]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/sfc/mcdi.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / sfc / mcdi.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include <linux/delay.h>
11 #include <asm/cmpxchg.h>
12 #include "net_driver.h"
13 #include "nic.h"
14 #include "io.h"
15 #include "farch_regs.h"
16 #include "mcdi_pcol.h"
17 #include "phy.h"
18
19 /**************************************************************************
20 *
21 * Management-Controller-to-Driver Interface
22 *
23 **************************************************************************
24 */
25
26 #define MCDI_RPC_TIMEOUT (10 * HZ)
27
28 /* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
31 */
32 #define MCDI_STATUS_DELAY_US 100
33 #define MCDI_STATUS_DELAY_COUNT 2500
34 #define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36
37 #define SEQ_MASK \
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39
40 struct efx_mcdi_async_param {
41 struct list_head list;
42 unsigned int cmd;
43 size_t inlen;
44 size_t outlen;
45 bool quiet;
46 efx_mcdi_async_completer *complete;
47 unsigned long cookie;
48 /* followed by request/response buffer */
49 };
50
51 static void efx_mcdi_timeout_async(unsigned long context);
52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53 bool *was_attached_out);
54 static bool efx_mcdi_poll_once(struct efx_nic *efx);
55
56 static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
57 {
58 EFX_BUG_ON_PARANOID(!efx->mcdi);
59 return &efx->mcdi->iface;
60 }
61
62 int efx_mcdi_init(struct efx_nic *efx)
63 {
64 struct efx_mcdi_iface *mcdi;
65 bool already_attached;
66 int rc;
67
68 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
69 if (!efx->mcdi)
70 return -ENOMEM;
71
72 mcdi = efx_mcdi(efx);
73 mcdi->efx = efx;
74 init_waitqueue_head(&mcdi->wq);
75 spin_lock_init(&mcdi->iface_lock);
76 mcdi->state = MCDI_STATE_QUIESCENT;
77 mcdi->mode = MCDI_MODE_POLL;
78 spin_lock_init(&mcdi->async_lock);
79 INIT_LIST_HEAD(&mcdi->async_list);
80 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
81 (unsigned long)mcdi);
82
83 (void) efx_mcdi_poll_reboot(efx);
84 mcdi->new_epoch = true;
85
86 /* Recover from a failed assertion before probing */
87 rc = efx_mcdi_handle_assertion(efx);
88 if (rc)
89 return rc;
90
91 /* Let the MC (and BMC, if this is a LOM) know that the driver
92 * is loaded. We should do this before we reset the NIC.
93 */
94 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
95 if (rc) {
96 netif_err(efx, probe, efx->net_dev,
97 "Unable to register driver with MCPU\n");
98 return rc;
99 }
100 if (already_attached)
101 /* Not a fatal error */
102 netif_err(efx, probe, efx->net_dev,
103 "Host already registered with MCPU\n");
104
105 if (efx->mcdi->fn_flags &
106 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
107 efx->primary = efx;
108
109 return 0;
110 }
111
112 void efx_mcdi_fini(struct efx_nic *efx)
113 {
114 if (!efx->mcdi)
115 return;
116
117 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
118
119 /* Relinquish the device (back to the BMC, if this is a LOM) */
120 efx_mcdi_drv_attach(efx, false, NULL);
121
122 kfree(efx->mcdi);
123 }
124
125 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
126 const efx_dword_t *inbuf, size_t inlen)
127 {
128 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
129 efx_dword_t hdr[2];
130 size_t hdr_len;
131 u32 xflags, seqno;
132
133 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
134
135 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
136 spin_lock_bh(&mcdi->iface_lock);
137 ++mcdi->seqno;
138 spin_unlock_bh(&mcdi->iface_lock);
139
140 seqno = mcdi->seqno & SEQ_MASK;
141 xflags = 0;
142 if (mcdi->mode == MCDI_MODE_EVENTS)
143 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
144
145 if (efx->type->mcdi_max_ver == 1) {
146 /* MCDI v1 */
147 EFX_POPULATE_DWORD_7(hdr[0],
148 MCDI_HEADER_RESPONSE, 0,
149 MCDI_HEADER_RESYNC, 1,
150 MCDI_HEADER_CODE, cmd,
151 MCDI_HEADER_DATALEN, inlen,
152 MCDI_HEADER_SEQ, seqno,
153 MCDI_HEADER_XFLAGS, xflags,
154 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
155 hdr_len = 4;
156 } else {
157 /* MCDI v2 */
158 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
159 EFX_POPULATE_DWORD_7(hdr[0],
160 MCDI_HEADER_RESPONSE, 0,
161 MCDI_HEADER_RESYNC, 1,
162 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
163 MCDI_HEADER_DATALEN, 0,
164 MCDI_HEADER_SEQ, seqno,
165 MCDI_HEADER_XFLAGS, xflags,
166 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
167 EFX_POPULATE_DWORD_2(hdr[1],
168 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
169 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
170 hdr_len = 8;
171 }
172
173 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
174
175 mcdi->new_epoch = false;
176 }
177
178 static int efx_mcdi_errno(unsigned int mcdi_err)
179 {
180 switch (mcdi_err) {
181 case 0:
182 return 0;
183 #define TRANSLATE_ERROR(name) \
184 case MC_CMD_ERR_ ## name: \
185 return -name;
186 TRANSLATE_ERROR(EPERM);
187 TRANSLATE_ERROR(ENOENT);
188 TRANSLATE_ERROR(EINTR);
189 TRANSLATE_ERROR(EAGAIN);
190 TRANSLATE_ERROR(EACCES);
191 TRANSLATE_ERROR(EBUSY);
192 TRANSLATE_ERROR(EINVAL);
193 TRANSLATE_ERROR(EDEADLK);
194 TRANSLATE_ERROR(ENOSYS);
195 TRANSLATE_ERROR(ETIME);
196 TRANSLATE_ERROR(EALREADY);
197 TRANSLATE_ERROR(ENOSPC);
198 #undef TRANSLATE_ERROR
199 case MC_CMD_ERR_ENOTSUP:
200 return -EOPNOTSUPP;
201 case MC_CMD_ERR_ALLOC_FAIL:
202 return -ENOBUFS;
203 case MC_CMD_ERR_MAC_EXIST:
204 return -EADDRINUSE;
205 default:
206 return -EPROTO;
207 }
208 }
209
210 static void efx_mcdi_read_response_header(struct efx_nic *efx)
211 {
212 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
213 unsigned int respseq, respcmd, error;
214 efx_dword_t hdr;
215
216 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
217 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
218 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
219 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
220
221 if (respcmd != MC_CMD_V2_EXTN) {
222 mcdi->resp_hdr_len = 4;
223 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
224 } else {
225 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
226 mcdi->resp_hdr_len = 8;
227 mcdi->resp_data_len =
228 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
229 }
230
231 if (error && mcdi->resp_data_len == 0) {
232 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
233 mcdi->resprc = -EIO;
234 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
235 netif_err(efx, hw, efx->net_dev,
236 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
237 respseq, mcdi->seqno);
238 mcdi->resprc = -EIO;
239 } else if (error) {
240 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
241 mcdi->resprc =
242 efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
243 } else {
244 mcdi->resprc = 0;
245 }
246 }
247
248 static bool efx_mcdi_poll_once(struct efx_nic *efx)
249 {
250 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
251
252 rmb();
253 if (!efx->type->mcdi_poll_response(efx))
254 return false;
255
256 spin_lock_bh(&mcdi->iface_lock);
257 efx_mcdi_read_response_header(efx);
258 spin_unlock_bh(&mcdi->iface_lock);
259
260 return true;
261 }
262
263 static int efx_mcdi_poll(struct efx_nic *efx)
264 {
265 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
266 unsigned long time, finish;
267 unsigned int spins;
268 int rc;
269
270 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
271 rc = efx_mcdi_poll_reboot(efx);
272 if (rc) {
273 spin_lock_bh(&mcdi->iface_lock);
274 mcdi->resprc = rc;
275 mcdi->resp_hdr_len = 0;
276 mcdi->resp_data_len = 0;
277 spin_unlock_bh(&mcdi->iface_lock);
278 return 0;
279 }
280
281 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
282 * because generally mcdi responses are fast. After that, back off
283 * and poll once a jiffy (approximately)
284 */
285 spins = TICK_USEC;
286 finish = jiffies + MCDI_RPC_TIMEOUT;
287
288 while (1) {
289 if (spins != 0) {
290 --spins;
291 udelay(1);
292 } else {
293 schedule_timeout_uninterruptible(1);
294 }
295
296 time = jiffies;
297
298 if (efx_mcdi_poll_once(efx))
299 break;
300
301 if (time_after(time, finish))
302 return -ETIMEDOUT;
303 }
304
305 /* Return rc=0 like wait_event_timeout() */
306 return 0;
307 }
308
309 /* Test and clear MC-rebooted flag for this port/function; reset
310 * software state as necessary.
311 */
312 int efx_mcdi_poll_reboot(struct efx_nic *efx)
313 {
314 if (!efx->mcdi)
315 return 0;
316
317 return efx->type->mcdi_poll_reboot(efx);
318 }
319
320 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
321 {
322 return cmpxchg(&mcdi->state,
323 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
324 MCDI_STATE_QUIESCENT;
325 }
326
327 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
328 {
329 /* Wait until the interface becomes QUIESCENT and we win the race
330 * to mark it RUNNING_SYNC.
331 */
332 wait_event(mcdi->wq,
333 cmpxchg(&mcdi->state,
334 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
335 MCDI_STATE_QUIESCENT);
336 }
337
338 static int efx_mcdi_await_completion(struct efx_nic *efx)
339 {
340 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
341
342 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
343 MCDI_RPC_TIMEOUT) == 0)
344 return -ETIMEDOUT;
345
346 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
347 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
348 * completed the request first, then we'll just end up completing the
349 * request again, which is safe.
350 *
351 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
352 * wait_event_timeout() implicitly provides.
353 */
354 if (mcdi->mode == MCDI_MODE_POLL)
355 return efx_mcdi_poll(efx);
356
357 return 0;
358 }
359
360 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
361 * requester. Return whether this was done. Does not take any locks.
362 */
363 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
364 {
365 if (cmpxchg(&mcdi->state,
366 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
367 MCDI_STATE_RUNNING_SYNC) {
368 wake_up(&mcdi->wq);
369 return true;
370 }
371
372 return false;
373 }
374
375 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
376 {
377 if (mcdi->mode == MCDI_MODE_EVENTS) {
378 struct efx_mcdi_async_param *async;
379 struct efx_nic *efx = mcdi->efx;
380
381 /* Process the asynchronous request queue */
382 spin_lock_bh(&mcdi->async_lock);
383 async = list_first_entry_or_null(
384 &mcdi->async_list, struct efx_mcdi_async_param, list);
385 if (async) {
386 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
387 efx_mcdi_send_request(efx, async->cmd,
388 (const efx_dword_t *)(async + 1),
389 async->inlen);
390 mod_timer(&mcdi->async_timer,
391 jiffies + MCDI_RPC_TIMEOUT);
392 }
393 spin_unlock_bh(&mcdi->async_lock);
394
395 if (async)
396 return;
397 }
398
399 mcdi->state = MCDI_STATE_QUIESCENT;
400 wake_up(&mcdi->wq);
401 }
402
403 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
404 * asynchronous completion function, and release the interface.
405 * Return whether this was done. Must be called in bh-disabled
406 * context. Will take iface_lock and async_lock.
407 */
408 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
409 {
410 struct efx_nic *efx = mcdi->efx;
411 struct efx_mcdi_async_param *async;
412 size_t hdr_len, data_len, err_len;
413 efx_dword_t *outbuf;
414 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
415 int rc;
416
417 if (cmpxchg(&mcdi->state,
418 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
419 MCDI_STATE_RUNNING_ASYNC)
420 return false;
421
422 spin_lock(&mcdi->iface_lock);
423 if (timeout) {
424 /* Ensure that if the completion event arrives later,
425 * the seqno check in efx_mcdi_ev_cpl() will fail
426 */
427 ++mcdi->seqno;
428 ++mcdi->credits;
429 rc = -ETIMEDOUT;
430 hdr_len = 0;
431 data_len = 0;
432 } else {
433 rc = mcdi->resprc;
434 hdr_len = mcdi->resp_hdr_len;
435 data_len = mcdi->resp_data_len;
436 }
437 spin_unlock(&mcdi->iface_lock);
438
439 /* Stop the timer. In case the timer function is running, we
440 * must wait for it to return so that there is no possibility
441 * of it aborting the next request.
442 */
443 if (!timeout)
444 del_timer_sync(&mcdi->async_timer);
445
446 spin_lock(&mcdi->async_lock);
447 async = list_first_entry(&mcdi->async_list,
448 struct efx_mcdi_async_param, list);
449 list_del(&async->list);
450 spin_unlock(&mcdi->async_lock);
451
452 outbuf = (efx_dword_t *)(async + 1);
453 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
454 min(async->outlen, data_len));
455 if (!timeout && rc && !async->quiet) {
456 err_len = min(sizeof(errbuf), data_len);
457 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
458 sizeof(errbuf));
459 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
460 err_len, rc);
461 }
462 async->complete(efx, async->cookie, rc, outbuf, data_len);
463 kfree(async);
464
465 efx_mcdi_release(mcdi);
466
467 return true;
468 }
469
470 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
471 unsigned int datalen, unsigned int mcdi_err)
472 {
473 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
474 bool wake = false;
475
476 spin_lock(&mcdi->iface_lock);
477
478 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
479 if (mcdi->credits)
480 /* The request has been cancelled */
481 --mcdi->credits;
482 else
483 netif_err(efx, hw, efx->net_dev,
484 "MC response mismatch tx seq 0x%x rx "
485 "seq 0x%x\n", seqno, mcdi->seqno);
486 } else {
487 if (efx->type->mcdi_max_ver >= 2) {
488 /* MCDI v2 responses don't fit in an event */
489 efx_mcdi_read_response_header(efx);
490 } else {
491 mcdi->resprc = efx_mcdi_errno(mcdi_err);
492 mcdi->resp_hdr_len = 4;
493 mcdi->resp_data_len = datalen;
494 }
495
496 wake = true;
497 }
498
499 spin_unlock(&mcdi->iface_lock);
500
501 if (wake) {
502 if (!efx_mcdi_complete_async(mcdi, false))
503 (void) efx_mcdi_complete_sync(mcdi);
504
505 /* If the interface isn't RUNNING_ASYNC or
506 * RUNNING_SYNC then we've received a duplicate
507 * completion after we've already transitioned back to
508 * QUIESCENT. [A subsequent invocation would increment
509 * seqno, so would have failed the seqno check].
510 */
511 }
512 }
513
514 static void efx_mcdi_timeout_async(unsigned long context)
515 {
516 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
517
518 efx_mcdi_complete_async(mcdi, true);
519 }
520
521 static int
522 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
523 {
524 if (efx->type->mcdi_max_ver < 0 ||
525 (efx->type->mcdi_max_ver < 2 &&
526 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
527 return -EINVAL;
528
529 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
530 (efx->type->mcdi_max_ver < 2 &&
531 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
532 return -EMSGSIZE;
533
534 return 0;
535 }
536
537 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
538 efx_dword_t *outbuf, size_t outlen,
539 size_t *outlen_actual, bool quiet)
540 {
541 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
542 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
543 int rc;
544
545 if (mcdi->mode == MCDI_MODE_POLL)
546 rc = efx_mcdi_poll(efx);
547 else
548 rc = efx_mcdi_await_completion(efx);
549
550 if (rc != 0) {
551 netif_err(efx, hw, efx->net_dev,
552 "MC command 0x%x inlen %d mode %d timed out\n",
553 cmd, (int)inlen, mcdi->mode);
554
555 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
556 netif_err(efx, hw, efx->net_dev,
557 "MCDI request was completed without an event\n");
558 rc = 0;
559 }
560
561 /* Close the race with efx_mcdi_ev_cpl() executing just too late
562 * and completing a request we've just cancelled, by ensuring
563 * that the seqno check therein fails.
564 */
565 spin_lock_bh(&mcdi->iface_lock);
566 ++mcdi->seqno;
567 ++mcdi->credits;
568 spin_unlock_bh(&mcdi->iface_lock);
569 }
570
571 if (rc != 0) {
572 if (outlen_actual)
573 *outlen_actual = 0;
574 } else {
575 size_t hdr_len, data_len, err_len;
576
577 /* At the very least we need a memory barrier here to ensure
578 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
579 * a spurious efx_mcdi_ev_cpl() running concurrently by
580 * acquiring the iface_lock. */
581 spin_lock_bh(&mcdi->iface_lock);
582 rc = mcdi->resprc;
583 hdr_len = mcdi->resp_hdr_len;
584 data_len = mcdi->resp_data_len;
585 err_len = min(sizeof(errbuf), data_len);
586 spin_unlock_bh(&mcdi->iface_lock);
587
588 BUG_ON(rc > 0);
589
590 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
591 min(outlen, data_len));
592 if (outlen_actual)
593 *outlen_actual = data_len;
594
595 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
596
597 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
598 /* Don't reset if MC_CMD_REBOOT returns EIO */
599 } else if (rc == -EIO || rc == -EINTR) {
600 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
601 -rc);
602 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
603 } else if (rc && !quiet) {
604 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
605 rc);
606 }
607
608 if (rc == -EIO || rc == -EINTR) {
609 msleep(MCDI_STATUS_SLEEP_MS);
610 efx_mcdi_poll_reboot(efx);
611 mcdi->new_epoch = true;
612 }
613 }
614
615 efx_mcdi_release(mcdi);
616 return rc;
617 }
618
619 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
620 const efx_dword_t *inbuf, size_t inlen,
621 efx_dword_t *outbuf, size_t outlen,
622 size_t *outlen_actual, bool quiet)
623 {
624 int rc;
625
626 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
627 if (rc) {
628 if (outlen_actual)
629 *outlen_actual = 0;
630 return rc;
631 }
632 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
633 outlen_actual, quiet);
634 }
635
636 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
637 const efx_dword_t *inbuf, size_t inlen,
638 efx_dword_t *outbuf, size_t outlen,
639 size_t *outlen_actual)
640 {
641 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
642 outlen_actual, false);
643 }
644
645 /* Normally, on receiving an error code in the MCDI response,
646 * efx_mcdi_rpc will log an error message containing (among other
647 * things) the raw error code, by means of efx_mcdi_display_error.
648 * This _quiet version suppresses that; if the caller wishes to log
649 * the error conditionally on the return code, it should call this
650 * function and is then responsible for calling efx_mcdi_display_error
651 * as needed.
652 */
653 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
654 const efx_dword_t *inbuf, size_t inlen,
655 efx_dword_t *outbuf, size_t outlen,
656 size_t *outlen_actual)
657 {
658 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
659 outlen_actual, true);
660 }
661
662 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
663 const efx_dword_t *inbuf, size_t inlen)
664 {
665 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
666 int rc;
667
668 rc = efx_mcdi_check_supported(efx, cmd, inlen);
669 if (rc)
670 return rc;
671
672 if (efx->mc_bist_for_other_fn)
673 return -ENETDOWN;
674
675 efx_mcdi_acquire_sync(mcdi);
676 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
677 return 0;
678 }
679
680 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
681 const efx_dword_t *inbuf, size_t inlen,
682 size_t outlen,
683 efx_mcdi_async_completer *complete,
684 unsigned long cookie, bool quiet)
685 {
686 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
687 struct efx_mcdi_async_param *async;
688 int rc;
689
690 rc = efx_mcdi_check_supported(efx, cmd, inlen);
691 if (rc)
692 return rc;
693
694 if (efx->mc_bist_for_other_fn)
695 return -ENETDOWN;
696
697 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
698 GFP_ATOMIC);
699 if (!async)
700 return -ENOMEM;
701
702 async->cmd = cmd;
703 async->inlen = inlen;
704 async->outlen = outlen;
705 async->quiet = quiet;
706 async->complete = complete;
707 async->cookie = cookie;
708 memcpy(async + 1, inbuf, inlen);
709
710 spin_lock_bh(&mcdi->async_lock);
711
712 if (mcdi->mode == MCDI_MODE_EVENTS) {
713 list_add_tail(&async->list, &mcdi->async_list);
714
715 /* If this is at the front of the queue, try to start it
716 * immediately
717 */
718 if (mcdi->async_list.next == &async->list &&
719 efx_mcdi_acquire_async(mcdi)) {
720 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
721 mod_timer(&mcdi->async_timer,
722 jiffies + MCDI_RPC_TIMEOUT);
723 }
724 } else {
725 kfree(async);
726 rc = -ENETDOWN;
727 }
728
729 spin_unlock_bh(&mcdi->async_lock);
730
731 return rc;
732 }
733
734 /**
735 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
736 * @efx: NIC through which to issue the command
737 * @cmd: Command type number
738 * @inbuf: Command parameters
739 * @inlen: Length of command parameters, in bytes
740 * @outlen: Length to allocate for response buffer, in bytes
741 * @complete: Function to be called on completion or cancellation.
742 * @cookie: Arbitrary value to be passed to @complete.
743 *
744 * This function does not sleep and therefore may be called in atomic
745 * context. It will fail if event queues are disabled or if MCDI
746 * event completions have been disabled due to an error.
747 *
748 * If it succeeds, the @complete function will be called exactly once
749 * in atomic context, when one of the following occurs:
750 * (a) the completion event is received (in NAPI context)
751 * (b) event queues are disabled (in the process that disables them)
752 * (c) the request times-out (in timer context)
753 */
754 int
755 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
756 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
757 efx_mcdi_async_completer *complete, unsigned long cookie)
758 {
759 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
760 cookie, false);
761 }
762
763 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
764 const efx_dword_t *inbuf, size_t inlen,
765 size_t outlen, efx_mcdi_async_completer *complete,
766 unsigned long cookie)
767 {
768 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
769 cookie, true);
770 }
771
772 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
773 efx_dword_t *outbuf, size_t outlen,
774 size_t *outlen_actual)
775 {
776 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
777 outlen_actual, false);
778 }
779
780 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
781 efx_dword_t *outbuf, size_t outlen,
782 size_t *outlen_actual)
783 {
784 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
785 outlen_actual, true);
786 }
787
788 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
789 size_t inlen, efx_dword_t *outbuf,
790 size_t outlen, int rc)
791 {
792 int code = 0, err_arg = 0;
793
794 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
795 code = MCDI_DWORD(outbuf, ERR_CODE);
796 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
797 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
798 netif_err(efx, hw, efx->net_dev,
799 "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
800 cmd, (int)inlen, rc, code, err_arg);
801 }
802
803 /* Switch to polled MCDI completions. This can be called in various
804 * error conditions with various locks held, so it must be lockless.
805 * Caller is responsible for flushing asynchronous requests later.
806 */
807 void efx_mcdi_mode_poll(struct efx_nic *efx)
808 {
809 struct efx_mcdi_iface *mcdi;
810
811 if (!efx->mcdi)
812 return;
813
814 mcdi = efx_mcdi(efx);
815 if (mcdi->mode == MCDI_MODE_POLL)
816 return;
817
818 /* We can switch from event completion to polled completion, because
819 * mcdi requests are always completed in shared memory. We do this by
820 * switching the mode to POLL'd then completing the request.
821 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
822 *
823 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
824 * which efx_mcdi_complete_sync() provides for us.
825 */
826 mcdi->mode = MCDI_MODE_POLL;
827
828 efx_mcdi_complete_sync(mcdi);
829 }
830
831 /* Flush any running or queued asynchronous requests, after event processing
832 * is stopped
833 */
834 void efx_mcdi_flush_async(struct efx_nic *efx)
835 {
836 struct efx_mcdi_async_param *async, *next;
837 struct efx_mcdi_iface *mcdi;
838
839 if (!efx->mcdi)
840 return;
841
842 mcdi = efx_mcdi(efx);
843
844 /* We must be in polling mode so no more requests can be queued */
845 BUG_ON(mcdi->mode != MCDI_MODE_POLL);
846
847 del_timer_sync(&mcdi->async_timer);
848
849 /* If a request is still running, make sure we give the MC
850 * time to complete it so that the response won't overwrite our
851 * next request.
852 */
853 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
854 efx_mcdi_poll(efx);
855 mcdi->state = MCDI_STATE_QUIESCENT;
856 }
857
858 /* Nothing else will access the async list now, so it is safe
859 * to walk it without holding async_lock. If we hold it while
860 * calling a completer then lockdep may warn that we have
861 * acquired locks in the wrong order.
862 */
863 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
864 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
865 list_del(&async->list);
866 kfree(async);
867 }
868 }
869
870 void efx_mcdi_mode_event(struct efx_nic *efx)
871 {
872 struct efx_mcdi_iface *mcdi;
873
874 if (!efx->mcdi)
875 return;
876
877 mcdi = efx_mcdi(efx);
878
879 if (mcdi->mode == MCDI_MODE_EVENTS)
880 return;
881
882 /* We can't switch from polled to event completion in the middle of a
883 * request, because the completion method is specified in the request.
884 * So acquire the interface to serialise the requestors. We don't need
885 * to acquire the iface_lock to change the mode here, but we do need a
886 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
887 * efx_mcdi_acquire() provides.
888 */
889 efx_mcdi_acquire_sync(mcdi);
890 mcdi->mode = MCDI_MODE_EVENTS;
891 efx_mcdi_release(mcdi);
892 }
893
894 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
895 {
896 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
897
898 /* If there is an outstanding MCDI request, it has been terminated
899 * either by a BADASSERT or REBOOT event. If the mcdi interface is
900 * in polled mode, then do nothing because the MC reboot handler will
901 * set the header correctly. However, if the mcdi interface is waiting
902 * for a CMDDONE event it won't receive it [and since all MCDI events
903 * are sent to the same queue, we can't be racing with
904 * efx_mcdi_ev_cpl()]
905 *
906 * If there is an outstanding asynchronous request, we can't
907 * complete it now (efx_mcdi_complete() would deadlock). The
908 * reset process will take care of this.
909 *
910 * There's a race here with efx_mcdi_send_request(), because
911 * we might receive a REBOOT event *before* the request has
912 * been copied out. In polled mode (during startup) this is
913 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
914 * event mode, this condition is just an edge-case of
915 * receiving a REBOOT event after posting the MCDI
916 * request. Did the mc reboot before or after the copyout? The
917 * best we can do always is just return failure.
918 */
919 spin_lock(&mcdi->iface_lock);
920 if (efx_mcdi_complete_sync(mcdi)) {
921 if (mcdi->mode == MCDI_MODE_EVENTS) {
922 mcdi->resprc = rc;
923 mcdi->resp_hdr_len = 0;
924 mcdi->resp_data_len = 0;
925 ++mcdi->credits;
926 }
927 } else {
928 int count;
929
930 /* Consume the status word since efx_mcdi_rpc_finish() won't */
931 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
932 if (efx_mcdi_poll_reboot(efx))
933 break;
934 udelay(MCDI_STATUS_DELAY_US);
935 }
936 mcdi->new_epoch = true;
937
938 /* Nobody was waiting for an MCDI request, so trigger a reset */
939 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
940 }
941
942 spin_unlock(&mcdi->iface_lock);
943 }
944
945 /* The MC is going down in to BIST mode. set the BIST flag to block
946 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
947 * (which doesn't actually execute a reset, it waits for the controlling
948 * function to reset it).
949 */
950 static void efx_mcdi_ev_bist(struct efx_nic *efx)
951 {
952 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
953
954 spin_lock(&mcdi->iface_lock);
955 efx->mc_bist_for_other_fn = true;
956 if (efx_mcdi_complete_sync(mcdi)) {
957 if (mcdi->mode == MCDI_MODE_EVENTS) {
958 mcdi->resprc = -EIO;
959 mcdi->resp_hdr_len = 0;
960 mcdi->resp_data_len = 0;
961 ++mcdi->credits;
962 }
963 }
964 mcdi->new_epoch = true;
965 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
966 spin_unlock(&mcdi->iface_lock);
967 }
968
969 /* Called from falcon_process_eventq for MCDI events */
970 void efx_mcdi_process_event(struct efx_channel *channel,
971 efx_qword_t *event)
972 {
973 struct efx_nic *efx = channel->efx;
974 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
975 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
976
977 switch (code) {
978 case MCDI_EVENT_CODE_BADSSERT:
979 netif_err(efx, hw, efx->net_dev,
980 "MC watchdog or assertion failure at 0x%x\n", data);
981 efx_mcdi_ev_death(efx, -EINTR);
982 break;
983
984 case MCDI_EVENT_CODE_PMNOTICE:
985 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
986 break;
987
988 case MCDI_EVENT_CODE_CMDDONE:
989 efx_mcdi_ev_cpl(efx,
990 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
991 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
992 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
993 break;
994
995 case MCDI_EVENT_CODE_LINKCHANGE:
996 efx_mcdi_process_link_change(efx, event);
997 break;
998 case MCDI_EVENT_CODE_SENSOREVT:
999 efx_mcdi_sensor_event(efx, event);
1000 break;
1001 case MCDI_EVENT_CODE_SCHEDERR:
1002 netif_dbg(efx, hw, efx->net_dev,
1003 "MC Scheduler alert (0x%x)\n", data);
1004 break;
1005 case MCDI_EVENT_CODE_REBOOT:
1006 case MCDI_EVENT_CODE_MC_REBOOT:
1007 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1008 efx_mcdi_ev_death(efx, -EIO);
1009 break;
1010 case MCDI_EVENT_CODE_MC_BIST:
1011 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1012 efx_mcdi_ev_bist(efx);
1013 break;
1014 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1015 /* MAC stats are gather lazily. We can ignore this. */
1016 break;
1017 case MCDI_EVENT_CODE_FLR:
1018 efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF));
1019 break;
1020 case MCDI_EVENT_CODE_PTP_RX:
1021 case MCDI_EVENT_CODE_PTP_FAULT:
1022 case MCDI_EVENT_CODE_PTP_PPS:
1023 efx_ptp_event(efx, event);
1024 break;
1025 case MCDI_EVENT_CODE_PTP_TIME:
1026 efx_time_sync_event(channel, event);
1027 break;
1028 case MCDI_EVENT_CODE_TX_FLUSH:
1029 case MCDI_EVENT_CODE_RX_FLUSH:
1030 /* Two flush events will be sent: one to the same event
1031 * queue as completions, and one to event queue 0.
1032 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1033 * flag will be set, and we should ignore the event
1034 * because we want to wait for all completions.
1035 */
1036 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1037 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1038 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1039 efx_ef10_handle_drain_event(efx);
1040 break;
1041 case MCDI_EVENT_CODE_TX_ERR:
1042 case MCDI_EVENT_CODE_RX_ERR:
1043 netif_err(efx, hw, efx->net_dev,
1044 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1045 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1046 EFX_QWORD_VAL(*event));
1047 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1048 break;
1049 default:
1050 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1051 code);
1052 }
1053 }
1054
1055 /**************************************************************************
1056 *
1057 * Specific request functions
1058 *
1059 **************************************************************************
1060 */
1061
1062 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1063 {
1064 MCDI_DECLARE_BUF(outbuf,
1065 max(MC_CMD_GET_VERSION_OUT_LEN,
1066 MC_CMD_GET_CAPABILITIES_OUT_LEN));
1067 size_t outlength;
1068 const __le16 *ver_words;
1069 size_t offset;
1070 int rc;
1071
1072 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1073 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1074 outbuf, sizeof(outbuf), &outlength);
1075 if (rc)
1076 goto fail;
1077 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1078 rc = -EIO;
1079 goto fail;
1080 }
1081
1082 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1083 offset = snprintf(buf, len, "%u.%u.%u.%u",
1084 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1085 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1086
1087 /* EF10 may have multiple datapath firmware variants within a
1088 * single version. Report which variants are running.
1089 */
1090 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1091 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
1092 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
1093 outbuf, sizeof(outbuf), &outlength);
1094 if (rc || outlength < MC_CMD_GET_CAPABILITIES_OUT_LEN)
1095 offset += snprintf(
1096 buf + offset, len - offset, " rx? tx?");
1097 else
1098 offset += snprintf(
1099 buf + offset, len - offset, " rx%x tx%x",
1100 MCDI_WORD(outbuf,
1101 GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID),
1102 MCDI_WORD(outbuf,
1103 GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID));
1104
1105 /* It's theoretically possible for the string to exceed 31
1106 * characters, though in practice the first three version
1107 * components are short enough that this doesn't happen.
1108 */
1109 if (WARN_ON(offset >= len))
1110 buf[0] = 0;
1111 }
1112
1113 return;
1114
1115 fail:
1116 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1117 buf[0] = 0;
1118 }
1119
1120 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1121 bool *was_attached)
1122 {
1123 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1124 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1125 size_t outlen;
1126 int rc;
1127
1128 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1129 driver_operating ? 1 : 0);
1130 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1131 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1132
1133 rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1134 outbuf, sizeof(outbuf), &outlen);
1135 if (rc)
1136 goto fail;
1137 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1138 rc = -EIO;
1139 goto fail;
1140 }
1141
1142 if (driver_operating) {
1143 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1144 efx->mcdi->fn_flags =
1145 MCDI_DWORD(outbuf,
1146 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1147 } else {
1148 /* Synthesise flags for Siena */
1149 efx->mcdi->fn_flags =
1150 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1151 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1152 (efx_port_num(efx) == 0) <<
1153 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1154 }
1155 }
1156
1157 /* We currently assume we have control of the external link
1158 * and are completely trusted by firmware. Abort probing
1159 * if that's not true for this function.
1160 */
1161 if (driver_operating &&
1162 (efx->mcdi->fn_flags &
1163 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1164 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) !=
1165 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1166 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) {
1167 netif_err(efx, probe, efx->net_dev,
1168 "This driver version only supports one function per port\n");
1169 return -ENODEV;
1170 }
1171
1172 if (was_attached != NULL)
1173 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1174 return 0;
1175
1176 fail:
1177 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1178 return rc;
1179 }
1180
1181 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1182 u16 *fw_subtype_list, u32 *capabilities)
1183 {
1184 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1185 size_t outlen, i;
1186 int port_num = efx_port_num(efx);
1187 int rc;
1188
1189 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1190
1191 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1192 outbuf, sizeof(outbuf), &outlen);
1193 if (rc)
1194 goto fail;
1195
1196 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1197 rc = -EIO;
1198 goto fail;
1199 }
1200
1201 if (mac_address)
1202 memcpy(mac_address,
1203 port_num ?
1204 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1205 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0),
1206 ETH_ALEN);
1207 if (fw_subtype_list) {
1208 for (i = 0;
1209 i < MCDI_VAR_ARRAY_LEN(outlen,
1210 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1211 i++)
1212 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1213 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1214 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1215 fw_subtype_list[i] = 0;
1216 }
1217 if (capabilities) {
1218 if (port_num)
1219 *capabilities = MCDI_DWORD(outbuf,
1220 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1221 else
1222 *capabilities = MCDI_DWORD(outbuf,
1223 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1224 }
1225
1226 return 0;
1227
1228 fail:
1229 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1230 __func__, rc, (int)outlen);
1231
1232 return rc;
1233 }
1234
1235 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1236 {
1237 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1238 u32 dest = 0;
1239 int rc;
1240
1241 if (uart)
1242 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1243 if (evq)
1244 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1245
1246 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1247 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1248
1249 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1250
1251 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1252 NULL, 0, NULL);
1253 return rc;
1254 }
1255
1256 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1257 {
1258 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1259 size_t outlen;
1260 int rc;
1261
1262 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1263
1264 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1265 outbuf, sizeof(outbuf), &outlen);
1266 if (rc)
1267 goto fail;
1268 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1269 rc = -EIO;
1270 goto fail;
1271 }
1272
1273 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1274 return 0;
1275
1276 fail:
1277 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1278 __func__, rc);
1279 return rc;
1280 }
1281
1282 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1283 size_t *size_out, size_t *erase_size_out,
1284 bool *protected_out)
1285 {
1286 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1287 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1288 size_t outlen;
1289 int rc;
1290
1291 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1292
1293 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1294 outbuf, sizeof(outbuf), &outlen);
1295 if (rc)
1296 goto fail;
1297 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1298 rc = -EIO;
1299 goto fail;
1300 }
1301
1302 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1303 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1304 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1305 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1306 return 0;
1307
1308 fail:
1309 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1310 return rc;
1311 }
1312
1313 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1314 {
1315 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1316 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1317 int rc;
1318
1319 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1320
1321 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1322 outbuf, sizeof(outbuf), NULL);
1323 if (rc)
1324 return rc;
1325
1326 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1327 case MC_CMD_NVRAM_TEST_PASS:
1328 case MC_CMD_NVRAM_TEST_NOTSUPP:
1329 return 0;
1330 default:
1331 return -EIO;
1332 }
1333 }
1334
1335 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1336 {
1337 u32 nvram_types;
1338 unsigned int type;
1339 int rc;
1340
1341 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1342 if (rc)
1343 goto fail1;
1344
1345 type = 0;
1346 while (nvram_types != 0) {
1347 if (nvram_types & 1) {
1348 rc = efx_mcdi_nvram_test(efx, type);
1349 if (rc)
1350 goto fail2;
1351 }
1352 type++;
1353 nvram_types >>= 1;
1354 }
1355
1356 return 0;
1357
1358 fail2:
1359 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1360 __func__, type);
1361 fail1:
1362 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1363 return rc;
1364 }
1365
1366 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1367 {
1368 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1369 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1370 unsigned int flags, index;
1371 const char *reason;
1372 size_t outlen;
1373 int retry;
1374 int rc;
1375
1376 /* Attempt to read any stored assertion state before we reboot
1377 * the mcfw out of the assertion handler. Retry twice, once
1378 * because a boot-time assertion might cause this command to fail
1379 * with EINTR. And once again because GET_ASSERTS can race with
1380 * MC_CMD_REBOOT running on the other port. */
1381 retry = 2;
1382 do {
1383 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1384 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1385 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1386 outbuf, sizeof(outbuf), &outlen);
1387 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1388
1389 if (rc) {
1390 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1391 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1392 outlen, rc);
1393 return rc;
1394 }
1395 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1396 return -EIO;
1397
1398 /* Print out any recorded assertion state */
1399 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1400 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1401 return 0;
1402
1403 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1404 ? "system-level assertion"
1405 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1406 ? "thread-level assertion"
1407 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1408 ? "watchdog reset"
1409 : "unknown assertion";
1410 netif_err(efx, hw, efx->net_dev,
1411 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1412 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1413 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1414
1415 /* Print out the registers */
1416 for (index = 0;
1417 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1418 index++)
1419 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1420 1 + index,
1421 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1422 index));
1423
1424 return 0;
1425 }
1426
1427 static void efx_mcdi_exit_assertion(struct efx_nic *efx)
1428 {
1429 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1430
1431 /* If the MC is running debug firmware, it might now be
1432 * waiting for a debugger to attach, but we just want it to
1433 * reboot. We set a flag that makes the command a no-op if it
1434 * has already done so. We don't know what return code to
1435 * expect (0 or -EIO), so ignore it.
1436 */
1437 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1438 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1439 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1440 (void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1441 NULL, 0, NULL);
1442 }
1443
1444 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1445 {
1446 int rc;
1447
1448 rc = efx_mcdi_read_assertion(efx);
1449 if (rc)
1450 return rc;
1451
1452 efx_mcdi_exit_assertion(efx);
1453
1454 return 0;
1455 }
1456
1457 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1458 {
1459 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1460 int rc;
1461
1462 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1463 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1464 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1465
1466 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1467
1468 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1469
1470 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1471 NULL, 0, NULL);
1472 }
1473
1474 static int efx_mcdi_reset_func(struct efx_nic *efx)
1475 {
1476 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1477 int rc;
1478
1479 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1480 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1481 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1482 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1483 NULL, 0, NULL);
1484 return rc;
1485 }
1486
1487 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1488 {
1489 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1490 int rc;
1491
1492 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1493 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1494 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1495 NULL, 0, NULL);
1496 /* White is black, and up is down */
1497 if (rc == -EIO)
1498 return 0;
1499 if (rc == 0)
1500 rc = -EIO;
1501 return rc;
1502 }
1503
1504 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1505 {
1506 return RESET_TYPE_RECOVER_OR_ALL;
1507 }
1508
1509 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1510 {
1511 int rc;
1512
1513 /* Recover from a failed assertion pre-reset */
1514 rc = efx_mcdi_handle_assertion(efx);
1515 if (rc)
1516 return rc;
1517
1518 if (method == RESET_TYPE_WORLD)
1519 return efx_mcdi_reset_mc(efx);
1520 else
1521 return efx_mcdi_reset_func(efx);
1522 }
1523
1524 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1525 const u8 *mac, int *id_out)
1526 {
1527 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1528 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1529 size_t outlen;
1530 int rc;
1531
1532 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1533 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1534 MC_CMD_FILTER_MODE_SIMPLE);
1535 memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN);
1536
1537 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1538 outbuf, sizeof(outbuf), &outlen);
1539 if (rc)
1540 goto fail;
1541
1542 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1543 rc = -EIO;
1544 goto fail;
1545 }
1546
1547 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1548
1549 return 0;
1550
1551 fail:
1552 *id_out = -1;
1553 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1554 return rc;
1555
1556 }
1557
1558
1559 int
1560 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1561 {
1562 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1563 }
1564
1565
1566 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1567 {
1568 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1569 size_t outlen;
1570 int rc;
1571
1572 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1573 outbuf, sizeof(outbuf), &outlen);
1574 if (rc)
1575 goto fail;
1576
1577 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1578 rc = -EIO;
1579 goto fail;
1580 }
1581
1582 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1583
1584 return 0;
1585
1586 fail:
1587 *id_out = -1;
1588 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1589 return rc;
1590 }
1591
1592
1593 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1594 {
1595 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1596 int rc;
1597
1598 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1599
1600 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1601 NULL, 0, NULL);
1602 return rc;
1603 }
1604
1605 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1606 {
1607 struct efx_channel *channel;
1608 struct efx_rx_queue *rx_queue;
1609 MCDI_DECLARE_BUF(inbuf,
1610 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1611 int rc, count;
1612
1613 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1614 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1615
1616 count = 0;
1617 efx_for_each_channel(channel, efx) {
1618 efx_for_each_channel_rx_queue(rx_queue, channel) {
1619 if (rx_queue->flush_pending) {
1620 rx_queue->flush_pending = false;
1621 atomic_dec(&efx->rxq_flush_pending);
1622 MCDI_SET_ARRAY_DWORD(
1623 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1624 count, efx_rx_queue_index(rx_queue));
1625 count++;
1626 }
1627 }
1628 }
1629
1630 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1631 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1632 WARN_ON(rc < 0);
1633
1634 return rc;
1635 }
1636
1637 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1638 {
1639 int rc;
1640
1641 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1642 return rc;
1643 }
1644
1645 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled)
1646 {
1647 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1648
1649 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1650 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1651 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1652 return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
1653 NULL, 0, NULL);
1654 }
1655
1656 #ifdef CONFIG_SFC_MTD
1657
1658 #define EFX_MCDI_NVRAM_LEN_MAX 128
1659
1660 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
1661 {
1662 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
1663 int rc;
1664
1665 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
1666
1667 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
1668
1669 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
1670 NULL, 0, NULL);
1671 return rc;
1672 }
1673
1674 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
1675 loff_t offset, u8 *buffer, size_t length)
1676 {
1677 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
1678 MCDI_DECLARE_BUF(outbuf,
1679 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1680 size_t outlen;
1681 int rc;
1682
1683 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
1684 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
1685 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
1686
1687 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
1688 outbuf, sizeof(outbuf), &outlen);
1689 if (rc)
1690 return rc;
1691
1692 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
1693 return 0;
1694 }
1695
1696 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
1697 loff_t offset, const u8 *buffer, size_t length)
1698 {
1699 MCDI_DECLARE_BUF(inbuf,
1700 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1701 int rc;
1702
1703 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
1704 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
1705 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
1706 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
1707
1708 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
1709
1710 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
1711 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
1712 NULL, 0, NULL);
1713 return rc;
1714 }
1715
1716 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
1717 loff_t offset, size_t length)
1718 {
1719 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
1720 int rc;
1721
1722 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
1723 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
1724 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
1725
1726 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
1727
1728 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
1729 NULL, 0, NULL);
1730 return rc;
1731 }
1732
1733 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
1734 {
1735 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
1736 int rc;
1737
1738 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
1739
1740 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
1741
1742 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
1743 NULL, 0, NULL);
1744 return rc;
1745 }
1746
1747 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
1748 size_t len, size_t *retlen, u8 *buffer)
1749 {
1750 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1751 struct efx_nic *efx = mtd->priv;
1752 loff_t offset = start;
1753 loff_t end = min_t(loff_t, start + len, mtd->size);
1754 size_t chunk;
1755 int rc = 0;
1756
1757 while (offset < end) {
1758 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1759 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
1760 buffer, chunk);
1761 if (rc)
1762 goto out;
1763 offset += chunk;
1764 buffer += chunk;
1765 }
1766 out:
1767 *retlen = offset - start;
1768 return rc;
1769 }
1770
1771 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
1772 {
1773 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1774 struct efx_nic *efx = mtd->priv;
1775 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
1776 loff_t end = min_t(loff_t, start + len, mtd->size);
1777 size_t chunk = part->common.mtd.erasesize;
1778 int rc = 0;
1779
1780 if (!part->updating) {
1781 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1782 if (rc)
1783 goto out;
1784 part->updating = true;
1785 }
1786
1787 /* The MCDI interface can in fact do multiple erase blocks at once;
1788 * but erasing may be slow, so we make multiple calls here to avoid
1789 * tripping the MCDI RPC timeout. */
1790 while (offset < end) {
1791 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
1792 chunk);
1793 if (rc)
1794 goto out;
1795 offset += chunk;
1796 }
1797 out:
1798 return rc;
1799 }
1800
1801 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
1802 size_t len, size_t *retlen, const u8 *buffer)
1803 {
1804 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1805 struct efx_nic *efx = mtd->priv;
1806 loff_t offset = start;
1807 loff_t end = min_t(loff_t, start + len, mtd->size);
1808 size_t chunk;
1809 int rc = 0;
1810
1811 if (!part->updating) {
1812 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1813 if (rc)
1814 goto out;
1815 part->updating = true;
1816 }
1817
1818 while (offset < end) {
1819 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1820 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
1821 buffer, chunk);
1822 if (rc)
1823 goto out;
1824 offset += chunk;
1825 buffer += chunk;
1826 }
1827 out:
1828 *retlen = offset - start;
1829 return rc;
1830 }
1831
1832 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
1833 {
1834 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1835 struct efx_nic *efx = mtd->priv;
1836 int rc = 0;
1837
1838 if (part->updating) {
1839 part->updating = false;
1840 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
1841 }
1842
1843 return rc;
1844 }
1845
1846 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
1847 {
1848 struct efx_mcdi_mtd_partition *mcdi_part =
1849 container_of(part, struct efx_mcdi_mtd_partition, common);
1850 struct efx_nic *efx = part->mtd.priv;
1851
1852 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
1853 efx->name, part->type_name, mcdi_part->fw_subtype);
1854 }
1855
1856 #endif /* CONFIG_SFC_MTD */