]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/sfc/mcdi.c
jfs: fix error path in ialloc
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / sfc / mcdi.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include <linux/delay.h>
11 #include <asm/cmpxchg.h>
12 #include "net_driver.h"
13 #include "nic.h"
14 #include "io.h"
15 #include "farch_regs.h"
16 #include "mcdi_pcol.h"
17 #include "phy.h"
18
19 /**************************************************************************
20 *
21 * Management-Controller-to-Driver Interface
22 *
23 **************************************************************************
24 */
25
26 #define MCDI_RPC_TIMEOUT (10 * HZ)
27
28 /* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 20ms for the status word to be set.
31 */
32 #define MCDI_STATUS_DELAY_US 100
33 #define MCDI_STATUS_DELAY_COUNT 200
34 #define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36
37 #define SEQ_MASK \
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39
40 struct efx_mcdi_async_param {
41 struct list_head list;
42 unsigned int cmd;
43 size_t inlen;
44 size_t outlen;
45 efx_mcdi_async_completer *complete;
46 unsigned long cookie;
47 /* followed by request/response buffer */
48 };
49
50 static void efx_mcdi_timeout_async(unsigned long context);
51 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
52 bool *was_attached_out);
53
54 static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
55 {
56 EFX_BUG_ON_PARANOID(!efx->mcdi);
57 return &efx->mcdi->iface;
58 }
59
60 int efx_mcdi_init(struct efx_nic *efx)
61 {
62 struct efx_mcdi_iface *mcdi;
63 bool already_attached;
64 int rc;
65
66 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
67 if (!efx->mcdi)
68 return -ENOMEM;
69
70 mcdi = efx_mcdi(efx);
71 mcdi->efx = efx;
72 init_waitqueue_head(&mcdi->wq);
73 spin_lock_init(&mcdi->iface_lock);
74 mcdi->state = MCDI_STATE_QUIESCENT;
75 mcdi->mode = MCDI_MODE_POLL;
76 spin_lock_init(&mcdi->async_lock);
77 INIT_LIST_HEAD(&mcdi->async_list);
78 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
79 (unsigned long)mcdi);
80
81 (void) efx_mcdi_poll_reboot(efx);
82 mcdi->new_epoch = true;
83
84 /* Recover from a failed assertion before probing */
85 rc = efx_mcdi_handle_assertion(efx);
86 if (rc)
87 return rc;
88
89 /* Let the MC (and BMC, if this is a LOM) know that the driver
90 * is loaded. We should do this before we reset the NIC.
91 */
92 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
93 if (rc) {
94 netif_err(efx, probe, efx->net_dev,
95 "Unable to register driver with MCPU\n");
96 return rc;
97 }
98 if (already_attached)
99 /* Not a fatal error */
100 netif_err(efx, probe, efx->net_dev,
101 "Host already registered with MCPU\n");
102
103 return 0;
104 }
105
106 void efx_mcdi_fini(struct efx_nic *efx)
107 {
108 if (!efx->mcdi)
109 return;
110
111 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
112
113 /* Relinquish the device (back to the BMC, if this is a LOM) */
114 efx_mcdi_drv_attach(efx, false, NULL);
115
116 kfree(efx->mcdi);
117 }
118
119 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
120 const efx_dword_t *inbuf, size_t inlen)
121 {
122 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
123 efx_dword_t hdr[2];
124 size_t hdr_len;
125 u32 xflags, seqno;
126
127 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
128
129 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
130 spin_lock_bh(&mcdi->iface_lock);
131 ++mcdi->seqno;
132 spin_unlock_bh(&mcdi->iface_lock);
133
134 seqno = mcdi->seqno & SEQ_MASK;
135 xflags = 0;
136 if (mcdi->mode == MCDI_MODE_EVENTS)
137 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
138
139 if (efx->type->mcdi_max_ver == 1) {
140 /* MCDI v1 */
141 EFX_POPULATE_DWORD_7(hdr[0],
142 MCDI_HEADER_RESPONSE, 0,
143 MCDI_HEADER_RESYNC, 1,
144 MCDI_HEADER_CODE, cmd,
145 MCDI_HEADER_DATALEN, inlen,
146 MCDI_HEADER_SEQ, seqno,
147 MCDI_HEADER_XFLAGS, xflags,
148 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
149 hdr_len = 4;
150 } else {
151 /* MCDI v2 */
152 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
153 EFX_POPULATE_DWORD_7(hdr[0],
154 MCDI_HEADER_RESPONSE, 0,
155 MCDI_HEADER_RESYNC, 1,
156 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
157 MCDI_HEADER_DATALEN, 0,
158 MCDI_HEADER_SEQ, seqno,
159 MCDI_HEADER_XFLAGS, xflags,
160 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
161 EFX_POPULATE_DWORD_2(hdr[1],
162 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
163 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
164 hdr_len = 8;
165 }
166
167 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
168
169 mcdi->new_epoch = false;
170 }
171
172 static int efx_mcdi_errno(unsigned int mcdi_err)
173 {
174 switch (mcdi_err) {
175 case 0:
176 return 0;
177 #define TRANSLATE_ERROR(name) \
178 case MC_CMD_ERR_ ## name: \
179 return -name;
180 TRANSLATE_ERROR(EPERM);
181 TRANSLATE_ERROR(ENOENT);
182 TRANSLATE_ERROR(EINTR);
183 TRANSLATE_ERROR(EAGAIN);
184 TRANSLATE_ERROR(EACCES);
185 TRANSLATE_ERROR(EBUSY);
186 TRANSLATE_ERROR(EINVAL);
187 TRANSLATE_ERROR(EDEADLK);
188 TRANSLATE_ERROR(ENOSYS);
189 TRANSLATE_ERROR(ETIME);
190 TRANSLATE_ERROR(EALREADY);
191 TRANSLATE_ERROR(ENOSPC);
192 #undef TRANSLATE_ERROR
193 case MC_CMD_ERR_ALLOC_FAIL:
194 return -ENOBUFS;
195 case MC_CMD_ERR_MAC_EXIST:
196 return -EADDRINUSE;
197 default:
198 return -EPROTO;
199 }
200 }
201
202 static void efx_mcdi_read_response_header(struct efx_nic *efx)
203 {
204 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
205 unsigned int respseq, respcmd, error;
206 efx_dword_t hdr;
207
208 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
209 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
210 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
211 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
212
213 if (respcmd != MC_CMD_V2_EXTN) {
214 mcdi->resp_hdr_len = 4;
215 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
216 } else {
217 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
218 mcdi->resp_hdr_len = 8;
219 mcdi->resp_data_len =
220 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
221 }
222
223 if (error && mcdi->resp_data_len == 0) {
224 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
225 mcdi->resprc = -EIO;
226 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
227 netif_err(efx, hw, efx->net_dev,
228 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
229 respseq, mcdi->seqno);
230 mcdi->resprc = -EIO;
231 } else if (error) {
232 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
233 mcdi->resprc =
234 efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
235 } else {
236 mcdi->resprc = 0;
237 }
238 }
239
240 static int efx_mcdi_poll(struct efx_nic *efx)
241 {
242 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
243 unsigned long time, finish;
244 unsigned int spins;
245 int rc;
246
247 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
248 rc = efx_mcdi_poll_reboot(efx);
249 if (rc) {
250 spin_lock_bh(&mcdi->iface_lock);
251 mcdi->resprc = rc;
252 mcdi->resp_hdr_len = 0;
253 mcdi->resp_data_len = 0;
254 spin_unlock_bh(&mcdi->iface_lock);
255 return 0;
256 }
257
258 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
259 * because generally mcdi responses are fast. After that, back off
260 * and poll once a jiffy (approximately)
261 */
262 spins = TICK_USEC;
263 finish = jiffies + MCDI_RPC_TIMEOUT;
264
265 while (1) {
266 if (spins != 0) {
267 --spins;
268 udelay(1);
269 } else {
270 schedule_timeout_uninterruptible(1);
271 }
272
273 time = jiffies;
274
275 rmb();
276 if (efx->type->mcdi_poll_response(efx))
277 break;
278
279 if (time_after(time, finish))
280 return -ETIMEDOUT;
281 }
282
283 spin_lock_bh(&mcdi->iface_lock);
284 efx_mcdi_read_response_header(efx);
285 spin_unlock_bh(&mcdi->iface_lock);
286
287 /* Return rc=0 like wait_event_timeout() */
288 return 0;
289 }
290
291 /* Test and clear MC-rebooted flag for this port/function; reset
292 * software state as necessary.
293 */
294 int efx_mcdi_poll_reboot(struct efx_nic *efx)
295 {
296 if (!efx->mcdi)
297 return 0;
298
299 return efx->type->mcdi_poll_reboot(efx);
300 }
301
302 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
303 {
304 return cmpxchg(&mcdi->state,
305 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
306 MCDI_STATE_QUIESCENT;
307 }
308
309 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
310 {
311 /* Wait until the interface becomes QUIESCENT and we win the race
312 * to mark it RUNNING_SYNC.
313 */
314 wait_event(mcdi->wq,
315 cmpxchg(&mcdi->state,
316 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
317 MCDI_STATE_QUIESCENT);
318 }
319
320 static int efx_mcdi_await_completion(struct efx_nic *efx)
321 {
322 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
323
324 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
325 MCDI_RPC_TIMEOUT) == 0)
326 return -ETIMEDOUT;
327
328 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
329 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
330 * completed the request first, then we'll just end up completing the
331 * request again, which is safe.
332 *
333 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
334 * wait_event_timeout() implicitly provides.
335 */
336 if (mcdi->mode == MCDI_MODE_POLL)
337 return efx_mcdi_poll(efx);
338
339 return 0;
340 }
341
342 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
343 * requester. Return whether this was done. Does not take any locks.
344 */
345 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
346 {
347 if (cmpxchg(&mcdi->state,
348 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
349 MCDI_STATE_RUNNING_SYNC) {
350 wake_up(&mcdi->wq);
351 return true;
352 }
353
354 return false;
355 }
356
357 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
358 {
359 if (mcdi->mode == MCDI_MODE_EVENTS) {
360 struct efx_mcdi_async_param *async;
361 struct efx_nic *efx = mcdi->efx;
362
363 /* Process the asynchronous request queue */
364 spin_lock_bh(&mcdi->async_lock);
365 async = list_first_entry_or_null(
366 &mcdi->async_list, struct efx_mcdi_async_param, list);
367 if (async) {
368 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
369 efx_mcdi_send_request(efx, async->cmd,
370 (const efx_dword_t *)(async + 1),
371 async->inlen);
372 mod_timer(&mcdi->async_timer,
373 jiffies + MCDI_RPC_TIMEOUT);
374 }
375 spin_unlock_bh(&mcdi->async_lock);
376
377 if (async)
378 return;
379 }
380
381 mcdi->state = MCDI_STATE_QUIESCENT;
382 wake_up(&mcdi->wq);
383 }
384
385 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
386 * asynchronous completion function, and release the interface.
387 * Return whether this was done. Must be called in bh-disabled
388 * context. Will take iface_lock and async_lock.
389 */
390 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
391 {
392 struct efx_nic *efx = mcdi->efx;
393 struct efx_mcdi_async_param *async;
394 size_t hdr_len, data_len;
395 efx_dword_t *outbuf;
396 int rc;
397
398 if (cmpxchg(&mcdi->state,
399 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
400 MCDI_STATE_RUNNING_ASYNC)
401 return false;
402
403 spin_lock(&mcdi->iface_lock);
404 if (timeout) {
405 /* Ensure that if the completion event arrives later,
406 * the seqno check in efx_mcdi_ev_cpl() will fail
407 */
408 ++mcdi->seqno;
409 ++mcdi->credits;
410 rc = -ETIMEDOUT;
411 hdr_len = 0;
412 data_len = 0;
413 } else {
414 rc = mcdi->resprc;
415 hdr_len = mcdi->resp_hdr_len;
416 data_len = mcdi->resp_data_len;
417 }
418 spin_unlock(&mcdi->iface_lock);
419
420 /* Stop the timer. In case the timer function is running, we
421 * must wait for it to return so that there is no possibility
422 * of it aborting the next request.
423 */
424 if (!timeout)
425 del_timer_sync(&mcdi->async_timer);
426
427 spin_lock(&mcdi->async_lock);
428 async = list_first_entry(&mcdi->async_list,
429 struct efx_mcdi_async_param, list);
430 list_del(&async->list);
431 spin_unlock(&mcdi->async_lock);
432
433 outbuf = (efx_dword_t *)(async + 1);
434 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
435 min(async->outlen, data_len));
436 async->complete(efx, async->cookie, rc, outbuf, data_len);
437 kfree(async);
438
439 efx_mcdi_release(mcdi);
440
441 return true;
442 }
443
444 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
445 unsigned int datalen, unsigned int mcdi_err)
446 {
447 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
448 bool wake = false;
449
450 spin_lock(&mcdi->iface_lock);
451
452 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
453 if (mcdi->credits)
454 /* The request has been cancelled */
455 --mcdi->credits;
456 else
457 netif_err(efx, hw, efx->net_dev,
458 "MC response mismatch tx seq 0x%x rx "
459 "seq 0x%x\n", seqno, mcdi->seqno);
460 } else {
461 if (efx->type->mcdi_max_ver >= 2) {
462 /* MCDI v2 responses don't fit in an event */
463 efx_mcdi_read_response_header(efx);
464 } else {
465 mcdi->resprc = efx_mcdi_errno(mcdi_err);
466 mcdi->resp_hdr_len = 4;
467 mcdi->resp_data_len = datalen;
468 }
469
470 wake = true;
471 }
472
473 spin_unlock(&mcdi->iface_lock);
474
475 if (wake) {
476 if (!efx_mcdi_complete_async(mcdi, false))
477 (void) efx_mcdi_complete_sync(mcdi);
478
479 /* If the interface isn't RUNNING_ASYNC or
480 * RUNNING_SYNC then we've received a duplicate
481 * completion after we've already transitioned back to
482 * QUIESCENT. [A subsequent invocation would increment
483 * seqno, so would have failed the seqno check].
484 */
485 }
486 }
487
488 static void efx_mcdi_timeout_async(unsigned long context)
489 {
490 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
491
492 efx_mcdi_complete_async(mcdi, true);
493 }
494
495 static int
496 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
497 {
498 if (efx->type->mcdi_max_ver < 0 ||
499 (efx->type->mcdi_max_ver < 2 &&
500 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
501 return -EINVAL;
502
503 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
504 (efx->type->mcdi_max_ver < 2 &&
505 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
506 return -EMSGSIZE;
507
508 return 0;
509 }
510
511 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
512 const efx_dword_t *inbuf, size_t inlen,
513 efx_dword_t *outbuf, size_t outlen,
514 size_t *outlen_actual)
515 {
516 int rc;
517
518 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
519 if (rc)
520 return rc;
521 return efx_mcdi_rpc_finish(efx, cmd, inlen,
522 outbuf, outlen, outlen_actual);
523 }
524
525 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
526 const efx_dword_t *inbuf, size_t inlen)
527 {
528 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
529 int rc;
530
531 rc = efx_mcdi_check_supported(efx, cmd, inlen);
532 if (rc)
533 return rc;
534
535 efx_mcdi_acquire_sync(mcdi);
536 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
537 return 0;
538 }
539
540 /**
541 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
542 * @efx: NIC through which to issue the command
543 * @cmd: Command type number
544 * @inbuf: Command parameters
545 * @inlen: Length of command parameters, in bytes
546 * @outlen: Length to allocate for response buffer, in bytes
547 * @complete: Function to be called on completion or cancellation.
548 * @cookie: Arbitrary value to be passed to @complete.
549 *
550 * This function does not sleep and therefore may be called in atomic
551 * context. It will fail if event queues are disabled or if MCDI
552 * event completions have been disabled due to an error.
553 *
554 * If it succeeds, the @complete function will be called exactly once
555 * in atomic context, when one of the following occurs:
556 * (a) the completion event is received (in NAPI context)
557 * (b) event queues are disabled (in the process that disables them)
558 * (c) the request times-out (in timer context)
559 */
560 int
561 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
562 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
563 efx_mcdi_async_completer *complete, unsigned long cookie)
564 {
565 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
566 struct efx_mcdi_async_param *async;
567 int rc;
568
569 rc = efx_mcdi_check_supported(efx, cmd, inlen);
570 if (rc)
571 return rc;
572
573 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
574 GFP_ATOMIC);
575 if (!async)
576 return -ENOMEM;
577
578 async->cmd = cmd;
579 async->inlen = inlen;
580 async->outlen = outlen;
581 async->complete = complete;
582 async->cookie = cookie;
583 memcpy(async + 1, inbuf, inlen);
584
585 spin_lock_bh(&mcdi->async_lock);
586
587 if (mcdi->mode == MCDI_MODE_EVENTS) {
588 list_add_tail(&async->list, &mcdi->async_list);
589
590 /* If this is at the front of the queue, try to start it
591 * immediately
592 */
593 if (mcdi->async_list.next == &async->list &&
594 efx_mcdi_acquire_async(mcdi)) {
595 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
596 mod_timer(&mcdi->async_timer,
597 jiffies + MCDI_RPC_TIMEOUT);
598 }
599 } else {
600 kfree(async);
601 rc = -ENETDOWN;
602 }
603
604 spin_unlock_bh(&mcdi->async_lock);
605
606 return rc;
607 }
608
609 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
610 efx_dword_t *outbuf, size_t outlen,
611 size_t *outlen_actual)
612 {
613 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
614 int rc;
615
616 if (mcdi->mode == MCDI_MODE_POLL)
617 rc = efx_mcdi_poll(efx);
618 else
619 rc = efx_mcdi_await_completion(efx);
620
621 if (rc != 0) {
622 /* Close the race with efx_mcdi_ev_cpl() executing just too late
623 * and completing a request we've just cancelled, by ensuring
624 * that the seqno check therein fails.
625 */
626 spin_lock_bh(&mcdi->iface_lock);
627 ++mcdi->seqno;
628 ++mcdi->credits;
629 spin_unlock_bh(&mcdi->iface_lock);
630
631 netif_err(efx, hw, efx->net_dev,
632 "MC command 0x%x inlen %d mode %d timed out\n",
633 cmd, (int)inlen, mcdi->mode);
634 } else {
635 size_t hdr_len, data_len;
636
637 /* At the very least we need a memory barrier here to ensure
638 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
639 * a spurious efx_mcdi_ev_cpl() running concurrently by
640 * acquiring the iface_lock. */
641 spin_lock_bh(&mcdi->iface_lock);
642 rc = mcdi->resprc;
643 hdr_len = mcdi->resp_hdr_len;
644 data_len = mcdi->resp_data_len;
645 spin_unlock_bh(&mcdi->iface_lock);
646
647 BUG_ON(rc > 0);
648
649 if (rc == 0) {
650 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
651 min(outlen, data_len));
652 if (outlen_actual != NULL)
653 *outlen_actual = data_len;
654 } else if (cmd == MC_CMD_REBOOT && rc == -EIO)
655 ; /* Don't reset if MC_CMD_REBOOT returns EIO */
656 else if (rc == -EIO || rc == -EINTR) {
657 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
658 -rc);
659 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
660 } else
661 netif_dbg(efx, hw, efx->net_dev,
662 "MC command 0x%x inlen %d failed rc=%d\n",
663 cmd, (int)inlen, -rc);
664
665 if (rc == -EIO || rc == -EINTR) {
666 msleep(MCDI_STATUS_SLEEP_MS);
667 efx_mcdi_poll_reboot(efx);
668 mcdi->new_epoch = true;
669 }
670 }
671
672 efx_mcdi_release(mcdi);
673 return rc;
674 }
675
676 /* Switch to polled MCDI completions. This can be called in various
677 * error conditions with various locks held, so it must be lockless.
678 * Caller is responsible for flushing asynchronous requests later.
679 */
680 void efx_mcdi_mode_poll(struct efx_nic *efx)
681 {
682 struct efx_mcdi_iface *mcdi;
683
684 if (!efx->mcdi)
685 return;
686
687 mcdi = efx_mcdi(efx);
688 if (mcdi->mode == MCDI_MODE_POLL)
689 return;
690
691 /* We can switch from event completion to polled completion, because
692 * mcdi requests are always completed in shared memory. We do this by
693 * switching the mode to POLL'd then completing the request.
694 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
695 *
696 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
697 * which efx_mcdi_complete_sync() provides for us.
698 */
699 mcdi->mode = MCDI_MODE_POLL;
700
701 efx_mcdi_complete_sync(mcdi);
702 }
703
704 /* Flush any running or queued asynchronous requests, after event processing
705 * is stopped
706 */
707 void efx_mcdi_flush_async(struct efx_nic *efx)
708 {
709 struct efx_mcdi_async_param *async, *next;
710 struct efx_mcdi_iface *mcdi;
711
712 if (!efx->mcdi)
713 return;
714
715 mcdi = efx_mcdi(efx);
716
717 /* We must be in polling mode so no more requests can be queued */
718 BUG_ON(mcdi->mode != MCDI_MODE_POLL);
719
720 del_timer_sync(&mcdi->async_timer);
721
722 /* If a request is still running, make sure we give the MC
723 * time to complete it so that the response won't overwrite our
724 * next request.
725 */
726 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
727 efx_mcdi_poll(efx);
728 mcdi->state = MCDI_STATE_QUIESCENT;
729 }
730
731 /* Nothing else will access the async list now, so it is safe
732 * to walk it without holding async_lock. If we hold it while
733 * calling a completer then lockdep may warn that we have
734 * acquired locks in the wrong order.
735 */
736 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
737 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
738 list_del(&async->list);
739 kfree(async);
740 }
741 }
742
743 void efx_mcdi_mode_event(struct efx_nic *efx)
744 {
745 struct efx_mcdi_iface *mcdi;
746
747 if (!efx->mcdi)
748 return;
749
750 mcdi = efx_mcdi(efx);
751
752 if (mcdi->mode == MCDI_MODE_EVENTS)
753 return;
754
755 /* We can't switch from polled to event completion in the middle of a
756 * request, because the completion method is specified in the request.
757 * So acquire the interface to serialise the requestors. We don't need
758 * to acquire the iface_lock to change the mode here, but we do need a
759 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
760 * efx_mcdi_acquire() provides.
761 */
762 efx_mcdi_acquire_sync(mcdi);
763 mcdi->mode = MCDI_MODE_EVENTS;
764 efx_mcdi_release(mcdi);
765 }
766
767 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
768 {
769 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
770
771 /* If there is an outstanding MCDI request, it has been terminated
772 * either by a BADASSERT or REBOOT event. If the mcdi interface is
773 * in polled mode, then do nothing because the MC reboot handler will
774 * set the header correctly. However, if the mcdi interface is waiting
775 * for a CMDDONE event it won't receive it [and since all MCDI events
776 * are sent to the same queue, we can't be racing with
777 * efx_mcdi_ev_cpl()]
778 *
779 * If there is an outstanding asynchronous request, we can't
780 * complete it now (efx_mcdi_complete() would deadlock). The
781 * reset process will take care of this.
782 *
783 * There's a race here with efx_mcdi_send_request(), because
784 * we might receive a REBOOT event *before* the request has
785 * been copied out. In polled mode (during startup) this is
786 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
787 * event mode, this condition is just an edge-case of
788 * receiving a REBOOT event after posting the MCDI
789 * request. Did the mc reboot before or after the copyout? The
790 * best we can do always is just return failure.
791 */
792 spin_lock(&mcdi->iface_lock);
793 if (efx_mcdi_complete_sync(mcdi)) {
794 if (mcdi->mode == MCDI_MODE_EVENTS) {
795 mcdi->resprc = rc;
796 mcdi->resp_hdr_len = 0;
797 mcdi->resp_data_len = 0;
798 ++mcdi->credits;
799 }
800 } else {
801 int count;
802
803 /* Nobody was waiting for an MCDI request, so trigger a reset */
804 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
805
806 /* Consume the status word since efx_mcdi_rpc_finish() won't */
807 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
808 if (efx_mcdi_poll_reboot(efx))
809 break;
810 udelay(MCDI_STATUS_DELAY_US);
811 }
812 mcdi->new_epoch = true;
813 }
814
815 spin_unlock(&mcdi->iface_lock);
816 }
817
818 /* Called from falcon_process_eventq for MCDI events */
819 void efx_mcdi_process_event(struct efx_channel *channel,
820 efx_qword_t *event)
821 {
822 struct efx_nic *efx = channel->efx;
823 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
824 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
825
826 switch (code) {
827 case MCDI_EVENT_CODE_BADSSERT:
828 netif_err(efx, hw, efx->net_dev,
829 "MC watchdog or assertion failure at 0x%x\n", data);
830 efx_mcdi_ev_death(efx, -EINTR);
831 break;
832
833 case MCDI_EVENT_CODE_PMNOTICE:
834 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
835 break;
836
837 case MCDI_EVENT_CODE_CMDDONE:
838 efx_mcdi_ev_cpl(efx,
839 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
840 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
841 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
842 break;
843
844 case MCDI_EVENT_CODE_LINKCHANGE:
845 efx_mcdi_process_link_change(efx, event);
846 break;
847 case MCDI_EVENT_CODE_SENSOREVT:
848 efx_mcdi_sensor_event(efx, event);
849 break;
850 case MCDI_EVENT_CODE_SCHEDERR:
851 netif_info(efx, hw, efx->net_dev,
852 "MC Scheduler error address=0x%x\n", data);
853 break;
854 case MCDI_EVENT_CODE_REBOOT:
855 case MCDI_EVENT_CODE_MC_REBOOT:
856 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
857 efx_mcdi_ev_death(efx, -EIO);
858 break;
859 case MCDI_EVENT_CODE_MAC_STATS_DMA:
860 /* MAC stats are gather lazily. We can ignore this. */
861 break;
862 case MCDI_EVENT_CODE_FLR:
863 efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF));
864 break;
865 case MCDI_EVENT_CODE_PTP_RX:
866 case MCDI_EVENT_CODE_PTP_FAULT:
867 case MCDI_EVENT_CODE_PTP_PPS:
868 efx_ptp_event(efx, event);
869 break;
870 case MCDI_EVENT_CODE_TX_FLUSH:
871 case MCDI_EVENT_CODE_RX_FLUSH:
872 /* Two flush events will be sent: one to the same event
873 * queue as completions, and one to event queue 0.
874 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
875 * flag will be set, and we should ignore the event
876 * because we want to wait for all completions.
877 */
878 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
879 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
880 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
881 efx_ef10_handle_drain_event(efx);
882 break;
883 case MCDI_EVENT_CODE_TX_ERR:
884 case MCDI_EVENT_CODE_RX_ERR:
885 netif_err(efx, hw, efx->net_dev,
886 "%s DMA error (event: "EFX_QWORD_FMT")\n",
887 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
888 EFX_QWORD_VAL(*event));
889 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
890 break;
891 default:
892 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
893 code);
894 }
895 }
896
897 /**************************************************************************
898 *
899 * Specific request functions
900 *
901 **************************************************************************
902 */
903
904 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
905 {
906 MCDI_DECLARE_BUF(outbuf,
907 max(MC_CMD_GET_VERSION_OUT_LEN,
908 MC_CMD_GET_CAPABILITIES_OUT_LEN));
909 size_t outlength;
910 const __le16 *ver_words;
911 size_t offset;
912 int rc;
913
914 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
915 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
916 outbuf, sizeof(outbuf), &outlength);
917 if (rc)
918 goto fail;
919 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
920 rc = -EIO;
921 goto fail;
922 }
923
924 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
925 offset = snprintf(buf, len, "%u.%u.%u.%u",
926 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
927 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
928
929 /* EF10 may have multiple datapath firmware variants within a
930 * single version. Report which variants are running.
931 */
932 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
933 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
934 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
935 outbuf, sizeof(outbuf), &outlength);
936 if (rc || outlength < MC_CMD_GET_CAPABILITIES_OUT_LEN)
937 offset += snprintf(
938 buf + offset, len - offset, " rx? tx?");
939 else
940 offset += snprintf(
941 buf + offset, len - offset, " rx%x tx%x",
942 MCDI_WORD(outbuf,
943 GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID),
944 MCDI_WORD(outbuf,
945 GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID));
946
947 /* It's theoretically possible for the string to exceed 31
948 * characters, though in practice the first three version
949 * components are short enough that this doesn't happen.
950 */
951 if (WARN_ON(offset >= len))
952 buf[0] = 0;
953 }
954
955 return;
956
957 fail:
958 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
959 buf[0] = 0;
960 }
961
962 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
963 bool *was_attached)
964 {
965 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
966 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_OUT_LEN);
967 size_t outlen;
968 int rc;
969
970 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
971 driver_operating ? 1 : 0);
972 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
973 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
974
975 rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
976 outbuf, sizeof(outbuf), &outlen);
977 if (rc)
978 goto fail;
979 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
980 rc = -EIO;
981 goto fail;
982 }
983
984 if (was_attached != NULL)
985 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
986 return 0;
987
988 fail:
989 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
990 return rc;
991 }
992
993 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
994 u16 *fw_subtype_list, u32 *capabilities)
995 {
996 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
997 size_t outlen, i;
998 int port_num = efx_port_num(efx);
999 int rc;
1000
1001 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1002
1003 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1004 outbuf, sizeof(outbuf), &outlen);
1005 if (rc)
1006 goto fail;
1007
1008 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1009 rc = -EIO;
1010 goto fail;
1011 }
1012
1013 if (mac_address)
1014 memcpy(mac_address,
1015 port_num ?
1016 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1017 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0),
1018 ETH_ALEN);
1019 if (fw_subtype_list) {
1020 for (i = 0;
1021 i < MCDI_VAR_ARRAY_LEN(outlen,
1022 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1023 i++)
1024 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1025 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1026 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1027 fw_subtype_list[i] = 0;
1028 }
1029 if (capabilities) {
1030 if (port_num)
1031 *capabilities = MCDI_DWORD(outbuf,
1032 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1033 else
1034 *capabilities = MCDI_DWORD(outbuf,
1035 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1036 }
1037
1038 return 0;
1039
1040 fail:
1041 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1042 __func__, rc, (int)outlen);
1043
1044 return rc;
1045 }
1046
1047 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1048 {
1049 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1050 u32 dest = 0;
1051 int rc;
1052
1053 if (uart)
1054 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1055 if (evq)
1056 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1057
1058 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1059 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1060
1061 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1062
1063 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1064 NULL, 0, NULL);
1065 if (rc)
1066 goto fail;
1067
1068 return 0;
1069
1070 fail:
1071 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1072 return rc;
1073 }
1074
1075 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1076 {
1077 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1078 size_t outlen;
1079 int rc;
1080
1081 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1082
1083 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1084 outbuf, sizeof(outbuf), &outlen);
1085 if (rc)
1086 goto fail;
1087 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1088 rc = -EIO;
1089 goto fail;
1090 }
1091
1092 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1093 return 0;
1094
1095 fail:
1096 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1097 __func__, rc);
1098 return rc;
1099 }
1100
1101 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1102 size_t *size_out, size_t *erase_size_out,
1103 bool *protected_out)
1104 {
1105 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1106 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1107 size_t outlen;
1108 int rc;
1109
1110 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1111
1112 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1113 outbuf, sizeof(outbuf), &outlen);
1114 if (rc)
1115 goto fail;
1116 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1117 rc = -EIO;
1118 goto fail;
1119 }
1120
1121 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1122 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1123 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1124 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1125 return 0;
1126
1127 fail:
1128 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1129 return rc;
1130 }
1131
1132 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1133 {
1134 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1135 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1136 int rc;
1137
1138 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1139
1140 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1141 outbuf, sizeof(outbuf), NULL);
1142 if (rc)
1143 return rc;
1144
1145 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1146 case MC_CMD_NVRAM_TEST_PASS:
1147 case MC_CMD_NVRAM_TEST_NOTSUPP:
1148 return 0;
1149 default:
1150 return -EIO;
1151 }
1152 }
1153
1154 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1155 {
1156 u32 nvram_types;
1157 unsigned int type;
1158 int rc;
1159
1160 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1161 if (rc)
1162 goto fail1;
1163
1164 type = 0;
1165 while (nvram_types != 0) {
1166 if (nvram_types & 1) {
1167 rc = efx_mcdi_nvram_test(efx, type);
1168 if (rc)
1169 goto fail2;
1170 }
1171 type++;
1172 nvram_types >>= 1;
1173 }
1174
1175 return 0;
1176
1177 fail2:
1178 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1179 __func__, type);
1180 fail1:
1181 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1182 return rc;
1183 }
1184
1185 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1186 {
1187 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1188 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1189 unsigned int flags, index;
1190 const char *reason;
1191 size_t outlen;
1192 int retry;
1193 int rc;
1194
1195 /* Attempt to read any stored assertion state before we reboot
1196 * the mcfw out of the assertion handler. Retry twice, once
1197 * because a boot-time assertion might cause this command to fail
1198 * with EINTR. And once again because GET_ASSERTS can race with
1199 * MC_CMD_REBOOT running on the other port. */
1200 retry = 2;
1201 do {
1202 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1203 rc = efx_mcdi_rpc(efx, MC_CMD_GET_ASSERTS,
1204 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1205 outbuf, sizeof(outbuf), &outlen);
1206 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1207
1208 if (rc)
1209 return rc;
1210 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1211 return -EIO;
1212
1213 /* Print out any recorded assertion state */
1214 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1215 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1216 return 0;
1217
1218 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1219 ? "system-level assertion"
1220 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1221 ? "thread-level assertion"
1222 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1223 ? "watchdog reset"
1224 : "unknown assertion";
1225 netif_err(efx, hw, efx->net_dev,
1226 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1227 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1228 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1229
1230 /* Print out the registers */
1231 for (index = 0;
1232 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1233 index++)
1234 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1235 1 + index,
1236 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1237 index));
1238
1239 return 0;
1240 }
1241
1242 static void efx_mcdi_exit_assertion(struct efx_nic *efx)
1243 {
1244 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1245
1246 /* If the MC is running debug firmware, it might now be
1247 * waiting for a debugger to attach, but we just want it to
1248 * reboot. We set a flag that makes the command a no-op if it
1249 * has already done so. We don't know what return code to
1250 * expect (0 or -EIO), so ignore it.
1251 */
1252 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1253 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1254 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1255 (void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1256 NULL, 0, NULL);
1257 }
1258
1259 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1260 {
1261 int rc;
1262
1263 rc = efx_mcdi_read_assertion(efx);
1264 if (rc)
1265 return rc;
1266
1267 efx_mcdi_exit_assertion(efx);
1268
1269 return 0;
1270 }
1271
1272 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1273 {
1274 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1275 int rc;
1276
1277 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1278 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1279 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1280
1281 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1282
1283 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1284
1285 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1286 NULL, 0, NULL);
1287 if (rc)
1288 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1289 __func__, rc);
1290 }
1291
1292 static int efx_mcdi_reset_port(struct efx_nic *efx)
1293 {
1294 int rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, NULL, 0, NULL, 0, NULL);
1295 if (rc)
1296 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1297 __func__, rc);
1298 return rc;
1299 }
1300
1301 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1302 {
1303 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1304 int rc;
1305
1306 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1307 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1308 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1309 NULL, 0, NULL);
1310 /* White is black, and up is down */
1311 if (rc == -EIO)
1312 return 0;
1313 if (rc == 0)
1314 rc = -EIO;
1315 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1316 return rc;
1317 }
1318
1319 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1320 {
1321 return RESET_TYPE_RECOVER_OR_ALL;
1322 }
1323
1324 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1325 {
1326 int rc;
1327
1328 /* Recover from a failed assertion pre-reset */
1329 rc = efx_mcdi_handle_assertion(efx);
1330 if (rc)
1331 return rc;
1332
1333 if (method == RESET_TYPE_WORLD)
1334 return efx_mcdi_reset_mc(efx);
1335 else
1336 return efx_mcdi_reset_port(efx);
1337 }
1338
1339 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1340 const u8 *mac, int *id_out)
1341 {
1342 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1343 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1344 size_t outlen;
1345 int rc;
1346
1347 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1348 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1349 MC_CMD_FILTER_MODE_SIMPLE);
1350 memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN);
1351
1352 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1353 outbuf, sizeof(outbuf), &outlen);
1354 if (rc)
1355 goto fail;
1356
1357 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1358 rc = -EIO;
1359 goto fail;
1360 }
1361
1362 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1363
1364 return 0;
1365
1366 fail:
1367 *id_out = -1;
1368 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1369 return rc;
1370
1371 }
1372
1373
1374 int
1375 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1376 {
1377 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1378 }
1379
1380
1381 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1382 {
1383 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1384 size_t outlen;
1385 int rc;
1386
1387 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1388 outbuf, sizeof(outbuf), &outlen);
1389 if (rc)
1390 goto fail;
1391
1392 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1393 rc = -EIO;
1394 goto fail;
1395 }
1396
1397 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1398
1399 return 0;
1400
1401 fail:
1402 *id_out = -1;
1403 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1404 return rc;
1405 }
1406
1407
1408 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1409 {
1410 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1411 int rc;
1412
1413 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1414
1415 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1416 NULL, 0, NULL);
1417 if (rc)
1418 goto fail;
1419
1420 return 0;
1421
1422 fail:
1423 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1424 return rc;
1425 }
1426
1427 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1428 {
1429 struct efx_channel *channel;
1430 struct efx_rx_queue *rx_queue;
1431 MCDI_DECLARE_BUF(inbuf,
1432 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1433 int rc, count;
1434
1435 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1436 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1437
1438 count = 0;
1439 efx_for_each_channel(channel, efx) {
1440 efx_for_each_channel_rx_queue(rx_queue, channel) {
1441 if (rx_queue->flush_pending) {
1442 rx_queue->flush_pending = false;
1443 atomic_dec(&efx->rxq_flush_pending);
1444 MCDI_SET_ARRAY_DWORD(
1445 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1446 count, efx_rx_queue_index(rx_queue));
1447 count++;
1448 }
1449 }
1450 }
1451
1452 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1453 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1454 WARN_ON(rc < 0);
1455
1456 return rc;
1457 }
1458
1459 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1460 {
1461 int rc;
1462
1463 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1464 if (rc)
1465 goto fail;
1466
1467 return 0;
1468
1469 fail:
1470 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1471 return rc;
1472 }
1473
1474 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled)
1475 {
1476 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1477
1478 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1479 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1480 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1481 return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
1482 NULL, 0, NULL);
1483 }
1484
1485 #ifdef CONFIG_SFC_MTD
1486
1487 #define EFX_MCDI_NVRAM_LEN_MAX 128
1488
1489 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
1490 {
1491 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
1492 int rc;
1493
1494 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
1495
1496 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
1497
1498 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
1499 NULL, 0, NULL);
1500 if (rc)
1501 goto fail;
1502
1503 return 0;
1504
1505 fail:
1506 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1507 return rc;
1508 }
1509
1510 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
1511 loff_t offset, u8 *buffer, size_t length)
1512 {
1513 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
1514 MCDI_DECLARE_BUF(outbuf,
1515 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1516 size_t outlen;
1517 int rc;
1518
1519 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
1520 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
1521 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
1522
1523 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
1524 outbuf, sizeof(outbuf), &outlen);
1525 if (rc)
1526 goto fail;
1527
1528 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
1529 return 0;
1530
1531 fail:
1532 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1533 return rc;
1534 }
1535
1536 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
1537 loff_t offset, const u8 *buffer, size_t length)
1538 {
1539 MCDI_DECLARE_BUF(inbuf,
1540 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1541 int rc;
1542
1543 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
1544 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
1545 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
1546 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
1547
1548 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
1549
1550 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
1551 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
1552 NULL, 0, NULL);
1553 if (rc)
1554 goto fail;
1555
1556 return 0;
1557
1558 fail:
1559 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1560 return rc;
1561 }
1562
1563 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
1564 loff_t offset, size_t length)
1565 {
1566 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
1567 int rc;
1568
1569 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
1570 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
1571 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
1572
1573 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
1574
1575 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
1576 NULL, 0, NULL);
1577 if (rc)
1578 goto fail;
1579
1580 return 0;
1581
1582 fail:
1583 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1584 return rc;
1585 }
1586
1587 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
1588 {
1589 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
1590 int rc;
1591
1592 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
1593
1594 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
1595
1596 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
1597 NULL, 0, NULL);
1598 if (rc)
1599 goto fail;
1600
1601 return 0;
1602
1603 fail:
1604 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1605 return rc;
1606 }
1607
1608 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
1609 size_t len, size_t *retlen, u8 *buffer)
1610 {
1611 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1612 struct efx_nic *efx = mtd->priv;
1613 loff_t offset = start;
1614 loff_t end = min_t(loff_t, start + len, mtd->size);
1615 size_t chunk;
1616 int rc = 0;
1617
1618 while (offset < end) {
1619 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1620 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
1621 buffer, chunk);
1622 if (rc)
1623 goto out;
1624 offset += chunk;
1625 buffer += chunk;
1626 }
1627 out:
1628 *retlen = offset - start;
1629 return rc;
1630 }
1631
1632 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
1633 {
1634 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1635 struct efx_nic *efx = mtd->priv;
1636 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
1637 loff_t end = min_t(loff_t, start + len, mtd->size);
1638 size_t chunk = part->common.mtd.erasesize;
1639 int rc = 0;
1640
1641 if (!part->updating) {
1642 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1643 if (rc)
1644 goto out;
1645 part->updating = true;
1646 }
1647
1648 /* The MCDI interface can in fact do multiple erase blocks at once;
1649 * but erasing may be slow, so we make multiple calls here to avoid
1650 * tripping the MCDI RPC timeout. */
1651 while (offset < end) {
1652 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
1653 chunk);
1654 if (rc)
1655 goto out;
1656 offset += chunk;
1657 }
1658 out:
1659 return rc;
1660 }
1661
1662 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
1663 size_t len, size_t *retlen, const u8 *buffer)
1664 {
1665 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1666 struct efx_nic *efx = mtd->priv;
1667 loff_t offset = start;
1668 loff_t end = min_t(loff_t, start + len, mtd->size);
1669 size_t chunk;
1670 int rc = 0;
1671
1672 if (!part->updating) {
1673 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1674 if (rc)
1675 goto out;
1676 part->updating = true;
1677 }
1678
1679 while (offset < end) {
1680 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1681 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
1682 buffer, chunk);
1683 if (rc)
1684 goto out;
1685 offset += chunk;
1686 buffer += chunk;
1687 }
1688 out:
1689 *retlen = offset - start;
1690 return rc;
1691 }
1692
1693 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
1694 {
1695 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1696 struct efx_nic *efx = mtd->priv;
1697 int rc = 0;
1698
1699 if (part->updating) {
1700 part->updating = false;
1701 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
1702 }
1703
1704 return rc;
1705 }
1706
1707 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
1708 {
1709 struct efx_mcdi_mtd_partition *mcdi_part =
1710 container_of(part, struct efx_mcdi_mtd_partition, common);
1711 struct efx_nic *efx = part->mtd.priv;
1712
1713 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
1714 efx->name, part->type_name, mcdi_part->fw_subtype);
1715 }
1716
1717 #endif /* CONFIG_SFC_MTD */