]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/sfc/net_driver.h
cfg80211: fix proto in ieee80211_data_to_8023 for frames without LLC header
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / sfc / net_driver.h
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 /* Common definitions for all Efx net driver code */
12
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/rwsem.h>
29 #include <linux/vmalloc.h>
30 #include <linux/i2c.h>
31 #include <linux/mtd/mtd.h>
32 #include <net/busy_poll.h>
33
34 #include "enum.h"
35 #include "bitfield.h"
36 #include "filter.h"
37
38 /**************************************************************************
39 *
40 * Build definitions
41 *
42 **************************************************************************/
43
44 #define EFX_DRIVER_VERSION "4.0"
45
46 #ifdef DEBUG
47 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
48 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
49 #else
50 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
51 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
52 #endif
53
54 /**************************************************************************
55 *
56 * Efx data structures
57 *
58 **************************************************************************/
59
60 #define EFX_MAX_CHANNELS 32U
61 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
62 #define EFX_EXTRA_CHANNEL_IOV 0
63 #define EFX_EXTRA_CHANNEL_PTP 1
64 #define EFX_MAX_EXTRA_CHANNELS 2U
65
66 /* Checksum generation is a per-queue option in hardware, so each
67 * queue visible to the networking core is backed by two hardware TX
68 * queues. */
69 #define EFX_MAX_TX_TC 2
70 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
71 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
72 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
73 #define EFX_TXQ_TYPES 4
74 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
75
76 /* Maximum possible MTU the driver supports */
77 #define EFX_MAX_MTU (9 * 1024)
78
79 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
80 * and should be a multiple of the cache line size.
81 */
82 #define EFX_RX_USR_BUF_SIZE (2048 - 256)
83
84 /* If possible, we should ensure cache line alignment at start and end
85 * of every buffer. Otherwise, we just need to ensure 4-byte
86 * alignment of the network header.
87 */
88 #if NET_IP_ALIGN == 0
89 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
90 #else
91 #define EFX_RX_BUF_ALIGNMENT 4
92 #endif
93
94 /* Forward declare Precision Time Protocol (PTP) support structure. */
95 struct efx_ptp_data;
96 struct hwtstamp_config;
97
98 struct efx_self_tests;
99
100 /**
101 * struct efx_buffer - A general-purpose DMA buffer
102 * @addr: host base address of the buffer
103 * @dma_addr: DMA base address of the buffer
104 * @len: Buffer length, in bytes
105 *
106 * The NIC uses these buffers for its interrupt status registers and
107 * MAC stats dumps.
108 */
109 struct efx_buffer {
110 void *addr;
111 dma_addr_t dma_addr;
112 unsigned int len;
113 };
114
115 /**
116 * struct efx_special_buffer - DMA buffer entered into buffer table
117 * @buf: Standard &struct efx_buffer
118 * @index: Buffer index within controller;s buffer table
119 * @entries: Number of buffer table entries
120 *
121 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
122 * Event and descriptor rings are addressed via one or more buffer
123 * table entries (and so can be physically non-contiguous, although we
124 * currently do not take advantage of that). On Falcon and Siena we
125 * have to take care of allocating and initialising the entries
126 * ourselves. On later hardware this is managed by the firmware and
127 * @index and @entries are left as 0.
128 */
129 struct efx_special_buffer {
130 struct efx_buffer buf;
131 unsigned int index;
132 unsigned int entries;
133 };
134
135 /**
136 * struct efx_tx_buffer - buffer state for a TX descriptor
137 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
138 * freed when descriptor completes
139 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
140 * freed when descriptor completes.
141 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
142 * @dma_addr: DMA address of the fragment.
143 * @flags: Flags for allocation and DMA mapping type
144 * @len: Length of this fragment.
145 * This field is zero when the queue slot is empty.
146 * @unmap_len: Length of this fragment to unmap
147 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
148 * Only valid if @unmap_len != 0.
149 */
150 struct efx_tx_buffer {
151 union {
152 const struct sk_buff *skb;
153 void *heap_buf;
154 };
155 union {
156 efx_qword_t option;
157 dma_addr_t dma_addr;
158 };
159 unsigned short flags;
160 unsigned short len;
161 unsigned short unmap_len;
162 unsigned short dma_offset;
163 };
164 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
165 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
166 #define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */
167 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
168 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
169
170 /**
171 * struct efx_tx_queue - An Efx TX queue
172 *
173 * This is a ring buffer of TX fragments.
174 * Since the TX completion path always executes on the same
175 * CPU and the xmit path can operate on different CPUs,
176 * performance is increased by ensuring that the completion
177 * path and the xmit path operate on different cache lines.
178 * This is particularly important if the xmit path is always
179 * executing on one CPU which is different from the completion
180 * path. There is also a cache line for members which are
181 * read but not written on the fast path.
182 *
183 * @efx: The associated Efx NIC
184 * @queue: DMA queue number
185 * @tso_version: Version of TSO in use for this queue.
186 * @channel: The associated channel
187 * @core_txq: The networking core TX queue structure
188 * @buffer: The software buffer ring
189 * @tsoh_page: Array of pages of TSO header buffers
190 * @txd: The hardware descriptor ring
191 * @ptr_mask: The size of the ring minus 1.
192 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
193 * Size of the region is efx_piobuf_size.
194 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
195 * @initialised: Has hardware queue been initialised?
196 * @read_count: Current read pointer.
197 * This is the number of buffers that have been removed from both rings.
198 * @old_write_count: The value of @write_count when last checked.
199 * This is here for performance reasons. The xmit path will
200 * only get the up-to-date value of @write_count if this
201 * variable indicates that the queue is empty. This is to
202 * avoid cache-line ping-pong between the xmit path and the
203 * completion path.
204 * @merge_events: Number of TX merged completion events
205 * @insert_count: Current insert pointer
206 * This is the number of buffers that have been added to the
207 * software ring.
208 * @write_count: Current write pointer
209 * This is the number of buffers that have been added to the
210 * hardware ring.
211 * @old_read_count: The value of read_count when last checked.
212 * This is here for performance reasons. The xmit path will
213 * only get the up-to-date value of read_count if this
214 * variable indicates that the queue is full. This is to
215 * avoid cache-line ping-pong between the xmit path and the
216 * completion path.
217 * @tso_bursts: Number of times TSO xmit invoked by kernel
218 * @tso_long_headers: Number of packets with headers too long for standard
219 * blocks
220 * @tso_packets: Number of packets via the TSO xmit path
221 * @pushes: Number of times the TX push feature has been used
222 * @pio_packets: Number of times the TX PIO feature has been used
223 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
224 * @empty_read_count: If the completion path has seen the queue as empty
225 * and the transmission path has not yet checked this, the value of
226 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
227 */
228 struct efx_tx_queue {
229 /* Members which don't change on the fast path */
230 struct efx_nic *efx ____cacheline_aligned_in_smp;
231 unsigned queue;
232 unsigned int tso_version;
233 struct efx_channel *channel;
234 struct netdev_queue *core_txq;
235 struct efx_tx_buffer *buffer;
236 struct efx_buffer *tsoh_page;
237 struct efx_special_buffer txd;
238 unsigned int ptr_mask;
239 void __iomem *piobuf;
240 unsigned int piobuf_offset;
241 bool initialised;
242
243 /* Members used mainly on the completion path */
244 unsigned int read_count ____cacheline_aligned_in_smp;
245 unsigned int old_write_count;
246 unsigned int merge_events;
247 unsigned int bytes_compl;
248 unsigned int pkts_compl;
249
250 /* Members used only on the xmit path */
251 unsigned int insert_count ____cacheline_aligned_in_smp;
252 unsigned int write_count;
253 unsigned int old_read_count;
254 unsigned int tso_bursts;
255 unsigned int tso_long_headers;
256 unsigned int tso_packets;
257 unsigned int pushes;
258 unsigned int pio_packets;
259 bool xmit_more_available;
260 /* Statistics to supplement MAC stats */
261 unsigned long tx_packets;
262
263 /* Members shared between paths and sometimes updated */
264 unsigned int empty_read_count ____cacheline_aligned_in_smp;
265 #define EFX_EMPTY_COUNT_VALID 0x80000000
266 atomic_t flush_outstanding;
267 };
268
269 /**
270 * struct efx_rx_buffer - An Efx RX data buffer
271 * @dma_addr: DMA base address of the buffer
272 * @page: The associated page buffer.
273 * Will be %NULL if the buffer slot is currently free.
274 * @page_offset: If pending: offset in @page of DMA base address.
275 * If completed: offset in @page of Ethernet header.
276 * @len: If pending: length for DMA descriptor.
277 * If completed: received length, excluding hash prefix.
278 * @flags: Flags for buffer and packet state. These are only set on the
279 * first buffer of a scattered packet.
280 */
281 struct efx_rx_buffer {
282 dma_addr_t dma_addr;
283 struct page *page;
284 u16 page_offset;
285 u16 len;
286 u16 flags;
287 };
288 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001
289 #define EFX_RX_PKT_CSUMMED 0x0002
290 #define EFX_RX_PKT_DISCARD 0x0004
291 #define EFX_RX_PKT_TCP 0x0040
292 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
293
294 /**
295 * struct efx_rx_page_state - Page-based rx buffer state
296 *
297 * Inserted at the start of every page allocated for receive buffers.
298 * Used to facilitate sharing dma mappings between recycled rx buffers
299 * and those passed up to the kernel.
300 *
301 * @dma_addr: The dma address of this page.
302 */
303 struct efx_rx_page_state {
304 dma_addr_t dma_addr;
305
306 unsigned int __pad[0] ____cacheline_aligned;
307 };
308
309 /**
310 * struct efx_rx_queue - An Efx RX queue
311 * @efx: The associated Efx NIC
312 * @core_index: Index of network core RX queue. Will be >= 0 iff this
313 * is associated with a real RX queue.
314 * @buffer: The software buffer ring
315 * @rxd: The hardware descriptor ring
316 * @ptr_mask: The size of the ring minus 1.
317 * @refill_enabled: Enable refill whenever fill level is low
318 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
319 * @rxq_flush_pending.
320 * @added_count: Number of buffers added to the receive queue.
321 * @notified_count: Number of buffers given to NIC (<= @added_count).
322 * @removed_count: Number of buffers removed from the receive queue.
323 * @scatter_n: Used by NIC specific receive code.
324 * @scatter_len: Used by NIC specific receive code.
325 * @page_ring: The ring to store DMA mapped pages for reuse.
326 * @page_add: Counter to calculate the write pointer for the recycle ring.
327 * @page_remove: Counter to calculate the read pointer for the recycle ring.
328 * @page_recycle_count: The number of pages that have been recycled.
329 * @page_recycle_failed: The number of pages that couldn't be recycled because
330 * the kernel still held a reference to them.
331 * @page_recycle_full: The number of pages that were released because the
332 * recycle ring was full.
333 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
334 * @max_fill: RX descriptor maximum fill level (<= ring size)
335 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
336 * (<= @max_fill)
337 * @min_fill: RX descriptor minimum non-zero fill level.
338 * This records the minimum fill level observed when a ring
339 * refill was triggered.
340 * @recycle_count: RX buffer recycle counter.
341 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
342 */
343 struct efx_rx_queue {
344 struct efx_nic *efx;
345 int core_index;
346 struct efx_rx_buffer *buffer;
347 struct efx_special_buffer rxd;
348 unsigned int ptr_mask;
349 bool refill_enabled;
350 bool flush_pending;
351
352 unsigned int added_count;
353 unsigned int notified_count;
354 unsigned int removed_count;
355 unsigned int scatter_n;
356 unsigned int scatter_len;
357 struct page **page_ring;
358 unsigned int page_add;
359 unsigned int page_remove;
360 unsigned int page_recycle_count;
361 unsigned int page_recycle_failed;
362 unsigned int page_recycle_full;
363 unsigned int page_ptr_mask;
364 unsigned int max_fill;
365 unsigned int fast_fill_trigger;
366 unsigned int min_fill;
367 unsigned int min_overfill;
368 unsigned int recycle_count;
369 struct timer_list slow_fill;
370 unsigned int slow_fill_count;
371 /* Statistics to supplement MAC stats */
372 unsigned long rx_packets;
373 };
374
375 enum efx_sync_events_state {
376 SYNC_EVENTS_DISABLED = 0,
377 SYNC_EVENTS_QUIESCENT,
378 SYNC_EVENTS_REQUESTED,
379 SYNC_EVENTS_VALID,
380 };
381
382 /**
383 * struct efx_channel - An Efx channel
384 *
385 * A channel comprises an event queue, at least one TX queue, at least
386 * one RX queue, and an associated tasklet for processing the event
387 * queue.
388 *
389 * @efx: Associated Efx NIC
390 * @channel: Channel instance number
391 * @type: Channel type definition
392 * @eventq_init: Event queue initialised flag
393 * @enabled: Channel enabled indicator
394 * @irq: IRQ number (MSI and MSI-X only)
395 * @irq_moderation: IRQ moderation value (in hardware ticks)
396 * @napi_dev: Net device used with NAPI
397 * @napi_str: NAPI control structure
398 * @state: state for NAPI vs busy polling
399 * @state_lock: lock protecting @state
400 * @eventq: Event queue buffer
401 * @eventq_mask: Event queue pointer mask
402 * @eventq_read_ptr: Event queue read pointer
403 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
404 * @irq_count: Number of IRQs since last adaptive moderation decision
405 * @irq_mod_score: IRQ moderation score
406 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
407 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
408 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
409 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
410 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
411 * @n_rx_overlength: Count of RX_OVERLENGTH errors
412 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
413 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
414 * lack of descriptors
415 * @n_rx_merge_events: Number of RX merged completion events
416 * @n_rx_merge_packets: Number of RX packets completed by merged events
417 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
418 * __efx_rx_packet(), or zero if there is none
419 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
420 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0
421 * @rx_queue: RX queue for this channel
422 * @tx_queue: TX queues for this channel
423 * @sync_events_state: Current state of sync events on this channel
424 * @sync_timestamp_major: Major part of the last ptp sync event
425 * @sync_timestamp_minor: Minor part of the last ptp sync event
426 */
427 struct efx_channel {
428 struct efx_nic *efx;
429 int channel;
430 const struct efx_channel_type *type;
431 bool eventq_init;
432 bool enabled;
433 int irq;
434 unsigned int irq_moderation;
435 struct net_device *napi_dev;
436 struct napi_struct napi_str;
437 #ifdef CONFIG_NET_RX_BUSY_POLL
438 unsigned long busy_poll_state;
439 #endif
440 struct efx_special_buffer eventq;
441 unsigned int eventq_mask;
442 unsigned int eventq_read_ptr;
443 int event_test_cpu;
444
445 unsigned int irq_count;
446 unsigned int irq_mod_score;
447 #ifdef CONFIG_RFS_ACCEL
448 unsigned int rfs_filters_added;
449 #endif
450
451 unsigned n_rx_tobe_disc;
452 unsigned n_rx_ip_hdr_chksum_err;
453 unsigned n_rx_tcp_udp_chksum_err;
454 unsigned n_rx_mcast_mismatch;
455 unsigned n_rx_frm_trunc;
456 unsigned n_rx_overlength;
457 unsigned n_skbuff_leaks;
458 unsigned int n_rx_nodesc_trunc;
459 unsigned int n_rx_merge_events;
460 unsigned int n_rx_merge_packets;
461
462 unsigned int rx_pkt_n_frags;
463 unsigned int rx_pkt_index;
464
465 struct efx_rx_queue rx_queue;
466 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
467
468 enum efx_sync_events_state sync_events_state;
469 u32 sync_timestamp_major;
470 u32 sync_timestamp_minor;
471 };
472
473 #ifdef CONFIG_NET_RX_BUSY_POLL
474 enum efx_channel_busy_poll_state {
475 EFX_CHANNEL_STATE_IDLE = 0,
476 EFX_CHANNEL_STATE_NAPI = BIT(0),
477 EFX_CHANNEL_STATE_NAPI_REQ_BIT = 1,
478 EFX_CHANNEL_STATE_NAPI_REQ = BIT(1),
479 EFX_CHANNEL_STATE_POLL_BIT = 2,
480 EFX_CHANNEL_STATE_POLL = BIT(2),
481 EFX_CHANNEL_STATE_DISABLE_BIT = 3,
482 };
483
484 static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
485 {
486 WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
487 }
488
489 /* Called from the device poll routine to get ownership of a channel. */
490 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
491 {
492 unsigned long prev, old = READ_ONCE(channel->busy_poll_state);
493
494 while (1) {
495 switch (old) {
496 case EFX_CHANNEL_STATE_POLL:
497 /* Ensure efx_channel_try_lock_poll() wont starve us */
498 set_bit(EFX_CHANNEL_STATE_NAPI_REQ_BIT,
499 &channel->busy_poll_state);
500 /* fallthrough */
501 case EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_REQ:
502 return false;
503 default:
504 break;
505 }
506 prev = cmpxchg(&channel->busy_poll_state, old,
507 EFX_CHANNEL_STATE_NAPI);
508 if (unlikely(prev != old)) {
509 /* This is likely to mean we've just entered polling
510 * state. Go back round to set the REQ bit.
511 */
512 old = prev;
513 continue;
514 }
515 return true;
516 }
517 }
518
519 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
520 {
521 /* Make sure write has completed from efx_channel_lock_napi() */
522 smp_wmb();
523 WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
524 }
525
526 /* Called from efx_busy_poll(). */
527 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
528 {
529 return cmpxchg(&channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE,
530 EFX_CHANNEL_STATE_POLL) == EFX_CHANNEL_STATE_IDLE;
531 }
532
533 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
534 {
535 clear_bit_unlock(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
536 }
537
538 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
539 {
540 return test_bit(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
541 }
542
543 static inline void efx_channel_enable(struct efx_channel *channel)
544 {
545 clear_bit_unlock(EFX_CHANNEL_STATE_DISABLE_BIT,
546 &channel->busy_poll_state);
547 }
548
549 /* Stop further polling or napi access.
550 * Returns false if the channel is currently busy polling.
551 */
552 static inline bool efx_channel_disable(struct efx_channel *channel)
553 {
554 set_bit(EFX_CHANNEL_STATE_DISABLE_BIT, &channel->busy_poll_state);
555 /* Implicit barrier in efx_channel_busy_polling() */
556 return !efx_channel_busy_polling(channel);
557 }
558
559 #else /* CONFIG_NET_RX_BUSY_POLL */
560
561 static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
562 {
563 }
564
565 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
566 {
567 return true;
568 }
569
570 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
571 {
572 }
573
574 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
575 {
576 return false;
577 }
578
579 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
580 {
581 }
582
583 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
584 {
585 return false;
586 }
587
588 static inline void efx_channel_enable(struct efx_channel *channel)
589 {
590 }
591
592 static inline bool efx_channel_disable(struct efx_channel *channel)
593 {
594 return true;
595 }
596 #endif /* CONFIG_NET_RX_BUSY_POLL */
597
598 /**
599 * struct efx_msi_context - Context for each MSI
600 * @efx: The associated NIC
601 * @index: Index of the channel/IRQ
602 * @name: Name of the channel/IRQ
603 *
604 * Unlike &struct efx_channel, this is never reallocated and is always
605 * safe for the IRQ handler to access.
606 */
607 struct efx_msi_context {
608 struct efx_nic *efx;
609 unsigned int index;
610 char name[IFNAMSIZ + 6];
611 };
612
613 /**
614 * struct efx_channel_type - distinguishes traffic and extra channels
615 * @handle_no_channel: Handle failure to allocate an extra channel
616 * @pre_probe: Set up extra state prior to initialisation
617 * @post_remove: Tear down extra state after finalisation, if allocated.
618 * May be called on channels that have not been probed.
619 * @get_name: Generate the channel's name (used for its IRQ handler)
620 * @copy: Copy the channel state prior to reallocation. May be %NULL if
621 * reallocation is not supported.
622 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
623 * @keep_eventq: Flag for whether event queue should be kept initialised
624 * while the device is stopped
625 */
626 struct efx_channel_type {
627 void (*handle_no_channel)(struct efx_nic *);
628 int (*pre_probe)(struct efx_channel *);
629 void (*post_remove)(struct efx_channel *);
630 void (*get_name)(struct efx_channel *, char *buf, size_t len);
631 struct efx_channel *(*copy)(const struct efx_channel *);
632 bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
633 bool keep_eventq;
634 };
635
636 enum efx_led_mode {
637 EFX_LED_OFF = 0,
638 EFX_LED_ON = 1,
639 EFX_LED_DEFAULT = 2
640 };
641
642 #define STRING_TABLE_LOOKUP(val, member) \
643 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
644
645 extern const char *const efx_loopback_mode_names[];
646 extern const unsigned int efx_loopback_mode_max;
647 #define LOOPBACK_MODE(efx) \
648 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
649
650 extern const char *const efx_reset_type_names[];
651 extern const unsigned int efx_reset_type_max;
652 #define RESET_TYPE(type) \
653 STRING_TABLE_LOOKUP(type, efx_reset_type)
654
655 enum efx_int_mode {
656 /* Be careful if altering to correct macro below */
657 EFX_INT_MODE_MSIX = 0,
658 EFX_INT_MODE_MSI = 1,
659 EFX_INT_MODE_LEGACY = 2,
660 EFX_INT_MODE_MAX /* Insert any new items before this */
661 };
662 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
663
664 enum nic_state {
665 STATE_UNINIT = 0, /* device being probed/removed or is frozen */
666 STATE_READY = 1, /* hardware ready and netdev registered */
667 STATE_DISABLED = 2, /* device disabled due to hardware errors */
668 STATE_RECOVERY = 3, /* device recovering from PCI error */
669 };
670
671 /* Forward declaration */
672 struct efx_nic;
673
674 /* Pseudo bit-mask flow control field */
675 #define EFX_FC_RX FLOW_CTRL_RX
676 #define EFX_FC_TX FLOW_CTRL_TX
677 #define EFX_FC_AUTO 4
678
679 /**
680 * struct efx_link_state - Current state of the link
681 * @up: Link is up
682 * @fd: Link is full-duplex
683 * @fc: Actual flow control flags
684 * @speed: Link speed (Mbps)
685 */
686 struct efx_link_state {
687 bool up;
688 bool fd;
689 u8 fc;
690 unsigned int speed;
691 };
692
693 static inline bool efx_link_state_equal(const struct efx_link_state *left,
694 const struct efx_link_state *right)
695 {
696 return left->up == right->up && left->fd == right->fd &&
697 left->fc == right->fc && left->speed == right->speed;
698 }
699
700 /**
701 * struct efx_phy_operations - Efx PHY operations table
702 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
703 * efx->loopback_modes.
704 * @init: Initialise PHY
705 * @fini: Shut down PHY
706 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
707 * @poll: Update @link_state and report whether it changed.
708 * Serialised by the mac_lock.
709 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
710 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
711 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
712 * (only needed where AN bit is set in mmds)
713 * @test_alive: Test that PHY is 'alive' (online)
714 * @test_name: Get the name of a PHY-specific test/result
715 * @run_tests: Run tests and record results as appropriate (offline).
716 * Flags are the ethtool tests flags.
717 */
718 struct efx_phy_operations {
719 int (*probe) (struct efx_nic *efx);
720 int (*init) (struct efx_nic *efx);
721 void (*fini) (struct efx_nic *efx);
722 void (*remove) (struct efx_nic *efx);
723 int (*reconfigure) (struct efx_nic *efx);
724 bool (*poll) (struct efx_nic *efx);
725 void (*get_settings) (struct efx_nic *efx,
726 struct ethtool_cmd *ecmd);
727 int (*set_settings) (struct efx_nic *efx,
728 struct ethtool_cmd *ecmd);
729 void (*set_npage_adv) (struct efx_nic *efx, u32);
730 int (*test_alive) (struct efx_nic *efx);
731 const char *(*test_name) (struct efx_nic *efx, unsigned int index);
732 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
733 int (*get_module_eeprom) (struct efx_nic *efx,
734 struct ethtool_eeprom *ee,
735 u8 *data);
736 int (*get_module_info) (struct efx_nic *efx,
737 struct ethtool_modinfo *modinfo);
738 };
739
740 /**
741 * enum efx_phy_mode - PHY operating mode flags
742 * @PHY_MODE_NORMAL: on and should pass traffic
743 * @PHY_MODE_TX_DISABLED: on with TX disabled
744 * @PHY_MODE_LOW_POWER: set to low power through MDIO
745 * @PHY_MODE_OFF: switched off through external control
746 * @PHY_MODE_SPECIAL: on but will not pass traffic
747 */
748 enum efx_phy_mode {
749 PHY_MODE_NORMAL = 0,
750 PHY_MODE_TX_DISABLED = 1,
751 PHY_MODE_LOW_POWER = 2,
752 PHY_MODE_OFF = 4,
753 PHY_MODE_SPECIAL = 8,
754 };
755
756 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
757 {
758 return !!(mode & ~PHY_MODE_TX_DISABLED);
759 }
760
761 /**
762 * struct efx_hw_stat_desc - Description of a hardware statistic
763 * @name: Name of the statistic as visible through ethtool, or %NULL if
764 * it should not be exposed
765 * @dma_width: Width in bits (0 for non-DMA statistics)
766 * @offset: Offset within stats (ignored for non-DMA statistics)
767 */
768 struct efx_hw_stat_desc {
769 const char *name;
770 u16 dma_width;
771 u16 offset;
772 };
773
774 /* Number of bits used in a multicast filter hash address */
775 #define EFX_MCAST_HASH_BITS 8
776
777 /* Number of (single-bit) entries in a multicast filter hash */
778 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
779
780 /* An Efx multicast filter hash */
781 union efx_multicast_hash {
782 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
783 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
784 };
785
786 struct vfdi_status;
787
788 /**
789 * struct efx_nic - an Efx NIC
790 * @name: Device name (net device name or bus id before net device registered)
791 * @pci_dev: The PCI device
792 * @node: List node for maintaning primary/secondary function lists
793 * @primary: &struct efx_nic instance for the primary function of this
794 * controller. May be the same structure, and may be %NULL if no
795 * primary function is bound. Serialised by rtnl_lock.
796 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
797 * functions of the controller, if this is for the primary function.
798 * Serialised by rtnl_lock.
799 * @type: Controller type attributes
800 * @legacy_irq: IRQ number
801 * @workqueue: Workqueue for port reconfigures and the HW monitor.
802 * Work items do not hold and must not acquire RTNL.
803 * @workqueue_name: Name of workqueue
804 * @reset_work: Scheduled reset workitem
805 * @membase_phys: Memory BAR value as physical address
806 * @membase: Memory BAR value
807 * @interrupt_mode: Interrupt mode
808 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
809 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
810 * @irq_rx_moderation: IRQ moderation time for RX event queues
811 * @msg_enable: Log message enable flags
812 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
813 * @reset_pending: Bitmask for pending resets
814 * @tx_queue: TX DMA queues
815 * @rx_queue: RX DMA queues
816 * @channel: Channels
817 * @msi_context: Context for each MSI
818 * @extra_channel_types: Types of extra (non-traffic) channels that
819 * should be allocated for this NIC
820 * @rxq_entries: Size of receive queues requested by user.
821 * @txq_entries: Size of transmit queues requested by user.
822 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
823 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
824 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
825 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
826 * @sram_lim_qw: Qword address limit of SRAM
827 * @next_buffer_table: First available buffer table id
828 * @n_channels: Number of channels in use
829 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
830 * @n_tx_channels: Number of channels used for TX
831 * @rx_ip_align: RX DMA address offset to have IP header aligned in
832 * in accordance with NET_IP_ALIGN
833 * @rx_dma_len: Current maximum RX DMA length
834 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
835 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
836 * for use in sk_buff::truesize
837 * @rx_prefix_size: Size of RX prefix before packet data
838 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
839 * (valid only if @rx_prefix_size != 0; always negative)
840 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
841 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
842 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
843 * (valid only if channel->sync_timestamps_enabled; always negative)
844 * @rx_hash_key: Toeplitz hash key for RSS
845 * @rx_indir_table: Indirection table for RSS
846 * @rx_scatter: Scatter mode enabled for receives
847 * @int_error_count: Number of internal errors seen recently
848 * @int_error_expire: Time at which error count will be expired
849 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
850 * acknowledge but do nothing else.
851 * @irq_status: Interrupt status buffer
852 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
853 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
854 * @selftest_work: Work item for asynchronous self-test
855 * @mtd_list: List of MTDs attached to the NIC
856 * @nic_data: Hardware dependent state
857 * @mcdi: Management-Controller-to-Driver Interface state
858 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
859 * efx_monitor() and efx_reconfigure_port()
860 * @port_enabled: Port enabled indicator.
861 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
862 * efx_mac_work() with kernel interfaces. Safe to read under any
863 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
864 * be held to modify it.
865 * @port_initialized: Port initialized?
866 * @net_dev: Operating system network device. Consider holding the rtnl lock
867 * @stats_buffer: DMA buffer for statistics
868 * @phy_type: PHY type
869 * @phy_op: PHY interface
870 * @phy_data: PHY private data (including PHY-specific stats)
871 * @mdio: PHY MDIO interface
872 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
873 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
874 * @link_advertising: Autonegotiation advertising flags
875 * @link_state: Current state of the link
876 * @n_link_state_changes: Number of times the link has changed state
877 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
878 * Protected by @mac_lock.
879 * @multicast_hash: Multicast hash table for Falcon-arch.
880 * Protected by @mac_lock.
881 * @wanted_fc: Wanted flow control flags
882 * @fc_disable: When non-zero flow control is disabled. Typically used to
883 * ensure that network back pressure doesn't delay dma queue flushes.
884 * Serialised by the rtnl lock.
885 * @mac_work: Work item for changing MAC promiscuity and multicast hash
886 * @loopback_mode: Loopback status
887 * @loopback_modes: Supported loopback mode bitmask
888 * @loopback_selftest: Offline self-test private state
889 * @filter_sem: Filter table rw_semaphore, for freeing the table
890 * @filter_lock: Filter table lock, for mere content changes
891 * @filter_state: Architecture-dependent filter table state
892 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
893 * indexed by filter ID
894 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
895 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
896 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
897 * Decremented when the efx_flush_rx_queue() is called.
898 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
899 * completed (either success or failure). Not used when MCDI is used to
900 * flush receive queues.
901 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
902 * @vf_count: Number of VFs intended to be enabled.
903 * @vf_init_count: Number of VFs that have been fully initialised.
904 * @vi_scale: log2 number of vnics per VF.
905 * @ptp_data: PTP state data
906 * @vpd_sn: Serial number read from VPD
907 * @monitor_work: Hardware monitor workitem
908 * @biu_lock: BIU (bus interface unit) lock
909 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
910 * field is used by efx_test_interrupts() to verify that an
911 * interrupt has occurred.
912 * @stats_lock: Statistics update lock. Must be held when calling
913 * efx_nic_type::{update,start,stop}_stats.
914 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
915 * @mc_promisc: Whether in multicast promiscuous mode when last changed
916 *
917 * This is stored in the private area of the &struct net_device.
918 */
919 struct efx_nic {
920 /* The following fields should be written very rarely */
921
922 char name[IFNAMSIZ];
923 struct list_head node;
924 struct efx_nic *primary;
925 struct list_head secondary_list;
926 struct pci_dev *pci_dev;
927 unsigned int port_num;
928 const struct efx_nic_type *type;
929 int legacy_irq;
930 bool eeh_disabled_legacy_irq;
931 struct workqueue_struct *workqueue;
932 char workqueue_name[16];
933 struct work_struct reset_work;
934 resource_size_t membase_phys;
935 void __iomem *membase;
936
937 enum efx_int_mode interrupt_mode;
938 unsigned int timer_quantum_ns;
939 bool irq_rx_adaptive;
940 unsigned int irq_rx_moderation;
941 u32 msg_enable;
942
943 enum nic_state state;
944 unsigned long reset_pending;
945
946 struct efx_channel *channel[EFX_MAX_CHANNELS];
947 struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
948 const struct efx_channel_type *
949 extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
950
951 unsigned rxq_entries;
952 unsigned txq_entries;
953 unsigned int txq_stop_thresh;
954 unsigned int txq_wake_thresh;
955
956 unsigned tx_dc_base;
957 unsigned rx_dc_base;
958 unsigned sram_lim_qw;
959 unsigned next_buffer_table;
960
961 unsigned int max_channels;
962 unsigned int max_tx_channels;
963 unsigned n_channels;
964 unsigned n_rx_channels;
965 unsigned rss_spread;
966 unsigned tx_channel_offset;
967 unsigned n_tx_channels;
968 unsigned int rx_ip_align;
969 unsigned int rx_dma_len;
970 unsigned int rx_buffer_order;
971 unsigned int rx_buffer_truesize;
972 unsigned int rx_page_buf_step;
973 unsigned int rx_bufs_per_page;
974 unsigned int rx_pages_per_batch;
975 unsigned int rx_prefix_size;
976 int rx_packet_hash_offset;
977 int rx_packet_len_offset;
978 int rx_packet_ts_offset;
979 u8 rx_hash_key[40];
980 u32 rx_indir_table[128];
981 bool rx_scatter;
982
983 unsigned int_error_count;
984 unsigned long int_error_expire;
985
986 bool irq_soft_enabled;
987 struct efx_buffer irq_status;
988 unsigned irq_zero_count;
989 unsigned irq_level;
990 struct delayed_work selftest_work;
991
992 #ifdef CONFIG_SFC_MTD
993 struct list_head mtd_list;
994 #endif
995
996 void *nic_data;
997 struct efx_mcdi_data *mcdi;
998
999 struct mutex mac_lock;
1000 struct work_struct mac_work;
1001 bool port_enabled;
1002
1003 bool mc_bist_for_other_fn;
1004 bool port_initialized;
1005 struct net_device *net_dev;
1006
1007 struct efx_buffer stats_buffer;
1008 u64 rx_nodesc_drops_total;
1009 u64 rx_nodesc_drops_while_down;
1010 bool rx_nodesc_drops_prev_state;
1011
1012 unsigned int phy_type;
1013 const struct efx_phy_operations *phy_op;
1014 void *phy_data;
1015 struct mdio_if_info mdio;
1016 unsigned int mdio_bus;
1017 enum efx_phy_mode phy_mode;
1018
1019 u32 link_advertising;
1020 struct efx_link_state link_state;
1021 unsigned int n_link_state_changes;
1022
1023 bool unicast_filter;
1024 union efx_multicast_hash multicast_hash;
1025 u8 wanted_fc;
1026 unsigned fc_disable;
1027
1028 atomic_t rx_reset;
1029 enum efx_loopback_mode loopback_mode;
1030 u64 loopback_modes;
1031
1032 void *loopback_selftest;
1033
1034 struct rw_semaphore filter_sem;
1035 spinlock_t filter_lock;
1036 void *filter_state;
1037 #ifdef CONFIG_RFS_ACCEL
1038 u32 *rps_flow_id;
1039 unsigned int rps_expire_index;
1040 #endif
1041
1042 atomic_t active_queues;
1043 atomic_t rxq_flush_pending;
1044 atomic_t rxq_flush_outstanding;
1045 wait_queue_head_t flush_wq;
1046
1047 #ifdef CONFIG_SFC_SRIOV
1048 unsigned vf_count;
1049 unsigned vf_init_count;
1050 unsigned vi_scale;
1051 #endif
1052
1053 struct efx_ptp_data *ptp_data;
1054
1055 char *vpd_sn;
1056
1057 /* The following fields may be written more often */
1058
1059 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1060 spinlock_t biu_lock;
1061 int last_irq_cpu;
1062 spinlock_t stats_lock;
1063 atomic_t n_rx_noskb_drops;
1064 bool mc_promisc;
1065 };
1066
1067 static inline int efx_dev_registered(struct efx_nic *efx)
1068 {
1069 return efx->net_dev->reg_state == NETREG_REGISTERED;
1070 }
1071
1072 static inline unsigned int efx_port_num(struct efx_nic *efx)
1073 {
1074 return efx->port_num;
1075 }
1076
1077 struct efx_mtd_partition {
1078 struct list_head node;
1079 struct mtd_info mtd;
1080 const char *dev_type_name;
1081 const char *type_name;
1082 char name[IFNAMSIZ + 20];
1083 };
1084
1085 /**
1086 * struct efx_nic_type - Efx device type definition
1087 * @mem_bar: Get the memory BAR
1088 * @mem_map_size: Get memory BAR mapped size
1089 * @probe: Probe the controller
1090 * @remove: Free resources allocated by probe()
1091 * @init: Initialise the controller
1092 * @dimension_resources: Dimension controller resources (buffer table,
1093 * and VIs once the available interrupt resources are clear)
1094 * @fini: Shut down the controller
1095 * @monitor: Periodic function for polling link state and hardware monitor
1096 * @map_reset_reason: Map ethtool reset reason to a reset method
1097 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1098 * @reset: Reset the controller hardware and possibly the PHY. This will
1099 * be called while the controller is uninitialised.
1100 * @probe_port: Probe the MAC and PHY
1101 * @remove_port: Free resources allocated by probe_port()
1102 * @handle_global_event: Handle a "global" event (may be %NULL)
1103 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1104 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1105 * (for Falcon architecture)
1106 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1107 * architecture)
1108 * @prepare_flr: Prepare for an FLR
1109 * @finish_flr: Clean up after an FLR
1110 * @describe_stats: Describe statistics for ethtool
1111 * @update_stats: Update statistics not provided by event handling.
1112 * Either argument may be %NULL.
1113 * @start_stats: Start the regular fetching of statistics
1114 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1115 * @stop_stats: Stop the regular fetching of statistics
1116 * @set_id_led: Set state of identifying LED or revert to automatic function
1117 * @push_irq_moderation: Apply interrupt moderation value
1118 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1119 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1120 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1121 * to the hardware. Serialised by the mac_lock.
1122 * @check_mac_fault: Check MAC fault state. True if fault present.
1123 * @get_wol: Get WoL configuration from driver state
1124 * @set_wol: Push WoL configuration to the NIC
1125 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1126 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
1127 * expected to reset the NIC.
1128 * @test_nvram: Test validity of NVRAM contents
1129 * @mcdi_request: Send an MCDI request with the given header and SDU.
1130 * The SDU length may be any value from 0 up to the protocol-
1131 * defined maximum, but its buffer will be padded to a multiple
1132 * of 4 bytes.
1133 * @mcdi_poll_response: Test whether an MCDI response is available.
1134 * @mcdi_read_response: Read the MCDI response PDU. The offset will
1135 * be a multiple of 4. The length may not be, but the buffer
1136 * will be padded so it is safe to round up.
1137 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
1138 * return an appropriate error code for aborting any current
1139 * request; otherwise return 0.
1140 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
1141 * be separately enabled after this.
1142 * @irq_test_generate: Generate a test IRQ
1143 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
1144 * queue must be separately disabled before this.
1145 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
1146 * a pointer to the &struct efx_msi_context for the channel.
1147 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
1148 * is a pointer to the &struct efx_nic.
1149 * @tx_probe: Allocate resources for TX queue
1150 * @tx_init: Initialise TX queue on the NIC
1151 * @tx_remove: Free resources for TX queue
1152 * @tx_write: Write TX descriptors and doorbell
1153 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1154 * @rx_probe: Allocate resources for RX queue
1155 * @rx_init: Initialise RX queue on the NIC
1156 * @rx_remove: Free resources for RX queue
1157 * @rx_write: Write RX descriptors and doorbell
1158 * @rx_defer_refill: Generate a refill reminder event
1159 * @ev_probe: Allocate resources for event queue
1160 * @ev_init: Initialise event queue on the NIC
1161 * @ev_fini: Deinitialise event queue on the NIC
1162 * @ev_remove: Free resources for event queue
1163 * @ev_process: Process events for a queue, up to the given NAPI quota
1164 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1165 * @ev_test_generate: Generate a test event
1166 * @filter_table_probe: Probe filter capabilities and set up filter software state
1167 * @filter_table_restore: Restore filters removed from hardware
1168 * @filter_table_remove: Remove filters from hardware and tear down software state
1169 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1170 * @filter_insert: add or replace a filter
1171 * @filter_remove_safe: remove a filter by ID, carefully
1172 * @filter_get_safe: retrieve a filter by ID, carefully
1173 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1174 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1175 * @filter_count_rx_used: Get the number of filters in use at a given priority
1176 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1177 * @filter_get_rx_ids: Get list of RX filters at a given priority
1178 * @filter_rfs_insert: Add or replace a filter for RFS. This must be
1179 * atomic. The hardware change may be asynchronous but should
1180 * not be delayed for long. It may fail if this can't be done
1181 * atomically.
1182 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1183 * This must check whether the specified table entry is used by RFS
1184 * and that rps_may_expire_flow() returns true for it.
1185 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1186 * using efx_mtd_add()
1187 * @mtd_rename: Set an MTD partition name using the net device name
1188 * @mtd_read: Read from an MTD partition
1189 * @mtd_erase: Erase part of an MTD partition
1190 * @mtd_write: Write to an MTD partition
1191 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1192 * also notifies the driver that a writer has finished using this
1193 * partition.
1194 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1195 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1196 * timestamping, possibly only temporarily for the purposes of a reset.
1197 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags
1198 * and tx_type will already have been validated but this operation
1199 * must validate and update rx_filter.
1200 * @set_mac_address: Set the MAC address of the device
1201 * @revision: Hardware architecture revision
1202 * @txd_ptr_tbl_base: TX descriptor ring base address
1203 * @rxd_ptr_tbl_base: RX descriptor ring base address
1204 * @buf_tbl_base: Buffer table base address
1205 * @evq_ptr_tbl_base: Event queue pointer table base address
1206 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1207 * @max_dma_mask: Maximum possible DMA mask
1208 * @rx_prefix_size: Size of RX prefix before packet data
1209 * @rx_hash_offset: Offset of RX flow hash within prefix
1210 * @rx_ts_offset: Offset of timestamp within prefix
1211 * @rx_buffer_padding: Size of padding at end of RX packet
1212 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1213 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1214 * @max_interrupt_mode: Highest capability interrupt mode supported
1215 * from &enum efx_init_mode.
1216 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1217 * @offload_features: net_device feature flags for protocol offload
1218 * features implemented in hardware
1219 * @mcdi_max_ver: Maximum MCDI version supported
1220 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1221 */
1222 struct efx_nic_type {
1223 bool is_vf;
1224 unsigned int mem_bar;
1225 unsigned int (*mem_map_size)(struct efx_nic *efx);
1226 int (*probe)(struct efx_nic *efx);
1227 void (*remove)(struct efx_nic *efx);
1228 int (*init)(struct efx_nic *efx);
1229 int (*dimension_resources)(struct efx_nic *efx);
1230 void (*fini)(struct efx_nic *efx);
1231 void (*monitor)(struct efx_nic *efx);
1232 enum reset_type (*map_reset_reason)(enum reset_type reason);
1233 int (*map_reset_flags)(u32 *flags);
1234 int (*reset)(struct efx_nic *efx, enum reset_type method);
1235 int (*probe_port)(struct efx_nic *efx);
1236 void (*remove_port)(struct efx_nic *efx);
1237 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1238 int (*fini_dmaq)(struct efx_nic *efx);
1239 void (*prepare_flush)(struct efx_nic *efx);
1240 void (*finish_flush)(struct efx_nic *efx);
1241 void (*prepare_flr)(struct efx_nic *efx);
1242 void (*finish_flr)(struct efx_nic *efx);
1243 size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1244 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1245 struct rtnl_link_stats64 *core_stats);
1246 void (*start_stats)(struct efx_nic *efx);
1247 void (*pull_stats)(struct efx_nic *efx);
1248 void (*stop_stats)(struct efx_nic *efx);
1249 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1250 void (*push_irq_moderation)(struct efx_channel *channel);
1251 int (*reconfigure_port)(struct efx_nic *efx);
1252 void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1253 int (*reconfigure_mac)(struct efx_nic *efx);
1254 bool (*check_mac_fault)(struct efx_nic *efx);
1255 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1256 int (*set_wol)(struct efx_nic *efx, u32 type);
1257 void (*resume_wol)(struct efx_nic *efx);
1258 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1259 int (*test_nvram)(struct efx_nic *efx);
1260 void (*mcdi_request)(struct efx_nic *efx,
1261 const efx_dword_t *hdr, size_t hdr_len,
1262 const efx_dword_t *sdu, size_t sdu_len);
1263 bool (*mcdi_poll_response)(struct efx_nic *efx);
1264 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1265 size_t pdu_offset, size_t pdu_len);
1266 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1267 void (*mcdi_reboot_detected)(struct efx_nic *efx);
1268 void (*irq_enable_master)(struct efx_nic *efx);
1269 void (*irq_test_generate)(struct efx_nic *efx);
1270 void (*irq_disable_non_ev)(struct efx_nic *efx);
1271 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1272 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1273 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1274 void (*tx_init)(struct efx_tx_queue *tx_queue);
1275 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1276 void (*tx_write)(struct efx_tx_queue *tx_queue);
1277 int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1278 const u32 *rx_indir_table);
1279 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1280 void (*rx_init)(struct efx_rx_queue *rx_queue);
1281 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1282 void (*rx_write)(struct efx_rx_queue *rx_queue);
1283 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1284 int (*ev_probe)(struct efx_channel *channel);
1285 int (*ev_init)(struct efx_channel *channel);
1286 void (*ev_fini)(struct efx_channel *channel);
1287 void (*ev_remove)(struct efx_channel *channel);
1288 int (*ev_process)(struct efx_channel *channel, int quota);
1289 void (*ev_read_ack)(struct efx_channel *channel);
1290 void (*ev_test_generate)(struct efx_channel *channel);
1291 int (*filter_table_probe)(struct efx_nic *efx);
1292 void (*filter_table_restore)(struct efx_nic *efx);
1293 void (*filter_table_remove)(struct efx_nic *efx);
1294 void (*filter_update_rx_scatter)(struct efx_nic *efx);
1295 s32 (*filter_insert)(struct efx_nic *efx,
1296 struct efx_filter_spec *spec, bool replace);
1297 int (*filter_remove_safe)(struct efx_nic *efx,
1298 enum efx_filter_priority priority,
1299 u32 filter_id);
1300 int (*filter_get_safe)(struct efx_nic *efx,
1301 enum efx_filter_priority priority,
1302 u32 filter_id, struct efx_filter_spec *);
1303 int (*filter_clear_rx)(struct efx_nic *efx,
1304 enum efx_filter_priority priority);
1305 u32 (*filter_count_rx_used)(struct efx_nic *efx,
1306 enum efx_filter_priority priority);
1307 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1308 s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1309 enum efx_filter_priority priority,
1310 u32 *buf, u32 size);
1311 #ifdef CONFIG_RFS_ACCEL
1312 s32 (*filter_rfs_insert)(struct efx_nic *efx,
1313 struct efx_filter_spec *spec);
1314 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1315 unsigned int index);
1316 #endif
1317 #ifdef CONFIG_SFC_MTD
1318 int (*mtd_probe)(struct efx_nic *efx);
1319 void (*mtd_rename)(struct efx_mtd_partition *part);
1320 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1321 size_t *retlen, u8 *buffer);
1322 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1323 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1324 size_t *retlen, const u8 *buffer);
1325 int (*mtd_sync)(struct mtd_info *mtd);
1326 #endif
1327 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1328 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1329 int (*ptp_set_ts_config)(struct efx_nic *efx,
1330 struct hwtstamp_config *init);
1331 int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1332 int (*sriov_init)(struct efx_nic *efx);
1333 void (*sriov_fini)(struct efx_nic *efx);
1334 bool (*sriov_wanted)(struct efx_nic *efx);
1335 void (*sriov_reset)(struct efx_nic *efx);
1336 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1337 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1338 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1339 u8 qos);
1340 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1341 bool spoofchk);
1342 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1343 struct ifla_vf_info *ivi);
1344 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1345 int link_state);
1346 int (*sriov_get_phys_port_id)(struct efx_nic *efx,
1347 struct netdev_phys_item_id *ppid);
1348 int (*vswitching_probe)(struct efx_nic *efx);
1349 int (*vswitching_restore)(struct efx_nic *efx);
1350 void (*vswitching_remove)(struct efx_nic *efx);
1351 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1352 int (*set_mac_address)(struct efx_nic *efx);
1353
1354 int revision;
1355 unsigned int txd_ptr_tbl_base;
1356 unsigned int rxd_ptr_tbl_base;
1357 unsigned int buf_tbl_base;
1358 unsigned int evq_ptr_tbl_base;
1359 unsigned int evq_rptr_tbl_base;
1360 u64 max_dma_mask;
1361 unsigned int rx_prefix_size;
1362 unsigned int rx_hash_offset;
1363 unsigned int rx_ts_offset;
1364 unsigned int rx_buffer_padding;
1365 bool can_rx_scatter;
1366 bool always_rx_scatter;
1367 unsigned int max_interrupt_mode;
1368 unsigned int timer_period_max;
1369 netdev_features_t offload_features;
1370 int mcdi_max_ver;
1371 unsigned int max_rx_ip_filters;
1372 u32 hwtstamp_filters;
1373 };
1374
1375 /**************************************************************************
1376 *
1377 * Prototypes and inline functions
1378 *
1379 *************************************************************************/
1380
1381 static inline struct efx_channel *
1382 efx_get_channel(struct efx_nic *efx, unsigned index)
1383 {
1384 EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1385 return efx->channel[index];
1386 }
1387
1388 /* Iterate over all used channels */
1389 #define efx_for_each_channel(_channel, _efx) \
1390 for (_channel = (_efx)->channel[0]; \
1391 _channel; \
1392 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1393 (_efx)->channel[_channel->channel + 1] : NULL)
1394
1395 /* Iterate over all used channels in reverse */
1396 #define efx_for_each_channel_rev(_channel, _efx) \
1397 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1398 _channel; \
1399 _channel = _channel->channel ? \
1400 (_efx)->channel[_channel->channel - 1] : NULL)
1401
1402 static inline struct efx_tx_queue *
1403 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1404 {
1405 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1406 type >= EFX_TXQ_TYPES);
1407 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1408 }
1409
1410 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1411 {
1412 return channel->channel - channel->efx->tx_channel_offset <
1413 channel->efx->n_tx_channels;
1414 }
1415
1416 static inline struct efx_tx_queue *
1417 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1418 {
1419 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1420 type >= EFX_TXQ_TYPES);
1421 return &channel->tx_queue[type];
1422 }
1423
1424 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1425 {
1426 return !(tx_queue->efx->net_dev->num_tc < 2 &&
1427 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1428 }
1429
1430 /* Iterate over all TX queues belonging to a channel */
1431 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
1432 if (!efx_channel_has_tx_queues(_channel)) \
1433 ; \
1434 else \
1435 for (_tx_queue = (_channel)->tx_queue; \
1436 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1437 efx_tx_queue_used(_tx_queue); \
1438 _tx_queue++)
1439
1440 /* Iterate over all possible TX queues belonging to a channel */
1441 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
1442 if (!efx_channel_has_tx_queues(_channel)) \
1443 ; \
1444 else \
1445 for (_tx_queue = (_channel)->tx_queue; \
1446 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
1447 _tx_queue++)
1448
1449 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1450 {
1451 return channel->rx_queue.core_index >= 0;
1452 }
1453
1454 static inline struct efx_rx_queue *
1455 efx_channel_get_rx_queue(struct efx_channel *channel)
1456 {
1457 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1458 return &channel->rx_queue;
1459 }
1460
1461 /* Iterate over all RX queues belonging to a channel */
1462 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
1463 if (!efx_channel_has_rx_queue(_channel)) \
1464 ; \
1465 else \
1466 for (_rx_queue = &(_channel)->rx_queue; \
1467 _rx_queue; \
1468 _rx_queue = NULL)
1469
1470 static inline struct efx_channel *
1471 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1472 {
1473 return container_of(rx_queue, struct efx_channel, rx_queue);
1474 }
1475
1476 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1477 {
1478 return efx_rx_queue_channel(rx_queue)->channel;
1479 }
1480
1481 /* Returns a pointer to the specified receive buffer in the RX
1482 * descriptor queue.
1483 */
1484 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1485 unsigned int index)
1486 {
1487 return &rx_queue->buffer[index];
1488 }
1489
1490 /**
1491 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1492 *
1493 * This calculates the maximum frame length that will be used for a
1494 * given MTU. The frame length will be equal to the MTU plus a
1495 * constant amount of header space and padding. This is the quantity
1496 * that the net driver will program into the MAC as the maximum frame
1497 * length.
1498 *
1499 * The 10G MAC requires 8-byte alignment on the frame
1500 * length, so we round up to the nearest 8.
1501 *
1502 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1503 * XGMII cycle). If the frame length reaches the maximum value in the
1504 * same cycle, the XMAC can miss the IPG altogether. We work around
1505 * this by adding a further 16 bytes.
1506 */
1507 #define EFX_FRAME_PAD 16
1508 #define EFX_MAX_FRAME_LEN(mtu) \
1509 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1510
1511 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1512 {
1513 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1514 }
1515 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1516 {
1517 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1518 }
1519
1520 #endif /* EFX_NET_DRIVER_H */