]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/sfc/mcdi.c
Merge tag 'kvm-arm-for-v4.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / sfc / mcdi.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
14 #include "nic.h"
15 #include "io.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
18
19 /**************************************************************************
20 *
21 * Management-Controller-to-Driver Interface
22 *
23 **************************************************************************
24 */
25
26 #define MCDI_RPC_TIMEOUT (10 * HZ)
27
28 /* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
31 */
32 #define MCDI_STATUS_DELAY_US 100
33 #define MCDI_STATUS_DELAY_COUNT 2500
34 #define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36
37 #define SEQ_MASK \
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39
40 struct efx_mcdi_async_param {
41 struct list_head list;
42 unsigned int cmd;
43 size_t inlen;
44 size_t outlen;
45 bool quiet;
46 efx_mcdi_async_completer *complete;
47 unsigned long cookie;
48 /* followed by request/response buffer */
49 };
50
51 static void efx_mcdi_timeout_async(unsigned long context);
52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53 bool *was_attached_out);
54 static bool efx_mcdi_poll_once(struct efx_nic *efx);
55 static void efx_mcdi_abandon(struct efx_nic *efx);
56
57 #ifdef CONFIG_SFC_MCDI_LOGGING
58 static bool mcdi_logging_default;
59 module_param(mcdi_logging_default, bool, 0644);
60 MODULE_PARM_DESC(mcdi_logging_default,
61 "Enable MCDI logging on newly-probed functions");
62 #endif
63
64 int efx_mcdi_init(struct efx_nic *efx)
65 {
66 struct efx_mcdi_iface *mcdi;
67 bool already_attached;
68 int rc = -ENOMEM;
69
70 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
71 if (!efx->mcdi)
72 goto fail;
73
74 mcdi = efx_mcdi(efx);
75 mcdi->efx = efx;
76 #ifdef CONFIG_SFC_MCDI_LOGGING
77 /* consuming code assumes buffer is page-sized */
78 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
79 if (!mcdi->logging_buffer)
80 goto fail1;
81 mcdi->logging_enabled = mcdi_logging_default;
82 #endif
83 init_waitqueue_head(&mcdi->wq);
84 init_waitqueue_head(&mcdi->proxy_rx_wq);
85 spin_lock_init(&mcdi->iface_lock);
86 mcdi->state = MCDI_STATE_QUIESCENT;
87 mcdi->mode = MCDI_MODE_POLL;
88 spin_lock_init(&mcdi->async_lock);
89 INIT_LIST_HEAD(&mcdi->async_list);
90 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
91 (unsigned long)mcdi);
92
93 (void) efx_mcdi_poll_reboot(efx);
94 mcdi->new_epoch = true;
95
96 /* Recover from a failed assertion before probing */
97 rc = efx_mcdi_handle_assertion(efx);
98 if (rc)
99 goto fail2;
100
101 /* Let the MC (and BMC, if this is a LOM) know that the driver
102 * is loaded. We should do this before we reset the NIC.
103 */
104 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
105 if (rc) {
106 netif_err(efx, probe, efx->net_dev,
107 "Unable to register driver with MCPU\n");
108 goto fail2;
109 }
110 if (already_attached)
111 /* Not a fatal error */
112 netif_err(efx, probe, efx->net_dev,
113 "Host already registered with MCPU\n");
114
115 if (efx->mcdi->fn_flags &
116 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
117 efx->primary = efx;
118
119 return 0;
120 fail2:
121 #ifdef CONFIG_SFC_MCDI_LOGGING
122 free_page((unsigned long)mcdi->logging_buffer);
123 fail1:
124 #endif
125 kfree(efx->mcdi);
126 efx->mcdi = NULL;
127 fail:
128 return rc;
129 }
130
131 void efx_mcdi_detach(struct efx_nic *efx)
132 {
133 if (!efx->mcdi)
134 return;
135
136 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
137
138 /* Relinquish the device (back to the BMC, if this is a LOM) */
139 efx_mcdi_drv_attach(efx, false, NULL);
140 }
141
142 void efx_mcdi_fini(struct efx_nic *efx)
143 {
144 if (!efx->mcdi)
145 return;
146
147 #ifdef CONFIG_SFC_MCDI_LOGGING
148 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
149 #endif
150
151 kfree(efx->mcdi);
152 }
153
154 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
155 const efx_dword_t *inbuf, size_t inlen)
156 {
157 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
158 #ifdef CONFIG_SFC_MCDI_LOGGING
159 char *buf = mcdi->logging_buffer; /* page-sized */
160 #endif
161 efx_dword_t hdr[2];
162 size_t hdr_len;
163 u32 xflags, seqno;
164
165 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
166
167 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
168 spin_lock_bh(&mcdi->iface_lock);
169 ++mcdi->seqno;
170 spin_unlock_bh(&mcdi->iface_lock);
171
172 seqno = mcdi->seqno & SEQ_MASK;
173 xflags = 0;
174 if (mcdi->mode == MCDI_MODE_EVENTS)
175 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
176
177 if (efx->type->mcdi_max_ver == 1) {
178 /* MCDI v1 */
179 EFX_POPULATE_DWORD_7(hdr[0],
180 MCDI_HEADER_RESPONSE, 0,
181 MCDI_HEADER_RESYNC, 1,
182 MCDI_HEADER_CODE, cmd,
183 MCDI_HEADER_DATALEN, inlen,
184 MCDI_HEADER_SEQ, seqno,
185 MCDI_HEADER_XFLAGS, xflags,
186 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
187 hdr_len = 4;
188 } else {
189 /* MCDI v2 */
190 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
191 EFX_POPULATE_DWORD_7(hdr[0],
192 MCDI_HEADER_RESPONSE, 0,
193 MCDI_HEADER_RESYNC, 1,
194 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
195 MCDI_HEADER_DATALEN, 0,
196 MCDI_HEADER_SEQ, seqno,
197 MCDI_HEADER_XFLAGS, xflags,
198 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
199 EFX_POPULATE_DWORD_2(hdr[1],
200 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
201 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
202 hdr_len = 8;
203 }
204
205 #ifdef CONFIG_SFC_MCDI_LOGGING
206 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
207 int bytes = 0;
208 int i;
209 /* Lengths should always be a whole number of dwords, so scream
210 * if they're not.
211 */
212 WARN_ON_ONCE(hdr_len % 4);
213 WARN_ON_ONCE(inlen % 4);
214
215 /* We own the logging buffer, as only one MCDI can be in
216 * progress on a NIC at any one time. So no need for locking.
217 */
218 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
219 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
220 " %08x", le32_to_cpu(hdr[i].u32[0]));
221
222 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
223 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
224 " %08x", le32_to_cpu(inbuf[i].u32[0]));
225
226 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
227 }
228 #endif
229
230 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
231
232 mcdi->new_epoch = false;
233 }
234
235 static int efx_mcdi_errno(unsigned int mcdi_err)
236 {
237 switch (mcdi_err) {
238 case 0:
239 return 0;
240 #define TRANSLATE_ERROR(name) \
241 case MC_CMD_ERR_ ## name: \
242 return -name;
243 TRANSLATE_ERROR(EPERM);
244 TRANSLATE_ERROR(ENOENT);
245 TRANSLATE_ERROR(EINTR);
246 TRANSLATE_ERROR(EAGAIN);
247 TRANSLATE_ERROR(EACCES);
248 TRANSLATE_ERROR(EBUSY);
249 TRANSLATE_ERROR(EINVAL);
250 TRANSLATE_ERROR(EDEADLK);
251 TRANSLATE_ERROR(ENOSYS);
252 TRANSLATE_ERROR(ETIME);
253 TRANSLATE_ERROR(EALREADY);
254 TRANSLATE_ERROR(ENOSPC);
255 #undef TRANSLATE_ERROR
256 case MC_CMD_ERR_ENOTSUP:
257 return -EOPNOTSUPP;
258 case MC_CMD_ERR_ALLOC_FAIL:
259 return -ENOBUFS;
260 case MC_CMD_ERR_MAC_EXIST:
261 return -EADDRINUSE;
262 default:
263 return -EPROTO;
264 }
265 }
266
267 static void efx_mcdi_read_response_header(struct efx_nic *efx)
268 {
269 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
270 unsigned int respseq, respcmd, error;
271 #ifdef CONFIG_SFC_MCDI_LOGGING
272 char *buf = mcdi->logging_buffer; /* page-sized */
273 #endif
274 efx_dword_t hdr;
275
276 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
277 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
278 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
279 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
280
281 if (respcmd != MC_CMD_V2_EXTN) {
282 mcdi->resp_hdr_len = 4;
283 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
284 } else {
285 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
286 mcdi->resp_hdr_len = 8;
287 mcdi->resp_data_len =
288 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
289 }
290
291 #ifdef CONFIG_SFC_MCDI_LOGGING
292 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
293 size_t hdr_len, data_len;
294 int bytes = 0;
295 int i;
296
297 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
298 hdr_len = mcdi->resp_hdr_len / 4;
299 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
300 * to dword size, and the MCDI buffer is always dword size
301 */
302 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
303
304 /* We own the logging buffer, as only one MCDI can be in
305 * progress on a NIC at any one time. So no need for locking.
306 */
307 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
308 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
309 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
310 " %08x", le32_to_cpu(hdr.u32[0]));
311 }
312
313 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
314 efx->type->mcdi_read_response(efx, &hdr,
315 mcdi->resp_hdr_len + (i * 4), 4);
316 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
317 " %08x", le32_to_cpu(hdr.u32[0]));
318 }
319
320 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
321 }
322 #endif
323
324 mcdi->resprc_raw = 0;
325 if (error && mcdi->resp_data_len == 0) {
326 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
327 mcdi->resprc = -EIO;
328 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
329 netif_err(efx, hw, efx->net_dev,
330 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
331 respseq, mcdi->seqno);
332 mcdi->resprc = -EIO;
333 } else if (error) {
334 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
335 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
336 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
337 } else {
338 mcdi->resprc = 0;
339 }
340 }
341
342 static bool efx_mcdi_poll_once(struct efx_nic *efx)
343 {
344 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
345
346 rmb();
347 if (!efx->type->mcdi_poll_response(efx))
348 return false;
349
350 spin_lock_bh(&mcdi->iface_lock);
351 efx_mcdi_read_response_header(efx);
352 spin_unlock_bh(&mcdi->iface_lock);
353
354 return true;
355 }
356
357 static int efx_mcdi_poll(struct efx_nic *efx)
358 {
359 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
360 unsigned long time, finish;
361 unsigned int spins;
362 int rc;
363
364 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
365 rc = efx_mcdi_poll_reboot(efx);
366 if (rc) {
367 spin_lock_bh(&mcdi->iface_lock);
368 mcdi->resprc = rc;
369 mcdi->resp_hdr_len = 0;
370 mcdi->resp_data_len = 0;
371 spin_unlock_bh(&mcdi->iface_lock);
372 return 0;
373 }
374
375 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
376 * because generally mcdi responses are fast. After that, back off
377 * and poll once a jiffy (approximately)
378 */
379 spins = TICK_USEC;
380 finish = jiffies + MCDI_RPC_TIMEOUT;
381
382 while (1) {
383 if (spins != 0) {
384 --spins;
385 udelay(1);
386 } else {
387 schedule_timeout_uninterruptible(1);
388 }
389
390 time = jiffies;
391
392 if (efx_mcdi_poll_once(efx))
393 break;
394
395 if (time_after(time, finish))
396 return -ETIMEDOUT;
397 }
398
399 /* Return rc=0 like wait_event_timeout() */
400 return 0;
401 }
402
403 /* Test and clear MC-rebooted flag for this port/function; reset
404 * software state as necessary.
405 */
406 int efx_mcdi_poll_reboot(struct efx_nic *efx)
407 {
408 if (!efx->mcdi)
409 return 0;
410
411 return efx->type->mcdi_poll_reboot(efx);
412 }
413
414 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
415 {
416 return cmpxchg(&mcdi->state,
417 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
418 MCDI_STATE_QUIESCENT;
419 }
420
421 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
422 {
423 /* Wait until the interface becomes QUIESCENT and we win the race
424 * to mark it RUNNING_SYNC.
425 */
426 wait_event(mcdi->wq,
427 cmpxchg(&mcdi->state,
428 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
429 MCDI_STATE_QUIESCENT);
430 }
431
432 static int efx_mcdi_await_completion(struct efx_nic *efx)
433 {
434 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
435
436 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
437 MCDI_RPC_TIMEOUT) == 0)
438 return -ETIMEDOUT;
439
440 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
441 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
442 * completed the request first, then we'll just end up completing the
443 * request again, which is safe.
444 *
445 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
446 * wait_event_timeout() implicitly provides.
447 */
448 if (mcdi->mode == MCDI_MODE_POLL)
449 return efx_mcdi_poll(efx);
450
451 return 0;
452 }
453
454 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
455 * requester. Return whether this was done. Does not take any locks.
456 */
457 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
458 {
459 if (cmpxchg(&mcdi->state,
460 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
461 MCDI_STATE_RUNNING_SYNC) {
462 wake_up(&mcdi->wq);
463 return true;
464 }
465
466 return false;
467 }
468
469 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
470 {
471 if (mcdi->mode == MCDI_MODE_EVENTS) {
472 struct efx_mcdi_async_param *async;
473 struct efx_nic *efx = mcdi->efx;
474
475 /* Process the asynchronous request queue */
476 spin_lock_bh(&mcdi->async_lock);
477 async = list_first_entry_or_null(
478 &mcdi->async_list, struct efx_mcdi_async_param, list);
479 if (async) {
480 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
481 efx_mcdi_send_request(efx, async->cmd,
482 (const efx_dword_t *)(async + 1),
483 async->inlen);
484 mod_timer(&mcdi->async_timer,
485 jiffies + MCDI_RPC_TIMEOUT);
486 }
487 spin_unlock_bh(&mcdi->async_lock);
488
489 if (async)
490 return;
491 }
492
493 mcdi->state = MCDI_STATE_QUIESCENT;
494 wake_up(&mcdi->wq);
495 }
496
497 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
498 * asynchronous completion function, and release the interface.
499 * Return whether this was done. Must be called in bh-disabled
500 * context. Will take iface_lock and async_lock.
501 */
502 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
503 {
504 struct efx_nic *efx = mcdi->efx;
505 struct efx_mcdi_async_param *async;
506 size_t hdr_len, data_len, err_len;
507 efx_dword_t *outbuf;
508 MCDI_DECLARE_BUF_ERR(errbuf);
509 int rc;
510
511 if (cmpxchg(&mcdi->state,
512 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
513 MCDI_STATE_RUNNING_ASYNC)
514 return false;
515
516 spin_lock(&mcdi->iface_lock);
517 if (timeout) {
518 /* Ensure that if the completion event arrives later,
519 * the seqno check in efx_mcdi_ev_cpl() will fail
520 */
521 ++mcdi->seqno;
522 ++mcdi->credits;
523 rc = -ETIMEDOUT;
524 hdr_len = 0;
525 data_len = 0;
526 } else {
527 rc = mcdi->resprc;
528 hdr_len = mcdi->resp_hdr_len;
529 data_len = mcdi->resp_data_len;
530 }
531 spin_unlock(&mcdi->iface_lock);
532
533 /* Stop the timer. In case the timer function is running, we
534 * must wait for it to return so that there is no possibility
535 * of it aborting the next request.
536 */
537 if (!timeout)
538 del_timer_sync(&mcdi->async_timer);
539
540 spin_lock(&mcdi->async_lock);
541 async = list_first_entry(&mcdi->async_list,
542 struct efx_mcdi_async_param, list);
543 list_del(&async->list);
544 spin_unlock(&mcdi->async_lock);
545
546 outbuf = (efx_dword_t *)(async + 1);
547 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
548 min(async->outlen, data_len));
549 if (!timeout && rc && !async->quiet) {
550 err_len = min(sizeof(errbuf), data_len);
551 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
552 sizeof(errbuf));
553 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
554 err_len, rc);
555 }
556
557 if (async->complete)
558 async->complete(efx, async->cookie, rc, outbuf,
559 min(async->outlen, data_len));
560 kfree(async);
561
562 efx_mcdi_release(mcdi);
563
564 return true;
565 }
566
567 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
568 unsigned int datalen, unsigned int mcdi_err)
569 {
570 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
571 bool wake = false;
572
573 spin_lock(&mcdi->iface_lock);
574
575 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
576 if (mcdi->credits)
577 /* The request has been cancelled */
578 --mcdi->credits;
579 else
580 netif_err(efx, hw, efx->net_dev,
581 "MC response mismatch tx seq 0x%x rx "
582 "seq 0x%x\n", seqno, mcdi->seqno);
583 } else {
584 if (efx->type->mcdi_max_ver >= 2) {
585 /* MCDI v2 responses don't fit in an event */
586 efx_mcdi_read_response_header(efx);
587 } else {
588 mcdi->resprc = efx_mcdi_errno(mcdi_err);
589 mcdi->resp_hdr_len = 4;
590 mcdi->resp_data_len = datalen;
591 }
592
593 wake = true;
594 }
595
596 spin_unlock(&mcdi->iface_lock);
597
598 if (wake) {
599 if (!efx_mcdi_complete_async(mcdi, false))
600 (void) efx_mcdi_complete_sync(mcdi);
601
602 /* If the interface isn't RUNNING_ASYNC or
603 * RUNNING_SYNC then we've received a duplicate
604 * completion after we've already transitioned back to
605 * QUIESCENT. [A subsequent invocation would increment
606 * seqno, so would have failed the seqno check].
607 */
608 }
609 }
610
611 static void efx_mcdi_timeout_async(unsigned long context)
612 {
613 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
614
615 efx_mcdi_complete_async(mcdi, true);
616 }
617
618 static int
619 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
620 {
621 if (efx->type->mcdi_max_ver < 0 ||
622 (efx->type->mcdi_max_ver < 2 &&
623 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
624 return -EINVAL;
625
626 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
627 (efx->type->mcdi_max_ver < 2 &&
628 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
629 return -EMSGSIZE;
630
631 return 0;
632 }
633
634 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
635 size_t hdr_len, size_t data_len,
636 u32 *proxy_handle)
637 {
638 MCDI_DECLARE_BUF_ERR(testbuf);
639 const size_t buflen = sizeof(testbuf);
640
641 if (!proxy_handle || data_len < buflen)
642 return false;
643
644 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
645 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
646 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
647 return true;
648 }
649
650 return false;
651 }
652
653 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
654 size_t inlen,
655 efx_dword_t *outbuf, size_t outlen,
656 size_t *outlen_actual, bool quiet,
657 u32 *proxy_handle, int *raw_rc)
658 {
659 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
660 MCDI_DECLARE_BUF_ERR(errbuf);
661 int rc;
662
663 if (mcdi->mode == MCDI_MODE_POLL)
664 rc = efx_mcdi_poll(efx);
665 else
666 rc = efx_mcdi_await_completion(efx);
667
668 if (rc != 0) {
669 netif_err(efx, hw, efx->net_dev,
670 "MC command 0x%x inlen %d mode %d timed out\n",
671 cmd, (int)inlen, mcdi->mode);
672
673 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
674 netif_err(efx, hw, efx->net_dev,
675 "MCDI request was completed without an event\n");
676 rc = 0;
677 }
678
679 efx_mcdi_abandon(efx);
680
681 /* Close the race with efx_mcdi_ev_cpl() executing just too late
682 * and completing a request we've just cancelled, by ensuring
683 * that the seqno check therein fails.
684 */
685 spin_lock_bh(&mcdi->iface_lock);
686 ++mcdi->seqno;
687 ++mcdi->credits;
688 spin_unlock_bh(&mcdi->iface_lock);
689 }
690
691 if (proxy_handle)
692 *proxy_handle = 0;
693
694 if (rc != 0) {
695 if (outlen_actual)
696 *outlen_actual = 0;
697 } else {
698 size_t hdr_len, data_len, err_len;
699
700 /* At the very least we need a memory barrier here to ensure
701 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
702 * a spurious efx_mcdi_ev_cpl() running concurrently by
703 * acquiring the iface_lock. */
704 spin_lock_bh(&mcdi->iface_lock);
705 rc = mcdi->resprc;
706 if (raw_rc)
707 *raw_rc = mcdi->resprc_raw;
708 hdr_len = mcdi->resp_hdr_len;
709 data_len = mcdi->resp_data_len;
710 err_len = min(sizeof(errbuf), data_len);
711 spin_unlock_bh(&mcdi->iface_lock);
712
713 BUG_ON(rc > 0);
714
715 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
716 min(outlen, data_len));
717 if (outlen_actual)
718 *outlen_actual = data_len;
719
720 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
721
722 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
723 /* Don't reset if MC_CMD_REBOOT returns EIO */
724 } else if (rc == -EIO || rc == -EINTR) {
725 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
726 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
727 cmd, -rc);
728 if (efx->type->mcdi_reboot_detected)
729 efx->type->mcdi_reboot_detected(efx);
730 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
731 } else if (proxy_handle && (rc == -EPROTO) &&
732 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
733 proxy_handle)) {
734 mcdi->proxy_rx_status = 0;
735 mcdi->proxy_rx_handle = 0;
736 mcdi->state = MCDI_STATE_PROXY_WAIT;
737 } else if (rc && !quiet) {
738 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
739 rc);
740 }
741
742 if (rc == -EIO || rc == -EINTR) {
743 msleep(MCDI_STATUS_SLEEP_MS);
744 efx_mcdi_poll_reboot(efx);
745 mcdi->new_epoch = true;
746 }
747 }
748
749 if (!proxy_handle || !*proxy_handle)
750 efx_mcdi_release(mcdi);
751 return rc;
752 }
753
754 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
755 {
756 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
757 /* Interrupt the proxy wait. */
758 mcdi->proxy_rx_status = -EINTR;
759 wake_up(&mcdi->proxy_rx_wq);
760 }
761 }
762
763 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
764 u32 handle, int status)
765 {
766 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
767
768 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
769
770 mcdi->proxy_rx_status = efx_mcdi_errno(status);
771 /* Ensure the status is written before we update the handle, since the
772 * latter is used to check if we've finished.
773 */
774 wmb();
775 mcdi->proxy_rx_handle = handle;
776 wake_up(&mcdi->proxy_rx_wq);
777 }
778
779 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
780 {
781 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
782 int rc;
783
784 /* Wait for a proxy event, or timeout. */
785 rc = wait_event_timeout(mcdi->proxy_rx_wq,
786 mcdi->proxy_rx_handle != 0 ||
787 mcdi->proxy_rx_status == -EINTR,
788 MCDI_RPC_TIMEOUT);
789
790 if (rc <= 0) {
791 netif_dbg(efx, hw, efx->net_dev,
792 "MCDI proxy timeout %d\n", handle);
793 return -ETIMEDOUT;
794 } else if (mcdi->proxy_rx_handle != handle) {
795 netif_warn(efx, hw, efx->net_dev,
796 "MCDI proxy unexpected handle %d (expected %d)\n",
797 mcdi->proxy_rx_handle, handle);
798 return -EINVAL;
799 }
800
801 return mcdi->proxy_rx_status;
802 }
803
804 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
805 const efx_dword_t *inbuf, size_t inlen,
806 efx_dword_t *outbuf, size_t outlen,
807 size_t *outlen_actual, bool quiet, int *raw_rc)
808 {
809 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
810 int rc;
811
812 if (inbuf && inlen && (inbuf == outbuf)) {
813 /* The input buffer can't be aliased with the output. */
814 WARN_ON(1);
815 return -EINVAL;
816 }
817
818 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
819 if (rc)
820 return rc;
821
822 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
823 outlen_actual, quiet, &proxy_handle, raw_rc);
824
825 if (proxy_handle) {
826 /* Handle proxy authorisation. This allows approval of MCDI
827 * operations to be delegated to the admin function, allowing
828 * fine control over (eg) multicast subscriptions.
829 */
830 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
831
832 netif_dbg(efx, hw, efx->net_dev,
833 "MCDI waiting for proxy auth %d\n",
834 proxy_handle);
835 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
836
837 if (rc == 0) {
838 netif_dbg(efx, hw, efx->net_dev,
839 "MCDI proxy retry %d\n", proxy_handle);
840
841 /* We now retry the original request. */
842 mcdi->state = MCDI_STATE_RUNNING_SYNC;
843 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
844
845 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
846 outbuf, outlen, outlen_actual,
847 quiet, NULL, raw_rc);
848 } else {
849 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
850 "MC command 0x%x failed after proxy auth rc=%d\n",
851 cmd, rc);
852
853 if (rc == -EINTR || rc == -EIO)
854 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
855 efx_mcdi_release(mcdi);
856 }
857 }
858
859 return rc;
860 }
861
862 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
863 const efx_dword_t *inbuf, size_t inlen,
864 efx_dword_t *outbuf, size_t outlen,
865 size_t *outlen_actual, bool quiet)
866 {
867 int raw_rc = 0;
868 int rc;
869
870 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
871 outbuf, outlen, outlen_actual, true, &raw_rc);
872
873 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
874 efx->type->is_vf) {
875 /* If the EVB port isn't available within a VF this may
876 * mean the PF is still bringing the switch up. We should
877 * retry our request shortly.
878 */
879 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
880 unsigned int delay_us = 10000;
881
882 netif_dbg(efx, hw, efx->net_dev,
883 "%s: NO_EVB_PORT; will retry request\n",
884 __func__);
885
886 do {
887 usleep_range(delay_us, delay_us + 10000);
888 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
889 outbuf, outlen, outlen_actual,
890 true, &raw_rc);
891 if (delay_us < 100000)
892 delay_us <<= 1;
893 } while ((rc == -EPROTO) &&
894 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
895 time_before(jiffies, abort_time));
896 }
897
898 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
899 efx_mcdi_display_error(efx, cmd, inlen,
900 outbuf, outlen, rc);
901
902 return rc;
903 }
904
905 /**
906 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
907 * @efx: NIC through which to issue the command
908 * @cmd: Command type number
909 * @inbuf: Command parameters
910 * @inlen: Length of command parameters, in bytes. Must be a multiple
911 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
912 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
913 * @outlen: Length of response buffer, in bytes. If the actual
914 * response is longer than @outlen & ~3, it will be truncated
915 * to that length.
916 * @outlen_actual: Pointer through which to return the actual response
917 * length. May be %NULL if this is not needed.
918 *
919 * This function may sleep and therefore must be called in an appropriate
920 * context.
921 *
922 * Return: A negative error code, or zero if successful. The error
923 * code may come from the MCDI response or may indicate a failure
924 * to communicate with the MC. In the former case, the response
925 * will still be copied to @outbuf and *@outlen_actual will be
926 * set accordingly. In the latter case, *@outlen_actual will be
927 * set to zero.
928 */
929 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
930 const efx_dword_t *inbuf, size_t inlen,
931 efx_dword_t *outbuf, size_t outlen,
932 size_t *outlen_actual)
933 {
934 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
935 outlen_actual, false);
936 }
937
938 /* Normally, on receiving an error code in the MCDI response,
939 * efx_mcdi_rpc will log an error message containing (among other
940 * things) the raw error code, by means of efx_mcdi_display_error.
941 * This _quiet version suppresses that; if the caller wishes to log
942 * the error conditionally on the return code, it should call this
943 * function and is then responsible for calling efx_mcdi_display_error
944 * as needed.
945 */
946 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
947 const efx_dword_t *inbuf, size_t inlen,
948 efx_dword_t *outbuf, size_t outlen,
949 size_t *outlen_actual)
950 {
951 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
952 outlen_actual, true);
953 }
954
955 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
956 const efx_dword_t *inbuf, size_t inlen)
957 {
958 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
959 int rc;
960
961 rc = efx_mcdi_check_supported(efx, cmd, inlen);
962 if (rc)
963 return rc;
964
965 if (efx->mc_bist_for_other_fn)
966 return -ENETDOWN;
967
968 if (mcdi->mode == MCDI_MODE_FAIL)
969 return -ENETDOWN;
970
971 efx_mcdi_acquire_sync(mcdi);
972 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
973 return 0;
974 }
975
976 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
977 const efx_dword_t *inbuf, size_t inlen,
978 size_t outlen,
979 efx_mcdi_async_completer *complete,
980 unsigned long cookie, bool quiet)
981 {
982 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
983 struct efx_mcdi_async_param *async;
984 int rc;
985
986 rc = efx_mcdi_check_supported(efx, cmd, inlen);
987 if (rc)
988 return rc;
989
990 if (efx->mc_bist_for_other_fn)
991 return -ENETDOWN;
992
993 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
994 GFP_ATOMIC);
995 if (!async)
996 return -ENOMEM;
997
998 async->cmd = cmd;
999 async->inlen = inlen;
1000 async->outlen = outlen;
1001 async->quiet = quiet;
1002 async->complete = complete;
1003 async->cookie = cookie;
1004 memcpy(async + 1, inbuf, inlen);
1005
1006 spin_lock_bh(&mcdi->async_lock);
1007
1008 if (mcdi->mode == MCDI_MODE_EVENTS) {
1009 list_add_tail(&async->list, &mcdi->async_list);
1010
1011 /* If this is at the front of the queue, try to start it
1012 * immediately
1013 */
1014 if (mcdi->async_list.next == &async->list &&
1015 efx_mcdi_acquire_async(mcdi)) {
1016 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1017 mod_timer(&mcdi->async_timer,
1018 jiffies + MCDI_RPC_TIMEOUT);
1019 }
1020 } else {
1021 kfree(async);
1022 rc = -ENETDOWN;
1023 }
1024
1025 spin_unlock_bh(&mcdi->async_lock);
1026
1027 return rc;
1028 }
1029
1030 /**
1031 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1032 * @efx: NIC through which to issue the command
1033 * @cmd: Command type number
1034 * @inbuf: Command parameters
1035 * @inlen: Length of command parameters, in bytes
1036 * @outlen: Length to allocate for response buffer, in bytes
1037 * @complete: Function to be called on completion or cancellation.
1038 * @cookie: Arbitrary value to be passed to @complete.
1039 *
1040 * This function does not sleep and therefore may be called in atomic
1041 * context. It will fail if event queues are disabled or if MCDI
1042 * event completions have been disabled due to an error.
1043 *
1044 * If it succeeds, the @complete function will be called exactly once
1045 * in atomic context, when one of the following occurs:
1046 * (a) the completion event is received (in NAPI context)
1047 * (b) event queues are disabled (in the process that disables them)
1048 * (c) the request times-out (in timer context)
1049 */
1050 int
1051 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1052 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1053 efx_mcdi_async_completer *complete, unsigned long cookie)
1054 {
1055 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1056 cookie, false);
1057 }
1058
1059 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1060 const efx_dword_t *inbuf, size_t inlen,
1061 size_t outlen, efx_mcdi_async_completer *complete,
1062 unsigned long cookie)
1063 {
1064 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1065 cookie, true);
1066 }
1067
1068 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1069 efx_dword_t *outbuf, size_t outlen,
1070 size_t *outlen_actual)
1071 {
1072 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1073 outlen_actual, false, NULL, NULL);
1074 }
1075
1076 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1077 efx_dword_t *outbuf, size_t outlen,
1078 size_t *outlen_actual)
1079 {
1080 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1081 outlen_actual, true, NULL, NULL);
1082 }
1083
1084 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1085 size_t inlen, efx_dword_t *outbuf,
1086 size_t outlen, int rc)
1087 {
1088 int code = 0, err_arg = 0;
1089
1090 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1091 code = MCDI_DWORD(outbuf, ERR_CODE);
1092 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1093 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1094 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1095 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1096 cmd, inlen, rc, code, err_arg);
1097 }
1098
1099 /* Switch to polled MCDI completions. This can be called in various
1100 * error conditions with various locks held, so it must be lockless.
1101 * Caller is responsible for flushing asynchronous requests later.
1102 */
1103 void efx_mcdi_mode_poll(struct efx_nic *efx)
1104 {
1105 struct efx_mcdi_iface *mcdi;
1106
1107 if (!efx->mcdi)
1108 return;
1109
1110 mcdi = efx_mcdi(efx);
1111 /* If already in polling mode, nothing to do.
1112 * If in fail-fast state, don't switch to polled completion.
1113 * FLR recovery will do that later.
1114 */
1115 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1116 return;
1117
1118 /* We can switch from event completion to polled completion, because
1119 * mcdi requests are always completed in shared memory. We do this by
1120 * switching the mode to POLL'd then completing the request.
1121 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1122 *
1123 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1124 * which efx_mcdi_complete_sync() provides for us.
1125 */
1126 mcdi->mode = MCDI_MODE_POLL;
1127
1128 efx_mcdi_complete_sync(mcdi);
1129 }
1130
1131 /* Flush any running or queued asynchronous requests, after event processing
1132 * is stopped
1133 */
1134 void efx_mcdi_flush_async(struct efx_nic *efx)
1135 {
1136 struct efx_mcdi_async_param *async, *next;
1137 struct efx_mcdi_iface *mcdi;
1138
1139 if (!efx->mcdi)
1140 return;
1141
1142 mcdi = efx_mcdi(efx);
1143
1144 /* We must be in poll or fail mode so no more requests can be queued */
1145 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1146
1147 del_timer_sync(&mcdi->async_timer);
1148
1149 /* If a request is still running, make sure we give the MC
1150 * time to complete it so that the response won't overwrite our
1151 * next request.
1152 */
1153 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1154 efx_mcdi_poll(efx);
1155 mcdi->state = MCDI_STATE_QUIESCENT;
1156 }
1157
1158 /* Nothing else will access the async list now, so it is safe
1159 * to walk it without holding async_lock. If we hold it while
1160 * calling a completer then lockdep may warn that we have
1161 * acquired locks in the wrong order.
1162 */
1163 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1164 if (async->complete)
1165 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1166 list_del(&async->list);
1167 kfree(async);
1168 }
1169 }
1170
1171 void efx_mcdi_mode_event(struct efx_nic *efx)
1172 {
1173 struct efx_mcdi_iface *mcdi;
1174
1175 if (!efx->mcdi)
1176 return;
1177
1178 mcdi = efx_mcdi(efx);
1179 /* If already in event completion mode, nothing to do.
1180 * If in fail-fast state, don't switch to event completion. FLR
1181 * recovery will do that later.
1182 */
1183 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1184 return;
1185
1186 /* We can't switch from polled to event completion in the middle of a
1187 * request, because the completion method is specified in the request.
1188 * So acquire the interface to serialise the requestors. We don't need
1189 * to acquire the iface_lock to change the mode here, but we do need a
1190 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1191 * efx_mcdi_acquire() provides.
1192 */
1193 efx_mcdi_acquire_sync(mcdi);
1194 mcdi->mode = MCDI_MODE_EVENTS;
1195 efx_mcdi_release(mcdi);
1196 }
1197
1198 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1199 {
1200 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1201
1202 /* If there is an outstanding MCDI request, it has been terminated
1203 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1204 * in polled mode, then do nothing because the MC reboot handler will
1205 * set the header correctly. However, if the mcdi interface is waiting
1206 * for a CMDDONE event it won't receive it [and since all MCDI events
1207 * are sent to the same queue, we can't be racing with
1208 * efx_mcdi_ev_cpl()]
1209 *
1210 * If there is an outstanding asynchronous request, we can't
1211 * complete it now (efx_mcdi_complete() would deadlock). The
1212 * reset process will take care of this.
1213 *
1214 * There's a race here with efx_mcdi_send_request(), because
1215 * we might receive a REBOOT event *before* the request has
1216 * been copied out. In polled mode (during startup) this is
1217 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1218 * event mode, this condition is just an edge-case of
1219 * receiving a REBOOT event after posting the MCDI
1220 * request. Did the mc reboot before or after the copyout? The
1221 * best we can do always is just return failure.
1222 *
1223 * If there is an outstanding proxy response expected it is not going
1224 * to arrive. We should thus abort it.
1225 */
1226 spin_lock(&mcdi->iface_lock);
1227 efx_mcdi_proxy_abort(mcdi);
1228
1229 if (efx_mcdi_complete_sync(mcdi)) {
1230 if (mcdi->mode == MCDI_MODE_EVENTS) {
1231 mcdi->resprc = rc;
1232 mcdi->resp_hdr_len = 0;
1233 mcdi->resp_data_len = 0;
1234 ++mcdi->credits;
1235 }
1236 } else {
1237 int count;
1238
1239 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1240 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1241 rc = efx_mcdi_poll_reboot(efx);
1242 if (rc)
1243 break;
1244 udelay(MCDI_STATUS_DELAY_US);
1245 }
1246
1247 /* On EF10, a CODE_MC_REBOOT event can be received without the
1248 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1249 * If zero was returned from the final call to
1250 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1251 * MC has definitely rebooted so prepare for the reset.
1252 */
1253 if (!rc && efx->type->mcdi_reboot_detected)
1254 efx->type->mcdi_reboot_detected(efx);
1255
1256 mcdi->new_epoch = true;
1257
1258 /* Nobody was waiting for an MCDI request, so trigger a reset */
1259 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1260 }
1261
1262 spin_unlock(&mcdi->iface_lock);
1263 }
1264
1265 /* The MC is going down in to BIST mode. set the BIST flag to block
1266 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1267 * (which doesn't actually execute a reset, it waits for the controlling
1268 * function to reset it).
1269 */
1270 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1271 {
1272 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1273
1274 spin_lock(&mcdi->iface_lock);
1275 efx->mc_bist_for_other_fn = true;
1276 efx_mcdi_proxy_abort(mcdi);
1277
1278 if (efx_mcdi_complete_sync(mcdi)) {
1279 if (mcdi->mode == MCDI_MODE_EVENTS) {
1280 mcdi->resprc = -EIO;
1281 mcdi->resp_hdr_len = 0;
1282 mcdi->resp_data_len = 0;
1283 ++mcdi->credits;
1284 }
1285 }
1286 mcdi->new_epoch = true;
1287 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1288 spin_unlock(&mcdi->iface_lock);
1289 }
1290
1291 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1292 * to recover.
1293 */
1294 static void efx_mcdi_abandon(struct efx_nic *efx)
1295 {
1296 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1297
1298 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1299 return; /* it had already been done */
1300 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1301 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1302 }
1303
1304 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1305 void efx_mcdi_process_event(struct efx_channel *channel,
1306 efx_qword_t *event)
1307 {
1308 struct efx_nic *efx = channel->efx;
1309 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1310 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1311
1312 switch (code) {
1313 case MCDI_EVENT_CODE_BADSSERT:
1314 netif_err(efx, hw, efx->net_dev,
1315 "MC watchdog or assertion failure at 0x%x\n", data);
1316 efx_mcdi_ev_death(efx, -EINTR);
1317 break;
1318
1319 case MCDI_EVENT_CODE_PMNOTICE:
1320 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1321 break;
1322
1323 case MCDI_EVENT_CODE_CMDDONE:
1324 efx_mcdi_ev_cpl(efx,
1325 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1326 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1327 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1328 break;
1329
1330 case MCDI_EVENT_CODE_LINKCHANGE:
1331 efx_mcdi_process_link_change(efx, event);
1332 break;
1333 case MCDI_EVENT_CODE_SENSOREVT:
1334 efx_mcdi_sensor_event(efx, event);
1335 break;
1336 case MCDI_EVENT_CODE_SCHEDERR:
1337 netif_dbg(efx, hw, efx->net_dev,
1338 "MC Scheduler alert (0x%x)\n", data);
1339 break;
1340 case MCDI_EVENT_CODE_REBOOT:
1341 case MCDI_EVENT_CODE_MC_REBOOT:
1342 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1343 efx_mcdi_ev_death(efx, -EIO);
1344 break;
1345 case MCDI_EVENT_CODE_MC_BIST:
1346 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1347 efx_mcdi_ev_bist(efx);
1348 break;
1349 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1350 /* MAC stats are gather lazily. We can ignore this. */
1351 break;
1352 case MCDI_EVENT_CODE_FLR:
1353 if (efx->type->sriov_flr)
1354 efx->type->sriov_flr(efx,
1355 MCDI_EVENT_FIELD(*event, FLR_VF));
1356 break;
1357 case MCDI_EVENT_CODE_PTP_RX:
1358 case MCDI_EVENT_CODE_PTP_FAULT:
1359 case MCDI_EVENT_CODE_PTP_PPS:
1360 efx_ptp_event(efx, event);
1361 break;
1362 case MCDI_EVENT_CODE_PTP_TIME:
1363 efx_time_sync_event(channel, event);
1364 break;
1365 case MCDI_EVENT_CODE_TX_FLUSH:
1366 case MCDI_EVENT_CODE_RX_FLUSH:
1367 /* Two flush events will be sent: one to the same event
1368 * queue as completions, and one to event queue 0.
1369 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1370 * flag will be set, and we should ignore the event
1371 * because we want to wait for all completions.
1372 */
1373 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1374 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1375 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1376 efx_ef10_handle_drain_event(efx);
1377 break;
1378 case MCDI_EVENT_CODE_TX_ERR:
1379 case MCDI_EVENT_CODE_RX_ERR:
1380 netif_err(efx, hw, efx->net_dev,
1381 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1382 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1383 EFX_QWORD_VAL(*event));
1384 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1385 break;
1386 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1387 efx_mcdi_ev_proxy_response(efx,
1388 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1389 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1390 break;
1391 default:
1392 netif_err(efx, hw, efx->net_dev,
1393 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1394 EFX_QWORD_VAL(*event));
1395 }
1396 }
1397
1398 /**************************************************************************
1399 *
1400 * Specific request functions
1401 *
1402 **************************************************************************
1403 */
1404
1405 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1406 {
1407 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1408 size_t outlength;
1409 const __le16 *ver_words;
1410 size_t offset;
1411 int rc;
1412
1413 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1414 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1415 outbuf, sizeof(outbuf), &outlength);
1416 if (rc)
1417 goto fail;
1418 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1419 rc = -EIO;
1420 goto fail;
1421 }
1422
1423 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1424 offset = snprintf(buf, len, "%u.%u.%u.%u",
1425 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1426 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1427
1428 /* EF10 may have multiple datapath firmware variants within a
1429 * single version. Report which variants are running.
1430 */
1431 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1432 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1433
1434 offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1435 nic_data->rx_dpcpu_fw_id,
1436 nic_data->tx_dpcpu_fw_id);
1437
1438 /* It's theoretically possible for the string to exceed 31
1439 * characters, though in practice the first three version
1440 * components are short enough that this doesn't happen.
1441 */
1442 if (WARN_ON(offset >= len))
1443 buf[0] = 0;
1444 }
1445
1446 return;
1447
1448 fail:
1449 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1450 buf[0] = 0;
1451 }
1452
1453 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1454 bool *was_attached)
1455 {
1456 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1457 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1458 size_t outlen;
1459 int rc;
1460
1461 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1462 driver_operating ? 1 : 0);
1463 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1464 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1465
1466 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1467 outbuf, sizeof(outbuf), &outlen);
1468 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1469 * specified will fail with EPERM, and we have to tell the MC we don't
1470 * care what firmware we get.
1471 */
1472 if (rc == -EPERM) {
1473 netif_dbg(efx, probe, efx->net_dev,
1474 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1475 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1476 MC_CMD_FW_DONT_CARE);
1477 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1478 sizeof(inbuf), outbuf, sizeof(outbuf),
1479 &outlen);
1480 }
1481 if (rc) {
1482 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1483 outbuf, outlen, rc);
1484 goto fail;
1485 }
1486 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1487 rc = -EIO;
1488 goto fail;
1489 }
1490
1491 if (driver_operating) {
1492 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1493 efx->mcdi->fn_flags =
1494 MCDI_DWORD(outbuf,
1495 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1496 } else {
1497 /* Synthesise flags for Siena */
1498 efx->mcdi->fn_flags =
1499 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1500 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1501 (efx_port_num(efx) == 0) <<
1502 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1503 }
1504 }
1505
1506 /* We currently assume we have control of the external link
1507 * and are completely trusted by firmware. Abort probing
1508 * if that's not true for this function.
1509 */
1510
1511 if (was_attached != NULL)
1512 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1513 return 0;
1514
1515 fail:
1516 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1517 return rc;
1518 }
1519
1520 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1521 u16 *fw_subtype_list, u32 *capabilities)
1522 {
1523 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1524 size_t outlen, i;
1525 int port_num = efx_port_num(efx);
1526 int rc;
1527
1528 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1529 /* we need __aligned(2) for ether_addr_copy */
1530 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1531 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1532
1533 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1534 outbuf, sizeof(outbuf), &outlen);
1535 if (rc)
1536 goto fail;
1537
1538 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1539 rc = -EIO;
1540 goto fail;
1541 }
1542
1543 if (mac_address)
1544 ether_addr_copy(mac_address,
1545 port_num ?
1546 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1547 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1548 if (fw_subtype_list) {
1549 for (i = 0;
1550 i < MCDI_VAR_ARRAY_LEN(outlen,
1551 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1552 i++)
1553 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1554 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1555 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1556 fw_subtype_list[i] = 0;
1557 }
1558 if (capabilities) {
1559 if (port_num)
1560 *capabilities = MCDI_DWORD(outbuf,
1561 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1562 else
1563 *capabilities = MCDI_DWORD(outbuf,
1564 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1565 }
1566
1567 return 0;
1568
1569 fail:
1570 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1571 __func__, rc, (int)outlen);
1572
1573 return rc;
1574 }
1575
1576 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1577 {
1578 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1579 u32 dest = 0;
1580 int rc;
1581
1582 if (uart)
1583 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1584 if (evq)
1585 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1586
1587 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1588 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1589
1590 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1591
1592 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1593 NULL, 0, NULL);
1594 return rc;
1595 }
1596
1597 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1598 {
1599 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1600 size_t outlen;
1601 int rc;
1602
1603 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1604
1605 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1606 outbuf, sizeof(outbuf), &outlen);
1607 if (rc)
1608 goto fail;
1609 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1610 rc = -EIO;
1611 goto fail;
1612 }
1613
1614 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1615 return 0;
1616
1617 fail:
1618 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1619 __func__, rc);
1620 return rc;
1621 }
1622
1623 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1624 size_t *size_out, size_t *erase_size_out,
1625 bool *protected_out)
1626 {
1627 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1628 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1629 size_t outlen;
1630 int rc;
1631
1632 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1633
1634 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1635 outbuf, sizeof(outbuf), &outlen);
1636 if (rc)
1637 goto fail;
1638 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1639 rc = -EIO;
1640 goto fail;
1641 }
1642
1643 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1644 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1645 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1646 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1647 return 0;
1648
1649 fail:
1650 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1651 return rc;
1652 }
1653
1654 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1655 {
1656 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1657 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1658 int rc;
1659
1660 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1661
1662 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1663 outbuf, sizeof(outbuf), NULL);
1664 if (rc)
1665 return rc;
1666
1667 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1668 case MC_CMD_NVRAM_TEST_PASS:
1669 case MC_CMD_NVRAM_TEST_NOTSUPP:
1670 return 0;
1671 default:
1672 return -EIO;
1673 }
1674 }
1675
1676 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1677 {
1678 u32 nvram_types;
1679 unsigned int type;
1680 int rc;
1681
1682 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1683 if (rc)
1684 goto fail1;
1685
1686 type = 0;
1687 while (nvram_types != 0) {
1688 if (nvram_types & 1) {
1689 rc = efx_mcdi_nvram_test(efx, type);
1690 if (rc)
1691 goto fail2;
1692 }
1693 type++;
1694 nvram_types >>= 1;
1695 }
1696
1697 return 0;
1698
1699 fail2:
1700 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1701 __func__, type);
1702 fail1:
1703 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1704 return rc;
1705 }
1706
1707 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1708 * negative on error.
1709 */
1710 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1711 {
1712 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1713 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1714 unsigned int flags, index;
1715 const char *reason;
1716 size_t outlen;
1717 int retry;
1718 int rc;
1719
1720 /* Attempt to read any stored assertion state before we reboot
1721 * the mcfw out of the assertion handler. Retry twice, once
1722 * because a boot-time assertion might cause this command to fail
1723 * with EINTR. And once again because GET_ASSERTS can race with
1724 * MC_CMD_REBOOT running on the other port. */
1725 retry = 2;
1726 do {
1727 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1728 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1729 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1730 outbuf, sizeof(outbuf), &outlen);
1731 if (rc == -EPERM)
1732 return 0;
1733 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1734
1735 if (rc) {
1736 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1737 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1738 outlen, rc);
1739 return rc;
1740 }
1741 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1742 return -EIO;
1743
1744 /* Print out any recorded assertion state */
1745 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1746 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1747 return 0;
1748
1749 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1750 ? "system-level assertion"
1751 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1752 ? "thread-level assertion"
1753 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1754 ? "watchdog reset"
1755 : "unknown assertion";
1756 netif_err(efx, hw, efx->net_dev,
1757 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1758 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1759 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1760
1761 /* Print out the registers */
1762 for (index = 0;
1763 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1764 index++)
1765 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1766 1 + index,
1767 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1768 index));
1769
1770 return 1;
1771 }
1772
1773 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1774 {
1775 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1776 int rc;
1777
1778 /* If the MC is running debug firmware, it might now be
1779 * waiting for a debugger to attach, but we just want it to
1780 * reboot. We set a flag that makes the command a no-op if it
1781 * has already done so.
1782 * The MCDI will thus return either 0 or -EIO.
1783 */
1784 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1785 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1786 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1787 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1788 NULL, 0, NULL);
1789 if (rc == -EIO)
1790 rc = 0;
1791 if (rc)
1792 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1793 NULL, 0, rc);
1794 return rc;
1795 }
1796
1797 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1798 {
1799 int rc;
1800
1801 rc = efx_mcdi_read_assertion(efx);
1802 if (rc <= 0)
1803 return rc;
1804
1805 return efx_mcdi_exit_assertion(efx);
1806 }
1807
1808 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1809 {
1810 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1811 int rc;
1812
1813 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1814 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1815 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1816
1817 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1818
1819 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1820
1821 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1822 NULL, 0, NULL);
1823 }
1824
1825 static int efx_mcdi_reset_func(struct efx_nic *efx)
1826 {
1827 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1828 int rc;
1829
1830 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1831 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1832 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1833 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1834 NULL, 0, NULL);
1835 return rc;
1836 }
1837
1838 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1839 {
1840 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1841 int rc;
1842
1843 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1844 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1845 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1846 NULL, 0, NULL);
1847 /* White is black, and up is down */
1848 if (rc == -EIO)
1849 return 0;
1850 if (rc == 0)
1851 rc = -EIO;
1852 return rc;
1853 }
1854
1855 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1856 {
1857 return RESET_TYPE_RECOVER_OR_ALL;
1858 }
1859
1860 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1861 {
1862 int rc;
1863
1864 /* If MCDI is down, we can't handle_assertion */
1865 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1866 rc = pci_reset_function(efx->pci_dev);
1867 if (rc)
1868 return rc;
1869 /* Re-enable polled MCDI completion */
1870 if (efx->mcdi) {
1871 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1872 mcdi->mode = MCDI_MODE_POLL;
1873 }
1874 return 0;
1875 }
1876
1877 /* Recover from a failed assertion pre-reset */
1878 rc = efx_mcdi_handle_assertion(efx);
1879 if (rc)
1880 return rc;
1881
1882 if (method == RESET_TYPE_DATAPATH)
1883 return 0;
1884 else if (method == RESET_TYPE_WORLD)
1885 return efx_mcdi_reset_mc(efx);
1886 else
1887 return efx_mcdi_reset_func(efx);
1888 }
1889
1890 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1891 const u8 *mac, int *id_out)
1892 {
1893 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1894 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1895 size_t outlen;
1896 int rc;
1897
1898 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1899 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1900 MC_CMD_FILTER_MODE_SIMPLE);
1901 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1902
1903 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1904 outbuf, sizeof(outbuf), &outlen);
1905 if (rc)
1906 goto fail;
1907
1908 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1909 rc = -EIO;
1910 goto fail;
1911 }
1912
1913 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1914
1915 return 0;
1916
1917 fail:
1918 *id_out = -1;
1919 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1920 return rc;
1921
1922 }
1923
1924
1925 int
1926 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1927 {
1928 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1929 }
1930
1931
1932 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1933 {
1934 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1935 size_t outlen;
1936 int rc;
1937
1938 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1939 outbuf, sizeof(outbuf), &outlen);
1940 if (rc)
1941 goto fail;
1942
1943 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1944 rc = -EIO;
1945 goto fail;
1946 }
1947
1948 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1949
1950 return 0;
1951
1952 fail:
1953 *id_out = -1;
1954 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1955 return rc;
1956 }
1957
1958
1959 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1960 {
1961 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1962 int rc;
1963
1964 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1965
1966 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1967 NULL, 0, NULL);
1968 return rc;
1969 }
1970
1971 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1972 {
1973 struct efx_channel *channel;
1974 struct efx_rx_queue *rx_queue;
1975 MCDI_DECLARE_BUF(inbuf,
1976 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1977 int rc, count;
1978
1979 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1980 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1981
1982 count = 0;
1983 efx_for_each_channel(channel, efx) {
1984 efx_for_each_channel_rx_queue(rx_queue, channel) {
1985 if (rx_queue->flush_pending) {
1986 rx_queue->flush_pending = false;
1987 atomic_dec(&efx->rxq_flush_pending);
1988 MCDI_SET_ARRAY_DWORD(
1989 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1990 count, efx_rx_queue_index(rx_queue));
1991 count++;
1992 }
1993 }
1994 }
1995
1996 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1997 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1998 WARN_ON(rc < 0);
1999
2000 return rc;
2001 }
2002
2003 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2004 {
2005 int rc;
2006
2007 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2008 return rc;
2009 }
2010
2011 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2012 unsigned int *flags)
2013 {
2014 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2015 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2016 size_t outlen;
2017 int rc;
2018
2019 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2020 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2021 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2022 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2023 outbuf, sizeof(outbuf), &outlen);
2024 if (rc)
2025 return rc;
2026
2027 if (!flags)
2028 return 0;
2029
2030 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2031 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2032 else
2033 *flags = 0;
2034
2035 return 0;
2036 }
2037
2038 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2039 unsigned int *enabled_out)
2040 {
2041 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2042 size_t outlen;
2043 int rc;
2044
2045 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2046 outbuf, sizeof(outbuf), &outlen);
2047 if (rc)
2048 goto fail;
2049
2050 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2051 rc = -EIO;
2052 goto fail;
2053 }
2054
2055 if (impl_out)
2056 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2057
2058 if (enabled_out)
2059 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2060
2061 return 0;
2062
2063 fail:
2064 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2065 * terrifying. The call site will have to deal with it though.
2066 */
2067 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2068 "%s: failed rc=%d\n", __func__, rc);
2069 return rc;
2070 }
2071
2072 #ifdef CONFIG_SFC_MTD
2073
2074 #define EFX_MCDI_NVRAM_LEN_MAX 128
2075
2076 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2077 {
2078 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2079 int rc;
2080
2081 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2082
2083 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2084
2085 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2086 NULL, 0, NULL);
2087 return rc;
2088 }
2089
2090 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2091 loff_t offset, u8 *buffer, size_t length)
2092 {
2093 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2094 MCDI_DECLARE_BUF(outbuf,
2095 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2096 size_t outlen;
2097 int rc;
2098
2099 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2100 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2101 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2102
2103 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2104 outbuf, sizeof(outbuf), &outlen);
2105 if (rc)
2106 return rc;
2107
2108 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2109 return 0;
2110 }
2111
2112 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2113 loff_t offset, const u8 *buffer, size_t length)
2114 {
2115 MCDI_DECLARE_BUF(inbuf,
2116 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2117 int rc;
2118
2119 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2120 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2121 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2122 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2123
2124 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2125
2126 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2127 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2128 NULL, 0, NULL);
2129 return rc;
2130 }
2131
2132 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2133 loff_t offset, size_t length)
2134 {
2135 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2136 int rc;
2137
2138 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2139 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2140 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2141
2142 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2143
2144 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2145 NULL, 0, NULL);
2146 return rc;
2147 }
2148
2149 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2150 {
2151 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2152 int rc;
2153
2154 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2155
2156 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2157
2158 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2159 NULL, 0, NULL);
2160 return rc;
2161 }
2162
2163 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2164 size_t len, size_t *retlen, u8 *buffer)
2165 {
2166 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2167 struct efx_nic *efx = mtd->priv;
2168 loff_t offset = start;
2169 loff_t end = min_t(loff_t, start + len, mtd->size);
2170 size_t chunk;
2171 int rc = 0;
2172
2173 while (offset < end) {
2174 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2175 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2176 buffer, chunk);
2177 if (rc)
2178 goto out;
2179 offset += chunk;
2180 buffer += chunk;
2181 }
2182 out:
2183 *retlen = offset - start;
2184 return rc;
2185 }
2186
2187 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2188 {
2189 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2190 struct efx_nic *efx = mtd->priv;
2191 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2192 loff_t end = min_t(loff_t, start + len, mtd->size);
2193 size_t chunk = part->common.mtd.erasesize;
2194 int rc = 0;
2195
2196 if (!part->updating) {
2197 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2198 if (rc)
2199 goto out;
2200 part->updating = true;
2201 }
2202
2203 /* The MCDI interface can in fact do multiple erase blocks at once;
2204 * but erasing may be slow, so we make multiple calls here to avoid
2205 * tripping the MCDI RPC timeout. */
2206 while (offset < end) {
2207 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2208 chunk);
2209 if (rc)
2210 goto out;
2211 offset += chunk;
2212 }
2213 out:
2214 return rc;
2215 }
2216
2217 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2218 size_t len, size_t *retlen, const u8 *buffer)
2219 {
2220 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2221 struct efx_nic *efx = mtd->priv;
2222 loff_t offset = start;
2223 loff_t end = min_t(loff_t, start + len, mtd->size);
2224 size_t chunk;
2225 int rc = 0;
2226
2227 if (!part->updating) {
2228 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2229 if (rc)
2230 goto out;
2231 part->updating = true;
2232 }
2233
2234 while (offset < end) {
2235 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2236 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2237 buffer, chunk);
2238 if (rc)
2239 goto out;
2240 offset += chunk;
2241 buffer += chunk;
2242 }
2243 out:
2244 *retlen = offset - start;
2245 return rc;
2246 }
2247
2248 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2249 {
2250 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2251 struct efx_nic *efx = mtd->priv;
2252 int rc = 0;
2253
2254 if (part->updating) {
2255 part->updating = false;
2256 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2257 }
2258
2259 return rc;
2260 }
2261
2262 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2263 {
2264 struct efx_mcdi_mtd_partition *mcdi_part =
2265 container_of(part, struct efx_mcdi_mtd_partition, common);
2266 struct efx_nic *efx = part->mtd.priv;
2267
2268 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2269 efx->name, part->type_name, mcdi_part->fw_subtype);
2270 }
2271
2272 #endif /* CONFIG_SFC_MTD */