdr_chksum_err;
913 else if (rx_ev_tcp_udp_chksum_err)
914 ++channel->n_rx_tcp_udp_chksum_err;
915 }
916
917 /* TOBE_DISC is expected on unicast mismatches; don't print out an
918 * error message. FRM_TRUNC indicates RXDP dropped the packet due
919 * to a FIFO overflow.
920 */
921 #ifdef DEBUG
922 if (rx_ev_other_err && net_ratelimit()) {
923 netif_dbg(efx, rx_err, efx->net_dev,
924 " RX queue %d unexpected RX event "
925 EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
926 ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
927 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
928 rx_ev_ip_hdr_chksum_err ?
929 " [IP_HDR_CHKSUM_ERR]" : "",
930 rx_ev_tcp_udp_chksum_err ?
931 " [TCP_UDP_CHKSUM_ERR]" : "",
932 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
933 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
934 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
935 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
936 rx_ev_pause_frm ? " [PAUSE]" : "");
937 }
938 #endif
939
940 /* The frame must be discarded if any of these are true. */
941 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
942 rx_ev_tobe_disc | rx_ev_pause_frm) ?
943 EF4_RX_PKT_DISCARD : 0;
944 }
945
946 /* Handle receive events that are not in-order. Return true if this
947 * can be handled as a partial packet discard, false if it's more
948 * serious.
949 */
950 static bool
951 ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
952 {
953 struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
954 struct ef4_nic *efx = rx_queue->efx;
955 unsigned expected, dropped;
956
957 if (rx_queue->scatter_n &&
958 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
959 rx_queue->ptr_mask)) {
960 ++channel->n_rx_nodesc_trunc;
961 return true;
962 }
963
964 expected = rx_queue->removed_count & rx_queue->ptr_mask;
965 dropped = (index - expected) & rx_queue->ptr_mask;
966 netif_info(efx, rx_err, efx->net_dev,
967 "dropped %d events (index=%d expected=%d)\n",
968 dropped, index, expected);
969
970 ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
971 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
972 return false;
973 }
974
975 /* Handle a packet received event
976 *
977 * The NIC gives a "discard" flag if it's a unicast packet with the
978 * wrong destination address
979 * Also "is multicast" and "matches multicast filter" flags can be used to
980 * discard non-matching multicast packets.
981 */
982 static void
983 ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
984 {
985 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
986 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
987 unsigned expected_ptr;
988 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
989 u16 flags;
990 struct ef4_rx_queue *rx_queue;
991 struct ef4_nic *efx = channel->efx;
992
993 if (unlikely(READ_ONCE(efx->reset_pending)))
994 return;
995
996 rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
997 rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
998 WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
999 channel->channel);
1000
1001 rx_queue = ef4_channel_get_rx_queue(channel);
1002
1003 rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1004 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1005 rx_queue->ptr_mask);
1006
1007 /* Check for partial drops and other errors */
1008 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1009 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1010 if (rx_ev_desc_ptr != expected_ptr &&
1011 !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1012 return;
1013
1014 /* Discard all pending fragments */
1015 if (rx_queue->scatter_n) {
1016 ef4_rx_packet(
1017 rx_queue,
1018 rx_queue->removed_count & rx_queue->ptr_mask,
1019 rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1020 rx_queue->removed_count += rx_queue->scatter_n;
1021 rx_queue->scatter_n = 0;
1022 }
1023
1024 /* Return if there is no new fragment */
1025 if (rx_ev_desc_ptr != expected_ptr)
1026 return;
1027
1028 /* Discard new fragment if not SOP */
1029 if (!rx_ev_sop) {
1030 ef4_rx_packet(
1031 rx_queue,
1032 rx_queue->removed_count & rx_queue->ptr_mask,
1033 1, 0, EF4_RX_PKT_DISCARD);
1034 ++rx_queue->removed_count;
1035 return;
1036 }
1037 }
1038
1039 ++rx_queue->scatter_n;
1040 if (rx_ev_cont)
1041 return;
1042
1043 rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1044 rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1045 rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1046
1047 if (likely(rx_ev_pkt_ok)) {
1048 /* If packet is marked as OK then we can rely on the
1049 * hardware checksum and classification.
1050 */
1051 flags = 0;
1052 switch (rx_ev_hdr_type) {
1053 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1054 flags |= EF4_RX_PKT_TCP;
1055 /* fall through */
1056 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1057 flags |= EF4_RX_PKT_CSUMMED;
1058 /* fall through */
1059 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1060 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1061 break;
1062 }
1063 } else {
1064 flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1065 }
1066
1067 /* Detect multicast packets that didn't match the filter */
1068 rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1069 if (rx_ev_mcast_pkt) {
1070 unsigned int rx_ev_mcast_hash_match =
1071 EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1072
1073 if (unlikely(!rx_ev_mcast_hash_match)) {
1074 ++channel->n_rx_mcast_mismatch;
1075 flags |= EF4_RX_PKT_DISCARD;
1076 }
1077 }
1078
1079 channel->irq_mod_score += 2;
1080
1081 /* Handle received packet */
1082 ef4_rx_packet(rx_queue,
1083 rx_queue->removed_count & rx_queue->ptr_mask,
1084 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1085 rx_queue->removed_count += rx_queue->scatter_n;
1086 rx_queue->scatter_n = 0;
1087 }
1088
1089 /* If this flush done event corresponds to a &struct ef4_tx_queue, then
1090 * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1091 * of all transmit completions.
1092 */
1093 static void
1094 ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1095 {
1096 struct ef4_tx_queue *tx_queue;
1097 int qid;
1098
1099 qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1100 if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1101 tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1102 qid % EF4_TXQ_TYPES);
1103 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1104 ef4_farch_magic_event(tx_queue->channel,
1105 EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1106 }
1107 }
1108 }
1109
1110 /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1111 * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1112 * the RX queue back to the mask of RX queues in need of flushing.
1113 */
1114 static void
1115 ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1116 {
1117 struct ef4_channel *channel;
1118 struct ef4_rx_queue *rx_queue;
1119 int qid;
1120 bool failed;
1121
1122 qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1123 failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1124 if (qid >= efx->n_channels)
1125 return;
1126 channel = ef4_get_channel(efx, qid);
1127 if (!ef4_channel_has_rx_queue(channel))
1128 return;
1129 rx_queue = ef4_channel_get_rx_queue(channel);
1130
1131 if (failed) {
1132 netif_info(efx, hw, efx->net_dev,
1133 "RXQ %d flush retry\n", qid);
1134 rx_queue->flush_pending = true;
1135 atomic_inc(&efx->rxq_flush_pending);
1136 } else {
1137 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1138 EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1139 }
1140 atomic_dec(&efx->rxq_flush_outstanding);
1141 if (ef4_farch_flush_wake(efx))
1142 wake_up(&efx->flush_wq);
1143 }
1144
1145 static void
1146 ef4_farch_handle_drain_event(struct ef4_channel *channel)
1147 {
1148 struct ef4_nic *efx = channel->efx;
1149
1150 WARN_ON(atomic_read(&efx->active_queues) == 0);
1151 atomic_dec(&efx->active_queues);
1152 if (ef4_farch_flush_wake(efx))
1153 wake_up(&efx->flush_wq);
1154 }
1155
1156 static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1157 ef4_qword_t *event)
1158 {
1159 struct ef4_nic *efx = channel->efx;
1160 struct ef4_rx_queue *rx_queue =
1161 ef4_channel_has_rx_queue(channel) ?
1162 ef4_channel_get_rx_queue(channel) : NULL;
1163 unsigned magic, code;
1164
1165 magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1166 code = _EF4_CHANNEL_MAGIC_CODE(magic);
1167
1168 if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1169 channel->event_test_cpu = raw_smp_processor_id();
1170 } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1171 /* The queue must be empty, so we won't receive any rx
1172 * events, so ef4_process_channel() won't refill the
1173 * queue. Refill it here */
1174 ef4_fast_push_rx_descriptors(rx_queue, true);
1175 } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1176 ef4_farch_handle_drain_event(channel);
1177 } else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1178 ef4_farch_handle_drain_event(channel);
1179 } else {
1180 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1181 "generated event "EF4_QWORD_FMT"\n",
1182 channel->channel, EF4_QWORD_VAL(*event));
1183 }
1184 }
1185
1186 static void
1187 ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1188 {
1189 struct ef4_nic *efx = channel->efx;
1190 unsigned int ev_sub_code;
1191 unsigned int ev_sub_data;
1192
1193 ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1194 ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1195
1196 switch (ev_sub_code) {
1197 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1198 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1199 channel->channel, ev_sub_data);
1200 ef4_farch_handle_tx_flush_done(efx, event);
1201 break;
1202 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1203 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1204 channel->channel, ev_sub_data);
1205 ef4_farch_handle_rx_flush_done(efx, event);
1206 break;
1207 case FSE_AZ_EVQ_INIT_DONE_EV:
1208 netif_dbg(efx, hw, efx->net_dev,
1209 "channel %d EVQ %d initialised\n",
1210 channel->channel, ev_sub_data);
1211 break;
1212 case FSE_AZ_SRM_UPD_DONE_EV:
1213 netif_vdbg(efx, hw, efx->net_dev,
1214 "channel %d SRAM update done\n", channel->channel);
1215 break;
1216 case FSE_AZ_WAKE_UP_EV:
1217 netif_vdbg(efx, hw, efx->net_dev,
1218 "channel %d RXQ %d wakeup event\n",
1219 channel->channel, ev_sub_data);
1220 break;
1221 case FSE_AZ_TIMER_EV:
1222 netif_vdbg(efx, hw, efx->net_dev,
1223 "channel %d RX queue %d timer expired\n",
1224 channel->channel, ev_sub_data);
1225 break;
1226 case FSE_AA_RX_RECOVER_EV:
1227 netif_err(efx, rx_err, efx->net_dev,
1228 "channel %d seen DRIVER RX_RESET event. "
1229 "Resetting.\n", channel->channel);
1230 atomic_inc(&efx->rx_reset);
1231 ef4_schedule_reset(efx,
1232 EF4_WORKAROUND_6555(efx) ?
1233 RESET_TYPE_RX_RECOVERY :
1234 RESET_TYPE_DISABLE);
1235 break;
1236 case FSE_BZ_RX_DSC_ERROR_EV:
1237 netif_err(efx, rx_err, efx->net_dev,
1238 "RX DMA Q %d reports descriptor fetch error."
1239 " RX Q %d is disabled.\n", ev_sub_data,
1240 ev_sub_data);
1241 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1242 break;
1243 case FSE_BZ_TX_DSC_ERROR_EV:
1244 netif_err(efx, tx_err, efx->net_dev,
1245 "TX DMA Q %d reports descriptor fetch error."
1246 " TX Q %d is disabled.\n", ev_sub_data,
1247 ev_sub_data);
1248 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1249 break;
1250 default:
1251 netif_vdbg(efx, hw, efx->net_dev,
1252 "channel %d unknown driver event code %d "
1253 "data %04x\n", channel->channel, ev_sub_code,
1254 ev_sub_data);
1255 break;
1256 }
1257 }
1258
1259 int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1260 {
1261 struct ef4_nic *efx = channel->efx;
1262 unsigned int read_ptr;
1263 ef4_qword_t event, *p_event;
1264 int ev_code;
1265 int tx_packets = 0;
1266 int spent = 0;
1267
1268 if (budget <= 0)
1269 return spent;
1270
1271 read_ptr = channel->eventq_read_ptr;
1272
1273 for (;;) {
1274 p_event = ef4_event(channel, read_ptr);
1275 event = *p_event;
1276
1277 if (!ef4_event_present(&event))
1278 /* End of events */
1279 break;
1280
1281 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1282 "channel %d event is "EF4_QWORD_FMT"\n",
1283 channel->channel, EF4_QWORD_VAL(event));
1284
1285 /* Clear this event by marking it all ones */
1286 EF4_SET_QWORD(*p_event);
1287
1288 ++read_ptr;
1289
1290 ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1291
1292 switch (ev_code) {
1293 case FSE_AZ_EV_CODE_RX_EV:
1294 ef4_farch_handle_rx_event(channel, &event);
1295 if (++spent == budget)
1296 goto out;
1297 break;
1298 case FSE_AZ_EV_CODE_TX_EV:
1299 tx_packets += ef4_farch_handle_tx_event(channel,
1300 &event);
1301 if (tx_packets > efx->txq_entries) {
1302 spent = budget;
1303 goto out;
1304 }
1305 break;
1306 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1307 ef4_farch_handle_generated_event(channel, &event);
1308 break;
1309 case FSE_AZ_EV_CODE_DRIVER_EV:
1310 ef4_farch_handle_driver_event(channel, &event);
1311 break;
1312 case FSE_AZ_EV_CODE_GLOBAL_EV:
1313 if (efx->type->handle_global_event &&
1314 efx->type->handle_global_event(channel, &event))
1315 break;
1316 /* else fall through */
1317 default:
1318 netif_err(channel->efx, hw, channel->efx->net_dev,
1319 "channel %d unknown event type %d (data "
1320 EF4_QWORD_FMT ")\n", channel->channel,
1321 ev_code, EF4_QWORD_VAL(event));
1322 }
1323 }
1324
1325 out:
1326 channel->eventq_read_ptr = read_ptr;
1327 return spent;
1328 }
1329
1330 /* Allocate buffer table entries for event queue */
1331 int ef4_farch_ev_probe(struct ef4_channel *channel)
1332 {
1333 struct ef4_nic *efx = channel->efx;
1334 unsigned entries;
1335
1336 entries = channel->eventq_mask + 1;
1337 return ef4_alloc_special_buffer(efx, &channel->eventq,
1338 entries * sizeof(ef4_qword_t));
1339 }
1340
1341 int ef4_farch_ev_init(struct ef4_channel *channel)
1342 {
1343 ef4_oword_t reg;
1344 struct ef4_nic *efx = channel->efx;
1345
1346 netif_dbg(efx, hw, efx->net_dev,
1347 "channel %d event queue in special buffers %d-%d\n",
1348 channel->channel, channel->eventq.index,
1349 channel->eventq.index + channel->eventq.entries - 1);
1350
1351 /* Pin event queue buffer */
1352 ef4_init_special_buffer(efx, &channel->eventq);
1353
1354 /* Fill event queue with all ones (i.e. empty events) */
1355 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1356
1357 /* Push event queue to card */
1358 EF4_POPULATE_OWORD_3(reg,
1359 FRF_AZ_EVQ_EN, 1,
1360 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1361 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1362 ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1363 channel->channel);
1364
1365 return 0;
1366 }
1367
1368 void ef4_farch_ev_fini(struct ef4_channel *channel)
1369 {
1370 ef4_oword_t reg;
1371 struct ef4_nic *efx = channel->efx;
1372
1373 /* Remove event queue from card */
1374 EF4_ZERO_OWORD(reg);
1375 ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1376 channel->channel);
1377
1378 /* Unpin event queue */
1379 ef4_fini_special_buffer(efx, &channel->eventq);
1380 }
1381
1382 /* Free buffers backing event queue */
1383 void ef4_farch_ev_remove(struct ef4_channel *channel)
1384 {
1385 ef4_free_special_buffer(channel->efx, &channel->eventq);
1386 }
1387
1388
1389 void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1390 {
1391 ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1392 }
1393
1394 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1395 {
1396 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1397 EF4_CHANNEL_MAGIC_FILL(rx_queue));
1398 }
1399
1400 /**************************************************************************
1401 *
1402 * Hardware interrupts
1403 * The hardware interrupt handler does very little work; all the event
1404 * queue processing is carried out by per-channel tasklets.
1405 *
1406 **************************************************************************/
1407
1408 /* Enable/disable/generate interrupts */
1409 static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1410 bool enabled, bool force)
1411 {
1412 ef4_oword_t int_en_reg_ker;
1413
1414 EF4_POPULATE_OWORD_3(int_en_reg_ker,
1415 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1416 FRF_AZ_KER_INT_KER, force,
1417 FRF_AZ_DRV_INT_EN_KER, enabled);
1418 ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1419 }
1420
1421 void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1422 {
1423 EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1424 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1425
1426 ef4_farch_interrupts(efx, true, false);
1427 }
1428
1429 void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1430 {
1431 /* Disable interrupts */
1432 ef4_farch_interrupts(efx, false, false);
1433 }
1434
1435 /* Generate a test interrupt
1436 * Interrupt must already have been enabled, otherwise nasty things
1437 * may happen.
1438 */
1439 int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1440 {
1441 ef4_farch_interrupts(efx, true, true);
1442 return 0;
1443 }
1444
1445 /* Process a fatal interrupt
1446 * Disable bus mastering ASAP and schedule a reset
1447 */
1448 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1449 {
1450 struct falcon_nic_data *nic_data = efx->nic_data;
1451 ef4_oword_t *int_ker = efx->irq_status.addr;
1452 ef4_oword_t fatal_intr;
1453 int error, mem_perr;
1454
1455 ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1456 error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1457
1458 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1459 EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1460 EF4_OWORD_VAL(fatal_intr),
1461 error ? "disabling bus mastering" : "no recognised error");
1462
1463 /* If this is a memory parity error dump which blocks are offending */
1464 mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1465 EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1466 if (mem_perr) {
1467 ef4_oword_t reg;
1468 ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1469 netif_err(efx, hw, efx->net_dev,
1470 "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1471 EF4_OWORD_VAL(reg));
1472 }
1473
1474 /* Disable both devices */
1475 pci_clear_master(efx->pci_dev);
1476 if (ef4_nic_is_dual_func(efx))
1477 pci_clear_master(nic_data->pci_dev2);
1478 ef4_farch_irq_disable_master(efx);
1479
1480 /* Count errors and reset or disable the NIC accordingly */
1481 if (efx->int_error_count == 0 ||
1482 time_after(jiffies, efx->int_error_expire)) {
1483 efx->int_error_count = 0;
1484 efx->int_error_expire =
1485 jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1486 }
1487 if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1488 netif_err(efx, hw, efx->net_dev,
1489 "SYSTEM ERROR - reset scheduled\n");
1490 ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1491 } else {
1492 netif_err(efx, hw, efx->net_dev,
1493 "SYSTEM ERROR - max number of errors seen."
1494 "NIC will be disabled\n");
1495 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1496 }
1497
1498 return IRQ_HANDLED;
1499 }
1500
1501 /* Handle a legacy interrupt
1502 * Acknowledges the interrupt and schedule event queue processing.
1503 */
1504 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1505 {
1506 struct ef4_nic *efx = dev_id;
1507 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1508 ef4_oword_t *int_ker = efx->irq_status.addr;
1509 irqreturn_t result = IRQ_NONE;
1510 struct ef4_channel *channel;
1511 ef4_dword_t reg;
1512 u32 queues;
1513 int syserr;
1514
1515 /* Read the ISR which also ACKs the interrupts */
1516 ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1517 queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1518
1519 /* Legacy interrupts are disabled too late by the EEH kernel
1520 * code. Disable them earlier.
1521 * If an EEH error occurred, the read will have returned all ones.
1522 */
1523 if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1524 !efx->eeh_disabled_legacy_irq) {
1525 disable_irq_nosync(efx->legacy_irq);
1526 efx->eeh_disabled_legacy_irq = true;
1527 }
1528
1529 /* Handle non-event-queue sources */
1530 if (queues & (1U << efx->irq_level) && soft_enabled) {
1531 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1532 if (unlikely(syserr))
1533 return ef4_farch_fatal_interrupt(efx);
1534 efx->last_irq_cpu = raw_smp_processor_id();
1535 }
1536
1537 if (queues != 0) {
1538 efx->irq_zero_count = 0;
1539
1540 /* Schedule processing of any interrupting queues */
1541 if (likely(soft_enabled)) {
1542 ef4_for_each_channel(channel, efx) {
1543 if (queues & 1)
1544 ef4_schedule_channel_irq(channel);
1545 queues >>= 1;
1546 }
1547 }
1548 result = IRQ_HANDLED;
1549
1550 } else {
1551 ef4_qword_t *event;
1552
1553 /* Legacy ISR read can return zero once (SF bug 15783) */
1554
1555 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1556 * because this might be a shared interrupt. */
1557 if (efx->irq_zero_count++ == 0)
1558 result = IRQ_HANDLED;
1559
1560 /* Ensure we schedule or rearm all event queues */
1561 if (likely(soft_enabled)) {
1562 ef4_for_each_channel(channel, efx) {
1563 event = ef4_event(channel,
1564 channel->eventq_read_ptr);
1565 if (ef4_event_present(event))
1566 ef4_schedule_channel_irq(channel);
1567 else
1568 ef4_farch_ev_read_ack(channel);
1569 }
1570 }
1571 }
1572
1573 if (result == IRQ_HANDLED)
1574 netif_vdbg(efx, intr, efx->net_dev,
1575 "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1576 irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1577
1578 return result;
1579 }
1580
1581 /* Handle an MSI interrupt
1582 *
1583 * Handle an MSI hardware interrupt. This routine schedules event
1584 * queue processing. No interrupt acknowledgement cycle is necessary.
1585 * Also, we never need to check that the interrupt is for us, since
1586 * MSI interrupts cannot be shared.
1587 */
1588 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1589 {
1590 struct ef4_msi_context *context = dev_id;
1591 struct ef4_nic *efx = context->efx;
1592 ef4_oword_t *int_ker = efx->irq_status.addr;
1593 int syserr;
1594
1595 netif_vdbg(efx, intr, efx->net_dev,
1596 "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1597 irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1598
1599 if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1600 return IRQ_HANDLED;
1601
1602 /* Handle non-event-queue sources */
1603 if (context->index == efx->irq_level) {
1604 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1605 if (unlikely(syserr))
1606 return ef4_farch_fatal_interrupt(efx);
1607 efx->last_irq_cpu = raw_smp_processor_id();
1608 }
1609
1610 /* Schedule processing of the channel */
1611 ef4_schedule_channel_irq(efx->channel[context->index]);
1612
1613 return IRQ_HANDLED;
1614 }
1615
1616 /* Setup RSS indirection table.
1617 * This maps from the hash value of the packet to RXQ
1618 */
1619 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1620 {
1621 size_t i = 0;
1622 ef4_dword_t dword;
1623
1624 BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1625
1626 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1627 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1628
1629 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1630 EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1631 efx->rx_indir_table[i]);
1632 ef4_writed(efx, &dword,
1633 FR_BZ_RX_INDIRECTION_TBL +
1634 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1635 }
1636 }
1637
1638 /* Looks at available SRAM resources and works out how many queues we
1639 * can support, and where things like descriptor caches should live.
1640 *
1641 * SRAM is split up as follows:
1642 * 0 buftbl entries for channels
1643 * efx->vf_buftbl_base buftbl entries for SR-IOV
1644 * efx->rx_dc_base RX descriptor caches
1645 * efx->tx_dc_base TX descriptor caches
1646 */
1647 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1648 {
1649 unsigned vi_count, buftbl_min;
1650
1651 /* Account for the buffer table entries backing the datapath channels
1652 * and the descriptor caches for those channels.
1653 */
1654 buftbl_min = ((efx->n_rx_channels * EF4_MAX_DMAQ_SIZE +
1655 efx->n_tx_channels * EF4_TXQ_TYPES * EF4_MAX_DMAQ_SIZE +
1656 efx->n_channels * EF4_MAX_EVQ_SIZE)
1657 * sizeof(ef4_qword_t) / EF4_BUF_SIZE);
1658 vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1659
1660 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1661 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1662 }
1663
1664 u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1665 {
1666 ef4_oword_t altera_build;
1667 ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1668 return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1669 }
1670
1671 void ef4_farch_init_common(struct ef4_nic *efx)
1672 {
1673 ef4_oword_t temp;
1674
1675 /* Set positions of descriptor caches in SRAM. */
1676 EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1677 ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1678 EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1679 ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1680
1681 /* Set TX descriptor cache size. */
1682 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1683 EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1684 ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1685
1686 /* Set RX descriptor cache size. Set low watermark to size-8, as
1687 * this allows most efficient prefetching.
1688 */
1689 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1690 EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1691 ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1692 EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1693 ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1694
1695 /* Program INT_KER address */
1696 EF4_POPULATE_OWORD_2(temp,
1697 FRF_AZ_NORM_INT_VEC_DIS_KER,
1698 EF4_INT_MODE_USE_MSI(efx),
1699 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1700 ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1701
1702 /* Use a valid MSI-X vector */
1703 efx->irq_level = 0;
1704
1705 /* Enable all the genuinely fatal interrupts. (They are still
1706 * masked by the overall interrupt mask, controlled by
1707 * falcon_interrupts()).
1708 *
1709 * Note: All other fatal interrupts are enabled
1710 */
1711 EF4_POPULATE_OWORD_3(temp,
1712 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1713 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1714 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1715 EF4_INVERT_OWORD(temp);
1716 ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1717
1718 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1719 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1720 */
1721 ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1722 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1723 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1724 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1725 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1726 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1727 /* Enable SW_EV to inherit in char driver - assume harmless here */
1728 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1729 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1730 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1731 /* Disable hardware watchdog which can misfire */
1732 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1733 /* Squash TX of packets of 16 bytes or less */
1734 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1735 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1736 ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1737
1738 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1739 EF4_POPULATE_OWORD_4(temp,
1740 /* Default values */
1741 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1742 FRF_BZ_TX_PACE_SB_AF, 0xb,
1743 FRF_BZ_TX_PACE_FB_BASE, 0,
1744 /* Allow large pace values in the
1745 * fast bin. */
1746 FRF_BZ_TX_PACE_BIN_TH,
1747 FFE_BZ_TX_PACE_RESERVED);
1748 ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1749 }
1750 }
1751
1752 /**************************************************************************
1753 *
1754 * Filter tables
1755 *
1756 **************************************************************************
1757 */
1758
1759 /* "Fudge factors" - difference between programmed value and actual depth.
1760 * Due to pipelined implementation we need to program H/W with a value that
1761 * is larger than the hop limit we want.
1762 */
1763 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1764 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1765
1766 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1767 * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1768 * table is full.
1769 */
1770 #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1771
1772 /* Don't try very hard to find space for performance hints, as this is
1773 * counter-productive. */
1774 #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1775
1776 enum ef4_farch_filter_type {
1777 EF4_FARCH_FILTER_TCP_FULL = 0,
1778 EF4_FARCH_FILTER_TCP_WILD,
1779 EF4_FARCH_FILTER_UDP_FULL,
1780 EF4_FARCH_FILTER_UDP_WILD,
1781 EF4_FARCH_FILTER_MAC_FULL = 4,
1782 EF4_FARCH_FILTER_MAC_WILD,
1783 EF4_FARCH_FILTER_UC_DEF = 8,
1784 EF4_FARCH_FILTER_MC_DEF,
1785 EF4_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1786 };
1787
1788 enum ef4_farch_filter_table_id {
1789 EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1790 EF4_FARCH_FILTER_TABLE_RX_MAC,
1791 EF4_FARCH_FILTER_TABLE_RX_DEF,
1792 EF4_FARCH_FILTER_TABLE_TX_MAC,
1793 EF4_FARCH_FILTER_TABLE_COUNT,
1794 };
1795
1796 enum ef4_farch_filter_index {
1797 EF4_FARCH_FILTER_INDEX_UC_DEF,
1798 EF4_FARCH_FILTER_INDEX_MC_DEF,
1799 EF4_FARCH_FILTER_SIZE_RX_DEF,
1800 };
1801
1802 struct ef4_farch_filter_spec {
1803 u8 type:4;
1804 u8 priority:4;
1805 u8 flags;
1806 u16 dmaq_id;
1807 u32 data[3];
1808 };
1809
1810 struct ef4_farch_filter_table {
1811 enum ef4_farch_filter_table_id id;
1812 u32 offset; /* address of table relative to BAR */
1813 unsigned size; /* number of entries */
1814 unsigned step; /* step between entries */
1815 unsigned used; /* number currently used */
1816 unsigned long *used_bitmap;
1817 struct ef4_farch_filter_spec *spec;
1818 unsigned search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1819 };
1820
1821 struct ef4_farch_filter_state {
1822 struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1823 };
1824
1825 static void
1826 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1827 struct ef4_farch_filter_table *table,
1828 unsigned int filter_idx);
1829
1830 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1831 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1832 static u16 ef4_farch_filter_hash(u32 key)
1833 {
1834 u16 tmp;
1835
1836 /* First 16 rounds */
1837 tmp = 0x1fff ^ key >> 16;
1838 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1839 tmp = tmp ^ tmp >> 9;
1840 /* Last 16 rounds */
1841 tmp = tmp ^ tmp << 13 ^ key;
1842 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1843 return tmp ^ tmp >> 9;
1844 }
1845
1846 /* To allow for hash collisions, filter search continues at these
1847 * increments from the first possible entry selected by the hash. */
1848 static u16 ef4_farch_filter_increment(u32 key)
1849 {
1850 return key * 2 - 1;
1851 }
1852
1853 static enum ef4_farch_filter_table_id
1854 ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1855 {
1856 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1857 (EF4_FARCH_FILTER_TCP_FULL >> 2));
1858 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1859 (EF4_FARCH_FILTER_TCP_WILD >> 2));
1860 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1861 (EF4_FARCH_FILTER_UDP_FULL >> 2));
1862 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1863 (EF4_FARCH_FILTER_UDP_WILD >> 2));
1864 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1865 (EF4_FARCH_FILTER_MAC_FULL >> 2));
1866 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1867 (EF4_FARCH_FILTER_MAC_WILD >> 2));
1868 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1869 EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1870 return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1871 }
1872
1873 static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1874 {
1875 struct ef4_farch_filter_state *state = efx->filter_state;
1876 struct ef4_farch_filter_table *table;
1877 ef4_oword_t filter_ctl;
1878
1879 ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1880
1881 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1882 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1883 table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1884 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1885 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1886 table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1887 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1888 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1889 table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1890 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1891 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1892 table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1893 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1894
1895 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1896 if (table->size) {
1897 EF4_SET_OWORD_FIELD(
1898 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1899 table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1900 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1901 EF4_SET_OWORD_FIELD(
1902 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1903 table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1904 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1905 }
1906
1907 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1908 if (table->size) {
1909 EF4_SET_OWORD_FIELD(
1910 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1911 table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1912 EF4_SET_OWORD_FIELD(
1913 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1914 !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1915 EF4_FILTER_FLAG_RX_RSS));
1916 EF4_SET_OWORD_FIELD(
1917 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1918 table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1919 EF4_SET_OWORD_FIELD(
1920 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1921 !!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1922 EF4_FILTER_FLAG_RX_RSS));
1923
1924 /* There is a single bit to enable RX scatter for all
1925 * unmatched packets. Only set it if scatter is
1926 * enabled in both filter specs.
1927 */
1928 EF4_SET_OWORD_FIELD(
1929 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1930 !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1931 table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1932 EF4_FILTER_FLAG_RX_SCATTER));
1933 } else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1934 /* We don't expose 'default' filters because unmatched
1935 * packets always go to the queue number found in the
1936 * RSS table. But we still need to set the RX scatter
1937 * bit here.
1938 */
1939 EF4_SET_OWORD_FIELD(
1940 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1941 efx->rx_scatter);
1942 }
1943
1944 ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1945 }
1946
1947 static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1948 {
1949 struct ef4_farch_filter_state *state = efx->filter_state;
1950 struct ef4_farch_filter_table *table;
1951 ef4_oword_t tx_cfg;
1952
1953 ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1954
1955 table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1956 if (table->size) {
1957 EF4_SET_OWORD_FIELD(
1958 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1959 table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1960 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1961 EF4_SET_OWORD_FIELD(
1962 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1963 table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1964 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965 }
1966
1967 ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1968 }
1969
1970 static int
1971 ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1972 const struct ef4_filter_spec *gen_spec)
1973 {
1974 bool is_full = false;
1975
1976 if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1977 gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1978 return -EINVAL;
1979
1980 spec->priority = gen_spec->priority;
1981 spec->flags = gen_spec->flags;
1982 spec->dmaq_id = gen_spec->dmaq_id;
1983
1984 switch (gen_spec->match_flags) {
1985 case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1986 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1987 EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1988 is_full = true;
1989 /* fall through */
1990 case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1991 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1992 __be32 rhost, host1, host2;
1993 __be16 rport, port1, port2;
1994
1995 EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1996
1997 if (gen_spec->ether_type != htons(ETH_P_IP))
1998 return -EPROTONOSUPPORT;
1999 if (gen_spec->loc_port == 0 ||
2000 (is_full && gen_spec->rem_port == 0))
2001 return -EADDRNOTAVAIL;
2002 switch (gen_spec->ip_proto) {
2003 case IPPROTO_TCP:
2004 spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
2005 EF4_FARCH_FILTER_TCP_WILD);
2006 break;
2007 case IPPROTO_UDP:
2008 spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2009 EF4_FARCH_FILTER_UDP_WILD);
2010 break;
2011 default:
2012 return -EPROTONOSUPPORT;
2013 }
2014
2015 /* Filter is constructed in terms of source and destination,
2016 * with the odd wrinkle that the ports are swapped in a UDP
2017 * wildcard filter. We need to convert from local and remote
2018 * (= zero for wildcard) addresses.
2019 */
2020 rhost = is_full ? gen_spec->rem_host[0] : 0;
2021 rport = is_full ? gen_spec->rem_port : 0;
2022 host1 = rhost;
2023 host2 = gen_spec->loc_host[0];
2024 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2025 port1 = gen_spec->loc_port;
2026 port2 = rport;
2027 } else {
2028 port1 = rport;
2029 port2 = gen_spec->loc_port;
2030 }
2031 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2032 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2033 spec->data[2] = ntohl(host2);
2034
2035 break;
2036 }
2037
2038 case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2039 is_full = true;
2040 /* fall through */
2041 case EF4_FILTER_MATCH_LOC_MAC:
2042 spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2043 EF4_FARCH_FILTER_MAC_WILD);
2044 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2045 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2046 gen_spec->loc_mac[3] << 16 |
2047 gen_spec->loc_mac[4] << 8 |
2048 gen_spec->loc_mac[5]);
2049 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2050 gen_spec->loc_mac[1]);
2051 break;
2052
2053 case EF4_FILTER_MATCH_LOC_MAC_IG:
2054 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2055 EF4_FARCH_FILTER_MC_DEF :
2056 EF4_FARCH_FILTER_UC_DEF);
2057 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2058 break;
2059
2060 default:
2061 return -EPROTONOSUPPORT;
2062 }
2063
2064 return 0;
2065 }
2066
2067 static void
2068 ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2069 const struct ef4_farch_filter_spec *spec)
2070 {
2071 bool is_full = false;
2072
2073 /* *gen_spec should be completely initialised, to be consistent
2074 * with ef4_filter_init_{rx,tx}() and in case we want to copy
2075 * it back to userland.
2076 */
2077 memset(gen_spec, 0, sizeof(*gen_spec));
2078
2079 gen_spec->priority = spec->priority;
2080 gen_spec->flags = spec->flags;
2081 gen_spec->dmaq_id = spec->dmaq_id;
2082
2083 switch (spec->type) {
2084 case EF4_FARCH_FILTER_TCP_FULL:
2085 case EF4_FARCH_FILTER_UDP_FULL:
2086 is_full = true;
2087 /* fall through */
2088 case EF4_FARCH_FILTER_TCP_WILD:
2089 case EF4_FARCH_FILTER_UDP_WILD: {
2090 __be32 host1, host2;
2091 __be16 port1, port2;
2092
2093 gen_spec->match_flags =
2094 EF4_FILTER_MATCH_ETHER_TYPE |
2095 EF4_FILTER_MATCH_IP_PROTO |
2096 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2097 if (is_full)
2098 gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2099 EF4_FILTER_MATCH_REM_PORT);
2100 gen_spec->ether_type = htons(ETH_P_IP);
2101 gen_spec->ip_proto =
2102 (spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2103 spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2104 IPPROTO_TCP : IPPROTO_UDP;
2105
2106 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2107 port1 = htons(spec->data[0]);
2108 host2 = htonl(spec->data[2]);
2109 port2 = htons(spec->data[1] >> 16);
2110 if (spec->flags & EF4_FILTER_FLAG_TX) {
2111 gen_spec->loc_host[0] = host1;
2112 gen_spec->rem_host[0] = host2;
2113 } else {
2114 gen_spec->loc_host[0] = host2;
2115 gen_spec->rem_host[0] = host1;
2116 }
2117 if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2118 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2119 gen_spec->loc_port = port1;
2120 gen_spec->rem_port = port2;
2121 } else {
2122 gen_spec->loc_port = port2;
2123 gen_spec->rem_port = port1;
2124 }
2125
2126 break;
2127 }
2128
2129 case EF4_FARCH_FILTER_MAC_FULL:
2130 is_full = true;
2131 /* fall through */
2132 case EF4_FARCH_FILTER_MAC_WILD:
2133 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2134 if (is_full)
2135 gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2136 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2137 gen_spec->loc_mac[1] = spec->data[2];
2138 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2139 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2140 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2141 gen_spec->loc_mac[5] = spec->data[1];
2142 gen_spec->outer_vid = htons(spec->data[0]);
2143 break;
2144
2145 case EF4_FARCH_FILTER_UC_DEF:
2146 case EF4_FARCH_FILTER_MC_DEF:
2147 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2148 gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2149 break;
2150
2151 default:
2152 WARN_ON(1);
2153 break;
2154 }
2155 }
2156
2157 static void
2158 ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2159 struct ef4_farch_filter_spec *spec)
2160 {
2161 /* If there's only one channel then disable RSS for non VF
2162 * traffic, thereby allowing VFs to use RSS when the PF can't.
2163 */
2164 spec->priority = EF4_FILTER_PRI_AUTO;
2165 spec->flags = (EF4_FILTER_FLAG_RX |
2166 (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2167 (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2168 spec->dmaq_id = 0;
2169 }
2170
2171 /* Build a filter entry and return its n-tuple key. */
2172 static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2173 struct ef4_farch_filter_spec *spec)
2174 {
2175 u32 data3;
2176
2177 switch (ef4_farch_filter_spec_table_id(spec)) {
2178 case EF4_FARCH_FILTER_TABLE_RX_IP: {
2179 bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2180 spec->type == EF4_FARCH_FILTER_UDP_WILD);
2181 EF4_POPULATE_OWORD_7(
2182 *filter,
2183 FRF_BZ_RSS_EN,
2184 !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2185 FRF_BZ_SCATTER_EN,
2186 !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2187 FRF_BZ_TCP_UDP, is_udp,
2188 FRF_BZ_RXQ_ID, spec->dmaq_id,
2189 EF4_DWORD_2, spec->data[2],
2190 EF4_DWORD_1, spec->data[1],
2191 EF4_DWORD_0, spec->data[0]);
2192 data3 = is_udp;
2193 break;
2194 }
2195
2196 case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2197 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2198 EF4_POPULATE_OWORD_7(
2199 *filter,
2200 FRF_CZ_RMFT_RSS_EN,
2201 !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2202 FRF_CZ_RMFT_SCATTER_EN,
2203 !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2204 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2205 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2206 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2207 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2208 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2209 data3 = is_wild;
2210 break;
2211 }
2212
2213 case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2214 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2215 EF4_POPULATE_OWORD_5(*filter,
2216 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2217 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2218 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2219 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2220 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2221 data3 = is_wild | spec->dmaq_id << 1;
2222 break;
2223 }
2224
2225 default:
2226 BUG();
2227 }
2228
2229 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2230 }
2231
2232 static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2233 const struct ef4_farch_filter_spec *right)
2234 {
2235 if (left->type != right->type ||
2236 memcmp(left->data, right->data, sizeof(left->data)))
2237 return false;
2238
2239 if (left->flags & EF4_FILTER_FLAG_TX &&
2240 left->dmaq_id != right->dmaq_id)
2241 return false;
2242
2243 return true;
2244 }
2245
2246 /*
2247 * Construct/deconstruct external filter IDs. At least the RX filter
2248 * IDs must be ordered by matching priority, for RX NFC semantics.
2249 *
2250 * Deconstruction needs to be robust against invalid IDs so that
2251 * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2252 * accept user-provided IDs.
2253 */
2254
2255 #define EF4_FARCH_FILTER_MATCH_PRI_COUNT 5
2256
2257 static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2258 [EF4_FARCH_FILTER_TCP_FULL] = 0,
2259 [EF4_FARCH_FILTER_UDP_FULL] = 0,
2260 [EF4_FARCH_FILTER_TCP_WILD] = 1,
2261 [EF4_FARCH_FILTER_UDP_WILD] = 1,
2262 [EF4_FARCH_FILTER_MAC_FULL] = 2,
2263 [EF4_FARCH_FILTER_MAC_WILD] = 3,
2264 [EF4_FARCH_FILTER_UC_DEF] = 4,
2265 [EF4_FARCH_FILTER_MC_DEF] = 4,
2266 };
2267
2268 static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2269 EF4_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2270 EF4_FARCH_FILTER_TABLE_RX_IP,
2271 EF4_FARCH_FILTER_TABLE_RX_MAC,
2272 EF4_FARCH_FILTER_TABLE_RX_MAC,
2273 EF4_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2274 EF4_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2275 EF4_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2276 };
2277
2278 #define EF4_FARCH_FILTER_INDEX_WIDTH 13
2279 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2280
2281 static inline u32
2282 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2283 unsigned int index)
2284 {
2285 unsigned int range;
2286
2287 range = ef4_farch_filter_type_match_pri[spec->type];
2288 if (!(spec->flags & EF4_FILTER_FLAG_RX))
2289 range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2290
2291 return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2292 }
2293
2294 static inline enum ef4_farch_filter_table_id
2295 ef4_farch_filter_id_table_id(u32 id)
2296 {
2297 unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2298
2299 if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2300 return ef4_farch_filter_range_table[range];
2301 else
2302 return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2303 }
2304
2305 static inline unsigned int ef4_farch_filter_id_index(u32 id)
2306 {
2307 return id & EF4_FARCH_FILTER_INDEX_MASK;
2308 }
2309
2310 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2311 {
2312 struct ef4_farch_filter_state *state = efx->filter_state;
2313 unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2314 enum ef4_farch_filter_table_id table_id;
2315
2316 do {
2317 table_id = ef4_farch_filter_range_table[range];
2318 if (state->table[table_id].size != 0)
2319 return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2320 state->table[table_id].size;
2321 } while (range--);
2322
2323 return 0;
2324 }
2325
2326 s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2327 struct ef4_filter_spec *gen_spec,
2328 bool replace_equal)
2329 {
2330 struct ef4_farch_filter_state *state = efx->filter_state;
2331 struct ef4_farch_filter_table *table;
2332 struct ef4_farch_filter_spec spec;
2333 ef4_oword_t filter;
2334 int rep_index, ins_index;
2335 unsigned int depth = 0;
2336 int rc;
2337
2338 rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2339 if (rc)
2340 return rc;
2341
2342 table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2343 if (table->size == 0)
2344 return -EINVAL;
2345
2346 netif_vdbg(efx, hw, efx->net_dev,
2347 "%s: type %d search_limit=%d", __func__, spec.type,
2348 table->search_limit[spec.type]);
2349
2350 if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2351 /* One filter spec per type */
2352 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2353 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2354 EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2355 rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2356 ins_index = rep_index;
2357
2358 spin_lock_bh(&efx->filter_lock);
2359 } else {
2360 /* Search concurrently for
2361 * (1) a filter to be replaced (rep_index): any filter
2362 * with the same match values, up to the current
2363 * search depth for this type, and
2364 * (2) the insertion point (ins_index): (1) or any
2365 * free slot before it or up to the maximum search
2366 * depth for this priority
2367 * We fail if we cannot find (2).
2368 *
2369 * We can stop once either
2370 * (a) we find (1), in which case we have definitely
2371 * found (2) as well; or
2372 * (b) we have searched exhaustively for (1), and have
2373 * either found (2) or searched exhaustively for it
2374 */
2375 u32 key = ef4_farch_filter_build(&filter, &spec);
2376 unsigned int hash = ef4_farch_filter_hash(key);
2377 unsigned int incr = ef4_farch_filter_increment(key);
2378 unsigned int max_rep_depth = table->search_limit[spec.type];
2379 unsigned int max_ins_depth =
2380 spec.priority <= EF4_FILTER_PRI_HINT ?
2381 EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2382 EF4_FARCH_FILTER_CTL_SRCH_MAX;
2383 unsigned int i = hash & (table->size - 1);
2384
2385 ins_index = -1;
2386 depth = 1;
2387
2388 spin_lock_bh(&efx->filter_lock);
2389
2390 for (;;) {
2391 if (!test_bit(i, table->used_bitmap)) {
2392 if (ins_index < 0)
2393 ins_index = i;
2394 } else if (ef4_farch_filter_equal(&spec,
2395 &table->spec[i])) {
2396 /* Case (a) */
2397 if (ins_index < 0)
2398 ins_index = i;
2399 rep_index = i;
2400 break;
2401 }
2402
2403 if (depth >= max_rep_depth &&
2404 (ins_index >= 0 || depth >= max_ins_depth)) {
2405 /* Case (b) */
2406 if (ins_index < 0) {
2407 rc = -EBUSY;
2408 goto out;
2409 }
2410 rep_index = -1;
2411 break;
2412 }
2413
2414 i = (i + incr) & (table->size - 1);
2415 ++depth;
2416 }
2417 }
2418
2419 /* If we found a filter to be replaced, check whether we
2420 * should do so
2421 */
2422 if (rep_index >= 0) {
2423 struct ef4_farch_filter_spec *saved_spec =
2424 &table->spec[rep_index];
2425
2426 if (spec.priority == saved_spec->priority && !replace_equal) {
2427 rc = -EEXIST;
2428 goto out;
2429 }
2430 if (spec.priority < saved_spec->priority) {
2431 rc = -EPERM;
2432 goto out;
2433 }
2434 if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2435 saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2436 spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2437 }
2438
2439 /* Insert the filter */
2440 if (ins_index != rep_index) {
2441 __set_bit(ins_index, table->used_bitmap);
2442 ++table->used;
2443 }
2444 table->spec[ins_index] = spec;
2445
2446 if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2447 ef4_farch_filter_push_rx_config(efx);
2448 } else {
2449 if (table->search_limit[spec.type] < depth) {
2450 table->search_limit[spec.type] = depth;
2451 if (spec.flags & EF4_FILTER_FLAG_TX)
2452 ef4_farch_filter_push_tx_limits(efx);
2453 else
2454 ef4_farch_filter_push_rx_config(efx);
2455 }
2456
2457 ef4_writeo(efx, &filter,
2458 table->offset + table->step * ins_index);
2459
2460 /* If we were able to replace a filter by inserting
2461 * at a lower depth, clear the replaced filter
2462 */
2463 if (ins_index != rep_index && rep_index >= 0)
2464 ef4_farch_filter_table_clear_entry(efx, table,
2465 rep_index);
2466 }
2467
2468 netif_vdbg(efx, hw, efx->net_dev,
2469 "%s: filter type %d index %d rxq %u set",
2470 __func__, spec.type, ins_index, spec.dmaq_id);
2471 rc = ef4_farch_filter_make_id(&spec, ins_index);
2472
2473 out:
2474 spin_unlock_bh(&efx->filter_lock);
2475 return rc;
2476 }
2477
2478 static void
2479 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2480 struct ef4_farch_filter_table *table,
2481 unsigned int filter_idx)
2482 {
2483 static ef4_oword_t filter;
2484
2485 EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2486 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2487
2488 __clear_bit(filter_idx, table->used_bitmap);
2489 --table->used;
2490 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2491
2492 ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2493
2494 /* If this filter required a greater search depth than
2495 * any other, the search limit for its type can now be
2496 * decreased. However, it is hard to determine that
2497 * unless the table has become completely empty - in
2498 * which case, all its search limits can be set to 0.
2499 */
2500 if (unlikely(table->used == 0)) {
2501 memset(table->search_limit, 0, sizeof(table->search_limit));
2502 if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2503 ef4_farch_filter_push_tx_limits(efx);
2504 else
2505 ef4_farch_filter_push_rx_config(efx);
2506 }
2507 }
2508
2509 static int ef4_farch_filter_remove(struct ef4_nic *efx,
2510 struct ef4_farch_filter_table *table,
2511 unsigned int filter_idx,
2512 enum ef4_filter_priority priority)
2513 {
2514 struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2515
2516 if (!test_bit(filter_idx, table->used_bitmap) ||
2517 spec->priority != priority)
2518 return -ENOENT;
2519
2520 if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2521 ef4_farch_filter_init_rx_auto(efx, spec);
2522 ef4_farch_filter_push_rx_config(efx);
2523 } else {
2524 ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2525 }
2526
2527 return 0;
2528 }
2529
2530 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2531 enum ef4_filter_priority priority,
2532 u32 filter_id)
2533 {
2534 struct ef4_farch_filter_state *state = efx->filter_state;
2535 enum ef4_farch_filter_table_id table_id;
2536 struct ef4_farch_filter_table *table;
2537 unsigned int filter_idx;
2538 struct ef4_farch_filter_spec *spec;
2539 int rc;
2540
2541 table_id = ef4_farch_filter_id_table_id(filter_id);
2542 if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2543 return -ENOENT;
2544 table = &state->table[table_id];
2545
2546 filter_idx = ef4_farch_filter_id_index(filter_id);
2547 if (filter_idx >= table->size)
2548 return -ENOENT;
2549 spec = &table->spec[filter_idx];
2550
2551 spin_lock_bh(&efx->filter_lock);
2552 rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2553 spin_unlock_bh(&efx->filter_lock);
2554
2555 return rc;
2556 }
2557
2558 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2559 enum ef4_filter_priority priority,
2560 u32 filter_id, struct ef4_filter_spec *spec_buf)
2561 {
2562 struct ef4_farch_filter_state *state = efx->filter_state;
2563 enum ef4_farch_filter_table_id table_id;
2564 struct ef4_farch_filter_table *table;
2565 struct ef4_farch_filter_spec *spec;
2566 unsigned int filter_idx;
2567 int rc;
2568
2569 table_id = ef4_farch_filter_id_table_id(filter_id);
2570 if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2571 return -ENOENT;
2572 table = &state->table[table_id];
2573
2574 filter_idx = ef4_farch_filter_id_index(filter_id);
2575 if (filter_idx >= table->size)
2576 return -ENOENT;
2577 spec = &table->spec[filter_idx];
2578
2579 spin_lock_bh(&efx->filter_lock);
2580
2581 if (test_bit(filter_idx, table->used_bitmap) &&
2582 spec->priority == priority) {
2583 ef4_farch_filter_to_gen_spec(spec_buf, spec);
2584 rc = 0;
2585 } else {
2586 rc = -ENOENT;
2587 }
2588
2589 spin_unlock_bh(&efx->filter_lock);
2590
2591 return rc;
2592 }
2593
2594 static void
2595 ef4_farch_filter_table_clear(struct ef4_nic *efx,
2596 enum ef4_farch_filter_table_id table_id,
2597 enum ef4_filter_priority priority)
2598 {
2599 struct ef4_farch_filter_state *state = efx->filter_state;
2600 struct ef4_farch_filter_table *table = &state->table[table_id];
2601 unsigned int filter_idx;
2602
2603 spin_lock_bh(&efx->filter_lock);
2604 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2605 if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2606 ef4_farch_filter_remove(efx, table,
2607 filter_idx, priority);
2608 }
2609 spin_unlock_bh(&efx->filter_lock);
2610 }
2611
2612 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2613 enum ef4_filter_priority priority)
2614 {
2615 ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2616 priority);
2617 ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2618 priority);
2619 ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2620 priority);
2621 return 0;
2622 }
2623
2624 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2625 enum ef4_filter_priority priority)
2626 {
2627 struct ef4_farch_filter_state *state = efx->filter_state;
2628 enum ef4_farch_filter_table_id table_id;
2629 struct ef4_farch_filter_table *table;
2630 unsigned int filter_idx;
2631 u32 count = 0;
2632
2633 spin_lock_bh(&efx->filter_lock);
2634
2635 for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2636 table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2637 table_id++) {
2638 table = &state->table[table_id];
2639 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2640 if (test_bit(filter_idx, table->used_bitmap) &&
2641 table->spec[filter_idx].priority == priority)
2642 ++count;
2643 }
2644 }
2645
2646 spin_unlock_bh(&efx->filter_lock);
2647
2648 return count;
2649 }
2650
2651 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2652 enum ef4_filter_priority priority,
2653 u32 *buf, u32 size)
2654 {
2655 struct ef4_farch_filter_state *state = efx->filter_state;
2656 enum ef4_farch_filter_table_id table_id;
2657 struct ef4_farch_filter_table *table;
2658 unsigned int filter_idx;
2659 s32 count = 0;
2660
2661 spin_lock_bh(&efx->filter_lock);
2662
2663 for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2664 table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2665 table_id++) {
2666 table = &state->table[table_id];
2667 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2668 if (test_bit(filter_idx, table->used_bitmap) &&
2669 table->spec[filter_idx].priority == priority) {
2670 if (count == size) {
2671 count = -EMSGSIZE;
2672 goto out;
2673 }
2674 buf[count++] = ef4_farch_filter_make_id(
2675 &table->spec[filter_idx], filter_idx);
2676 }
2677 }
2678 }
2679 out:
2680 spin_unlock_bh(&efx->filter_lock);
2681
2682 return count;
2683 }
2684
2685 /* Restore filter stater after reset */
2686 void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2687 {
2688 struct ef4_farch_filter_state *state = efx->filter_state;
2689 enum ef4_farch_filter_table_id table_id;
2690 struct ef4_farch_filter_table *table;
2691 ef4_oword_t filter;
2692 unsigned int filter_idx;
2693
2694 spin_lock_bh(&efx->filter_lock);
2695
2696 for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2697 table = &state->table[table_id];
2698
2699 /* Check whether this is a regular register table */
2700 if (table->step == 0)
2701 continue;
2702
2703 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2704 if (!test_bit(filter_idx, table->used_bitmap))
2705 continue;
2706 ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2707 ef4_writeo(efx, &filter,
2708 table->offset + table->step * filter_idx);
2709 }
2710 }
2711
2712 ef4_farch_filter_push_rx_config(efx);
2713 ef4_farch_filter_push_tx_limits(efx);
2714
2715 spin_unlock_bh(&efx->filter_lock);
2716 }
2717
2718 void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2719 {
2720 struct ef4_farch_filter_state *state = efx->filter_state;
2721 enum ef4_farch_filter_table_id table_id;
2722
2723 for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2724 kfree(state->table[table_id].used_bitmap);
2725 vfree(state->table[table_id].spec);
2726 }
2727 kfree(state);
2728 }
2729
2730 int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2731 {
2732 struct ef4_farch_filter_state *state;
2733 struct ef4_farch_filter_table *table;
2734 unsigned table_id;
2735
2736 state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2737 if (!state)
2738 return -ENOMEM;
2739 efx->filter_state = state;
2740
2741 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2742 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2743 table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2744 table->offset = FR_BZ_RX_FILTER_TBL0;
2745 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2746 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2747 }
2748
2749 for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2750 table = &state->table[table_id];
2751 if (table->size == 0)
2752 continue;
2753 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2754 sizeof(unsigned long),
2755 GFP_KERNEL);
2756 if (!table->used_bitmap)
2757 goto fail;
2758 table->spec = vzalloc(table->size * sizeof(*table->spec));
2759 if (!table->spec)
2760 goto fail;
2761 }
2762
2763 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2764 if (table->size) {
2765 /* RX default filters must always exist */
2766 struct ef4_farch_filter_spec *spec;
2767 unsigned i;
2768
2769 for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2770 spec = &table->spec[i];
2771 spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2772 ef4_farch_filter_init_rx_auto(efx, spec);
2773 __set_bit(i, table->used_bitmap);
2774 }
2775 }
2776
2777 ef4_farch_filter_push_rx_config(efx);
2778
2779 return 0;
2780
2781 fail:
2782 ef4_farch_filter_table_remove(efx);
2783 return -ENOMEM;
2784 }
2785
2786 /* Update scatter enable flags for filters pointing to our own RX queues */
2787 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2788 {
2789 struct ef4_farch_filter_state *state = efx->filter_state;
2790 enum ef4_farch_filter_table_id table_id;
2791 struct ef4_farch_filter_table *table;
2792 ef4_oword_t filter;
2793 unsigned int filter_idx;
2794
2795 spin_lock_bh(&efx->filter_lock);
2796
2797 for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2798 table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2799 table_id++) {
2800 table = &state->table[table_id];
2801
2802 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2803 if (!test_bit(filter_idx, table->used_bitmap) ||
2804 table->spec[filter_idx].dmaq_id >=
2805 efx->n_rx_channels)
2806 continue;
2807
2808 if (efx->rx_scatter)
2809 table->spec[filter_idx].flags |=
2810 EF4_FILTER_FLAG_RX_SCATTER;
2811 else
2812 table->spec[filter_idx].flags &=
2813 ~EF4_FILTER_FLAG_RX_SCATTER;
2814
2815 if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2816 /* Pushed by ef4_farch_filter_push_rx_config() */
2817 continue;
2818
2819 ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2820 ef4_writeo(efx, &filter,
2821 table->offset + table->step * filter_idx);
2822 }
2823 }
2824
2825 ef4_farch_filter_push_rx_config(efx);
2826
2827 spin_unlock_bh(&efx->filter_lock);
2828 }
2829
2830 #ifdef CONFIG_RFS_ACCEL
2831
2832 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2833 struct ef4_filter_spec *gen_spec)
2834 {
2835 return ef4_farch_filter_insert(efx, gen_spec, true);
2836 }
2837
2838 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2839 unsigned int index)
2840 {
2841 struct ef4_farch_filter_state *state = efx->filter_state;
2842 struct ef4_farch_filter_table *table =
2843 &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2844
2845 if (test_bit(index, table->used_bitmap) &&
2846 table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2847 rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2848 flow_id, index)) {
2849 ef4_farch_filter_table_clear_entry(efx, table, index);
2850 return true;
2851 }
2852
2853 return false;
2854 }
2855
2856 #endif /* CONFIG_RFS_ACCEL */
2857
2858 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2859 {
2860 struct net_device *net_dev = efx->net_dev;
2861 struct netdev_hw_addr *ha;
2862 union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2863 u32 crc;
2864 int bit;
2865
2866 if (!ef4_dev_registered(efx))
2867 return;
2868
2869 netif_addr_lock_bh(net_dev);
2870
2871 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2872
2873 /* Build multicast hash table */
2874 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2875 memset(mc_hash, 0xff, sizeof(*mc_hash));
2876 } else {
2877 memset(mc_hash, 0x00, sizeof(*mc_hash));
2878 netdev_for_each_mc_addr(ha, net_dev) {
2879 crc = ether_crc_le(ETH_ALEN, ha->addr);
2880 bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2881 __set_bit_le(bit, mc_hash);
2882 }
2883
2884 /* Broadcast packets go through the multicast hash filter.
2885 * ether_crc_le() of the broadcast address is 0xbe2612ff
2886 * so we always add bit 0xff to the mask.
2887 */
2888 __set_bit_le(0xff, mc_hash);
2889 }
2890
2891 netif_addr_unlock_bh(net_dev);
2892 }