]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/sfc/net_driver.h
Merge tag 'for-v3.13-fixes' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / sfc / net_driver.h
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 /* Common definitions for all Efx net driver code */
12
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/vmalloc.h>
29 #include <linux/i2c.h>
30 #include <linux/mtd/mtd.h>
31
32 #include "enum.h"
33 #include "bitfield.h"
34 #include "filter.h"
35
36 /**************************************************************************
37 *
38 * Build definitions
39 *
40 **************************************************************************/
41
42 #define EFX_DRIVER_VERSION "4.0"
43
44 #ifdef DEBUG
45 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
46 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
47 #else
48 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
49 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
50 #endif
51
52 /**************************************************************************
53 *
54 * Efx data structures
55 *
56 **************************************************************************/
57
58 #define EFX_MAX_CHANNELS 32U
59 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
60 #define EFX_EXTRA_CHANNEL_IOV 0
61 #define EFX_EXTRA_CHANNEL_PTP 1
62 #define EFX_MAX_EXTRA_CHANNELS 2U
63
64 /* Checksum generation is a per-queue option in hardware, so each
65 * queue visible to the networking core is backed by two hardware TX
66 * queues. */
67 #define EFX_MAX_TX_TC 2
68 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
69 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
70 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
71 #define EFX_TXQ_TYPES 4
72 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
73
74 /* Maximum possible MTU the driver supports */
75 #define EFX_MAX_MTU (9 * 1024)
76
77 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
78 * and should be a multiple of the cache line size.
79 */
80 #define EFX_RX_USR_BUF_SIZE (2048 - 256)
81
82 /* If possible, we should ensure cache line alignment at start and end
83 * of every buffer. Otherwise, we just need to ensure 4-byte
84 * alignment of the network header.
85 */
86 #if NET_IP_ALIGN == 0
87 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
88 #else
89 #define EFX_RX_BUF_ALIGNMENT 4
90 #endif
91
92 /* Forward declare Precision Time Protocol (PTP) support structure. */
93 struct efx_ptp_data;
94
95 struct efx_self_tests;
96
97 /**
98 * struct efx_buffer - A general-purpose DMA buffer
99 * @addr: host base address of the buffer
100 * @dma_addr: DMA base address of the buffer
101 * @len: Buffer length, in bytes
102 *
103 * The NIC uses these buffers for its interrupt status registers and
104 * MAC stats dumps.
105 */
106 struct efx_buffer {
107 void *addr;
108 dma_addr_t dma_addr;
109 unsigned int len;
110 };
111
112 /**
113 * struct efx_special_buffer - DMA buffer entered into buffer table
114 * @buf: Standard &struct efx_buffer
115 * @index: Buffer index within controller;s buffer table
116 * @entries: Number of buffer table entries
117 *
118 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
119 * Event and descriptor rings are addressed via one or more buffer
120 * table entries (and so can be physically non-contiguous, although we
121 * currently do not take advantage of that). On Falcon and Siena we
122 * have to take care of allocating and initialising the entries
123 * ourselves. On later hardware this is managed by the firmware and
124 * @index and @entries are left as 0.
125 */
126 struct efx_special_buffer {
127 struct efx_buffer buf;
128 unsigned int index;
129 unsigned int entries;
130 };
131
132 /**
133 * struct efx_tx_buffer - buffer state for a TX descriptor
134 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
135 * freed when descriptor completes
136 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
137 * freed when descriptor completes.
138 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
139 * @dma_addr: DMA address of the fragment.
140 * @flags: Flags for allocation and DMA mapping type
141 * @len: Length of this fragment.
142 * This field is zero when the queue slot is empty.
143 * @unmap_len: Length of this fragment to unmap
144 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
145 * Only valid if @unmap_len != 0.
146 */
147 struct efx_tx_buffer {
148 union {
149 const struct sk_buff *skb;
150 void *heap_buf;
151 };
152 union {
153 efx_qword_t option;
154 dma_addr_t dma_addr;
155 };
156 unsigned short flags;
157 unsigned short len;
158 unsigned short unmap_len;
159 unsigned short dma_offset;
160 };
161 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
162 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
163 #define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */
164 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
165 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
166
167 /**
168 * struct efx_tx_queue - An Efx TX queue
169 *
170 * This is a ring buffer of TX fragments.
171 * Since the TX completion path always executes on the same
172 * CPU and the xmit path can operate on different CPUs,
173 * performance is increased by ensuring that the completion
174 * path and the xmit path operate on different cache lines.
175 * This is particularly important if the xmit path is always
176 * executing on one CPU which is different from the completion
177 * path. There is also a cache line for members which are
178 * read but not written on the fast path.
179 *
180 * @efx: The associated Efx NIC
181 * @queue: DMA queue number
182 * @channel: The associated channel
183 * @core_txq: The networking core TX queue structure
184 * @buffer: The software buffer ring
185 * @tsoh_page: Array of pages of TSO header buffers
186 * @txd: The hardware descriptor ring
187 * @ptr_mask: The size of the ring minus 1.
188 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
189 * Size of the region is efx_piobuf_size.
190 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
191 * @initialised: Has hardware queue been initialised?
192 * @read_count: Current read pointer.
193 * This is the number of buffers that have been removed from both rings.
194 * @old_write_count: The value of @write_count when last checked.
195 * This is here for performance reasons. The xmit path will
196 * only get the up-to-date value of @write_count if this
197 * variable indicates that the queue is empty. This is to
198 * avoid cache-line ping-pong between the xmit path and the
199 * completion path.
200 * @merge_events: Number of TX merged completion events
201 * @insert_count: Current insert pointer
202 * This is the number of buffers that have been added to the
203 * software ring.
204 * @write_count: Current write pointer
205 * This is the number of buffers that have been added to the
206 * hardware ring.
207 * @old_read_count: The value of read_count when last checked.
208 * This is here for performance reasons. The xmit path will
209 * only get the up-to-date value of read_count if this
210 * variable indicates that the queue is full. This is to
211 * avoid cache-line ping-pong between the xmit path and the
212 * completion path.
213 * @tso_bursts: Number of times TSO xmit invoked by kernel
214 * @tso_long_headers: Number of packets with headers too long for standard
215 * blocks
216 * @tso_packets: Number of packets via the TSO xmit path
217 * @pushes: Number of times the TX push feature has been used
218 * @pio_packets: Number of times the TX PIO feature has been used
219 * @empty_read_count: If the completion path has seen the queue as empty
220 * and the transmission path has not yet checked this, the value of
221 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
222 */
223 struct efx_tx_queue {
224 /* Members which don't change on the fast path */
225 struct efx_nic *efx ____cacheline_aligned_in_smp;
226 unsigned queue;
227 struct efx_channel *channel;
228 struct netdev_queue *core_txq;
229 struct efx_tx_buffer *buffer;
230 struct efx_buffer *tsoh_page;
231 struct efx_special_buffer txd;
232 unsigned int ptr_mask;
233 void __iomem *piobuf;
234 unsigned int piobuf_offset;
235 bool initialised;
236
237 /* Members used mainly on the completion path */
238 unsigned int read_count ____cacheline_aligned_in_smp;
239 unsigned int old_write_count;
240 unsigned int merge_events;
241
242 /* Members used only on the xmit path */
243 unsigned int insert_count ____cacheline_aligned_in_smp;
244 unsigned int write_count;
245 unsigned int old_read_count;
246 unsigned int tso_bursts;
247 unsigned int tso_long_headers;
248 unsigned int tso_packets;
249 unsigned int pushes;
250 unsigned int pio_packets;
251
252 /* Members shared between paths and sometimes updated */
253 unsigned int empty_read_count ____cacheline_aligned_in_smp;
254 #define EFX_EMPTY_COUNT_VALID 0x80000000
255 atomic_t flush_outstanding;
256 };
257
258 /**
259 * struct efx_rx_buffer - An Efx RX data buffer
260 * @dma_addr: DMA base address of the buffer
261 * @page: The associated page buffer.
262 * Will be %NULL if the buffer slot is currently free.
263 * @page_offset: If pending: offset in @page of DMA base address.
264 * If completed: offset in @page of Ethernet header.
265 * @len: If pending: length for DMA descriptor.
266 * If completed: received length, excluding hash prefix.
267 * @flags: Flags for buffer and packet state. These are only set on the
268 * first buffer of a scattered packet.
269 */
270 struct efx_rx_buffer {
271 dma_addr_t dma_addr;
272 struct page *page;
273 u16 page_offset;
274 u16 len;
275 u16 flags;
276 };
277 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001
278 #define EFX_RX_PKT_CSUMMED 0x0002
279 #define EFX_RX_PKT_DISCARD 0x0004
280 #define EFX_RX_PKT_TCP 0x0040
281 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
282
283 /**
284 * struct efx_rx_page_state - Page-based rx buffer state
285 *
286 * Inserted at the start of every page allocated for receive buffers.
287 * Used to facilitate sharing dma mappings between recycled rx buffers
288 * and those passed up to the kernel.
289 *
290 * @refcnt: Number of struct efx_rx_buffer's referencing this page.
291 * When refcnt falls to zero, the page is unmapped for dma
292 * @dma_addr: The dma address of this page.
293 */
294 struct efx_rx_page_state {
295 unsigned refcnt;
296 dma_addr_t dma_addr;
297
298 unsigned int __pad[0] ____cacheline_aligned;
299 };
300
301 /**
302 * struct efx_rx_queue - An Efx RX queue
303 * @efx: The associated Efx NIC
304 * @core_index: Index of network core RX queue. Will be >= 0 iff this
305 * is associated with a real RX queue.
306 * @buffer: The software buffer ring
307 * @rxd: The hardware descriptor ring
308 * @ptr_mask: The size of the ring minus 1.
309 * @refill_enabled: Enable refill whenever fill level is low
310 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
311 * @rxq_flush_pending.
312 * @added_count: Number of buffers added to the receive queue.
313 * @notified_count: Number of buffers given to NIC (<= @added_count).
314 * @removed_count: Number of buffers removed from the receive queue.
315 * @scatter_n: Used by NIC specific receive code.
316 * @scatter_len: Used by NIC specific receive code.
317 * @page_ring: The ring to store DMA mapped pages for reuse.
318 * @page_add: Counter to calculate the write pointer for the recycle ring.
319 * @page_remove: Counter to calculate the read pointer for the recycle ring.
320 * @page_recycle_count: The number of pages that have been recycled.
321 * @page_recycle_failed: The number of pages that couldn't be recycled because
322 * the kernel still held a reference to them.
323 * @page_recycle_full: The number of pages that were released because the
324 * recycle ring was full.
325 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
326 * @max_fill: RX descriptor maximum fill level (<= ring size)
327 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
328 * (<= @max_fill)
329 * @min_fill: RX descriptor minimum non-zero fill level.
330 * This records the minimum fill level observed when a ring
331 * refill was triggered.
332 * @recycle_count: RX buffer recycle counter.
333 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
334 */
335 struct efx_rx_queue {
336 struct efx_nic *efx;
337 int core_index;
338 struct efx_rx_buffer *buffer;
339 struct efx_special_buffer rxd;
340 unsigned int ptr_mask;
341 bool refill_enabled;
342 bool flush_pending;
343
344 unsigned int added_count;
345 unsigned int notified_count;
346 unsigned int removed_count;
347 unsigned int scatter_n;
348 unsigned int scatter_len;
349 struct page **page_ring;
350 unsigned int page_add;
351 unsigned int page_remove;
352 unsigned int page_recycle_count;
353 unsigned int page_recycle_failed;
354 unsigned int page_recycle_full;
355 unsigned int page_ptr_mask;
356 unsigned int max_fill;
357 unsigned int fast_fill_trigger;
358 unsigned int min_fill;
359 unsigned int min_overfill;
360 unsigned int recycle_count;
361 struct timer_list slow_fill;
362 unsigned int slow_fill_count;
363 };
364
365 enum efx_rx_alloc_method {
366 RX_ALLOC_METHOD_AUTO = 0,
367 RX_ALLOC_METHOD_SKB = 1,
368 RX_ALLOC_METHOD_PAGE = 2,
369 };
370
371 /**
372 * struct efx_channel - An Efx channel
373 *
374 * A channel comprises an event queue, at least one TX queue, at least
375 * one RX queue, and an associated tasklet for processing the event
376 * queue.
377 *
378 * @efx: Associated Efx NIC
379 * @channel: Channel instance number
380 * @type: Channel type definition
381 * @eventq_init: Event queue initialised flag
382 * @enabled: Channel enabled indicator
383 * @irq: IRQ number (MSI and MSI-X only)
384 * @irq_moderation: IRQ moderation value (in hardware ticks)
385 * @napi_dev: Net device used with NAPI
386 * @napi_str: NAPI control structure
387 * @eventq: Event queue buffer
388 * @eventq_mask: Event queue pointer mask
389 * @eventq_read_ptr: Event queue read pointer
390 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
391 * @irq_count: Number of IRQs since last adaptive moderation decision
392 * @irq_mod_score: IRQ moderation score
393 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
394 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
395 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
396 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
397 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
398 * @n_rx_overlength: Count of RX_OVERLENGTH errors
399 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
400 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
401 * lack of descriptors
402 * @n_rx_merge_events: Number of RX merged completion events
403 * @n_rx_merge_packets: Number of RX packets completed by merged events
404 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
405 * __efx_rx_packet(), or zero if there is none
406 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
407 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0
408 * @rx_queue: RX queue for this channel
409 * @tx_queue: TX queues for this channel
410 */
411 struct efx_channel {
412 struct efx_nic *efx;
413 int channel;
414 const struct efx_channel_type *type;
415 bool eventq_init;
416 bool enabled;
417 int irq;
418 unsigned int irq_moderation;
419 struct net_device *napi_dev;
420 struct napi_struct napi_str;
421 struct efx_special_buffer eventq;
422 unsigned int eventq_mask;
423 unsigned int eventq_read_ptr;
424 int event_test_cpu;
425
426 unsigned int irq_count;
427 unsigned int irq_mod_score;
428 #ifdef CONFIG_RFS_ACCEL
429 unsigned int rfs_filters_added;
430 #endif
431
432 unsigned n_rx_tobe_disc;
433 unsigned n_rx_ip_hdr_chksum_err;
434 unsigned n_rx_tcp_udp_chksum_err;
435 unsigned n_rx_mcast_mismatch;
436 unsigned n_rx_frm_trunc;
437 unsigned n_rx_overlength;
438 unsigned n_skbuff_leaks;
439 unsigned int n_rx_nodesc_trunc;
440 unsigned int n_rx_merge_events;
441 unsigned int n_rx_merge_packets;
442
443 unsigned int rx_pkt_n_frags;
444 unsigned int rx_pkt_index;
445
446 struct efx_rx_queue rx_queue;
447 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
448 };
449
450 /**
451 * struct efx_msi_context - Context for each MSI
452 * @efx: The associated NIC
453 * @index: Index of the channel/IRQ
454 * @name: Name of the channel/IRQ
455 *
456 * Unlike &struct efx_channel, this is never reallocated and is always
457 * safe for the IRQ handler to access.
458 */
459 struct efx_msi_context {
460 struct efx_nic *efx;
461 unsigned int index;
462 char name[IFNAMSIZ + 6];
463 };
464
465 /**
466 * struct efx_channel_type - distinguishes traffic and extra channels
467 * @handle_no_channel: Handle failure to allocate an extra channel
468 * @pre_probe: Set up extra state prior to initialisation
469 * @post_remove: Tear down extra state after finalisation, if allocated.
470 * May be called on channels that have not been probed.
471 * @get_name: Generate the channel's name (used for its IRQ handler)
472 * @copy: Copy the channel state prior to reallocation. May be %NULL if
473 * reallocation is not supported.
474 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
475 * @keep_eventq: Flag for whether event queue should be kept initialised
476 * while the device is stopped
477 */
478 struct efx_channel_type {
479 void (*handle_no_channel)(struct efx_nic *);
480 int (*pre_probe)(struct efx_channel *);
481 void (*post_remove)(struct efx_channel *);
482 void (*get_name)(struct efx_channel *, char *buf, size_t len);
483 struct efx_channel *(*copy)(const struct efx_channel *);
484 bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
485 bool keep_eventq;
486 };
487
488 enum efx_led_mode {
489 EFX_LED_OFF = 0,
490 EFX_LED_ON = 1,
491 EFX_LED_DEFAULT = 2
492 };
493
494 #define STRING_TABLE_LOOKUP(val, member) \
495 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
496
497 extern const char *const efx_loopback_mode_names[];
498 extern const unsigned int efx_loopback_mode_max;
499 #define LOOPBACK_MODE(efx) \
500 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
501
502 extern const char *const efx_reset_type_names[];
503 extern const unsigned int efx_reset_type_max;
504 #define RESET_TYPE(type) \
505 STRING_TABLE_LOOKUP(type, efx_reset_type)
506
507 enum efx_int_mode {
508 /* Be careful if altering to correct macro below */
509 EFX_INT_MODE_MSIX = 0,
510 EFX_INT_MODE_MSI = 1,
511 EFX_INT_MODE_LEGACY = 2,
512 EFX_INT_MODE_MAX /* Insert any new items before this */
513 };
514 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
515
516 enum nic_state {
517 STATE_UNINIT = 0, /* device being probed/removed or is frozen */
518 STATE_READY = 1, /* hardware ready and netdev registered */
519 STATE_DISABLED = 2, /* device disabled due to hardware errors */
520 STATE_RECOVERY = 3, /* device recovering from PCI error */
521 };
522
523 /*
524 * Alignment of the skb->head which wraps a page-allocated RX buffer
525 *
526 * The skb allocated to wrap an rx_buffer can have this alignment. Since
527 * the data is memcpy'd from the rx_buf, it does not need to be equal to
528 * NET_IP_ALIGN.
529 */
530 #define EFX_PAGE_SKB_ALIGN 2
531
532 /* Forward declaration */
533 struct efx_nic;
534
535 /* Pseudo bit-mask flow control field */
536 #define EFX_FC_RX FLOW_CTRL_RX
537 #define EFX_FC_TX FLOW_CTRL_TX
538 #define EFX_FC_AUTO 4
539
540 /**
541 * struct efx_link_state - Current state of the link
542 * @up: Link is up
543 * @fd: Link is full-duplex
544 * @fc: Actual flow control flags
545 * @speed: Link speed (Mbps)
546 */
547 struct efx_link_state {
548 bool up;
549 bool fd;
550 u8 fc;
551 unsigned int speed;
552 };
553
554 static inline bool efx_link_state_equal(const struct efx_link_state *left,
555 const struct efx_link_state *right)
556 {
557 return left->up == right->up && left->fd == right->fd &&
558 left->fc == right->fc && left->speed == right->speed;
559 }
560
561 /**
562 * struct efx_phy_operations - Efx PHY operations table
563 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
564 * efx->loopback_modes.
565 * @init: Initialise PHY
566 * @fini: Shut down PHY
567 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
568 * @poll: Update @link_state and report whether it changed.
569 * Serialised by the mac_lock.
570 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
571 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
572 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
573 * (only needed where AN bit is set in mmds)
574 * @test_alive: Test that PHY is 'alive' (online)
575 * @test_name: Get the name of a PHY-specific test/result
576 * @run_tests: Run tests and record results as appropriate (offline).
577 * Flags are the ethtool tests flags.
578 */
579 struct efx_phy_operations {
580 int (*probe) (struct efx_nic *efx);
581 int (*init) (struct efx_nic *efx);
582 void (*fini) (struct efx_nic *efx);
583 void (*remove) (struct efx_nic *efx);
584 int (*reconfigure) (struct efx_nic *efx);
585 bool (*poll) (struct efx_nic *efx);
586 void (*get_settings) (struct efx_nic *efx,
587 struct ethtool_cmd *ecmd);
588 int (*set_settings) (struct efx_nic *efx,
589 struct ethtool_cmd *ecmd);
590 void (*set_npage_adv) (struct efx_nic *efx, u32);
591 int (*test_alive) (struct efx_nic *efx);
592 const char *(*test_name) (struct efx_nic *efx, unsigned int index);
593 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
594 int (*get_module_eeprom) (struct efx_nic *efx,
595 struct ethtool_eeprom *ee,
596 u8 *data);
597 int (*get_module_info) (struct efx_nic *efx,
598 struct ethtool_modinfo *modinfo);
599 };
600
601 /**
602 * enum efx_phy_mode - PHY operating mode flags
603 * @PHY_MODE_NORMAL: on and should pass traffic
604 * @PHY_MODE_TX_DISABLED: on with TX disabled
605 * @PHY_MODE_LOW_POWER: set to low power through MDIO
606 * @PHY_MODE_OFF: switched off through external control
607 * @PHY_MODE_SPECIAL: on but will not pass traffic
608 */
609 enum efx_phy_mode {
610 PHY_MODE_NORMAL = 0,
611 PHY_MODE_TX_DISABLED = 1,
612 PHY_MODE_LOW_POWER = 2,
613 PHY_MODE_OFF = 4,
614 PHY_MODE_SPECIAL = 8,
615 };
616
617 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
618 {
619 return !!(mode & ~PHY_MODE_TX_DISABLED);
620 }
621
622 /**
623 * struct efx_hw_stat_desc - Description of a hardware statistic
624 * @name: Name of the statistic as visible through ethtool, or %NULL if
625 * it should not be exposed
626 * @dma_width: Width in bits (0 for non-DMA statistics)
627 * @offset: Offset within stats (ignored for non-DMA statistics)
628 */
629 struct efx_hw_stat_desc {
630 const char *name;
631 u16 dma_width;
632 u16 offset;
633 };
634
635 /* Number of bits used in a multicast filter hash address */
636 #define EFX_MCAST_HASH_BITS 8
637
638 /* Number of (single-bit) entries in a multicast filter hash */
639 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
640
641 /* An Efx multicast filter hash */
642 union efx_multicast_hash {
643 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
644 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
645 };
646
647 struct efx_vf;
648 struct vfdi_status;
649
650 /**
651 * struct efx_nic - an Efx NIC
652 * @name: Device name (net device name or bus id before net device registered)
653 * @pci_dev: The PCI device
654 * @type: Controller type attributes
655 * @legacy_irq: IRQ number
656 * @workqueue: Workqueue for port reconfigures and the HW monitor.
657 * Work items do not hold and must not acquire RTNL.
658 * @workqueue_name: Name of workqueue
659 * @reset_work: Scheduled reset workitem
660 * @membase_phys: Memory BAR value as physical address
661 * @membase: Memory BAR value
662 * @interrupt_mode: Interrupt mode
663 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
664 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
665 * @irq_rx_moderation: IRQ moderation time for RX event queues
666 * @msg_enable: Log message enable flags
667 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
668 * @reset_pending: Bitmask for pending resets
669 * @tx_queue: TX DMA queues
670 * @rx_queue: RX DMA queues
671 * @channel: Channels
672 * @msi_context: Context for each MSI
673 * @extra_channel_types: Types of extra (non-traffic) channels that
674 * should be allocated for this NIC
675 * @rxq_entries: Size of receive queues requested by user.
676 * @txq_entries: Size of transmit queues requested by user.
677 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
678 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
679 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
680 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
681 * @sram_lim_qw: Qword address limit of SRAM
682 * @next_buffer_table: First available buffer table id
683 * @n_channels: Number of channels in use
684 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
685 * @n_tx_channels: Number of channels used for TX
686 * @rx_ip_align: RX DMA address offset to have IP header aligned in
687 * in accordance with NET_IP_ALIGN
688 * @rx_dma_len: Current maximum RX DMA length
689 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
690 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
691 * for use in sk_buff::truesize
692 * @rx_prefix_size: Size of RX prefix before packet data
693 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
694 * (valid only if @rx_prefix_size != 0; always negative)
695 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
696 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
697 * @rx_hash_key: Toeplitz hash key for RSS
698 * @rx_indir_table: Indirection table for RSS
699 * @rx_scatter: Scatter mode enabled for receives
700 * @int_error_count: Number of internal errors seen recently
701 * @int_error_expire: Time at which error count will be expired
702 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
703 * acknowledge but do nothing else.
704 * @irq_status: Interrupt status buffer
705 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
706 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
707 * @selftest_work: Work item for asynchronous self-test
708 * @mtd_list: List of MTDs attached to the NIC
709 * @nic_data: Hardware dependent state
710 * @mcdi: Management-Controller-to-Driver Interface state
711 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
712 * efx_monitor() and efx_reconfigure_port()
713 * @port_enabled: Port enabled indicator.
714 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
715 * efx_mac_work() with kernel interfaces. Safe to read under any
716 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
717 * be held to modify it.
718 * @port_initialized: Port initialized?
719 * @net_dev: Operating system network device. Consider holding the rtnl lock
720 * @stats_buffer: DMA buffer for statistics
721 * @phy_type: PHY type
722 * @phy_op: PHY interface
723 * @phy_data: PHY private data (including PHY-specific stats)
724 * @mdio: PHY MDIO interface
725 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
726 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
727 * @link_advertising: Autonegotiation advertising flags
728 * @link_state: Current state of the link
729 * @n_link_state_changes: Number of times the link has changed state
730 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
731 * Protected by @mac_lock.
732 * @multicast_hash: Multicast hash table for Falcon-arch.
733 * Protected by @mac_lock.
734 * @wanted_fc: Wanted flow control flags
735 * @fc_disable: When non-zero flow control is disabled. Typically used to
736 * ensure that network back pressure doesn't delay dma queue flushes.
737 * Serialised by the rtnl lock.
738 * @mac_work: Work item for changing MAC promiscuity and multicast hash
739 * @loopback_mode: Loopback status
740 * @loopback_modes: Supported loopback mode bitmask
741 * @loopback_selftest: Offline self-test private state
742 * @filter_lock: Filter table lock
743 * @filter_state: Architecture-dependent filter table state
744 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
745 * indexed by filter ID
746 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
747 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
748 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
749 * Decremented when the efx_flush_rx_queue() is called.
750 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
751 * completed (either success or failure). Not used when MCDI is used to
752 * flush receive queues.
753 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
754 * @vf: Array of &struct efx_vf objects.
755 * @vf_count: Number of VFs intended to be enabled.
756 * @vf_init_count: Number of VFs that have been fully initialised.
757 * @vi_scale: log2 number of vnics per VF.
758 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
759 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
760 * @local_addr_list: List of local addresses. Protected by %local_lock.
761 * @local_page_list: List of DMA addressable pages used to broadcast
762 * %local_addr_list. Protected by %local_lock.
763 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
764 * @peer_work: Work item to broadcast peer addresses to VMs.
765 * @ptp_data: PTP state data
766 * @monitor_work: Hardware monitor workitem
767 * @biu_lock: BIU (bus interface unit) lock
768 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
769 * field is used by efx_test_interrupts() to verify that an
770 * interrupt has occurred.
771 * @stats_lock: Statistics update lock. Must be held when calling
772 * efx_nic_type::{update,start,stop}_stats.
773 *
774 * This is stored in the private area of the &struct net_device.
775 */
776 struct efx_nic {
777 /* The following fields should be written very rarely */
778
779 char name[IFNAMSIZ];
780 struct pci_dev *pci_dev;
781 unsigned int port_num;
782 const struct efx_nic_type *type;
783 int legacy_irq;
784 bool eeh_disabled_legacy_irq;
785 struct workqueue_struct *workqueue;
786 char workqueue_name[16];
787 struct work_struct reset_work;
788 resource_size_t membase_phys;
789 void __iomem *membase;
790
791 enum efx_int_mode interrupt_mode;
792 unsigned int timer_quantum_ns;
793 bool irq_rx_adaptive;
794 unsigned int irq_rx_moderation;
795 u32 msg_enable;
796
797 enum nic_state state;
798 unsigned long reset_pending;
799
800 struct efx_channel *channel[EFX_MAX_CHANNELS];
801 struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
802 const struct efx_channel_type *
803 extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
804
805 unsigned rxq_entries;
806 unsigned txq_entries;
807 unsigned int txq_stop_thresh;
808 unsigned int txq_wake_thresh;
809
810 unsigned tx_dc_base;
811 unsigned rx_dc_base;
812 unsigned sram_lim_qw;
813 unsigned next_buffer_table;
814
815 unsigned int max_channels;
816 unsigned n_channels;
817 unsigned n_rx_channels;
818 unsigned rss_spread;
819 unsigned tx_channel_offset;
820 unsigned n_tx_channels;
821 unsigned int rx_ip_align;
822 unsigned int rx_dma_len;
823 unsigned int rx_buffer_order;
824 unsigned int rx_buffer_truesize;
825 unsigned int rx_page_buf_step;
826 unsigned int rx_bufs_per_page;
827 unsigned int rx_pages_per_batch;
828 unsigned int rx_prefix_size;
829 int rx_packet_hash_offset;
830 int rx_packet_len_offset;
831 u8 rx_hash_key[40];
832 u32 rx_indir_table[128];
833 bool rx_scatter;
834
835 unsigned int_error_count;
836 unsigned long int_error_expire;
837
838 bool irq_soft_enabled;
839 struct efx_buffer irq_status;
840 unsigned irq_zero_count;
841 unsigned irq_level;
842 struct delayed_work selftest_work;
843
844 #ifdef CONFIG_SFC_MTD
845 struct list_head mtd_list;
846 #endif
847
848 void *nic_data;
849 struct efx_mcdi_data *mcdi;
850
851 struct mutex mac_lock;
852 struct work_struct mac_work;
853 bool port_enabled;
854
855 bool port_initialized;
856 struct net_device *net_dev;
857
858 struct efx_buffer stats_buffer;
859
860 unsigned int phy_type;
861 const struct efx_phy_operations *phy_op;
862 void *phy_data;
863 struct mdio_if_info mdio;
864 unsigned int mdio_bus;
865 enum efx_phy_mode phy_mode;
866
867 u32 link_advertising;
868 struct efx_link_state link_state;
869 unsigned int n_link_state_changes;
870
871 bool unicast_filter;
872 union efx_multicast_hash multicast_hash;
873 u8 wanted_fc;
874 unsigned fc_disable;
875
876 atomic_t rx_reset;
877 enum efx_loopback_mode loopback_mode;
878 u64 loopback_modes;
879
880 void *loopback_selftest;
881
882 spinlock_t filter_lock;
883 void *filter_state;
884 #ifdef CONFIG_RFS_ACCEL
885 u32 *rps_flow_id;
886 unsigned int rps_expire_index;
887 #endif
888
889 atomic_t active_queues;
890 atomic_t rxq_flush_pending;
891 atomic_t rxq_flush_outstanding;
892 wait_queue_head_t flush_wq;
893
894 #ifdef CONFIG_SFC_SRIOV
895 struct efx_channel *vfdi_channel;
896 struct efx_vf *vf;
897 unsigned vf_count;
898 unsigned vf_init_count;
899 unsigned vi_scale;
900 unsigned vf_buftbl_base;
901 struct efx_buffer vfdi_status;
902 struct list_head local_addr_list;
903 struct list_head local_page_list;
904 struct mutex local_lock;
905 struct work_struct peer_work;
906 #endif
907
908 struct efx_ptp_data *ptp_data;
909
910 /* The following fields may be written more often */
911
912 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
913 spinlock_t biu_lock;
914 int last_irq_cpu;
915 spinlock_t stats_lock;
916 };
917
918 static inline int efx_dev_registered(struct efx_nic *efx)
919 {
920 return efx->net_dev->reg_state == NETREG_REGISTERED;
921 }
922
923 static inline unsigned int efx_port_num(struct efx_nic *efx)
924 {
925 return efx->port_num;
926 }
927
928 struct efx_mtd_partition {
929 struct list_head node;
930 struct mtd_info mtd;
931 const char *dev_type_name;
932 const char *type_name;
933 char name[IFNAMSIZ + 20];
934 };
935
936 /**
937 * struct efx_nic_type - Efx device type definition
938 * @mem_map_size: Get memory BAR mapped size
939 * @probe: Probe the controller
940 * @remove: Free resources allocated by probe()
941 * @init: Initialise the controller
942 * @dimension_resources: Dimension controller resources (buffer table,
943 * and VIs once the available interrupt resources are clear)
944 * @fini: Shut down the controller
945 * @monitor: Periodic function for polling link state and hardware monitor
946 * @map_reset_reason: Map ethtool reset reason to a reset method
947 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
948 * @reset: Reset the controller hardware and possibly the PHY. This will
949 * be called while the controller is uninitialised.
950 * @probe_port: Probe the MAC and PHY
951 * @remove_port: Free resources allocated by probe_port()
952 * @handle_global_event: Handle a "global" event (may be %NULL)
953 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
954 * @prepare_flush: Prepare the hardware for flushing the DMA queues
955 * (for Falcon architecture)
956 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
957 * architecture)
958 * @describe_stats: Describe statistics for ethtool
959 * @update_stats: Update statistics not provided by event handling.
960 * Either argument may be %NULL.
961 * @start_stats: Start the regular fetching of statistics
962 * @stop_stats: Stop the regular fetching of statistics
963 * @set_id_led: Set state of identifying LED or revert to automatic function
964 * @push_irq_moderation: Apply interrupt moderation value
965 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
966 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
967 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
968 * to the hardware. Serialised by the mac_lock.
969 * @check_mac_fault: Check MAC fault state. True if fault present.
970 * @get_wol: Get WoL configuration from driver state
971 * @set_wol: Push WoL configuration to the NIC
972 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
973 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
974 * expected to reset the NIC.
975 * @test_nvram: Test validity of NVRAM contents
976 * @mcdi_request: Send an MCDI request with the given header and SDU.
977 * The SDU length may be any value from 0 up to the protocol-
978 * defined maximum, but its buffer will be padded to a multiple
979 * of 4 bytes.
980 * @mcdi_poll_response: Test whether an MCDI response is available.
981 * @mcdi_read_response: Read the MCDI response PDU. The offset will
982 * be a multiple of 4. The length may not be, but the buffer
983 * will be padded so it is safe to round up.
984 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
985 * return an appropriate error code for aborting any current
986 * request; otherwise return 0.
987 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
988 * be separately enabled after this.
989 * @irq_test_generate: Generate a test IRQ
990 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
991 * queue must be separately disabled before this.
992 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
993 * a pointer to the &struct efx_msi_context for the channel.
994 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
995 * is a pointer to the &struct efx_nic.
996 * @tx_probe: Allocate resources for TX queue
997 * @tx_init: Initialise TX queue on the NIC
998 * @tx_remove: Free resources for TX queue
999 * @tx_write: Write TX descriptors and doorbell
1000 * @rx_push_indir_table: Write RSS indirection table to the NIC
1001 * @rx_probe: Allocate resources for RX queue
1002 * @rx_init: Initialise RX queue on the NIC
1003 * @rx_remove: Free resources for RX queue
1004 * @rx_write: Write RX descriptors and doorbell
1005 * @rx_defer_refill: Generate a refill reminder event
1006 * @ev_probe: Allocate resources for event queue
1007 * @ev_init: Initialise event queue on the NIC
1008 * @ev_fini: Deinitialise event queue on the NIC
1009 * @ev_remove: Free resources for event queue
1010 * @ev_process: Process events for a queue, up to the given NAPI quota
1011 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1012 * @ev_test_generate: Generate a test event
1013 * @filter_table_probe: Probe filter capabilities and set up filter software state
1014 * @filter_table_restore: Restore filters removed from hardware
1015 * @filter_table_remove: Remove filters from hardware and tear down software state
1016 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1017 * @filter_insert: add or replace a filter
1018 * @filter_remove_safe: remove a filter by ID, carefully
1019 * @filter_get_safe: retrieve a filter by ID, carefully
1020 * @filter_clear_rx: remove RX filters by priority
1021 * @filter_count_rx_used: Get the number of filters in use at a given priority
1022 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1023 * @filter_get_rx_ids: Get list of RX filters at a given priority
1024 * @filter_rfs_insert: Add or replace a filter for RFS. This must be
1025 * atomic. The hardware change may be asynchronous but should
1026 * not be delayed for long. It may fail if this can't be done
1027 * atomically.
1028 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1029 * This must check whether the specified table entry is used by RFS
1030 * and that rps_may_expire_flow() returns true for it.
1031 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1032 * using efx_mtd_add()
1033 * @mtd_rename: Set an MTD partition name using the net device name
1034 * @mtd_read: Read from an MTD partition
1035 * @mtd_erase: Erase part of an MTD partition
1036 * @mtd_write: Write to an MTD partition
1037 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1038 * also notifies the driver that a writer has finished using this
1039 * partition.
1040 * @revision: Hardware architecture revision
1041 * @txd_ptr_tbl_base: TX descriptor ring base address
1042 * @rxd_ptr_tbl_base: RX descriptor ring base address
1043 * @buf_tbl_base: Buffer table base address
1044 * @evq_ptr_tbl_base: Event queue pointer table base address
1045 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1046 * @max_dma_mask: Maximum possible DMA mask
1047 * @rx_prefix_size: Size of RX prefix before packet data
1048 * @rx_hash_offset: Offset of RX flow hash within prefix
1049 * @rx_buffer_padding: Size of padding at end of RX packet
1050 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1051 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1052 * @max_interrupt_mode: Highest capability interrupt mode supported
1053 * from &enum efx_init_mode.
1054 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1055 * @offload_features: net_device feature flags for protocol offload
1056 * features implemented in hardware
1057 * @mcdi_max_ver: Maximum MCDI version supported
1058 */
1059 struct efx_nic_type {
1060 unsigned int (*mem_map_size)(struct efx_nic *efx);
1061 int (*probe)(struct efx_nic *efx);
1062 void (*remove)(struct efx_nic *efx);
1063 int (*init)(struct efx_nic *efx);
1064 int (*dimension_resources)(struct efx_nic *efx);
1065 void (*fini)(struct efx_nic *efx);
1066 void (*monitor)(struct efx_nic *efx);
1067 enum reset_type (*map_reset_reason)(enum reset_type reason);
1068 int (*map_reset_flags)(u32 *flags);
1069 int (*reset)(struct efx_nic *efx, enum reset_type method);
1070 int (*probe_port)(struct efx_nic *efx);
1071 void (*remove_port)(struct efx_nic *efx);
1072 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1073 int (*fini_dmaq)(struct efx_nic *efx);
1074 void (*prepare_flush)(struct efx_nic *efx);
1075 void (*finish_flush)(struct efx_nic *efx);
1076 size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1077 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1078 struct rtnl_link_stats64 *core_stats);
1079 void (*start_stats)(struct efx_nic *efx);
1080 void (*stop_stats)(struct efx_nic *efx);
1081 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1082 void (*push_irq_moderation)(struct efx_channel *channel);
1083 int (*reconfigure_port)(struct efx_nic *efx);
1084 void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1085 int (*reconfigure_mac)(struct efx_nic *efx);
1086 bool (*check_mac_fault)(struct efx_nic *efx);
1087 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1088 int (*set_wol)(struct efx_nic *efx, u32 type);
1089 void (*resume_wol)(struct efx_nic *efx);
1090 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1091 int (*test_nvram)(struct efx_nic *efx);
1092 void (*mcdi_request)(struct efx_nic *efx,
1093 const efx_dword_t *hdr, size_t hdr_len,
1094 const efx_dword_t *sdu, size_t sdu_len);
1095 bool (*mcdi_poll_response)(struct efx_nic *efx);
1096 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1097 size_t pdu_offset, size_t pdu_len);
1098 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1099 void (*irq_enable_master)(struct efx_nic *efx);
1100 void (*irq_test_generate)(struct efx_nic *efx);
1101 void (*irq_disable_non_ev)(struct efx_nic *efx);
1102 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1103 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1104 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1105 void (*tx_init)(struct efx_tx_queue *tx_queue);
1106 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1107 void (*tx_write)(struct efx_tx_queue *tx_queue);
1108 void (*rx_push_indir_table)(struct efx_nic *efx);
1109 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1110 void (*rx_init)(struct efx_rx_queue *rx_queue);
1111 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1112 void (*rx_write)(struct efx_rx_queue *rx_queue);
1113 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1114 int (*ev_probe)(struct efx_channel *channel);
1115 int (*ev_init)(struct efx_channel *channel);
1116 void (*ev_fini)(struct efx_channel *channel);
1117 void (*ev_remove)(struct efx_channel *channel);
1118 int (*ev_process)(struct efx_channel *channel, int quota);
1119 void (*ev_read_ack)(struct efx_channel *channel);
1120 void (*ev_test_generate)(struct efx_channel *channel);
1121 int (*filter_table_probe)(struct efx_nic *efx);
1122 void (*filter_table_restore)(struct efx_nic *efx);
1123 void (*filter_table_remove)(struct efx_nic *efx);
1124 void (*filter_update_rx_scatter)(struct efx_nic *efx);
1125 s32 (*filter_insert)(struct efx_nic *efx,
1126 struct efx_filter_spec *spec, bool replace);
1127 int (*filter_remove_safe)(struct efx_nic *efx,
1128 enum efx_filter_priority priority,
1129 u32 filter_id);
1130 int (*filter_get_safe)(struct efx_nic *efx,
1131 enum efx_filter_priority priority,
1132 u32 filter_id, struct efx_filter_spec *);
1133 void (*filter_clear_rx)(struct efx_nic *efx,
1134 enum efx_filter_priority priority);
1135 u32 (*filter_count_rx_used)(struct efx_nic *efx,
1136 enum efx_filter_priority priority);
1137 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1138 s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1139 enum efx_filter_priority priority,
1140 u32 *buf, u32 size);
1141 #ifdef CONFIG_RFS_ACCEL
1142 s32 (*filter_rfs_insert)(struct efx_nic *efx,
1143 struct efx_filter_spec *spec);
1144 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1145 unsigned int index);
1146 #endif
1147 #ifdef CONFIG_SFC_MTD
1148 int (*mtd_probe)(struct efx_nic *efx);
1149 void (*mtd_rename)(struct efx_mtd_partition *part);
1150 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1151 size_t *retlen, u8 *buffer);
1152 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1153 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1154 size_t *retlen, const u8 *buffer);
1155 int (*mtd_sync)(struct mtd_info *mtd);
1156 #endif
1157 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1158
1159 int revision;
1160 unsigned int txd_ptr_tbl_base;
1161 unsigned int rxd_ptr_tbl_base;
1162 unsigned int buf_tbl_base;
1163 unsigned int evq_ptr_tbl_base;
1164 unsigned int evq_rptr_tbl_base;
1165 u64 max_dma_mask;
1166 unsigned int rx_prefix_size;
1167 unsigned int rx_hash_offset;
1168 unsigned int rx_buffer_padding;
1169 bool can_rx_scatter;
1170 bool always_rx_scatter;
1171 unsigned int max_interrupt_mode;
1172 unsigned int timer_period_max;
1173 netdev_features_t offload_features;
1174 int mcdi_max_ver;
1175 unsigned int max_rx_ip_filters;
1176 };
1177
1178 /**************************************************************************
1179 *
1180 * Prototypes and inline functions
1181 *
1182 *************************************************************************/
1183
1184 static inline struct efx_channel *
1185 efx_get_channel(struct efx_nic *efx, unsigned index)
1186 {
1187 EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1188 return efx->channel[index];
1189 }
1190
1191 /* Iterate over all used channels */
1192 #define efx_for_each_channel(_channel, _efx) \
1193 for (_channel = (_efx)->channel[0]; \
1194 _channel; \
1195 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1196 (_efx)->channel[_channel->channel + 1] : NULL)
1197
1198 /* Iterate over all used channels in reverse */
1199 #define efx_for_each_channel_rev(_channel, _efx) \
1200 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1201 _channel; \
1202 _channel = _channel->channel ? \
1203 (_efx)->channel[_channel->channel - 1] : NULL)
1204
1205 static inline struct efx_tx_queue *
1206 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1207 {
1208 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1209 type >= EFX_TXQ_TYPES);
1210 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1211 }
1212
1213 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1214 {
1215 return channel->channel - channel->efx->tx_channel_offset <
1216 channel->efx->n_tx_channels;
1217 }
1218
1219 static inline struct efx_tx_queue *
1220 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1221 {
1222 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1223 type >= EFX_TXQ_TYPES);
1224 return &channel->tx_queue[type];
1225 }
1226
1227 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1228 {
1229 return !(tx_queue->efx->net_dev->num_tc < 2 &&
1230 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1231 }
1232
1233 /* Iterate over all TX queues belonging to a channel */
1234 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
1235 if (!efx_channel_has_tx_queues(_channel)) \
1236 ; \
1237 else \
1238 for (_tx_queue = (_channel)->tx_queue; \
1239 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1240 efx_tx_queue_used(_tx_queue); \
1241 _tx_queue++)
1242
1243 /* Iterate over all possible TX queues belonging to a channel */
1244 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
1245 if (!efx_channel_has_tx_queues(_channel)) \
1246 ; \
1247 else \
1248 for (_tx_queue = (_channel)->tx_queue; \
1249 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
1250 _tx_queue++)
1251
1252 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1253 {
1254 return channel->rx_queue.core_index >= 0;
1255 }
1256
1257 static inline struct efx_rx_queue *
1258 efx_channel_get_rx_queue(struct efx_channel *channel)
1259 {
1260 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1261 return &channel->rx_queue;
1262 }
1263
1264 /* Iterate over all RX queues belonging to a channel */
1265 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
1266 if (!efx_channel_has_rx_queue(_channel)) \
1267 ; \
1268 else \
1269 for (_rx_queue = &(_channel)->rx_queue; \
1270 _rx_queue; \
1271 _rx_queue = NULL)
1272
1273 static inline struct efx_channel *
1274 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1275 {
1276 return container_of(rx_queue, struct efx_channel, rx_queue);
1277 }
1278
1279 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1280 {
1281 return efx_rx_queue_channel(rx_queue)->channel;
1282 }
1283
1284 /* Returns a pointer to the specified receive buffer in the RX
1285 * descriptor queue.
1286 */
1287 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1288 unsigned int index)
1289 {
1290 return &rx_queue->buffer[index];
1291 }
1292
1293
1294 /**
1295 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1296 *
1297 * This calculates the maximum frame length that will be used for a
1298 * given MTU. The frame length will be equal to the MTU plus a
1299 * constant amount of header space and padding. This is the quantity
1300 * that the net driver will program into the MAC as the maximum frame
1301 * length.
1302 *
1303 * The 10G MAC requires 8-byte alignment on the frame
1304 * length, so we round up to the nearest 8.
1305 *
1306 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1307 * XGMII cycle). If the frame length reaches the maximum value in the
1308 * same cycle, the XMAC can miss the IPG altogether. We work around
1309 * this by adding a further 16 bytes.
1310 */
1311 #define EFX_MAX_FRAME_LEN(mtu) \
1312 ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1313
1314 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1315 {
1316 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1317 }
1318 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1319 {
1320 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1321 }
1322
1323 #endif /* EFX_NET_DRIVER_H */