]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/sfc/farch.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / sfc / farch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "nic.h"
19 #include "farch_regs.h"
20 #include "sriov.h"
21 #include "siena_sriov.h"
22 #include "io.h"
23 #include "workarounds.h"
24
25 /* Falcon-architecture (SFC9000-family) support */
26
27 /**************************************************************************
28 *
29 * Configurable values
30 *
31 **************************************************************************
32 */
33
34 /* This is set to 16 for a good reason. In summary, if larger than
35 * 16, the descriptor cache holds more than a default socket
36 * buffer's worth of packets (for UDP we can only have at most one
37 * socket buffer's worth outstanding). This combined with the fact
38 * that we only get 1 TX event per descriptor cache means the NIC
39 * goes idle.
40 */
41 #define TX_DC_ENTRIES 16
42 #define TX_DC_ENTRIES_ORDER 1
43
44 #define RX_DC_ENTRIES 64
45 #define RX_DC_ENTRIES_ORDER 3
46
47 /* If EFX_MAX_INT_ERRORS internal errors occur within
48 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
49 * disable it.
50 */
51 #define EFX_INT_ERROR_EXPIRE 3600
52 #define EFX_MAX_INT_ERRORS 5
53
54 /* Depth of RX flush request fifo */
55 #define EFX_RX_FLUSH_COUNT 4
56
57 /* Driver generated events */
58 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
59 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
60 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
61 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
62
63 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
64 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
65
66 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
68 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
69 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
70 efx_rx_queue_index(_rx_queue))
71 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
72 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
73 efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
75 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
76 (_tx_queue)->queue)
77
78 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
79
80 /**************************************************************************
81 *
82 * Hardware access
83 *
84 **************************************************************************/
85
86 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
87 unsigned int index)
88 {
89 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
90 value, index);
91 }
92
93 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
94 const efx_oword_t *mask)
95 {
96 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
97 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
98 }
99
100 int efx_farch_test_registers(struct efx_nic *efx,
101 const struct efx_farch_register_test *regs,
102 size_t n_regs)
103 {
104 unsigned address = 0;
105 int i, j;
106 efx_oword_t mask, imask, original, reg, buf;
107
108 for (i = 0; i < n_regs; ++i) {
109 address = regs[i].address;
110 mask = imask = regs[i].mask;
111 EFX_INVERT_OWORD(imask);
112
113 efx_reado(efx, &original, address);
114
115 /* bit sweep on and off */
116 for (j = 0; j < 128; j++) {
117 if (!EFX_EXTRACT_OWORD32(mask, j, j))
118 continue;
119
120 /* Test this testable bit can be set in isolation */
121 EFX_AND_OWORD(reg, original, mask);
122 EFX_SET_OWORD32(reg, j, j, 1);
123
124 efx_writeo(efx, &reg, address);
125 efx_reado(efx, &buf, address);
126
127 if (efx_masked_compare_oword(&reg, &buf, &mask))
128 goto fail;
129
130 /* Test this testable bit can be cleared in isolation */
131 EFX_OR_OWORD(reg, original, mask);
132 EFX_SET_OWORD32(reg, j, j, 0);
133
134 efx_writeo(efx, &reg, address);
135 efx_reado(efx, &buf, address);
136
137 if (efx_masked_compare_oword(&reg, &buf, &mask))
138 goto fail;
139 }
140
141 efx_writeo(efx, &original, address);
142 }
143
144 return 0;
145
146 fail:
147 netif_err(efx, hw, efx->net_dev,
148 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151 return -EIO;
152 }
153
154 /**************************************************************************
155 *
156 * Special buffer handling
157 * Special buffers are used for event queues and the TX and RX
158 * descriptor rings.
159 *
160 *************************************************************************/
161
162 /*
163 * Initialise a special buffer
164 *
165 * This will define a buffer (previously allocated via
166 * efx_alloc_special_buffer()) in the buffer table, allowing
167 * it to be used for event queues, descriptor rings etc.
168 */
169 static void
170 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171 {
172 efx_qword_t buf_desc;
173 unsigned int index;
174 dma_addr_t dma_addr;
175 int i;
176
177 EFX_WARN_ON_PARANOID(!buffer->buf.addr);
178
179 /* Write buffer descriptors to NIC */
180 for (i = 0; i < buffer->entries; i++) {
181 index = buffer->index + i;
182 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183 netif_dbg(efx, probe, efx->net_dev,
184 "mapping special buffer %d at %llx\n",
185 index, (unsigned long long)dma_addr);
186 EFX_POPULATE_QWORD_3(buf_desc,
187 FRF_AZ_BUF_ADR_REGION, 0,
188 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190 efx_write_buf_tbl(efx, &buf_desc, index);
191 }
192 }
193
194 /* Unmaps a buffer and clears the buffer table entries */
195 static void
196 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197 {
198 efx_oword_t buf_tbl_upd;
199 unsigned int start = buffer->index;
200 unsigned int end = (buffer->index + buffer->entries - 1);
201
202 if (!buffer->entries)
203 return;
204
205 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206 buffer->index, buffer->index + buffer->entries - 1);
207
208 EFX_POPULATE_OWORD_4(buf_tbl_upd,
209 FRF_AZ_BUF_UPD_CMD, 0,
210 FRF_AZ_BUF_CLR_CMD, 1,
211 FRF_AZ_BUF_CLR_END_ID, end,
212 FRF_AZ_BUF_CLR_START_ID, start);
213 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214 }
215
216 /*
217 * Allocate a new special buffer
218 *
219 * This allocates memory for a new buffer, clears it and allocates a
220 * new buffer ID range. It does not write into the buffer table.
221 *
222 * This call will allocate 4KB buffers, since 8KB buffers can't be
223 * used for event queues and descriptor rings.
224 */
225 static int efx_alloc_special_buffer(struct efx_nic *efx,
226 struct efx_special_buffer *buffer,
227 unsigned int len)
228 {
229 #ifdef CONFIG_SFC_SRIOV
230 struct siena_nic_data *nic_data = efx->nic_data;
231 #endif
232 len = ALIGN(len, EFX_BUF_SIZE);
233
234 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
235 return -ENOMEM;
236 buffer->entries = len / EFX_BUF_SIZE;
237 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
238
239 /* Select new buffer ID */
240 buffer->index = efx->next_buffer_table;
241 efx->next_buffer_table += buffer->entries;
242 #ifdef CONFIG_SFC_SRIOV
243 BUG_ON(efx_siena_sriov_enabled(efx) &&
244 nic_data->vf_buftbl_base < efx->next_buffer_table);
245 #endif
246
247 netif_dbg(efx, probe, efx->net_dev,
248 "allocating special buffers %d-%d at %llx+%x "
249 "(virt %p phys %llx)\n", buffer->index,
250 buffer->index + buffer->entries - 1,
251 (u64)buffer->buf.dma_addr, len,
252 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
253
254 return 0;
255 }
256
257 static void
258 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
259 {
260 if (!buffer->buf.addr)
261 return;
262
263 netif_dbg(efx, hw, efx->net_dev,
264 "deallocating special buffers %d-%d at %llx+%x "
265 "(virt %p phys %llx)\n", buffer->index,
266 buffer->index + buffer->entries - 1,
267 (u64)buffer->buf.dma_addr, buffer->buf.len,
268 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
269
270 efx_nic_free_buffer(efx, &buffer->buf);
271 buffer->entries = 0;
272 }
273
274 /**************************************************************************
275 *
276 * TX path
277 *
278 **************************************************************************/
279
280 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
281 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
282 {
283 unsigned write_ptr;
284 efx_dword_t reg;
285
286 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
287 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
288 efx_writed_page(tx_queue->efx, &reg,
289 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
290 }
291
292 /* Write pointer and first descriptor for TX descriptor ring */
293 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
294 const efx_qword_t *txd)
295 {
296 unsigned write_ptr;
297 efx_oword_t reg;
298
299 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
300 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
301
302 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
303 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
304 FRF_AZ_TX_DESC_WPTR, write_ptr);
305 reg.qword[0] = *txd;
306 efx_writeo_page(tx_queue->efx, &reg,
307 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
308 }
309
310
311 /* For each entry inserted into the software descriptor ring, create a
312 * descriptor in the hardware TX descriptor ring (in host memory), and
313 * write a doorbell.
314 */
315 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
316 {
317 struct efx_tx_buffer *buffer;
318 efx_qword_t *txd;
319 unsigned write_ptr;
320 unsigned old_write_count = tx_queue->write_count;
321
322 tx_queue->xmit_more_available = false;
323 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
324 return;
325
326 do {
327 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
328 buffer = &tx_queue->buffer[write_ptr];
329 txd = efx_tx_desc(tx_queue, write_ptr);
330 ++tx_queue->write_count;
331
332 EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
333
334 /* Create TX descriptor ring entry */
335 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
336 EFX_POPULATE_QWORD_4(*txd,
337 FSF_AZ_TX_KER_CONT,
338 buffer->flags & EFX_TX_BUF_CONT,
339 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
340 FSF_AZ_TX_KER_BUF_REGION, 0,
341 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
342 } while (tx_queue->write_count != tx_queue->insert_count);
343
344 wmb(); /* Ensure descriptors are written before they are fetched */
345
346 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
347 txd = efx_tx_desc(tx_queue,
348 old_write_count & tx_queue->ptr_mask);
349 efx_farch_push_tx_desc(tx_queue, txd);
350 ++tx_queue->pushes;
351 } else {
352 efx_farch_notify_tx_desc(tx_queue);
353 }
354 }
355
356 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
357 dma_addr_t dma_addr, unsigned int len)
358 {
359 /* Don't cross 4K boundaries with descriptors. */
360 unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
361
362 len = min(limit, len);
363
364 return len;
365 }
366
367
368 /* Allocate hardware resources for a TX queue */
369 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
370 {
371 struct efx_nic *efx = tx_queue->efx;
372 unsigned entries;
373
374 entries = tx_queue->ptr_mask + 1;
375 return efx_alloc_special_buffer(efx, &tx_queue->txd,
376 entries * sizeof(efx_qword_t));
377 }
378
379 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
380 {
381 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
382 struct efx_nic *efx = tx_queue->efx;
383 efx_oword_t reg;
384
385 /* Pin TX descriptor ring */
386 efx_init_special_buffer(efx, &tx_queue->txd);
387
388 /* Push TX descriptor ring to card */
389 EFX_POPULATE_OWORD_10(reg,
390 FRF_AZ_TX_DESCQ_EN, 1,
391 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
392 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
393 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
394 FRF_AZ_TX_DESCQ_EVQ_ID,
395 tx_queue->channel->channel,
396 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
397 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
398 FRF_AZ_TX_DESCQ_SIZE,
399 __ffs(tx_queue->txd.entries),
400 FRF_AZ_TX_DESCQ_TYPE, 0,
401 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
402
403 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
404 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
405
406 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
407 tx_queue->queue);
408
409 EFX_POPULATE_OWORD_1(reg,
410 FRF_BZ_TX_PACE,
411 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
412 FFE_BZ_TX_PACE_OFF :
413 FFE_BZ_TX_PACE_RESERVED);
414 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
415 }
416
417 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
418 {
419 struct efx_nic *efx = tx_queue->efx;
420 efx_oword_t tx_flush_descq;
421
422 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
423 atomic_set(&tx_queue->flush_outstanding, 1);
424
425 EFX_POPULATE_OWORD_2(tx_flush_descq,
426 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
427 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
428 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
429 }
430
431 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
432 {
433 struct efx_nic *efx = tx_queue->efx;
434 efx_oword_t tx_desc_ptr;
435
436 /* Remove TX descriptor ring from card */
437 EFX_ZERO_OWORD(tx_desc_ptr);
438 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
439 tx_queue->queue);
440
441 /* Unpin TX descriptor ring */
442 efx_fini_special_buffer(efx, &tx_queue->txd);
443 }
444
445 /* Free buffers backing TX queue */
446 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
447 {
448 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
449 }
450
451 /**************************************************************************
452 *
453 * RX path
454 *
455 **************************************************************************/
456
457 /* This creates an entry in the RX descriptor queue */
458 static inline void
459 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
460 {
461 struct efx_rx_buffer *rx_buf;
462 efx_qword_t *rxd;
463
464 rxd = efx_rx_desc(rx_queue, index);
465 rx_buf = efx_rx_buffer(rx_queue, index);
466 EFX_POPULATE_QWORD_3(*rxd,
467 FSF_AZ_RX_KER_BUF_SIZE,
468 rx_buf->len -
469 rx_queue->efx->type->rx_buffer_padding,
470 FSF_AZ_RX_KER_BUF_REGION, 0,
471 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
472 }
473
474 /* This writes to the RX_DESC_WPTR register for the specified receive
475 * descriptor ring.
476 */
477 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
478 {
479 struct efx_nic *efx = rx_queue->efx;
480 efx_dword_t reg;
481 unsigned write_ptr;
482
483 while (rx_queue->notified_count != rx_queue->added_count) {
484 efx_farch_build_rx_desc(
485 rx_queue,
486 rx_queue->notified_count & rx_queue->ptr_mask);
487 ++rx_queue->notified_count;
488 }
489
490 wmb();
491 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
492 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
493 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
494 efx_rx_queue_index(rx_queue));
495 }
496
497 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
498 {
499 struct efx_nic *efx = rx_queue->efx;
500 unsigned entries;
501
502 entries = rx_queue->ptr_mask + 1;
503 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
504 entries * sizeof(efx_qword_t));
505 }
506
507 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
508 {
509 efx_oword_t rx_desc_ptr;
510 struct efx_nic *efx = rx_queue->efx;
511 bool jumbo_en;
512
513 /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
514 jumbo_en = efx->rx_scatter;
515
516 netif_dbg(efx, hw, efx->net_dev,
517 "RX queue %d ring in special buffers %d-%d\n",
518 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
519 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
520
521 rx_queue->scatter_n = 0;
522
523 /* Pin RX descriptor ring */
524 efx_init_special_buffer(efx, &rx_queue->rxd);
525
526 /* Push RX descriptor ring to card */
527 EFX_POPULATE_OWORD_10(rx_desc_ptr,
528 FRF_AZ_RX_ISCSI_DDIG_EN, true,
529 FRF_AZ_RX_ISCSI_HDIG_EN, true,
530 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
531 FRF_AZ_RX_DESCQ_EVQ_ID,
532 efx_rx_queue_channel(rx_queue)->channel,
533 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
534 FRF_AZ_RX_DESCQ_LABEL,
535 efx_rx_queue_index(rx_queue),
536 FRF_AZ_RX_DESCQ_SIZE,
537 __ffs(rx_queue->rxd.entries),
538 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
539 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
540 FRF_AZ_RX_DESCQ_EN, 1);
541 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
542 efx_rx_queue_index(rx_queue));
543 }
544
545 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
546 {
547 struct efx_nic *efx = rx_queue->efx;
548 efx_oword_t rx_flush_descq;
549
550 EFX_POPULATE_OWORD_2(rx_flush_descq,
551 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
552 FRF_AZ_RX_FLUSH_DESCQ,
553 efx_rx_queue_index(rx_queue));
554 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
555 }
556
557 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
558 {
559 efx_oword_t rx_desc_ptr;
560 struct efx_nic *efx = rx_queue->efx;
561
562 /* Remove RX descriptor ring from card */
563 EFX_ZERO_OWORD(rx_desc_ptr);
564 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
565 efx_rx_queue_index(rx_queue));
566
567 /* Unpin RX descriptor ring */
568 efx_fini_special_buffer(efx, &rx_queue->rxd);
569 }
570
571 /* Free buffers backing RX queue */
572 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
573 {
574 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
575 }
576
577 /**************************************************************************
578 *
579 * Flush handling
580 *
581 **************************************************************************/
582
583 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
584 * or more RX flushes can be kicked off.
585 */
586 static bool efx_farch_flush_wake(struct efx_nic *efx)
587 {
588 /* Ensure that all updates are visible to efx_farch_flush_queues() */
589 smp_mb();
590
591 return (atomic_read(&efx->active_queues) == 0 ||
592 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
593 && atomic_read(&efx->rxq_flush_pending) > 0));
594 }
595
596 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
597 {
598 bool i = true;
599 efx_oword_t txd_ptr_tbl;
600 struct efx_channel *channel;
601 struct efx_tx_queue *tx_queue;
602
603 efx_for_each_channel(channel, efx) {
604 efx_for_each_channel_tx_queue(tx_queue, channel) {
605 efx_reado_table(efx, &txd_ptr_tbl,
606 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
607 if (EFX_OWORD_FIELD(txd_ptr_tbl,
608 FRF_AZ_TX_DESCQ_FLUSH) ||
609 EFX_OWORD_FIELD(txd_ptr_tbl,
610 FRF_AZ_TX_DESCQ_EN)) {
611 netif_dbg(efx, hw, efx->net_dev,
612 "flush did not complete on TXQ %d\n",
613 tx_queue->queue);
614 i = false;
615 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
616 1, 0)) {
617 /* The flush is complete, but we didn't
618 * receive a flush completion event
619 */
620 netif_dbg(efx, hw, efx->net_dev,
621 "flush complete on TXQ %d, so drain "
622 "the queue\n", tx_queue->queue);
623 /* Don't need to increment active_queues as it
624 * has already been incremented for the queues
625 * which did not drain
626 */
627 efx_farch_magic_event(channel,
628 EFX_CHANNEL_MAGIC_TX_DRAIN(
629 tx_queue));
630 }
631 }
632 }
633
634 return i;
635 }
636
637 /* Flush all the transmit queues, and continue flushing receive queues until
638 * they're all flushed. Wait for the DRAIN events to be received so that there
639 * are no more RX and TX events left on any channel. */
640 static int efx_farch_do_flush(struct efx_nic *efx)
641 {
642 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
643 struct efx_channel *channel;
644 struct efx_rx_queue *rx_queue;
645 struct efx_tx_queue *tx_queue;
646 int rc = 0;
647
648 efx_for_each_channel(channel, efx) {
649 efx_for_each_channel_tx_queue(tx_queue, channel) {
650 efx_farch_flush_tx_queue(tx_queue);
651 }
652 efx_for_each_channel_rx_queue(rx_queue, channel) {
653 rx_queue->flush_pending = true;
654 atomic_inc(&efx->rxq_flush_pending);
655 }
656 }
657
658 while (timeout && atomic_read(&efx->active_queues) > 0) {
659 /* If SRIOV is enabled, then offload receive queue flushing to
660 * the firmware (though we will still have to poll for
661 * completion). If that fails, fall back to the old scheme.
662 */
663 if (efx_siena_sriov_enabled(efx)) {
664 rc = efx_mcdi_flush_rxqs(efx);
665 if (!rc)
666 goto wait;
667 }
668
669 /* The hardware supports four concurrent rx flushes, each of
670 * which may need to be retried if there is an outstanding
671 * descriptor fetch
672 */
673 efx_for_each_channel(channel, efx) {
674 efx_for_each_channel_rx_queue(rx_queue, channel) {
675 if (atomic_read(&efx->rxq_flush_outstanding) >=
676 EFX_RX_FLUSH_COUNT)
677 break;
678
679 if (rx_queue->flush_pending) {
680 rx_queue->flush_pending = false;
681 atomic_dec(&efx->rxq_flush_pending);
682 atomic_inc(&efx->rxq_flush_outstanding);
683 efx_farch_flush_rx_queue(rx_queue);
684 }
685 }
686 }
687
688 wait:
689 timeout = wait_event_timeout(efx->flush_wq,
690 efx_farch_flush_wake(efx),
691 timeout);
692 }
693
694 if (atomic_read(&efx->active_queues) &&
695 !efx_check_tx_flush_complete(efx)) {
696 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
697 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
698 atomic_read(&efx->rxq_flush_outstanding),
699 atomic_read(&efx->rxq_flush_pending));
700 rc = -ETIMEDOUT;
701
702 atomic_set(&efx->active_queues, 0);
703 atomic_set(&efx->rxq_flush_pending, 0);
704 atomic_set(&efx->rxq_flush_outstanding, 0);
705 }
706
707 return rc;
708 }
709
710 int efx_farch_fini_dmaq(struct efx_nic *efx)
711 {
712 struct efx_channel *channel;
713 struct efx_tx_queue *tx_queue;
714 struct efx_rx_queue *rx_queue;
715 int rc = 0;
716
717 /* Do not attempt to write to the NIC during EEH recovery */
718 if (efx->state != STATE_RECOVERY) {
719 /* Only perform flush if DMA is enabled */
720 if (efx->pci_dev->is_busmaster) {
721 efx->type->prepare_flush(efx);
722 rc = efx_farch_do_flush(efx);
723 efx->type->finish_flush(efx);
724 }
725
726 efx_for_each_channel(channel, efx) {
727 efx_for_each_channel_rx_queue(rx_queue, channel)
728 efx_farch_rx_fini(rx_queue);
729 efx_for_each_channel_tx_queue(tx_queue, channel)
730 efx_farch_tx_fini(tx_queue);
731 }
732 }
733
734 return rc;
735 }
736
737 /* Reset queue and flush accounting after FLR
738 *
739 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
740 * mastering was disabled), in which case we don't receive (RXQ) flush
741 * completion events. This means that efx->rxq_flush_outstanding remained at 4
742 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
743 * events were received, and we didn't go through efx_check_tx_flush_complete())
744 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
745 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
746 * for batched flush requests; and the efx->active_queues gets messed up because
747 * we keep incrementing for the newly initialised queues, but it never went to
748 * zero previously. Then we get a timeout every time we try to restart the
749 * queues, as it doesn't go back to zero when we should be flushing the queues.
750 */
751 void efx_farch_finish_flr(struct efx_nic *efx)
752 {
753 atomic_set(&efx->rxq_flush_pending, 0);
754 atomic_set(&efx->rxq_flush_outstanding, 0);
755 atomic_set(&efx->active_queues, 0);
756 }
757
758
759 /**************************************************************************
760 *
761 * Event queue processing
762 * Event queues are processed by per-channel tasklets.
763 *
764 **************************************************************************/
765
766 /* Update a channel's event queue's read pointer (RPTR) register
767 *
768 * This writes the EVQ_RPTR_REG register for the specified channel's
769 * event queue.
770 */
771 void efx_farch_ev_read_ack(struct efx_channel *channel)
772 {
773 efx_dword_t reg;
774 struct efx_nic *efx = channel->efx;
775
776 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
777 channel->eventq_read_ptr & channel->eventq_mask);
778
779 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
780 * of 4 bytes, but it is really 16 bytes just like later revisions.
781 */
782 efx_writed(efx, &reg,
783 efx->type->evq_rptr_tbl_base +
784 FR_BZ_EVQ_RPTR_STEP * channel->channel);
785 }
786
787 /* Use HW to insert a SW defined event */
788 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
789 efx_qword_t *event)
790 {
791 efx_oword_t drv_ev_reg;
792
793 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
794 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
795 drv_ev_reg.u32[0] = event->u32[0];
796 drv_ev_reg.u32[1] = event->u32[1];
797 drv_ev_reg.u32[2] = 0;
798 drv_ev_reg.u32[3] = 0;
799 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
800 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
801 }
802
803 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
804 {
805 efx_qword_t event;
806
807 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
808 FSE_AZ_EV_CODE_DRV_GEN_EV,
809 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
810 efx_farch_generate_event(channel->efx, channel->channel, &event);
811 }
812
813 /* Handle a transmit completion event
814 *
815 * The NIC batches TX completion events; the message we receive is of
816 * the form "complete all TX events up to this index".
817 */
818 static void
819 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
820 {
821 unsigned int tx_ev_desc_ptr;
822 unsigned int tx_ev_q_label;
823 struct efx_tx_queue *tx_queue;
824 struct efx_nic *efx = channel->efx;
825
826 if (unlikely(READ_ONCE(efx->reset_pending)))
827 return;
828
829 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
830 /* Transmit completion */
831 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
832 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
833 tx_queue = efx_channel_get_tx_queue(
834 channel, tx_ev_q_label % EFX_TXQ_TYPES);
835 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
836 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
837 /* Rewrite the FIFO write pointer */
838 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
839 tx_queue = efx_channel_get_tx_queue(
840 channel, tx_ev_q_label % EFX_TXQ_TYPES);
841
842 netif_tx_lock(efx->net_dev);
843 efx_farch_notify_tx_desc(tx_queue);
844 netif_tx_unlock(efx->net_dev);
845 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
846 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
847 } else {
848 netif_err(efx, tx_err, efx->net_dev,
849 "channel %d unexpected TX event "
850 EFX_QWORD_FMT"\n", channel->channel,
851 EFX_QWORD_VAL(*event));
852 }
853 }
854
855 /* Detect errors included in the rx_evt_pkt_ok bit. */
856 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
857 const efx_qword_t *event)
858 {
859 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
860 struct efx_nic *efx = rx_queue->efx;
861 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
862 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
863 bool rx_ev_frm_trunc, rx_ev_tobe_disc;
864 bool rx_ev_other_err, rx_ev_pause_frm;
865 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
866 unsigned rx_ev_pkt_type;
867
868 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
869 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
870 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
871 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
872 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
873 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
874 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
875 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
876 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
877 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
878 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
879 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
880 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
881
882 /* Every error apart from tobe_disc and pause_frm */
883 rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
884 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
885 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
886
887 /* Count errors that are not in MAC stats. Ignore expected
888 * checksum errors during self-test. */
889 if (rx_ev_frm_trunc)
890 ++channel->n_rx_frm_trunc;
891 else if (rx_ev_tobe_disc)
892 ++channel->n_rx_tobe_disc;
893 else if (!efx->loopback_selftest) {
894 if (rx_ev_ip_hdr_chksum_err)
895 ++channel->n_rx_ip_hdr_chksum_err;
896 else if (rx_ev_tcp_udp_chksum_err)
897 ++channel->n_rx_tcp_udp_chksum_err;
898 }
899
900 /* TOBE_DISC is expected on unicast mismatches; don't print out an
901 * error message. FRM_TRUNC indicates RXDP dropped the packet due
902 * to a FIFO overflow.
903 */
904 #ifdef DEBUG
905 if (rx_ev_other_err && net_ratelimit()) {
906 netif_dbg(efx, rx_err, efx->net_dev,
907 " RX queue %d unexpected RX event "
908 EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
909 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
910 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
911 rx_ev_ip_hdr_chksum_err ?
912 " [IP_HDR_CHKSUM_ERR]" : "",
913 rx_ev_tcp_udp_chksum_err ?
914 " [TCP_UDP_CHKSUM_ERR]" : "",
915 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
916 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
917 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
918 rx_ev_pause_frm ? " [PAUSE]" : "");
919 }
920 #endif
921
922 if (efx->net_dev->features & NETIF_F_RXALL)
923 /* don't discard frame for CRC error */
924 rx_ev_eth_crc_err = false;
925
926 /* The frame must be discarded if any of these are true. */
927 return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
928 rx_ev_tobe_disc | rx_ev_pause_frm) ?
929 EFX_RX_PKT_DISCARD : 0;
930 }
931
932 /* Handle receive events that are not in-order. Return true if this
933 * can be handled as a partial packet discard, false if it's more
934 * serious.
935 */
936 static bool
937 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
938 {
939 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
940 struct efx_nic *efx = rx_queue->efx;
941 unsigned expected, dropped;
942
943 if (rx_queue->scatter_n &&
944 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
945 rx_queue->ptr_mask)) {
946 ++channel->n_rx_nodesc_trunc;
947 return true;
948 }
949
950 expected = rx_queue->removed_count & rx_queue->ptr_mask;
951 dropped = (index - expected) & rx_queue->ptr_mask;
952 netif_info(efx, rx_err, efx->net_dev,
953 "dropped %d events (index=%d expected=%d)\n",
954 dropped, index, expected);
955
956 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
957 return false;
958 }
959
960 /* Handle a packet received event
961 *
962 * The NIC gives a "discard" flag if it's a unicast packet with the
963 * wrong destination address
964 * Also "is multicast" and "matches multicast filter" flags can be used to
965 * discard non-matching multicast packets.
966 */
967 static void
968 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
969 {
970 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
971 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
972 unsigned expected_ptr;
973 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
974 u16 flags;
975 struct efx_rx_queue *rx_queue;
976 struct efx_nic *efx = channel->efx;
977
978 if (unlikely(READ_ONCE(efx->reset_pending)))
979 return;
980
981 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
982 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
983 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
984 channel->channel);
985
986 rx_queue = efx_channel_get_rx_queue(channel);
987
988 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
989 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
990 rx_queue->ptr_mask);
991
992 /* Check for partial drops and other errors */
993 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
994 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
995 if (rx_ev_desc_ptr != expected_ptr &&
996 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
997 return;
998
999 /* Discard all pending fragments */
1000 if (rx_queue->scatter_n) {
1001 efx_rx_packet(
1002 rx_queue,
1003 rx_queue->removed_count & rx_queue->ptr_mask,
1004 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1005 rx_queue->removed_count += rx_queue->scatter_n;
1006 rx_queue->scatter_n = 0;
1007 }
1008
1009 /* Return if there is no new fragment */
1010 if (rx_ev_desc_ptr != expected_ptr)
1011 return;
1012
1013 /* Discard new fragment if not SOP */
1014 if (!rx_ev_sop) {
1015 efx_rx_packet(
1016 rx_queue,
1017 rx_queue->removed_count & rx_queue->ptr_mask,
1018 1, 0, EFX_RX_PKT_DISCARD);
1019 ++rx_queue->removed_count;
1020 return;
1021 }
1022 }
1023
1024 ++rx_queue->scatter_n;
1025 if (rx_ev_cont)
1026 return;
1027
1028 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1029 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1030 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1031
1032 if (likely(rx_ev_pkt_ok)) {
1033 /* If packet is marked as OK then we can rely on the
1034 * hardware checksum and classification.
1035 */
1036 flags = 0;
1037 switch (rx_ev_hdr_type) {
1038 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1039 flags |= EFX_RX_PKT_TCP;
1040 /* fall through */
1041 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1042 flags |= EFX_RX_PKT_CSUMMED;
1043 /* fall through */
1044 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1045 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1046 break;
1047 }
1048 } else {
1049 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1050 }
1051
1052 /* Detect multicast packets that didn't match the filter */
1053 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1054 if (rx_ev_mcast_pkt) {
1055 unsigned int rx_ev_mcast_hash_match =
1056 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1057
1058 if (unlikely(!rx_ev_mcast_hash_match)) {
1059 ++channel->n_rx_mcast_mismatch;
1060 flags |= EFX_RX_PKT_DISCARD;
1061 }
1062 }
1063
1064 channel->irq_mod_score += 2;
1065
1066 /* Handle received packet */
1067 efx_rx_packet(rx_queue,
1068 rx_queue->removed_count & rx_queue->ptr_mask,
1069 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1070 rx_queue->removed_count += rx_queue->scatter_n;
1071 rx_queue->scatter_n = 0;
1072 }
1073
1074 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1075 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1076 * of all transmit completions.
1077 */
1078 static void
1079 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1080 {
1081 struct efx_tx_queue *tx_queue;
1082 int qid;
1083
1084 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1085 if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1086 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1087 qid % EFX_TXQ_TYPES);
1088 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1089 efx_farch_magic_event(tx_queue->channel,
1090 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1091 }
1092 }
1093 }
1094
1095 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1096 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1097 * the RX queue back to the mask of RX queues in need of flushing.
1098 */
1099 static void
1100 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1101 {
1102 struct efx_channel *channel;
1103 struct efx_rx_queue *rx_queue;
1104 int qid;
1105 bool failed;
1106
1107 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1108 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1109 if (qid >= efx->n_channels)
1110 return;
1111 channel = efx_get_channel(efx, qid);
1112 if (!efx_channel_has_rx_queue(channel))
1113 return;
1114 rx_queue = efx_channel_get_rx_queue(channel);
1115
1116 if (failed) {
1117 netif_info(efx, hw, efx->net_dev,
1118 "RXQ %d flush retry\n", qid);
1119 rx_queue->flush_pending = true;
1120 atomic_inc(&efx->rxq_flush_pending);
1121 } else {
1122 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1123 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1124 }
1125 atomic_dec(&efx->rxq_flush_outstanding);
1126 if (efx_farch_flush_wake(efx))
1127 wake_up(&efx->flush_wq);
1128 }
1129
1130 static void
1131 efx_farch_handle_drain_event(struct efx_channel *channel)
1132 {
1133 struct efx_nic *efx = channel->efx;
1134
1135 WARN_ON(atomic_read(&efx->active_queues) == 0);
1136 atomic_dec(&efx->active_queues);
1137 if (efx_farch_flush_wake(efx))
1138 wake_up(&efx->flush_wq);
1139 }
1140
1141 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1142 efx_qword_t *event)
1143 {
1144 struct efx_nic *efx = channel->efx;
1145 struct efx_rx_queue *rx_queue =
1146 efx_channel_has_rx_queue(channel) ?
1147 efx_channel_get_rx_queue(channel) : NULL;
1148 unsigned magic, code;
1149
1150 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1151 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1152
1153 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1154 channel->event_test_cpu = raw_smp_processor_id();
1155 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1156 /* The queue must be empty, so we won't receive any rx
1157 * events, so efx_process_channel() won't refill the
1158 * queue. Refill it here */
1159 efx_fast_push_rx_descriptors(rx_queue, true);
1160 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1161 efx_farch_handle_drain_event(channel);
1162 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1163 efx_farch_handle_drain_event(channel);
1164 } else {
1165 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1166 "generated event "EFX_QWORD_FMT"\n",
1167 channel->channel, EFX_QWORD_VAL(*event));
1168 }
1169 }
1170
1171 static void
1172 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1173 {
1174 struct efx_nic *efx = channel->efx;
1175 unsigned int ev_sub_code;
1176 unsigned int ev_sub_data;
1177
1178 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1179 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1180
1181 switch (ev_sub_code) {
1182 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1183 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1184 channel->channel, ev_sub_data);
1185 efx_farch_handle_tx_flush_done(efx, event);
1186 #ifdef CONFIG_SFC_SRIOV
1187 efx_siena_sriov_tx_flush_done(efx, event);
1188 #endif
1189 break;
1190 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1191 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1192 channel->channel, ev_sub_data);
1193 efx_farch_handle_rx_flush_done(efx, event);
1194 #ifdef CONFIG_SFC_SRIOV
1195 efx_siena_sriov_rx_flush_done(efx, event);
1196 #endif
1197 break;
1198 case FSE_AZ_EVQ_INIT_DONE_EV:
1199 netif_dbg(efx, hw, efx->net_dev,
1200 "channel %d EVQ %d initialised\n",
1201 channel->channel, ev_sub_data);
1202 break;
1203 case FSE_AZ_SRM_UPD_DONE_EV:
1204 netif_vdbg(efx, hw, efx->net_dev,
1205 "channel %d SRAM update done\n", channel->channel);
1206 break;
1207 case FSE_AZ_WAKE_UP_EV:
1208 netif_vdbg(efx, hw, efx->net_dev,
1209 "channel %d RXQ %d wakeup event\n",
1210 channel->channel, ev_sub_data);
1211 break;
1212 case FSE_AZ_TIMER_EV:
1213 netif_vdbg(efx, hw, efx->net_dev,
1214 "channel %d RX queue %d timer expired\n",
1215 channel->channel, ev_sub_data);
1216 break;
1217 case FSE_AA_RX_RECOVER_EV:
1218 netif_err(efx, rx_err, efx->net_dev,
1219 "channel %d seen DRIVER RX_RESET event. "
1220 "Resetting.\n", channel->channel);
1221 atomic_inc(&efx->rx_reset);
1222 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1223 break;
1224 case FSE_BZ_RX_DSC_ERROR_EV:
1225 if (ev_sub_data < EFX_VI_BASE) {
1226 netif_err(efx, rx_err, efx->net_dev,
1227 "RX DMA Q %d reports descriptor fetch error."
1228 " RX Q %d is disabled.\n", ev_sub_data,
1229 ev_sub_data);
1230 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1231 }
1232 #ifdef CONFIG_SFC_SRIOV
1233 else
1234 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1235 #endif
1236 break;
1237 case FSE_BZ_TX_DSC_ERROR_EV:
1238 if (ev_sub_data < EFX_VI_BASE) {
1239 netif_err(efx, tx_err, efx->net_dev,
1240 "TX DMA Q %d reports descriptor fetch error."
1241 " TX Q %d is disabled.\n", ev_sub_data,
1242 ev_sub_data);
1243 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1244 }
1245 #ifdef CONFIG_SFC_SRIOV
1246 else
1247 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1248 #endif
1249 break;
1250 default:
1251 netif_vdbg(efx, hw, efx->net_dev,
1252 "channel %d unknown driver event code %d "
1253 "data %04x\n", channel->channel, ev_sub_code,
1254 ev_sub_data);
1255 break;
1256 }
1257 }
1258
1259 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1260 {
1261 struct efx_nic *efx = channel->efx;
1262 unsigned int read_ptr;
1263 efx_qword_t event, *p_event;
1264 int ev_code;
1265 int spent = 0;
1266
1267 if (budget <= 0)
1268 return spent;
1269
1270 read_ptr = channel->eventq_read_ptr;
1271
1272 for (;;) {
1273 p_event = efx_event(channel, read_ptr);
1274 event = *p_event;
1275
1276 if (!efx_event_present(&event))
1277 /* End of events */
1278 break;
1279
1280 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1281 "channel %d event is "EFX_QWORD_FMT"\n",
1282 channel->channel, EFX_QWORD_VAL(event));
1283
1284 /* Clear this event by marking it all ones */
1285 EFX_SET_QWORD(*p_event);
1286
1287 ++read_ptr;
1288
1289 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1290
1291 switch (ev_code) {
1292 case FSE_AZ_EV_CODE_RX_EV:
1293 efx_farch_handle_rx_event(channel, &event);
1294 if (++spent == budget)
1295 goto out;
1296 break;
1297 case FSE_AZ_EV_CODE_TX_EV:
1298 efx_farch_handle_tx_event(channel, &event);
1299 break;
1300 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1301 efx_farch_handle_generated_event(channel, &event);
1302 break;
1303 case FSE_AZ_EV_CODE_DRIVER_EV:
1304 efx_farch_handle_driver_event(channel, &event);
1305 break;
1306 #ifdef CONFIG_SFC_SRIOV
1307 case FSE_CZ_EV_CODE_USER_EV:
1308 efx_siena_sriov_event(channel, &event);
1309 break;
1310 #endif
1311 case FSE_CZ_EV_CODE_MCDI_EV:
1312 efx_mcdi_process_event(channel, &event);
1313 break;
1314 case FSE_AZ_EV_CODE_GLOBAL_EV:
1315 if (efx->type->handle_global_event &&
1316 efx->type->handle_global_event(channel, &event))
1317 break;
1318 /* else fall through */
1319 default:
1320 netif_err(channel->efx, hw, channel->efx->net_dev,
1321 "channel %d unknown event type %d (data "
1322 EFX_QWORD_FMT ")\n", channel->channel,
1323 ev_code, EFX_QWORD_VAL(event));
1324 }
1325 }
1326
1327 out:
1328 channel->eventq_read_ptr = read_ptr;
1329 return spent;
1330 }
1331
1332 /* Allocate buffer table entries for event queue */
1333 int efx_farch_ev_probe(struct efx_channel *channel)
1334 {
1335 struct efx_nic *efx = channel->efx;
1336 unsigned entries;
1337
1338 entries = channel->eventq_mask + 1;
1339 return efx_alloc_special_buffer(efx, &channel->eventq,
1340 entries * sizeof(efx_qword_t));
1341 }
1342
1343 int efx_farch_ev_init(struct efx_channel *channel)
1344 {
1345 efx_oword_t reg;
1346 struct efx_nic *efx = channel->efx;
1347
1348 netif_dbg(efx, hw, efx->net_dev,
1349 "channel %d event queue in special buffers %d-%d\n",
1350 channel->channel, channel->eventq.index,
1351 channel->eventq.index + channel->eventq.entries - 1);
1352
1353 EFX_POPULATE_OWORD_3(reg,
1354 FRF_CZ_TIMER_Q_EN, 1,
1355 FRF_CZ_HOST_NOTIFY_MODE, 0,
1356 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1357 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1358
1359 /* Pin event queue buffer */
1360 efx_init_special_buffer(efx, &channel->eventq);
1361
1362 /* Fill event queue with all ones (i.e. empty events) */
1363 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1364
1365 /* Push event queue to card */
1366 EFX_POPULATE_OWORD_3(reg,
1367 FRF_AZ_EVQ_EN, 1,
1368 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1369 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1370 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1371 channel->channel);
1372
1373 return 0;
1374 }
1375
1376 void efx_farch_ev_fini(struct efx_channel *channel)
1377 {
1378 efx_oword_t reg;
1379 struct efx_nic *efx = channel->efx;
1380
1381 /* Remove event queue from card */
1382 EFX_ZERO_OWORD(reg);
1383 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1384 channel->channel);
1385 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1386
1387 /* Unpin event queue */
1388 efx_fini_special_buffer(efx, &channel->eventq);
1389 }
1390
1391 /* Free buffers backing event queue */
1392 void efx_farch_ev_remove(struct efx_channel *channel)
1393 {
1394 efx_free_special_buffer(channel->efx, &channel->eventq);
1395 }
1396
1397
1398 void efx_farch_ev_test_generate(struct efx_channel *channel)
1399 {
1400 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1401 }
1402
1403 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1404 {
1405 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1406 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1407 }
1408
1409 /**************************************************************************
1410 *
1411 * Hardware interrupts
1412 * The hardware interrupt handler does very little work; all the event
1413 * queue processing is carried out by per-channel tasklets.
1414 *
1415 **************************************************************************/
1416
1417 /* Enable/disable/generate interrupts */
1418 static inline void efx_farch_interrupts(struct efx_nic *efx,
1419 bool enabled, bool force)
1420 {
1421 efx_oword_t int_en_reg_ker;
1422
1423 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1424 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1425 FRF_AZ_KER_INT_KER, force,
1426 FRF_AZ_DRV_INT_EN_KER, enabled);
1427 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1428 }
1429
1430 void efx_farch_irq_enable_master(struct efx_nic *efx)
1431 {
1432 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1433 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1434
1435 efx_farch_interrupts(efx, true, false);
1436 }
1437
1438 void efx_farch_irq_disable_master(struct efx_nic *efx)
1439 {
1440 /* Disable interrupts */
1441 efx_farch_interrupts(efx, false, false);
1442 }
1443
1444 /* Generate a test interrupt
1445 * Interrupt must already have been enabled, otherwise nasty things
1446 * may happen.
1447 */
1448 int efx_farch_irq_test_generate(struct efx_nic *efx)
1449 {
1450 efx_farch_interrupts(efx, true, true);
1451 return 0;
1452 }
1453
1454 /* Process a fatal interrupt
1455 * Disable bus mastering ASAP and schedule a reset
1456 */
1457 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1458 {
1459 efx_oword_t *int_ker = efx->irq_status.addr;
1460 efx_oword_t fatal_intr;
1461 int error, mem_perr;
1462
1463 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1464 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1465
1466 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1467 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1468 EFX_OWORD_VAL(fatal_intr),
1469 error ? "disabling bus mastering" : "no recognised error");
1470
1471 /* If this is a memory parity error dump which blocks are offending */
1472 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1473 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1474 if (mem_perr) {
1475 efx_oword_t reg;
1476 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1477 netif_err(efx, hw, efx->net_dev,
1478 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1479 EFX_OWORD_VAL(reg));
1480 }
1481
1482 /* Disable both devices */
1483 pci_clear_master(efx->pci_dev);
1484 efx_farch_irq_disable_master(efx);
1485
1486 /* Count errors and reset or disable the NIC accordingly */
1487 if (efx->int_error_count == 0 ||
1488 time_after(jiffies, efx->int_error_expire)) {
1489 efx->int_error_count = 0;
1490 efx->int_error_expire =
1491 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1492 }
1493 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1494 netif_err(efx, hw, efx->net_dev,
1495 "SYSTEM ERROR - reset scheduled\n");
1496 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1497 } else {
1498 netif_err(efx, hw, efx->net_dev,
1499 "SYSTEM ERROR - max number of errors seen."
1500 "NIC will be disabled\n");
1501 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1502 }
1503
1504 return IRQ_HANDLED;
1505 }
1506
1507 /* Handle a legacy interrupt
1508 * Acknowledges the interrupt and schedule event queue processing.
1509 */
1510 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1511 {
1512 struct efx_nic *efx = dev_id;
1513 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1514 efx_oword_t *int_ker = efx->irq_status.addr;
1515 irqreturn_t result = IRQ_NONE;
1516 struct efx_channel *channel;
1517 efx_dword_t reg;
1518 u32 queues;
1519 int syserr;
1520
1521 /* Read the ISR which also ACKs the interrupts */
1522 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1523 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1524
1525 /* Legacy interrupts are disabled too late by the EEH kernel
1526 * code. Disable them earlier.
1527 * If an EEH error occurred, the read will have returned all ones.
1528 */
1529 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1530 !efx->eeh_disabled_legacy_irq) {
1531 disable_irq_nosync(efx->legacy_irq);
1532 efx->eeh_disabled_legacy_irq = true;
1533 }
1534
1535 /* Handle non-event-queue sources */
1536 if (queues & (1U << efx->irq_level) && soft_enabled) {
1537 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1538 if (unlikely(syserr))
1539 return efx_farch_fatal_interrupt(efx);
1540 efx->last_irq_cpu = raw_smp_processor_id();
1541 }
1542
1543 if (queues != 0) {
1544 efx->irq_zero_count = 0;
1545
1546 /* Schedule processing of any interrupting queues */
1547 if (likely(soft_enabled)) {
1548 efx_for_each_channel(channel, efx) {
1549 if (queues & 1)
1550 efx_schedule_channel_irq(channel);
1551 queues >>= 1;
1552 }
1553 }
1554 result = IRQ_HANDLED;
1555
1556 } else {
1557 efx_qword_t *event;
1558
1559 /* Legacy ISR read can return zero once (SF bug 15783) */
1560
1561 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1562 * because this might be a shared interrupt. */
1563 if (efx->irq_zero_count++ == 0)
1564 result = IRQ_HANDLED;
1565
1566 /* Ensure we schedule or rearm all event queues */
1567 if (likely(soft_enabled)) {
1568 efx_for_each_channel(channel, efx) {
1569 event = efx_event(channel,
1570 channel->eventq_read_ptr);
1571 if (efx_event_present(event))
1572 efx_schedule_channel_irq(channel);
1573 else
1574 efx_farch_ev_read_ack(channel);
1575 }
1576 }
1577 }
1578
1579 if (result == IRQ_HANDLED)
1580 netif_vdbg(efx, intr, efx->net_dev,
1581 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1582 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1583
1584 return result;
1585 }
1586
1587 /* Handle an MSI interrupt
1588 *
1589 * Handle an MSI hardware interrupt. This routine schedules event
1590 * queue processing. No interrupt acknowledgement cycle is necessary.
1591 * Also, we never need to check that the interrupt is for us, since
1592 * MSI interrupts cannot be shared.
1593 */
1594 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1595 {
1596 struct efx_msi_context *context = dev_id;
1597 struct efx_nic *efx = context->efx;
1598 efx_oword_t *int_ker = efx->irq_status.addr;
1599 int syserr;
1600
1601 netif_vdbg(efx, intr, efx->net_dev,
1602 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1603 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1604
1605 if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1606 return IRQ_HANDLED;
1607
1608 /* Handle non-event-queue sources */
1609 if (context->index == efx->irq_level) {
1610 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1611 if (unlikely(syserr))
1612 return efx_farch_fatal_interrupt(efx);
1613 efx->last_irq_cpu = raw_smp_processor_id();
1614 }
1615
1616 /* Schedule processing of the channel */
1617 efx_schedule_channel_irq(efx->channel[context->index]);
1618
1619 return IRQ_HANDLED;
1620 }
1621
1622 /* Setup RSS indirection table.
1623 * This maps from the hash value of the packet to RXQ
1624 */
1625 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1626 {
1627 size_t i = 0;
1628 efx_dword_t dword;
1629
1630 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1631 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1632
1633 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1634 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1635 efx->rss_context.rx_indir_table[i]);
1636 efx_writed(efx, &dword,
1637 FR_BZ_RX_INDIRECTION_TBL +
1638 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1639 }
1640 }
1641
1642 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1643 {
1644 size_t i = 0;
1645 efx_dword_t dword;
1646
1647 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1648 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1649
1650 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1651 efx_readd(efx, &dword,
1652 FR_BZ_RX_INDIRECTION_TBL +
1653 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1654 efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1655 }
1656 }
1657
1658 /* Looks at available SRAM resources and works out how many queues we
1659 * can support, and where things like descriptor caches should live.
1660 *
1661 * SRAM is split up as follows:
1662 * 0 buftbl entries for channels
1663 * efx->vf_buftbl_base buftbl entries for SR-IOV
1664 * efx->rx_dc_base RX descriptor caches
1665 * efx->tx_dc_base TX descriptor caches
1666 */
1667 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1668 {
1669 unsigned vi_count, buftbl_min, total_tx_channels;
1670
1671 #ifdef CONFIG_SFC_SRIOV
1672 struct siena_nic_data *nic_data = efx->nic_data;
1673 #endif
1674
1675 total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1676 /* Account for the buffer table entries backing the datapath channels
1677 * and the descriptor caches for those channels.
1678 */
1679 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1680 total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1681 efx->n_channels * EFX_MAX_EVQ_SIZE)
1682 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1683 vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1684
1685 #ifdef CONFIG_SFC_SRIOV
1686 if (efx->type->sriov_wanted) {
1687 if (efx->type->sriov_wanted(efx)) {
1688 unsigned vi_dc_entries, buftbl_free;
1689 unsigned entries_per_vf, vf_limit;
1690
1691 nic_data->vf_buftbl_base = buftbl_min;
1692
1693 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1694 vi_count = max(vi_count, EFX_VI_BASE);
1695 buftbl_free = (sram_lim_qw - buftbl_min -
1696 vi_count * vi_dc_entries);
1697
1698 entries_per_vf = ((vi_dc_entries +
1699 EFX_VF_BUFTBL_PER_VI) *
1700 efx_vf_size(efx));
1701 vf_limit = min(buftbl_free / entries_per_vf,
1702 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1703
1704 if (efx->vf_count > vf_limit) {
1705 netif_err(efx, probe, efx->net_dev,
1706 "Reducing VF count from from %d to %d\n",
1707 efx->vf_count, vf_limit);
1708 efx->vf_count = vf_limit;
1709 }
1710 vi_count += efx->vf_count * efx_vf_size(efx);
1711 }
1712 }
1713 #endif
1714
1715 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1716 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1717 }
1718
1719 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1720 {
1721 efx_oword_t altera_build;
1722 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1723 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1724 }
1725
1726 void efx_farch_init_common(struct efx_nic *efx)
1727 {
1728 efx_oword_t temp;
1729
1730 /* Set positions of descriptor caches in SRAM. */
1731 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1732 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1733 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1734 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1735
1736 /* Set TX descriptor cache size. */
1737 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1738 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1739 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1740
1741 /* Set RX descriptor cache size. Set low watermark to size-8, as
1742 * this allows most efficient prefetching.
1743 */
1744 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1745 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1746 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1747 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1748 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1749
1750 /* Program INT_KER address */
1751 EFX_POPULATE_OWORD_2(temp,
1752 FRF_AZ_NORM_INT_VEC_DIS_KER,
1753 EFX_INT_MODE_USE_MSI(efx),
1754 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1755 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1756
1757 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1758 /* Use an interrupt level unused by event queues */
1759 efx->irq_level = 0x1f;
1760 else
1761 /* Use a valid MSI-X vector */
1762 efx->irq_level = 0;
1763
1764 /* Enable all the genuinely fatal interrupts. (They are still
1765 * masked by the overall interrupt mask, controlled by
1766 * falcon_interrupts()).
1767 *
1768 * Note: All other fatal interrupts are enabled
1769 */
1770 EFX_POPULATE_OWORD_3(temp,
1771 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1772 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1773 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1774 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1775 EFX_INVERT_OWORD(temp);
1776 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1777
1778 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1779 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1780 */
1781 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1782 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1783 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1784 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1785 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1786 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1787 /* Enable SW_EV to inherit in char driver - assume harmless here */
1788 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1789 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1790 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1791 /* Disable hardware watchdog which can misfire */
1792 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1793 /* Squash TX of packets of 16 bytes or less */
1794 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1795 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1796
1797 EFX_POPULATE_OWORD_4(temp,
1798 /* Default values */
1799 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1800 FRF_BZ_TX_PACE_SB_AF, 0xb,
1801 FRF_BZ_TX_PACE_FB_BASE, 0,
1802 /* Allow large pace values in the fast bin. */
1803 FRF_BZ_TX_PACE_BIN_TH,
1804 FFE_BZ_TX_PACE_RESERVED);
1805 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1806 }
1807
1808 /**************************************************************************
1809 *
1810 * Filter tables
1811 *
1812 **************************************************************************
1813 */
1814
1815 /* "Fudge factors" - difference between programmed value and actual depth.
1816 * Due to pipelined implementation we need to program H/W with a value that
1817 * is larger than the hop limit we want.
1818 */
1819 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1820 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1821
1822 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1823 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1824 * table is full.
1825 */
1826 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1827
1828 /* Don't try very hard to find space for performance hints, as this is
1829 * counter-productive. */
1830 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1831
1832 enum efx_farch_filter_type {
1833 EFX_FARCH_FILTER_TCP_FULL = 0,
1834 EFX_FARCH_FILTER_TCP_WILD,
1835 EFX_FARCH_FILTER_UDP_FULL,
1836 EFX_FARCH_FILTER_UDP_WILD,
1837 EFX_FARCH_FILTER_MAC_FULL = 4,
1838 EFX_FARCH_FILTER_MAC_WILD,
1839 EFX_FARCH_FILTER_UC_DEF = 8,
1840 EFX_FARCH_FILTER_MC_DEF,
1841 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1842 };
1843
1844 enum efx_farch_filter_table_id {
1845 EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1846 EFX_FARCH_FILTER_TABLE_RX_MAC,
1847 EFX_FARCH_FILTER_TABLE_RX_DEF,
1848 EFX_FARCH_FILTER_TABLE_TX_MAC,
1849 EFX_FARCH_FILTER_TABLE_COUNT,
1850 };
1851
1852 enum efx_farch_filter_index {
1853 EFX_FARCH_FILTER_INDEX_UC_DEF,
1854 EFX_FARCH_FILTER_INDEX_MC_DEF,
1855 EFX_FARCH_FILTER_SIZE_RX_DEF,
1856 };
1857
1858 struct efx_farch_filter_spec {
1859 u8 type:4;
1860 u8 priority:4;
1861 u8 flags;
1862 u16 dmaq_id;
1863 u32 data[3];
1864 };
1865
1866 struct efx_farch_filter_table {
1867 enum efx_farch_filter_table_id id;
1868 u32 offset; /* address of table relative to BAR */
1869 unsigned size; /* number of entries */
1870 unsigned step; /* step between entries */
1871 unsigned used; /* number currently used */
1872 unsigned long *used_bitmap;
1873 struct efx_farch_filter_spec *spec;
1874 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1875 };
1876
1877 struct efx_farch_filter_state {
1878 struct rw_semaphore lock; /* Protects table contents */
1879 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1880 };
1881
1882 static void
1883 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1884 struct efx_farch_filter_table *table,
1885 unsigned int filter_idx);
1886
1887 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1888 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1889 static u16 efx_farch_filter_hash(u32 key)
1890 {
1891 u16 tmp;
1892
1893 /* First 16 rounds */
1894 tmp = 0x1fff ^ key >> 16;
1895 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1896 tmp = tmp ^ tmp >> 9;
1897 /* Last 16 rounds */
1898 tmp = tmp ^ tmp << 13 ^ key;
1899 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1900 return tmp ^ tmp >> 9;
1901 }
1902
1903 /* To allow for hash collisions, filter search continues at these
1904 * increments from the first possible entry selected by the hash. */
1905 static u16 efx_farch_filter_increment(u32 key)
1906 {
1907 return key * 2 - 1;
1908 }
1909
1910 static enum efx_farch_filter_table_id
1911 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1912 {
1913 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1914 (EFX_FARCH_FILTER_TCP_FULL >> 2));
1915 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1916 (EFX_FARCH_FILTER_TCP_WILD >> 2));
1917 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918 (EFX_FARCH_FILTER_UDP_FULL >> 2));
1919 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920 (EFX_FARCH_FILTER_UDP_WILD >> 2));
1921 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1922 (EFX_FARCH_FILTER_MAC_FULL >> 2));
1923 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1924 (EFX_FARCH_FILTER_MAC_WILD >> 2));
1925 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1926 EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1927 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1928 }
1929
1930 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1931 {
1932 struct efx_farch_filter_state *state = efx->filter_state;
1933 struct efx_farch_filter_table *table;
1934 efx_oword_t filter_ctl;
1935
1936 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1937
1938 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1939 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1940 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1941 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1942 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1943 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1944 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1945 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1946 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1947 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1948 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1949 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1950 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1951
1952 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1953 if (table->size) {
1954 EFX_SET_OWORD_FIELD(
1955 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1956 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1957 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1958 EFX_SET_OWORD_FIELD(
1959 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1960 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1961 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1962 }
1963
1964 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1965 if (table->size) {
1966 EFX_SET_OWORD_FIELD(
1967 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1968 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1969 EFX_SET_OWORD_FIELD(
1970 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1971 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1972 EFX_FILTER_FLAG_RX_RSS));
1973 EFX_SET_OWORD_FIELD(
1974 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1975 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1976 EFX_SET_OWORD_FIELD(
1977 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1978 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1979 EFX_FILTER_FLAG_RX_RSS));
1980
1981 /* There is a single bit to enable RX scatter for all
1982 * unmatched packets. Only set it if scatter is
1983 * enabled in both filter specs.
1984 */
1985 EFX_SET_OWORD_FIELD(
1986 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1987 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1988 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1989 EFX_FILTER_FLAG_RX_SCATTER));
1990 } else {
1991 /* We don't expose 'default' filters because unmatched
1992 * packets always go to the queue number found in the
1993 * RSS table. But we still need to set the RX scatter
1994 * bit here.
1995 */
1996 EFX_SET_OWORD_FIELD(
1997 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1998 efx->rx_scatter);
1999 }
2000
2001 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2002 }
2003
2004 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2005 {
2006 struct efx_farch_filter_state *state = efx->filter_state;
2007 struct efx_farch_filter_table *table;
2008 efx_oword_t tx_cfg;
2009
2010 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2011
2012 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2013 if (table->size) {
2014 EFX_SET_OWORD_FIELD(
2015 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2016 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2017 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2018 EFX_SET_OWORD_FIELD(
2019 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2020 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2021 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2022 }
2023
2024 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2025 }
2026
2027 static int
2028 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2029 const struct efx_filter_spec *gen_spec)
2030 {
2031 bool is_full = false;
2032
2033 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2034 return -EINVAL;
2035
2036 spec->priority = gen_spec->priority;
2037 spec->flags = gen_spec->flags;
2038 spec->dmaq_id = gen_spec->dmaq_id;
2039
2040 switch (gen_spec->match_flags) {
2041 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2042 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2043 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2044 is_full = true;
2045 /* fall through */
2046 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2048 __be32 rhost, host1, host2;
2049 __be16 rport, port1, port2;
2050
2051 EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2052
2053 if (gen_spec->ether_type != htons(ETH_P_IP))
2054 return -EPROTONOSUPPORT;
2055 if (gen_spec->loc_port == 0 ||
2056 (is_full && gen_spec->rem_port == 0))
2057 return -EADDRNOTAVAIL;
2058 switch (gen_spec->ip_proto) {
2059 case IPPROTO_TCP:
2060 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2061 EFX_FARCH_FILTER_TCP_WILD);
2062 break;
2063 case IPPROTO_UDP:
2064 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2065 EFX_FARCH_FILTER_UDP_WILD);
2066 break;
2067 default:
2068 return -EPROTONOSUPPORT;
2069 }
2070
2071 /* Filter is constructed in terms of source and destination,
2072 * with the odd wrinkle that the ports are swapped in a UDP
2073 * wildcard filter. We need to convert from local and remote
2074 * (= zero for wildcard) addresses.
2075 */
2076 rhost = is_full ? gen_spec->rem_host[0] : 0;
2077 rport = is_full ? gen_spec->rem_port : 0;
2078 host1 = rhost;
2079 host2 = gen_spec->loc_host[0];
2080 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2081 port1 = gen_spec->loc_port;
2082 port2 = rport;
2083 } else {
2084 port1 = rport;
2085 port2 = gen_spec->loc_port;
2086 }
2087 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2088 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2089 spec->data[2] = ntohl(host2);
2090
2091 break;
2092 }
2093
2094 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2095 is_full = true;
2096 /* fall through */
2097 case EFX_FILTER_MATCH_LOC_MAC:
2098 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2099 EFX_FARCH_FILTER_MAC_WILD);
2100 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2101 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2102 gen_spec->loc_mac[3] << 16 |
2103 gen_spec->loc_mac[4] << 8 |
2104 gen_spec->loc_mac[5]);
2105 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2106 gen_spec->loc_mac[1]);
2107 break;
2108
2109 case EFX_FILTER_MATCH_LOC_MAC_IG:
2110 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2111 EFX_FARCH_FILTER_MC_DEF :
2112 EFX_FARCH_FILTER_UC_DEF);
2113 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2114 break;
2115
2116 default:
2117 return -EPROTONOSUPPORT;
2118 }
2119
2120 return 0;
2121 }
2122
2123 static void
2124 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2125 const struct efx_farch_filter_spec *spec)
2126 {
2127 bool is_full = false;
2128
2129 /* *gen_spec should be completely initialised, to be consistent
2130 * with efx_filter_init_{rx,tx}() and in case we want to copy
2131 * it back to userland.
2132 */
2133 memset(gen_spec, 0, sizeof(*gen_spec));
2134
2135 gen_spec->priority = spec->priority;
2136 gen_spec->flags = spec->flags;
2137 gen_spec->dmaq_id = spec->dmaq_id;
2138
2139 switch (spec->type) {
2140 case EFX_FARCH_FILTER_TCP_FULL:
2141 case EFX_FARCH_FILTER_UDP_FULL:
2142 is_full = true;
2143 /* fall through */
2144 case EFX_FARCH_FILTER_TCP_WILD:
2145 case EFX_FARCH_FILTER_UDP_WILD: {
2146 __be32 host1, host2;
2147 __be16 port1, port2;
2148
2149 gen_spec->match_flags =
2150 EFX_FILTER_MATCH_ETHER_TYPE |
2151 EFX_FILTER_MATCH_IP_PROTO |
2152 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2153 if (is_full)
2154 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2155 EFX_FILTER_MATCH_REM_PORT);
2156 gen_spec->ether_type = htons(ETH_P_IP);
2157 gen_spec->ip_proto =
2158 (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2159 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2160 IPPROTO_TCP : IPPROTO_UDP;
2161
2162 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2163 port1 = htons(spec->data[0]);
2164 host2 = htonl(spec->data[2]);
2165 port2 = htons(spec->data[1] >> 16);
2166 if (spec->flags & EFX_FILTER_FLAG_TX) {
2167 gen_spec->loc_host[0] = host1;
2168 gen_spec->rem_host[0] = host2;
2169 } else {
2170 gen_spec->loc_host[0] = host2;
2171 gen_spec->rem_host[0] = host1;
2172 }
2173 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2174 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2175 gen_spec->loc_port = port1;
2176 gen_spec->rem_port = port2;
2177 } else {
2178 gen_spec->loc_port = port2;
2179 gen_spec->rem_port = port1;
2180 }
2181
2182 break;
2183 }
2184
2185 case EFX_FARCH_FILTER_MAC_FULL:
2186 is_full = true;
2187 /* fall through */
2188 case EFX_FARCH_FILTER_MAC_WILD:
2189 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2190 if (is_full)
2191 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2192 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2193 gen_spec->loc_mac[1] = spec->data[2];
2194 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2195 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2196 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2197 gen_spec->loc_mac[5] = spec->data[1];
2198 gen_spec->outer_vid = htons(spec->data[0]);
2199 break;
2200
2201 case EFX_FARCH_FILTER_UC_DEF:
2202 case EFX_FARCH_FILTER_MC_DEF:
2203 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2204 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2205 break;
2206
2207 default:
2208 WARN_ON(1);
2209 break;
2210 }
2211 }
2212
2213 static void
2214 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2215 struct efx_farch_filter_spec *spec)
2216 {
2217 /* If there's only one channel then disable RSS for non VF
2218 * traffic, thereby allowing VFs to use RSS when the PF can't.
2219 */
2220 spec->priority = EFX_FILTER_PRI_AUTO;
2221 spec->flags = (EFX_FILTER_FLAG_RX |
2222 (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2223 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2224 spec->dmaq_id = 0;
2225 }
2226
2227 /* Build a filter entry and return its n-tuple key. */
2228 static u32 efx_farch_filter_build(efx_oword_t *filter,
2229 struct efx_farch_filter_spec *spec)
2230 {
2231 u32 data3;
2232
2233 switch (efx_farch_filter_spec_table_id(spec)) {
2234 case EFX_FARCH_FILTER_TABLE_RX_IP: {
2235 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2236 spec->type == EFX_FARCH_FILTER_UDP_WILD);
2237 EFX_POPULATE_OWORD_7(
2238 *filter,
2239 FRF_BZ_RSS_EN,
2240 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2241 FRF_BZ_SCATTER_EN,
2242 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2243 FRF_BZ_TCP_UDP, is_udp,
2244 FRF_BZ_RXQ_ID, spec->dmaq_id,
2245 EFX_DWORD_2, spec->data[2],
2246 EFX_DWORD_1, spec->data[1],
2247 EFX_DWORD_0, spec->data[0]);
2248 data3 = is_udp;
2249 break;
2250 }
2251
2252 case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2253 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2254 EFX_POPULATE_OWORD_7(
2255 *filter,
2256 FRF_CZ_RMFT_RSS_EN,
2257 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2258 FRF_CZ_RMFT_SCATTER_EN,
2259 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2260 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2261 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2262 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2263 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2264 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2265 data3 = is_wild;
2266 break;
2267 }
2268
2269 case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2270 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2271 EFX_POPULATE_OWORD_5(*filter,
2272 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2273 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2274 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2275 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2276 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2277 data3 = is_wild | spec->dmaq_id << 1;
2278 break;
2279 }
2280
2281 default:
2282 BUG();
2283 }
2284
2285 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2286 }
2287
2288 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2289 const struct efx_farch_filter_spec *right)
2290 {
2291 if (left->type != right->type ||
2292 memcmp(left->data, right->data, sizeof(left->data)))
2293 return false;
2294
2295 if (left->flags & EFX_FILTER_FLAG_TX &&
2296 left->dmaq_id != right->dmaq_id)
2297 return false;
2298
2299 return true;
2300 }
2301
2302 /*
2303 * Construct/deconstruct external filter IDs. At least the RX filter
2304 * IDs must be ordered by matching priority, for RX NFC semantics.
2305 *
2306 * Deconstruction needs to be robust against invalid IDs so that
2307 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2308 * accept user-provided IDs.
2309 */
2310
2311 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2312
2313 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2314 [EFX_FARCH_FILTER_TCP_FULL] = 0,
2315 [EFX_FARCH_FILTER_UDP_FULL] = 0,
2316 [EFX_FARCH_FILTER_TCP_WILD] = 1,
2317 [EFX_FARCH_FILTER_UDP_WILD] = 1,
2318 [EFX_FARCH_FILTER_MAC_FULL] = 2,
2319 [EFX_FARCH_FILTER_MAC_WILD] = 3,
2320 [EFX_FARCH_FILTER_UC_DEF] = 4,
2321 [EFX_FARCH_FILTER_MC_DEF] = 4,
2322 };
2323
2324 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2325 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2326 EFX_FARCH_FILTER_TABLE_RX_IP,
2327 EFX_FARCH_FILTER_TABLE_RX_MAC,
2328 EFX_FARCH_FILTER_TABLE_RX_MAC,
2329 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2330 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2331 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2332 };
2333
2334 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2335 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2336
2337 static inline u32
2338 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2339 unsigned int index)
2340 {
2341 unsigned int range;
2342
2343 range = efx_farch_filter_type_match_pri[spec->type];
2344 if (!(spec->flags & EFX_FILTER_FLAG_RX))
2345 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2346
2347 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2348 }
2349
2350 static inline enum efx_farch_filter_table_id
2351 efx_farch_filter_id_table_id(u32 id)
2352 {
2353 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2354
2355 if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2356 return efx_farch_filter_range_table[range];
2357 else
2358 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2359 }
2360
2361 static inline unsigned int efx_farch_filter_id_index(u32 id)
2362 {
2363 return id & EFX_FARCH_FILTER_INDEX_MASK;
2364 }
2365
2366 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2367 {
2368 struct efx_farch_filter_state *state = efx->filter_state;
2369 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2370 enum efx_farch_filter_table_id table_id;
2371
2372 do {
2373 table_id = efx_farch_filter_range_table[range];
2374 if (state->table[table_id].size != 0)
2375 return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2376 state->table[table_id].size;
2377 } while (range--);
2378
2379 return 0;
2380 }
2381
2382 s32 efx_farch_filter_insert(struct efx_nic *efx,
2383 struct efx_filter_spec *gen_spec,
2384 bool replace_equal)
2385 {
2386 struct efx_farch_filter_state *state = efx->filter_state;
2387 struct efx_farch_filter_table *table;
2388 struct efx_farch_filter_spec spec;
2389 efx_oword_t filter;
2390 int rep_index, ins_index;
2391 unsigned int depth = 0;
2392 int rc;
2393
2394 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2395 if (rc)
2396 return rc;
2397
2398 down_write(&state->lock);
2399
2400 table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2401 if (table->size == 0) {
2402 rc = -EINVAL;
2403 goto out_unlock;
2404 }
2405
2406 netif_vdbg(efx, hw, efx->net_dev,
2407 "%s: type %d search_limit=%d", __func__, spec.type,
2408 table->search_limit[spec.type]);
2409
2410 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2411 /* One filter spec per type */
2412 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2413 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2414 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2415 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2416 ins_index = rep_index;
2417 } else {
2418 /* Search concurrently for
2419 * (1) a filter to be replaced (rep_index): any filter
2420 * with the same match values, up to the current
2421 * search depth for this type, and
2422 * (2) the insertion point (ins_index): (1) or any
2423 * free slot before it or up to the maximum search
2424 * depth for this priority
2425 * We fail if we cannot find (2).
2426 *
2427 * We can stop once either
2428 * (a) we find (1), in which case we have definitely
2429 * found (2) as well; or
2430 * (b) we have searched exhaustively for (1), and have
2431 * either found (2) or searched exhaustively for it
2432 */
2433 u32 key = efx_farch_filter_build(&filter, &spec);
2434 unsigned int hash = efx_farch_filter_hash(key);
2435 unsigned int incr = efx_farch_filter_increment(key);
2436 unsigned int max_rep_depth = table->search_limit[spec.type];
2437 unsigned int max_ins_depth =
2438 spec.priority <= EFX_FILTER_PRI_HINT ?
2439 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2440 EFX_FARCH_FILTER_CTL_SRCH_MAX;
2441 unsigned int i = hash & (table->size - 1);
2442
2443 ins_index = -1;
2444 depth = 1;
2445
2446 for (;;) {
2447 if (!test_bit(i, table->used_bitmap)) {
2448 if (ins_index < 0)
2449 ins_index = i;
2450 } else if (efx_farch_filter_equal(&spec,
2451 &table->spec[i])) {
2452 /* Case (a) */
2453 if (ins_index < 0)
2454 ins_index = i;
2455 rep_index = i;
2456 break;
2457 }
2458
2459 if (depth >= max_rep_depth &&
2460 (ins_index >= 0 || depth >= max_ins_depth)) {
2461 /* Case (b) */
2462 if (ins_index < 0) {
2463 rc = -EBUSY;
2464 goto out_unlock;
2465 }
2466 rep_index = -1;
2467 break;
2468 }
2469
2470 i = (i + incr) & (table->size - 1);
2471 ++depth;
2472 }
2473 }
2474
2475 /* If we found a filter to be replaced, check whether we
2476 * should do so
2477 */
2478 if (rep_index >= 0) {
2479 struct efx_farch_filter_spec *saved_spec =
2480 &table->spec[rep_index];
2481
2482 if (spec.priority == saved_spec->priority && !replace_equal) {
2483 rc = -EEXIST;
2484 goto out_unlock;
2485 }
2486 if (spec.priority < saved_spec->priority) {
2487 rc = -EPERM;
2488 goto out_unlock;
2489 }
2490 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2491 saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2492 spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2493 }
2494
2495 /* Insert the filter */
2496 if (ins_index != rep_index) {
2497 __set_bit(ins_index, table->used_bitmap);
2498 ++table->used;
2499 }
2500 table->spec[ins_index] = spec;
2501
2502 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2503 efx_farch_filter_push_rx_config(efx);
2504 } else {
2505 if (table->search_limit[spec.type] < depth) {
2506 table->search_limit[spec.type] = depth;
2507 if (spec.flags & EFX_FILTER_FLAG_TX)
2508 efx_farch_filter_push_tx_limits(efx);
2509 else
2510 efx_farch_filter_push_rx_config(efx);
2511 }
2512
2513 efx_writeo(efx, &filter,
2514 table->offset + table->step * ins_index);
2515
2516 /* If we were able to replace a filter by inserting
2517 * at a lower depth, clear the replaced filter
2518 */
2519 if (ins_index != rep_index && rep_index >= 0)
2520 efx_farch_filter_table_clear_entry(efx, table,
2521 rep_index);
2522 }
2523
2524 netif_vdbg(efx, hw, efx->net_dev,
2525 "%s: filter type %d index %d rxq %u set",
2526 __func__, spec.type, ins_index, spec.dmaq_id);
2527 rc = efx_farch_filter_make_id(&spec, ins_index);
2528
2529 out_unlock:
2530 up_write(&state->lock);
2531 return rc;
2532 }
2533
2534 static void
2535 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2536 struct efx_farch_filter_table *table,
2537 unsigned int filter_idx)
2538 {
2539 static efx_oword_t filter;
2540
2541 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2542 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2543
2544 __clear_bit(filter_idx, table->used_bitmap);
2545 --table->used;
2546 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2547
2548 efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2549
2550 /* If this filter required a greater search depth than
2551 * any other, the search limit for its type can now be
2552 * decreased. However, it is hard to determine that
2553 * unless the table has become completely empty - in
2554 * which case, all its search limits can be set to 0.
2555 */
2556 if (unlikely(table->used == 0)) {
2557 memset(table->search_limit, 0, sizeof(table->search_limit));
2558 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2559 efx_farch_filter_push_tx_limits(efx);
2560 else
2561 efx_farch_filter_push_rx_config(efx);
2562 }
2563 }
2564
2565 static int efx_farch_filter_remove(struct efx_nic *efx,
2566 struct efx_farch_filter_table *table,
2567 unsigned int filter_idx,
2568 enum efx_filter_priority priority)
2569 {
2570 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2571
2572 if (!test_bit(filter_idx, table->used_bitmap) ||
2573 spec->priority != priority)
2574 return -ENOENT;
2575
2576 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2577 efx_farch_filter_init_rx_auto(efx, spec);
2578 efx_farch_filter_push_rx_config(efx);
2579 } else {
2580 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2581 }
2582
2583 return 0;
2584 }
2585
2586 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2587 enum efx_filter_priority priority,
2588 u32 filter_id)
2589 {
2590 struct efx_farch_filter_state *state = efx->filter_state;
2591 enum efx_farch_filter_table_id table_id;
2592 struct efx_farch_filter_table *table;
2593 unsigned int filter_idx;
2594 struct efx_farch_filter_spec *spec;
2595 int rc;
2596
2597 table_id = efx_farch_filter_id_table_id(filter_id);
2598 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2599 return -ENOENT;
2600 table = &state->table[table_id];
2601
2602 filter_idx = efx_farch_filter_id_index(filter_id);
2603 if (filter_idx >= table->size)
2604 return -ENOENT;
2605 down_write(&state->lock);
2606 spec = &table->spec[filter_idx];
2607
2608 rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2609 up_write(&state->lock);
2610
2611 return rc;
2612 }
2613
2614 int efx_farch_filter_get_safe(struct efx_nic *efx,
2615 enum efx_filter_priority priority,
2616 u32 filter_id, struct efx_filter_spec *spec_buf)
2617 {
2618 struct efx_farch_filter_state *state = efx->filter_state;
2619 enum efx_farch_filter_table_id table_id;
2620 struct efx_farch_filter_table *table;
2621 struct efx_farch_filter_spec *spec;
2622 unsigned int filter_idx;
2623 int rc = -ENOENT;
2624
2625 down_read(&state->lock);
2626
2627 table_id = efx_farch_filter_id_table_id(filter_id);
2628 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2629 goto out_unlock;
2630 table = &state->table[table_id];
2631
2632 filter_idx = efx_farch_filter_id_index(filter_id);
2633 if (filter_idx >= table->size)
2634 goto out_unlock;
2635 spec = &table->spec[filter_idx];
2636
2637 if (test_bit(filter_idx, table->used_bitmap) &&
2638 spec->priority == priority) {
2639 efx_farch_filter_to_gen_spec(spec_buf, spec);
2640 rc = 0;
2641 }
2642
2643 out_unlock:
2644 up_read(&state->lock);
2645 return rc;
2646 }
2647
2648 static void
2649 efx_farch_filter_table_clear(struct efx_nic *efx,
2650 enum efx_farch_filter_table_id table_id,
2651 enum efx_filter_priority priority)
2652 {
2653 struct efx_farch_filter_state *state = efx->filter_state;
2654 struct efx_farch_filter_table *table = &state->table[table_id];
2655 unsigned int filter_idx;
2656
2657 down_write(&state->lock);
2658 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2659 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2660 efx_farch_filter_remove(efx, table,
2661 filter_idx, priority);
2662 }
2663 up_write(&state->lock);
2664 }
2665
2666 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2667 enum efx_filter_priority priority)
2668 {
2669 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2670 priority);
2671 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2672 priority);
2673 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2674 priority);
2675 return 0;
2676 }
2677
2678 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2679 enum efx_filter_priority priority)
2680 {
2681 struct efx_farch_filter_state *state = efx->filter_state;
2682 enum efx_farch_filter_table_id table_id;
2683 struct efx_farch_filter_table *table;
2684 unsigned int filter_idx;
2685 u32 count = 0;
2686
2687 down_read(&state->lock);
2688
2689 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2690 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2691 table_id++) {
2692 table = &state->table[table_id];
2693 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694 if (test_bit(filter_idx, table->used_bitmap) &&
2695 table->spec[filter_idx].priority == priority)
2696 ++count;
2697 }
2698 }
2699
2700 up_read(&state->lock);
2701
2702 return count;
2703 }
2704
2705 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2706 enum efx_filter_priority priority,
2707 u32 *buf, u32 size)
2708 {
2709 struct efx_farch_filter_state *state = efx->filter_state;
2710 enum efx_farch_filter_table_id table_id;
2711 struct efx_farch_filter_table *table;
2712 unsigned int filter_idx;
2713 s32 count = 0;
2714
2715 down_read(&state->lock);
2716
2717 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2718 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2719 table_id++) {
2720 table = &state->table[table_id];
2721 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2722 if (test_bit(filter_idx, table->used_bitmap) &&
2723 table->spec[filter_idx].priority == priority) {
2724 if (count == size) {
2725 count = -EMSGSIZE;
2726 goto out;
2727 }
2728 buf[count++] = efx_farch_filter_make_id(
2729 &table->spec[filter_idx], filter_idx);
2730 }
2731 }
2732 }
2733 out:
2734 up_read(&state->lock);
2735
2736 return count;
2737 }
2738
2739 /* Restore filter stater after reset */
2740 void efx_farch_filter_table_restore(struct efx_nic *efx)
2741 {
2742 struct efx_farch_filter_state *state = efx->filter_state;
2743 enum efx_farch_filter_table_id table_id;
2744 struct efx_farch_filter_table *table;
2745 efx_oword_t filter;
2746 unsigned int filter_idx;
2747
2748 down_write(&state->lock);
2749
2750 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2751 table = &state->table[table_id];
2752
2753 /* Check whether this is a regular register table */
2754 if (table->step == 0)
2755 continue;
2756
2757 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2758 if (!test_bit(filter_idx, table->used_bitmap))
2759 continue;
2760 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2761 efx_writeo(efx, &filter,
2762 table->offset + table->step * filter_idx);
2763 }
2764 }
2765
2766 efx_farch_filter_push_rx_config(efx);
2767 efx_farch_filter_push_tx_limits(efx);
2768
2769 up_write(&state->lock);
2770 }
2771
2772 void efx_farch_filter_table_remove(struct efx_nic *efx)
2773 {
2774 struct efx_farch_filter_state *state = efx->filter_state;
2775 enum efx_farch_filter_table_id table_id;
2776
2777 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2778 kfree(state->table[table_id].used_bitmap);
2779 vfree(state->table[table_id].spec);
2780 }
2781 kfree(state);
2782 }
2783
2784 int efx_farch_filter_table_probe(struct efx_nic *efx)
2785 {
2786 struct efx_farch_filter_state *state;
2787 struct efx_farch_filter_table *table;
2788 unsigned table_id;
2789
2790 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2791 if (!state)
2792 return -ENOMEM;
2793 efx->filter_state = state;
2794 init_rwsem(&state->lock);
2795
2796 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2797 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2798 table->offset = FR_BZ_RX_FILTER_TBL0;
2799 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2800 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2801
2802 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2803 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2804 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2805 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2806 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2807
2808 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2809 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2810 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2811
2812 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2813 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2814 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2815 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2816 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2817
2818 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2819 table = &state->table[table_id];
2820 if (table->size == 0)
2821 continue;
2822 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2823 sizeof(unsigned long),
2824 GFP_KERNEL);
2825 if (!table->used_bitmap)
2826 goto fail;
2827 table->spec = vzalloc(array_size(sizeof(*table->spec),
2828 table->size));
2829 if (!table->spec)
2830 goto fail;
2831 }
2832
2833 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2834 if (table->size) {
2835 /* RX default filters must always exist */
2836 struct efx_farch_filter_spec *spec;
2837 unsigned i;
2838
2839 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2840 spec = &table->spec[i];
2841 spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2842 efx_farch_filter_init_rx_auto(efx, spec);
2843 __set_bit(i, table->used_bitmap);
2844 }
2845 }
2846
2847 efx_farch_filter_push_rx_config(efx);
2848
2849 return 0;
2850
2851 fail:
2852 efx_farch_filter_table_remove(efx);
2853 return -ENOMEM;
2854 }
2855
2856 /* Update scatter enable flags for filters pointing to our own RX queues */
2857 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2858 {
2859 struct efx_farch_filter_state *state = efx->filter_state;
2860 enum efx_farch_filter_table_id table_id;
2861 struct efx_farch_filter_table *table;
2862 efx_oword_t filter;
2863 unsigned int filter_idx;
2864
2865 down_write(&state->lock);
2866
2867 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2868 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2869 table_id++) {
2870 table = &state->table[table_id];
2871
2872 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2873 if (!test_bit(filter_idx, table->used_bitmap) ||
2874 table->spec[filter_idx].dmaq_id >=
2875 efx->n_rx_channels)
2876 continue;
2877
2878 if (efx->rx_scatter)
2879 table->spec[filter_idx].flags |=
2880 EFX_FILTER_FLAG_RX_SCATTER;
2881 else
2882 table->spec[filter_idx].flags &=
2883 ~EFX_FILTER_FLAG_RX_SCATTER;
2884
2885 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2886 /* Pushed by efx_farch_filter_push_rx_config() */
2887 continue;
2888
2889 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2890 efx_writeo(efx, &filter,
2891 table->offset + table->step * filter_idx);
2892 }
2893 }
2894
2895 efx_farch_filter_push_rx_config(efx);
2896
2897 up_write(&state->lock);
2898 }
2899
2900 #ifdef CONFIG_RFS_ACCEL
2901
2902 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2903 unsigned int index)
2904 {
2905 struct efx_farch_filter_state *state = efx->filter_state;
2906 struct efx_farch_filter_table *table;
2907 bool ret = false, force = false;
2908 u16 arfs_id;
2909
2910 down_write(&state->lock);
2911 spin_lock_bh(&efx->rps_hash_lock);
2912 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2913 if (test_bit(index, table->used_bitmap) &&
2914 table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2915 struct efx_arfs_rule *rule = NULL;
2916 struct efx_filter_spec spec;
2917
2918 efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2919 if (!efx->rps_hash_table) {
2920 /* In the absence of the table, we always returned 0 to
2921 * ARFS, so use the same to query it.
2922 */
2923 arfs_id = 0;
2924 } else {
2925 rule = efx_rps_hash_find(efx, &spec);
2926 if (!rule) {
2927 /* ARFS table doesn't know of this filter, remove it */
2928 force = true;
2929 } else {
2930 arfs_id = rule->arfs_id;
2931 if (!efx_rps_check_rule(rule, index, &force))
2932 goto out_unlock;
2933 }
2934 }
2935 if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2936 flow_id, arfs_id)) {
2937 if (rule)
2938 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2939 efx_rps_hash_del(efx, &spec);
2940 efx_farch_filter_table_clear_entry(efx, table, index);
2941 ret = true;
2942 }
2943 }
2944 out_unlock:
2945 spin_unlock_bh(&efx->rps_hash_lock);
2946 up_write(&state->lock);
2947 return ret;
2948 }
2949
2950 #endif /* CONFIG_RFS_ACCEL */
2951
2952 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2953 {
2954 struct net_device *net_dev = efx->net_dev;
2955 struct netdev_hw_addr *ha;
2956 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2957 u32 crc;
2958 int bit;
2959
2960 if (!efx_dev_registered(efx))
2961 return;
2962
2963 netif_addr_lock_bh(net_dev);
2964
2965 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2966
2967 /* Build multicast hash table */
2968 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2969 memset(mc_hash, 0xff, sizeof(*mc_hash));
2970 } else {
2971 memset(mc_hash, 0x00, sizeof(*mc_hash));
2972 netdev_for_each_mc_addr(ha, net_dev) {
2973 crc = ether_crc_le(ETH_ALEN, ha->addr);
2974 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2975 __set_bit_le(bit, mc_hash);
2976 }
2977
2978 /* Broadcast packets go through the multicast hash filter.
2979 * ether_crc_le() of the broadcast address is 0xbe2612ff
2980 * so we always add bit 0xff to the mask.
2981 */
2982 __set_bit_le(0xff, mc_hash);
2983 }
2984
2985 netif_addr_unlock_bh(net_dev);
2986 }