]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/sfc/net_driver.h
7bb7ecb480ae1fc3102ab11c5380f2aec04844fd
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / sfc / net_driver.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 /* Common definitions for all Efx net driver code */
9
10 #ifndef EFX_NET_DRIVER_H
11 #define EFX_NET_DRIVER_H
12
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/if_vlan.h>
17 #include <linux/timer.h>
18 #include <linux/mdio.h>
19 #include <linux/list.h>
20 #include <linux/pci.h>
21 #include <linux/device.h>
22 #include <linux/highmem.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/mtd/mtd.h>
28 #include <net/busy_poll.h>
29 #include <net/xdp.h>
30
31 #include "enum.h"
32 #include "bitfield.h"
33 #include "filter.h"
34
35 /**************************************************************************
36 *
37 * Build definitions
38 *
39 **************************************************************************/
40
41 #define EFX_DRIVER_VERSION "4.1"
42
43 #ifdef DEBUG
44 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
45 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
46 #else
47 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
48 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
49 #endif
50
51 /**************************************************************************
52 *
53 * Efx data structures
54 *
55 **************************************************************************/
56
57 #define EFX_MAX_CHANNELS 32U
58 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
59 #define EFX_EXTRA_CHANNEL_IOV 0
60 #define EFX_EXTRA_CHANNEL_PTP 1
61 #define EFX_MAX_EXTRA_CHANNELS 2U
62
63 /* Checksum generation is a per-queue option in hardware, so each
64 * queue visible to the networking core is backed by two hardware TX
65 * queues. */
66 #define EFX_MAX_TX_TC 2
67 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
68 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
69 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
70 #define EFX_TXQ_TYPES 4
71 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
72
73 /* Maximum possible MTU the driver supports */
74 #define EFX_MAX_MTU (9 * 1024)
75
76 /* Minimum MTU, from RFC791 (IP) */
77 #define EFX_MIN_MTU 68
78
79 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
80 * and should be a multiple of the cache line size.
81 */
82 #define EFX_RX_USR_BUF_SIZE (2048 - 256)
83
84 /* If possible, we should ensure cache line alignment at start and end
85 * of every buffer. Otherwise, we just need to ensure 4-byte
86 * alignment of the network header.
87 */
88 #if NET_IP_ALIGN == 0
89 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
90 #else
91 #define EFX_RX_BUF_ALIGNMENT 4
92 #endif
93
94 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
95 * still fit two standard MTU size packets into a single 4K page.
96 */
97 #define EFX_XDP_HEADROOM 128
98 #define EFX_XDP_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
99
100 /* Forward declare Precision Time Protocol (PTP) support structure. */
101 struct efx_ptp_data;
102 struct hwtstamp_config;
103
104 struct efx_self_tests;
105
106 /**
107 * struct efx_buffer - A general-purpose DMA buffer
108 * @addr: host base address of the buffer
109 * @dma_addr: DMA base address of the buffer
110 * @len: Buffer length, in bytes
111 *
112 * The NIC uses these buffers for its interrupt status registers and
113 * MAC stats dumps.
114 */
115 struct efx_buffer {
116 void *addr;
117 dma_addr_t dma_addr;
118 unsigned int len;
119 };
120
121 /**
122 * struct efx_special_buffer - DMA buffer entered into buffer table
123 * @buf: Standard &struct efx_buffer
124 * @index: Buffer index within controller;s buffer table
125 * @entries: Number of buffer table entries
126 *
127 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
128 * Event and descriptor rings are addressed via one or more buffer
129 * table entries (and so can be physically non-contiguous, although we
130 * currently do not take advantage of that). On Falcon and Siena we
131 * have to take care of allocating and initialising the entries
132 * ourselves. On later hardware this is managed by the firmware and
133 * @index and @entries are left as 0.
134 */
135 struct efx_special_buffer {
136 struct efx_buffer buf;
137 unsigned int index;
138 unsigned int entries;
139 };
140
141 /**
142 * struct efx_tx_buffer - buffer state for a TX descriptor
143 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
144 * freed when descriptor completes
145 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
146 * member is the associated buffer to drop a page reference on.
147 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
148 * descriptor.
149 * @dma_addr: DMA address of the fragment.
150 * @flags: Flags for allocation and DMA mapping type
151 * @len: Length of this fragment.
152 * This field is zero when the queue slot is empty.
153 * @unmap_len: Length of this fragment to unmap
154 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
155 * Only valid if @unmap_len != 0.
156 */
157 struct efx_tx_buffer {
158 union {
159 const struct sk_buff *skb;
160 struct xdp_frame *xdpf;
161 };
162 union {
163 efx_qword_t option; /* EF10 */
164 dma_addr_t dma_addr;
165 };
166 unsigned short flags;
167 unsigned short len;
168 unsigned short unmap_len;
169 unsigned short dma_offset;
170 };
171 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
172 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
173 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
174 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
175 #define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */
176 #define EFX_TX_BUF_TSO_V3 0x40 /* empty buffer for a TSO_V3 descriptor */
177
178 /**
179 * struct efx_tx_queue - An Efx TX queue
180 *
181 * This is a ring buffer of TX fragments.
182 * Since the TX completion path always executes on the same
183 * CPU and the xmit path can operate on different CPUs,
184 * performance is increased by ensuring that the completion
185 * path and the xmit path operate on different cache lines.
186 * This is particularly important if the xmit path is always
187 * executing on one CPU which is different from the completion
188 * path. There is also a cache line for members which are
189 * read but not written on the fast path.
190 *
191 * @efx: The associated Efx NIC
192 * @queue: DMA queue number
193 * @label: Label for TX completion events.
194 * Is our index within @channel->tx_queue array.
195 * @tso_version: Version of TSO in use for this queue.
196 * @channel: The associated channel
197 * @core_txq: The networking core TX queue structure
198 * @buffer: The software buffer ring
199 * @cb_page: Array of pages of copy buffers. Carved up according to
200 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
201 * @txd: The hardware descriptor ring
202 * @ptr_mask: The size of the ring minus 1.
203 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
204 * Size of the region is efx_piobuf_size.
205 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
206 * @initialised: Has hardware queue been initialised?
207 * @timestamping: Is timestamping enabled for this channel?
208 * @xdp_tx: Is this an XDP tx queue?
209 * @handle_tso: TSO xmit preparation handler. Sets up the TSO metadata and
210 * may also map tx data, depending on the nature of the TSO implementation.
211 * @read_count: Current read pointer.
212 * This is the number of buffers that have been removed from both rings.
213 * @old_write_count: The value of @write_count when last checked.
214 * This is here for performance reasons. The xmit path will
215 * only get the up-to-date value of @write_count if this
216 * variable indicates that the queue is empty. This is to
217 * avoid cache-line ping-pong between the xmit path and the
218 * completion path.
219 * @merge_events: Number of TX merged completion events
220 * @completed_timestamp_major: Top part of the most recent tx timestamp.
221 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
222 * @insert_count: Current insert pointer
223 * This is the number of buffers that have been added to the
224 * software ring.
225 * @write_count: Current write pointer
226 * This is the number of buffers that have been added to the
227 * hardware ring.
228 * @packet_write_count: Completable write pointer
229 * This is the write pointer of the last packet written.
230 * Normally this will equal @write_count, but as option descriptors
231 * don't produce completion events, they won't update this.
232 * Filled in iff @efx->type->option_descriptors; only used for PIO.
233 * Thus, this is written and used on EF10, and neither on farch.
234 * @old_read_count: The value of read_count when last checked.
235 * This is here for performance reasons. The xmit path will
236 * only get the up-to-date value of read_count if this
237 * variable indicates that the queue is full. This is to
238 * avoid cache-line ping-pong between the xmit path and the
239 * completion path.
240 * @tso_bursts: Number of times TSO xmit invoked by kernel
241 * @tso_long_headers: Number of packets with headers too long for standard
242 * blocks
243 * @tso_packets: Number of packets via the TSO xmit path
244 * @tso_fallbacks: Number of times TSO fallback used
245 * @pushes: Number of times the TX push feature has been used
246 * @pio_packets: Number of times the TX PIO feature has been used
247 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
248 * @cb_packets: Number of times the TX copybreak feature has been used
249 * @notify_count: Count of notified descriptors to the NIC
250 * @empty_read_count: If the completion path has seen the queue as empty
251 * and the transmission path has not yet checked this, the value of
252 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
253 */
254 struct efx_tx_queue {
255 /* Members which don't change on the fast path */
256 struct efx_nic *efx ____cacheline_aligned_in_smp;
257 unsigned int queue;
258 unsigned int label;
259 unsigned int tso_version;
260 struct efx_channel *channel;
261 struct netdev_queue *core_txq;
262 struct efx_tx_buffer *buffer;
263 struct efx_buffer *cb_page;
264 struct efx_special_buffer txd;
265 unsigned int ptr_mask;
266 void __iomem *piobuf;
267 unsigned int piobuf_offset;
268 bool initialised;
269 bool timestamping;
270 bool xdp_tx;
271
272 /* Function pointers used in the fast path. */
273 int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
274
275 /* Members used mainly on the completion path */
276 unsigned int read_count ____cacheline_aligned_in_smp;
277 unsigned int old_write_count;
278 unsigned int merge_events;
279 unsigned int bytes_compl;
280 unsigned int pkts_compl;
281 u32 completed_timestamp_major;
282 u32 completed_timestamp_minor;
283
284 /* Members used only on the xmit path */
285 unsigned int insert_count ____cacheline_aligned_in_smp;
286 unsigned int write_count;
287 unsigned int packet_write_count;
288 unsigned int old_read_count;
289 unsigned int tso_bursts;
290 unsigned int tso_long_headers;
291 unsigned int tso_packets;
292 unsigned int tso_fallbacks;
293 unsigned int pushes;
294 unsigned int pio_packets;
295 bool xmit_more_available;
296 unsigned int cb_packets;
297 unsigned int notify_count;
298 /* Statistics to supplement MAC stats */
299 unsigned long tx_packets;
300
301 /* Members shared between paths and sometimes updated */
302 unsigned int empty_read_count ____cacheline_aligned_in_smp;
303 #define EFX_EMPTY_COUNT_VALID 0x80000000
304 atomic_t flush_outstanding;
305 };
306
307 #define EFX_TX_CB_ORDER 7
308 #define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
309
310 /**
311 * struct efx_rx_buffer - An Efx RX data buffer
312 * @dma_addr: DMA base address of the buffer
313 * @page: The associated page buffer.
314 * Will be %NULL if the buffer slot is currently free.
315 * @page_offset: If pending: offset in @page of DMA base address.
316 * If completed: offset in @page of Ethernet header.
317 * @len: If pending: length for DMA descriptor.
318 * If completed: received length, excluding hash prefix.
319 * @flags: Flags for buffer and packet state. These are only set on the
320 * first buffer of a scattered packet.
321 */
322 struct efx_rx_buffer {
323 dma_addr_t dma_addr;
324 struct page *page;
325 u16 page_offset;
326 u16 len;
327 u16 flags;
328 };
329 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001
330 #define EFX_RX_PKT_CSUMMED 0x0002
331 #define EFX_RX_PKT_DISCARD 0x0004
332 #define EFX_RX_PKT_TCP 0x0040
333 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
334 #define EFX_RX_PKT_CSUM_LEVEL 0x0200
335
336 /**
337 * struct efx_rx_page_state - Page-based rx buffer state
338 *
339 * Inserted at the start of every page allocated for receive buffers.
340 * Used to facilitate sharing dma mappings between recycled rx buffers
341 * and those passed up to the kernel.
342 *
343 * @dma_addr: The dma address of this page.
344 */
345 struct efx_rx_page_state {
346 dma_addr_t dma_addr;
347
348 unsigned int __pad[] ____cacheline_aligned;
349 };
350
351 /**
352 * struct efx_rx_queue - An Efx RX queue
353 * @efx: The associated Efx NIC
354 * @core_index: Index of network core RX queue. Will be >= 0 iff this
355 * is associated with a real RX queue.
356 * @buffer: The software buffer ring
357 * @rxd: The hardware descriptor ring
358 * @ptr_mask: The size of the ring minus 1.
359 * @refill_enabled: Enable refill whenever fill level is low
360 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
361 * @rxq_flush_pending.
362 * @added_count: Number of buffers added to the receive queue.
363 * @notified_count: Number of buffers given to NIC (<= @added_count).
364 * @removed_count: Number of buffers removed from the receive queue.
365 * @scatter_n: Used by NIC specific receive code.
366 * @scatter_len: Used by NIC specific receive code.
367 * @page_ring: The ring to store DMA mapped pages for reuse.
368 * @page_add: Counter to calculate the write pointer for the recycle ring.
369 * @page_remove: Counter to calculate the read pointer for the recycle ring.
370 * @page_recycle_count: The number of pages that have been recycled.
371 * @page_recycle_failed: The number of pages that couldn't be recycled because
372 * the kernel still held a reference to them.
373 * @page_recycle_full: The number of pages that were released because the
374 * recycle ring was full.
375 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
376 * @max_fill: RX descriptor maximum fill level (<= ring size)
377 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
378 * (<= @max_fill)
379 * @min_fill: RX descriptor minimum non-zero fill level.
380 * This records the minimum fill level observed when a ring
381 * refill was triggered.
382 * @recycle_count: RX buffer recycle counter.
383 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
384 * @xdp_rxq_info: XDP specific RX queue information.
385 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
386 */
387 struct efx_rx_queue {
388 struct efx_nic *efx;
389 int core_index;
390 struct efx_rx_buffer *buffer;
391 struct efx_special_buffer rxd;
392 unsigned int ptr_mask;
393 bool refill_enabled;
394 bool flush_pending;
395
396 unsigned int added_count;
397 unsigned int notified_count;
398 unsigned int removed_count;
399 unsigned int scatter_n;
400 unsigned int scatter_len;
401 struct page **page_ring;
402 unsigned int page_add;
403 unsigned int page_remove;
404 unsigned int page_recycle_count;
405 unsigned int page_recycle_failed;
406 unsigned int page_recycle_full;
407 unsigned int page_ptr_mask;
408 unsigned int max_fill;
409 unsigned int fast_fill_trigger;
410 unsigned int min_fill;
411 unsigned int min_overfill;
412 unsigned int recycle_count;
413 struct timer_list slow_fill;
414 unsigned int slow_fill_count;
415 /* Statistics to supplement MAC stats */
416 unsigned long rx_packets;
417 struct xdp_rxq_info xdp_rxq_info;
418 bool xdp_rxq_info_valid;
419 };
420
421 enum efx_sync_events_state {
422 SYNC_EVENTS_DISABLED = 0,
423 SYNC_EVENTS_QUIESCENT,
424 SYNC_EVENTS_REQUESTED,
425 SYNC_EVENTS_VALID,
426 };
427
428 /**
429 * struct efx_channel - An Efx channel
430 *
431 * A channel comprises an event queue, at least one TX queue, at least
432 * one RX queue, and an associated tasklet for processing the event
433 * queue.
434 *
435 * @efx: Associated Efx NIC
436 * @channel: Channel instance number
437 * @type: Channel type definition
438 * @eventq_init: Event queue initialised flag
439 * @enabled: Channel enabled indicator
440 * @irq: IRQ number (MSI and MSI-X only)
441 * @irq_moderation_us: IRQ moderation value (in microseconds)
442 * @napi_dev: Net device used with NAPI
443 * @napi_str: NAPI control structure
444 * @state: state for NAPI vs busy polling
445 * @state_lock: lock protecting @state
446 * @eventq: Event queue buffer
447 * @eventq_mask: Event queue pointer mask
448 * @eventq_read_ptr: Event queue read pointer
449 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
450 * @irq_count: Number of IRQs since last adaptive moderation decision
451 * @irq_mod_score: IRQ moderation score
452 * @rfs_filter_count: number of accelerated RFS filters currently in place;
453 * equals the count of @rps_flow_id slots filled
454 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
455 * were checked for expiry
456 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
457 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
458 * @n_rfs_failed; number of failed accelerated RFS filter insertions
459 * @filter_work: Work item for efx_filter_rfs_expire()
460 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
461 * indexed by filter ID
462 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
463 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
464 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
465 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
466 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
467 * @n_rx_overlength: Count of RX_OVERLENGTH errors
468 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
469 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
470 * lack of descriptors
471 * @n_rx_merge_events: Number of RX merged completion events
472 * @n_rx_merge_packets: Number of RX packets completed by merged events
473 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
474 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
475 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
476 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
477 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
478 * __efx_rx_packet(), or zero if there is none
479 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
480 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0
481 * @rx_list: list of SKBs from current RX, awaiting processing
482 * @rx_queue: RX queue for this channel
483 * @tx_queue: TX queues for this channel
484 * @sync_events_state: Current state of sync events on this channel
485 * @sync_timestamp_major: Major part of the last ptp sync event
486 * @sync_timestamp_minor: Minor part of the last ptp sync event
487 */
488 struct efx_channel {
489 struct efx_nic *efx;
490 int channel;
491 const struct efx_channel_type *type;
492 bool eventq_init;
493 bool enabled;
494 int irq;
495 unsigned int irq_moderation_us;
496 struct net_device *napi_dev;
497 struct napi_struct napi_str;
498 #ifdef CONFIG_NET_RX_BUSY_POLL
499 unsigned long busy_poll_state;
500 #endif
501 struct efx_special_buffer eventq;
502 unsigned int eventq_mask;
503 unsigned int eventq_read_ptr;
504 int event_test_cpu;
505
506 unsigned int irq_count;
507 unsigned int irq_mod_score;
508 #ifdef CONFIG_RFS_ACCEL
509 unsigned int rfs_filter_count;
510 unsigned int rfs_last_expiry;
511 unsigned int rfs_expire_index;
512 unsigned int n_rfs_succeeded;
513 unsigned int n_rfs_failed;
514 struct delayed_work filter_work;
515 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
516 u32 *rps_flow_id;
517 #endif
518
519 unsigned int n_rx_tobe_disc;
520 unsigned int n_rx_ip_hdr_chksum_err;
521 unsigned int n_rx_tcp_udp_chksum_err;
522 unsigned int n_rx_outer_ip_hdr_chksum_err;
523 unsigned int n_rx_outer_tcp_udp_chksum_err;
524 unsigned int n_rx_inner_ip_hdr_chksum_err;
525 unsigned int n_rx_inner_tcp_udp_chksum_err;
526 unsigned int n_rx_eth_crc_err;
527 unsigned int n_rx_mcast_mismatch;
528 unsigned int n_rx_frm_trunc;
529 unsigned int n_rx_overlength;
530 unsigned int n_skbuff_leaks;
531 unsigned int n_rx_nodesc_trunc;
532 unsigned int n_rx_merge_events;
533 unsigned int n_rx_merge_packets;
534 unsigned int n_rx_xdp_drops;
535 unsigned int n_rx_xdp_bad_drops;
536 unsigned int n_rx_xdp_tx;
537 unsigned int n_rx_xdp_redirect;
538
539 unsigned int rx_pkt_n_frags;
540 unsigned int rx_pkt_index;
541
542 struct list_head *rx_list;
543
544 struct efx_rx_queue rx_queue;
545 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
546
547 enum efx_sync_events_state sync_events_state;
548 u32 sync_timestamp_major;
549 u32 sync_timestamp_minor;
550 };
551
552 /**
553 * struct efx_msi_context - Context for each MSI
554 * @efx: The associated NIC
555 * @index: Index of the channel/IRQ
556 * @name: Name of the channel/IRQ
557 *
558 * Unlike &struct efx_channel, this is never reallocated and is always
559 * safe for the IRQ handler to access.
560 */
561 struct efx_msi_context {
562 struct efx_nic *efx;
563 unsigned int index;
564 char name[IFNAMSIZ + 6];
565 };
566
567 /**
568 * struct efx_channel_type - distinguishes traffic and extra channels
569 * @handle_no_channel: Handle failure to allocate an extra channel
570 * @pre_probe: Set up extra state prior to initialisation
571 * @post_remove: Tear down extra state after finalisation, if allocated.
572 * May be called on channels that have not been probed.
573 * @get_name: Generate the channel's name (used for its IRQ handler)
574 * @copy: Copy the channel state prior to reallocation. May be %NULL if
575 * reallocation is not supported.
576 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
577 * @want_txqs: Determine whether this channel should have TX queues
578 * created. If %NULL, TX queues are not created.
579 * @keep_eventq: Flag for whether event queue should be kept initialised
580 * while the device is stopped
581 * @want_pio: Flag for whether PIO buffers should be linked to this
582 * channel's TX queues.
583 */
584 struct efx_channel_type {
585 void (*handle_no_channel)(struct efx_nic *);
586 int (*pre_probe)(struct efx_channel *);
587 void (*post_remove)(struct efx_channel *);
588 void (*get_name)(struct efx_channel *, char *buf, size_t len);
589 struct efx_channel *(*copy)(const struct efx_channel *);
590 bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
591 bool (*want_txqs)(struct efx_channel *);
592 bool keep_eventq;
593 bool want_pio;
594 };
595
596 enum efx_led_mode {
597 EFX_LED_OFF = 0,
598 EFX_LED_ON = 1,
599 EFX_LED_DEFAULT = 2
600 };
601
602 #define STRING_TABLE_LOOKUP(val, member) \
603 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
604
605 extern const char *const efx_loopback_mode_names[];
606 extern const unsigned int efx_loopback_mode_max;
607 #define LOOPBACK_MODE(efx) \
608 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
609
610 extern const char *const efx_reset_type_names[];
611 extern const unsigned int efx_reset_type_max;
612 #define RESET_TYPE(type) \
613 STRING_TABLE_LOOKUP(type, efx_reset_type)
614
615 enum efx_int_mode {
616 /* Be careful if altering to correct macro below */
617 EFX_INT_MODE_MSIX = 0,
618 EFX_INT_MODE_MSI = 1,
619 EFX_INT_MODE_LEGACY = 2,
620 EFX_INT_MODE_MAX /* Insert any new items before this */
621 };
622 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
623
624 enum nic_state {
625 STATE_UNINIT = 0, /* device being probed/removed or is frozen */
626 STATE_READY = 1, /* hardware ready and netdev registered */
627 STATE_DISABLED = 2, /* device disabled due to hardware errors */
628 STATE_RECOVERY = 3, /* device recovering from PCI error */
629 };
630
631 /* Forward declaration */
632 struct efx_nic;
633
634 /* Pseudo bit-mask flow control field */
635 #define EFX_FC_RX FLOW_CTRL_RX
636 #define EFX_FC_TX FLOW_CTRL_TX
637 #define EFX_FC_AUTO 4
638
639 /**
640 * struct efx_link_state - Current state of the link
641 * @up: Link is up
642 * @fd: Link is full-duplex
643 * @fc: Actual flow control flags
644 * @speed: Link speed (Mbps)
645 */
646 struct efx_link_state {
647 bool up;
648 bool fd;
649 u8 fc;
650 unsigned int speed;
651 };
652
653 static inline bool efx_link_state_equal(const struct efx_link_state *left,
654 const struct efx_link_state *right)
655 {
656 return left->up == right->up && left->fd == right->fd &&
657 left->fc == right->fc && left->speed == right->speed;
658 }
659
660 /**
661 * struct efx_phy_operations - Efx PHY operations table
662 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
663 * efx->loopback_modes.
664 * @init: Initialise PHY
665 * @fini: Shut down PHY
666 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
667 * @poll: Update @link_state and report whether it changed.
668 * Serialised by the mac_lock.
669 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
670 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
671 * @get_fecparam: Get Forward Error Correction settings. Serialised by mac_lock.
672 * @set_fecparam: Set Forward Error Correction settings. Serialised by mac_lock.
673 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
674 * (only needed where AN bit is set in mmds)
675 * @test_alive: Test that PHY is 'alive' (online)
676 * @test_name: Get the name of a PHY-specific test/result
677 * @run_tests: Run tests and record results as appropriate (offline).
678 * Flags are the ethtool tests flags.
679 */
680 struct efx_phy_operations {
681 int (*probe) (struct efx_nic *efx);
682 int (*init) (struct efx_nic *efx);
683 void (*fini) (struct efx_nic *efx);
684 void (*remove) (struct efx_nic *efx);
685 int (*reconfigure) (struct efx_nic *efx);
686 bool (*poll) (struct efx_nic *efx);
687 void (*get_link_ksettings)(struct efx_nic *efx,
688 struct ethtool_link_ksettings *cmd);
689 int (*set_link_ksettings)(struct efx_nic *efx,
690 const struct ethtool_link_ksettings *cmd);
691 int (*get_fecparam)(struct efx_nic *efx, struct ethtool_fecparam *fec);
692 int (*set_fecparam)(struct efx_nic *efx,
693 const struct ethtool_fecparam *fec);
694 void (*set_npage_adv) (struct efx_nic *efx, u32);
695 int (*test_alive) (struct efx_nic *efx);
696 const char *(*test_name) (struct efx_nic *efx, unsigned int index);
697 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
698 int (*get_module_eeprom) (struct efx_nic *efx,
699 struct ethtool_eeprom *ee,
700 u8 *data);
701 int (*get_module_info) (struct efx_nic *efx,
702 struct ethtool_modinfo *modinfo);
703 };
704
705 /**
706 * enum efx_phy_mode - PHY operating mode flags
707 * @PHY_MODE_NORMAL: on and should pass traffic
708 * @PHY_MODE_TX_DISABLED: on with TX disabled
709 * @PHY_MODE_LOW_POWER: set to low power through MDIO
710 * @PHY_MODE_OFF: switched off through external control
711 * @PHY_MODE_SPECIAL: on but will not pass traffic
712 */
713 enum efx_phy_mode {
714 PHY_MODE_NORMAL = 0,
715 PHY_MODE_TX_DISABLED = 1,
716 PHY_MODE_LOW_POWER = 2,
717 PHY_MODE_OFF = 4,
718 PHY_MODE_SPECIAL = 8,
719 };
720
721 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
722 {
723 return !!(mode & ~PHY_MODE_TX_DISABLED);
724 }
725
726 /**
727 * struct efx_hw_stat_desc - Description of a hardware statistic
728 * @name: Name of the statistic as visible through ethtool, or %NULL if
729 * it should not be exposed
730 * @dma_width: Width in bits (0 for non-DMA statistics)
731 * @offset: Offset within stats (ignored for non-DMA statistics)
732 */
733 struct efx_hw_stat_desc {
734 const char *name;
735 u16 dma_width;
736 u16 offset;
737 };
738
739 /* Number of bits used in a multicast filter hash address */
740 #define EFX_MCAST_HASH_BITS 8
741
742 /* Number of (single-bit) entries in a multicast filter hash */
743 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
744
745 /* An Efx multicast filter hash */
746 union efx_multicast_hash {
747 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
748 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
749 };
750
751 struct vfdi_status;
752
753 /* The reserved RSS context value */
754 #define EFX_MCDI_RSS_CONTEXT_INVALID 0xffffffff
755 /**
756 * struct efx_rss_context - A user-defined RSS context for filtering
757 * @list: node of linked list on which this struct is stored
758 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
759 * %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
760 * For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
761 * @user_id: the rss_context ID exposed to userspace over ethtool.
762 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
763 * @rx_hash_key: Toeplitz hash key for this RSS context
764 * @indir_table: Indirection table for this RSS context
765 */
766 struct efx_rss_context {
767 struct list_head list;
768 u32 context_id;
769 u32 user_id;
770 bool rx_hash_udp_4tuple;
771 u8 rx_hash_key[40];
772 u32 rx_indir_table[128];
773 };
774
775 #ifdef CONFIG_RFS_ACCEL
776 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
777 * is used to test if filter does or will exist.
778 */
779 #define EFX_ARFS_FILTER_ID_PENDING -1
780 #define EFX_ARFS_FILTER_ID_ERROR -2
781 #define EFX_ARFS_FILTER_ID_REMOVING -3
782 /**
783 * struct efx_arfs_rule - record of an ARFS filter and its IDs
784 * @node: linkage into hash table
785 * @spec: details of the filter (used as key for hash table). Use efx->type to
786 * determine which member to use.
787 * @rxq_index: channel to which the filter will steer traffic.
788 * @arfs_id: filter ID which was returned to ARFS
789 * @filter_id: index in software filter table. May be
790 * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
791 * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
792 * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
793 */
794 struct efx_arfs_rule {
795 struct hlist_node node;
796 struct efx_filter_spec spec;
797 u16 rxq_index;
798 u16 arfs_id;
799 s32 filter_id;
800 };
801
802 /* Size chosen so that the table is one page (4kB) */
803 #define EFX_ARFS_HASH_TABLE_SIZE 512
804
805 /**
806 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
807 * @net_dev: Reference to the netdevice
808 * @spec: The filter to insert
809 * @work: Workitem for this request
810 * @rxq_index: Identifies the channel for which this request was made
811 * @flow_id: Identifies the kernel-side flow for which this request was made
812 */
813 struct efx_async_filter_insertion {
814 struct net_device *net_dev;
815 struct efx_filter_spec spec;
816 struct work_struct work;
817 u16 rxq_index;
818 u32 flow_id;
819 };
820
821 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
822 #define EFX_RPS_MAX_IN_FLIGHT 8
823 #endif /* CONFIG_RFS_ACCEL */
824
825 /**
826 * struct efx_nic - an Efx NIC
827 * @name: Device name (net device name or bus id before net device registered)
828 * @pci_dev: The PCI device
829 * @node: List node for maintaning primary/secondary function lists
830 * @primary: &struct efx_nic instance for the primary function of this
831 * controller. May be the same structure, and may be %NULL if no
832 * primary function is bound. Serialised by rtnl_lock.
833 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
834 * functions of the controller, if this is for the primary function.
835 * Serialised by rtnl_lock.
836 * @type: Controller type attributes
837 * @legacy_irq: IRQ number
838 * @workqueue: Workqueue for port reconfigures and the HW monitor.
839 * Work items do not hold and must not acquire RTNL.
840 * @workqueue_name: Name of workqueue
841 * @reset_work: Scheduled reset workitem
842 * @membase_phys: Memory BAR value as physical address
843 * @membase: Memory BAR value
844 * @vi_stride: step between per-VI registers / memory regions
845 * @interrupt_mode: Interrupt mode
846 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
847 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
848 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
849 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
850 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
851 * @msg_enable: Log message enable flags
852 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
853 * @reset_pending: Bitmask for pending resets
854 * @tx_queue: TX DMA queues
855 * @rx_queue: RX DMA queues
856 * @channel: Channels
857 * @msi_context: Context for each MSI
858 * @extra_channel_types: Types of extra (non-traffic) channels that
859 * should be allocated for this NIC
860 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
861 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
862 * @rxq_entries: Size of receive queues requested by user.
863 * @txq_entries: Size of transmit queues requested by user.
864 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
865 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
866 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
867 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
868 * @sram_lim_qw: Qword address limit of SRAM
869 * @next_buffer_table: First available buffer table id
870 * @n_channels: Number of channels in use
871 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
872 * @n_tx_channels: Number of channels used for TX
873 * @n_extra_tx_channels: Number of extra channels with TX queues
874 * @tx_queues_per_channel: number of TX queues probed on each channel
875 * @n_xdp_channels: Number of channels used for XDP TX
876 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
877 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
878 * @rx_ip_align: RX DMA address offset to have IP header aligned in
879 * in accordance with NET_IP_ALIGN
880 * @rx_dma_len: Current maximum RX DMA length
881 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
882 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
883 * for use in sk_buff::truesize
884 * @rx_prefix_size: Size of RX prefix before packet data
885 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
886 * (valid only if @rx_prefix_size != 0; always negative)
887 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
888 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
889 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
890 * (valid only if channel->sync_timestamps_enabled; always negative)
891 * @rx_scatter: Scatter mode enabled for receives
892 * @rss_context: Main RSS context. Its @list member is the head of the list of
893 * RSS contexts created by user requests
894 * @rss_lock: Protects custom RSS context software state in @rss_context.list
895 * @vport_id: The function's vport ID, only relevant for PFs
896 * @int_error_count: Number of internal errors seen recently
897 * @int_error_expire: Time at which error count will be expired
898 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
899 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
900 * acknowledge but do nothing else.
901 * @irq_status: Interrupt status buffer
902 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
903 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
904 * @selftest_work: Work item for asynchronous self-test
905 * @mtd_list: List of MTDs attached to the NIC
906 * @nic_data: Hardware dependent state
907 * @mcdi: Management-Controller-to-Driver Interface state
908 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
909 * efx_monitor() and efx_reconfigure_port()
910 * @port_enabled: Port enabled indicator.
911 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
912 * efx_mac_work() with kernel interfaces. Safe to read under any
913 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
914 * be held to modify it.
915 * @port_initialized: Port initialized?
916 * @net_dev: Operating system network device. Consider holding the rtnl lock
917 * @fixed_features: Features which cannot be turned off
918 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
919 * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
920 * @stats_buffer: DMA buffer for statistics
921 * @phy_type: PHY type
922 * @phy_op: PHY interface
923 * @phy_data: PHY private data (including PHY-specific stats)
924 * @mdio: PHY MDIO interface
925 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
926 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
927 * @link_advertising: Autonegotiation advertising flags
928 * @fec_config: Forward Error Correction configuration flags. For bit positions
929 * see &enum ethtool_fec_config_bits.
930 * @link_state: Current state of the link
931 * @n_link_state_changes: Number of times the link has changed state
932 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
933 * Protected by @mac_lock.
934 * @multicast_hash: Multicast hash table for Falcon-arch.
935 * Protected by @mac_lock.
936 * @wanted_fc: Wanted flow control flags
937 * @fc_disable: When non-zero flow control is disabled. Typically used to
938 * ensure that network back pressure doesn't delay dma queue flushes.
939 * Serialised by the rtnl lock.
940 * @mac_work: Work item for changing MAC promiscuity and multicast hash
941 * @loopback_mode: Loopback status
942 * @loopback_modes: Supported loopback mode bitmask
943 * @loopback_selftest: Offline self-test private state
944 * @xdp_prog: Current XDP programme for this interface
945 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
946 * @filter_state: Architecture-dependent filter table state
947 * @rps_mutex: Protects RPS state of all channels
948 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
949 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
950 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
951 * @rps_next_id).
952 * @rps_hash_table: Mapping between ARFS filters and their various IDs
953 * @rps_next_id: next arfs_id for an ARFS filter
954 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
955 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
956 * Decremented when the efx_flush_rx_queue() is called.
957 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
958 * completed (either success or failure). Not used when MCDI is used to
959 * flush receive queues.
960 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
961 * @vf_count: Number of VFs intended to be enabled.
962 * @vf_init_count: Number of VFs that have been fully initialised.
963 * @vi_scale: log2 number of vnics per VF.
964 * @ptp_data: PTP state data
965 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
966 * @vpd_sn: Serial number read from VPD
967 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
968 * xdp_rxq_info structures?
969 * @netdev_notifier: Netdevice notifier.
970 * @mem_bar: The BAR that is mapped into membase.
971 * @reg_base: Offset from the start of the bar to the function control window.
972 * @monitor_work: Hardware monitor workitem
973 * @biu_lock: BIU (bus interface unit) lock
974 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
975 * field is used by efx_test_interrupts() to verify that an
976 * interrupt has occurred.
977 * @stats_lock: Statistics update lock. Must be held when calling
978 * efx_nic_type::{update,start,stop}_stats.
979 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
980 *
981 * This is stored in the private area of the &struct net_device.
982 */
983 struct efx_nic {
984 /* The following fields should be written very rarely */
985
986 char name[IFNAMSIZ];
987 struct list_head node;
988 struct efx_nic *primary;
989 struct list_head secondary_list;
990 struct pci_dev *pci_dev;
991 unsigned int port_num;
992 const struct efx_nic_type *type;
993 int legacy_irq;
994 bool eeh_disabled_legacy_irq;
995 struct workqueue_struct *workqueue;
996 char workqueue_name[16];
997 struct work_struct reset_work;
998 resource_size_t membase_phys;
999 void __iomem *membase;
1000
1001 unsigned int vi_stride;
1002
1003 enum efx_int_mode interrupt_mode;
1004 unsigned int timer_quantum_ns;
1005 unsigned int timer_max_ns;
1006 bool irq_rx_adaptive;
1007 unsigned int irq_mod_step_us;
1008 unsigned int irq_rx_moderation_us;
1009 u32 msg_enable;
1010
1011 enum nic_state state;
1012 unsigned long reset_pending;
1013
1014 struct efx_channel *channel[EFX_MAX_CHANNELS];
1015 struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
1016 const struct efx_channel_type *
1017 extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
1018
1019 unsigned int xdp_tx_queue_count;
1020 struct efx_tx_queue **xdp_tx_queues;
1021
1022 unsigned rxq_entries;
1023 unsigned txq_entries;
1024 unsigned int txq_stop_thresh;
1025 unsigned int txq_wake_thresh;
1026
1027 unsigned tx_dc_base;
1028 unsigned rx_dc_base;
1029 unsigned sram_lim_qw;
1030 unsigned next_buffer_table;
1031
1032 unsigned int max_channels;
1033 unsigned int max_vis;
1034 unsigned int max_tx_channels;
1035 unsigned n_channels;
1036 unsigned n_rx_channels;
1037 unsigned rss_spread;
1038 unsigned tx_channel_offset;
1039 unsigned n_tx_channels;
1040 unsigned n_extra_tx_channels;
1041 unsigned int tx_queues_per_channel;
1042 unsigned int n_xdp_channels;
1043 unsigned int xdp_channel_offset;
1044 unsigned int xdp_tx_per_channel;
1045 unsigned int rx_ip_align;
1046 unsigned int rx_dma_len;
1047 unsigned int rx_buffer_order;
1048 unsigned int rx_buffer_truesize;
1049 unsigned int rx_page_buf_step;
1050 unsigned int rx_bufs_per_page;
1051 unsigned int rx_pages_per_batch;
1052 unsigned int rx_prefix_size;
1053 int rx_packet_hash_offset;
1054 int rx_packet_len_offset;
1055 int rx_packet_ts_offset;
1056 bool rx_scatter;
1057 struct efx_rss_context rss_context;
1058 struct mutex rss_lock;
1059 u32 vport_id;
1060
1061 unsigned int_error_count;
1062 unsigned long int_error_expire;
1063
1064 bool must_realloc_vis;
1065 bool irq_soft_enabled;
1066 struct efx_buffer irq_status;
1067 unsigned irq_zero_count;
1068 unsigned irq_level;
1069 struct delayed_work selftest_work;
1070
1071 #ifdef CONFIG_SFC_MTD
1072 struct list_head mtd_list;
1073 #endif
1074
1075 void *nic_data;
1076 struct efx_mcdi_data *mcdi;
1077
1078 struct mutex mac_lock;
1079 struct work_struct mac_work;
1080 bool port_enabled;
1081
1082 bool mc_bist_for_other_fn;
1083 bool port_initialized;
1084 struct net_device *net_dev;
1085
1086 netdev_features_t fixed_features;
1087
1088 u16 num_mac_stats;
1089 struct efx_buffer stats_buffer;
1090 u64 rx_nodesc_drops_total;
1091 u64 rx_nodesc_drops_while_down;
1092 bool rx_nodesc_drops_prev_state;
1093
1094 unsigned int phy_type;
1095 const struct efx_phy_operations *phy_op;
1096 void *phy_data;
1097 struct mdio_if_info mdio;
1098 unsigned int mdio_bus;
1099 enum efx_phy_mode phy_mode;
1100
1101 __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1102 u32 fec_config;
1103 struct efx_link_state link_state;
1104 unsigned int n_link_state_changes;
1105
1106 bool unicast_filter;
1107 union efx_multicast_hash multicast_hash;
1108 u8 wanted_fc;
1109 unsigned fc_disable;
1110
1111 atomic_t rx_reset;
1112 enum efx_loopback_mode loopback_mode;
1113 u64 loopback_modes;
1114
1115 void *loopback_selftest;
1116 /* We access loopback_selftest immediately before running XDP,
1117 * so we want them next to each other.
1118 */
1119 struct bpf_prog __rcu *xdp_prog;
1120
1121 struct rw_semaphore filter_sem;
1122 void *filter_state;
1123 #ifdef CONFIG_RFS_ACCEL
1124 struct mutex rps_mutex;
1125 unsigned long rps_slot_map;
1126 struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1127 spinlock_t rps_hash_lock;
1128 struct hlist_head *rps_hash_table;
1129 u32 rps_next_id;
1130 #endif
1131
1132 atomic_t active_queues;
1133 atomic_t rxq_flush_pending;
1134 atomic_t rxq_flush_outstanding;
1135 wait_queue_head_t flush_wq;
1136
1137 #ifdef CONFIG_SFC_SRIOV
1138 unsigned vf_count;
1139 unsigned vf_init_count;
1140 unsigned vi_scale;
1141 #endif
1142
1143 struct efx_ptp_data *ptp_data;
1144 bool ptp_warned;
1145
1146 char *vpd_sn;
1147 bool xdp_rxq_info_failed;
1148
1149 struct notifier_block netdev_notifier;
1150
1151 unsigned int mem_bar;
1152 u32 reg_base;
1153
1154 /* The following fields may be written more often */
1155
1156 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1157 spinlock_t biu_lock;
1158 int last_irq_cpu;
1159 spinlock_t stats_lock;
1160 atomic_t n_rx_noskb_drops;
1161 };
1162
1163 static inline int efx_dev_registered(struct efx_nic *efx)
1164 {
1165 return efx->net_dev->reg_state == NETREG_REGISTERED;
1166 }
1167
1168 static inline unsigned int efx_port_num(struct efx_nic *efx)
1169 {
1170 return efx->port_num;
1171 }
1172
1173 struct efx_mtd_partition {
1174 struct list_head node;
1175 struct mtd_info mtd;
1176 const char *dev_type_name;
1177 const char *type_name;
1178 char name[IFNAMSIZ + 20];
1179 };
1180
1181 struct efx_udp_tunnel {
1182 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff
1183 u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1184 __be16 port;
1185 };
1186
1187 /**
1188 * struct efx_nic_type - Efx device type definition
1189 * @mem_bar: Get the memory BAR
1190 * @mem_map_size: Get memory BAR mapped size
1191 * @probe: Probe the controller
1192 * @remove: Free resources allocated by probe()
1193 * @init: Initialise the controller
1194 * @dimension_resources: Dimension controller resources (buffer table,
1195 * and VIs once the available interrupt resources are clear)
1196 * @fini: Shut down the controller
1197 * @monitor: Periodic function for polling link state and hardware monitor
1198 * @map_reset_reason: Map ethtool reset reason to a reset method
1199 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1200 * @reset: Reset the controller hardware and possibly the PHY. This will
1201 * be called while the controller is uninitialised.
1202 * @probe_port: Probe the MAC and PHY
1203 * @remove_port: Free resources allocated by probe_port()
1204 * @handle_global_event: Handle a "global" event (may be %NULL)
1205 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1206 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1207 * (for Falcon architecture)
1208 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1209 * architecture)
1210 * @prepare_flr: Prepare for an FLR
1211 * @finish_flr: Clean up after an FLR
1212 * @describe_stats: Describe statistics for ethtool
1213 * @update_stats: Update statistics not provided by event handling.
1214 * Either argument may be %NULL.
1215 * @start_stats: Start the regular fetching of statistics
1216 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1217 * @stop_stats: Stop the regular fetching of statistics
1218 * @set_id_led: Set state of identifying LED or revert to automatic function
1219 * @push_irq_moderation: Apply interrupt moderation value
1220 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1221 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1222 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1223 * to the hardware. Serialised by the mac_lock.
1224 * @check_mac_fault: Check MAC fault state. True if fault present.
1225 * @get_wol: Get WoL configuration from driver state
1226 * @set_wol: Push WoL configuration to the NIC
1227 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1228 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
1229 * expected to reset the NIC.
1230 * @test_nvram: Test validity of NVRAM contents
1231 * @mcdi_request: Send an MCDI request with the given header and SDU.
1232 * The SDU length may be any value from 0 up to the protocol-
1233 * defined maximum, but its buffer will be padded to a multiple
1234 * of 4 bytes.
1235 * @mcdi_poll_response: Test whether an MCDI response is available.
1236 * @mcdi_read_response: Read the MCDI response PDU. The offset will
1237 * be a multiple of 4. The length may not be, but the buffer
1238 * will be padded so it is safe to round up.
1239 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
1240 * return an appropriate error code for aborting any current
1241 * request; otherwise return 0.
1242 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
1243 * be separately enabled after this.
1244 * @irq_test_generate: Generate a test IRQ
1245 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
1246 * queue must be separately disabled before this.
1247 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
1248 * a pointer to the &struct efx_msi_context for the channel.
1249 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
1250 * is a pointer to the &struct efx_nic.
1251 * @tx_probe: Allocate resources for TX queue
1252 * @tx_init: Initialise TX queue on the NIC
1253 * @tx_remove: Free resources for TX queue
1254 * @tx_write: Write TX descriptors and doorbell
1255 * @tx_enqueue: Add an SKB to TX queue
1256 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1257 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1258 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1259 * user RSS context to the NIC
1260 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1261 * RSS context back from the NIC
1262 * @rx_probe: Allocate resources for RX queue
1263 * @rx_init: Initialise RX queue on the NIC
1264 * @rx_remove: Free resources for RX queue
1265 * @rx_write: Write RX descriptors and doorbell
1266 * @rx_defer_refill: Generate a refill reminder event
1267 * @rx_packet: Receive the queued RX buffer on a channel
1268 * @ev_probe: Allocate resources for event queue
1269 * @ev_init: Initialise event queue on the NIC
1270 * @ev_fini: Deinitialise event queue on the NIC
1271 * @ev_remove: Free resources for event queue
1272 * @ev_process: Process events for a queue, up to the given NAPI quota
1273 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1274 * @ev_test_generate: Generate a test event
1275 * @filter_table_probe: Probe filter capabilities and set up filter software state
1276 * @filter_table_restore: Restore filters removed from hardware
1277 * @filter_table_remove: Remove filters from hardware and tear down software state
1278 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1279 * @filter_insert: add or replace a filter
1280 * @filter_remove_safe: remove a filter by ID, carefully
1281 * @filter_get_safe: retrieve a filter by ID, carefully
1282 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1283 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1284 * @filter_count_rx_used: Get the number of filters in use at a given priority
1285 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1286 * @filter_get_rx_ids: Get list of RX filters at a given priority
1287 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1288 * This must check whether the specified table entry is used by RFS
1289 * and that rps_may_expire_flow() returns true for it.
1290 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1291 * using efx_mtd_add()
1292 * @mtd_rename: Set an MTD partition name using the net device name
1293 * @mtd_read: Read from an MTD partition
1294 * @mtd_erase: Erase part of an MTD partition
1295 * @mtd_write: Write to an MTD partition
1296 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1297 * also notifies the driver that a writer has finished using this
1298 * partition.
1299 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1300 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1301 * timestamping, possibly only temporarily for the purposes of a reset.
1302 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags
1303 * and tx_type will already have been validated but this operation
1304 * must validate and update rx_filter.
1305 * @get_phys_port_id: Get the underlying physical port id.
1306 * @set_mac_address: Set the MAC address of the device
1307 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1308 * If %NULL, then device does not support any TSO version.
1309 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1310 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1311 * @print_additional_fwver: Dump NIC-specific additional FW version info
1312 * @sensor_event: Handle a sensor event from MCDI
1313 * @revision: Hardware architecture revision
1314 * @txd_ptr_tbl_base: TX descriptor ring base address
1315 * @rxd_ptr_tbl_base: RX descriptor ring base address
1316 * @buf_tbl_base: Buffer table base address
1317 * @evq_ptr_tbl_base: Event queue pointer table base address
1318 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1319 * @max_dma_mask: Maximum possible DMA mask
1320 * @rx_prefix_size: Size of RX prefix before packet data
1321 * @rx_hash_offset: Offset of RX flow hash within prefix
1322 * @rx_ts_offset: Offset of timestamp within prefix
1323 * @rx_buffer_padding: Size of padding at end of RX packet
1324 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1325 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1326 * @option_descriptors: NIC supports TX option descriptors
1327 * @min_interrupt_mode: Lowest capability interrupt mode supported
1328 * from &enum efx_int_mode.
1329 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1330 * @offload_features: net_device feature flags for protocol offload
1331 * features implemented in hardware
1332 * @mcdi_max_ver: Maximum MCDI version supported
1333 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1334 */
1335 struct efx_nic_type {
1336 bool is_vf;
1337 unsigned int (*mem_bar)(struct efx_nic *efx);
1338 unsigned int (*mem_map_size)(struct efx_nic *efx);
1339 int (*probe)(struct efx_nic *efx);
1340 void (*remove)(struct efx_nic *efx);
1341 int (*init)(struct efx_nic *efx);
1342 int (*dimension_resources)(struct efx_nic *efx);
1343 void (*fini)(struct efx_nic *efx);
1344 void (*monitor)(struct efx_nic *efx);
1345 enum reset_type (*map_reset_reason)(enum reset_type reason);
1346 int (*map_reset_flags)(u32 *flags);
1347 int (*reset)(struct efx_nic *efx, enum reset_type method);
1348 int (*probe_port)(struct efx_nic *efx);
1349 void (*remove_port)(struct efx_nic *efx);
1350 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1351 int (*fini_dmaq)(struct efx_nic *efx);
1352 void (*prepare_flush)(struct efx_nic *efx);
1353 void (*finish_flush)(struct efx_nic *efx);
1354 void (*prepare_flr)(struct efx_nic *efx);
1355 void (*finish_flr)(struct efx_nic *efx);
1356 size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1357 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1358 struct rtnl_link_stats64 *core_stats);
1359 void (*start_stats)(struct efx_nic *efx);
1360 void (*pull_stats)(struct efx_nic *efx);
1361 void (*stop_stats)(struct efx_nic *efx);
1362 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1363 void (*push_irq_moderation)(struct efx_channel *channel);
1364 int (*reconfigure_port)(struct efx_nic *efx);
1365 void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1366 int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1367 bool (*check_mac_fault)(struct efx_nic *efx);
1368 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1369 int (*set_wol)(struct efx_nic *efx, u32 type);
1370 void (*resume_wol)(struct efx_nic *efx);
1371 unsigned int (*check_caps)(const struct efx_nic *efx,
1372 u8 flag,
1373 u32 offset);
1374 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1375 int (*test_nvram)(struct efx_nic *efx);
1376 void (*mcdi_request)(struct efx_nic *efx,
1377 const efx_dword_t *hdr, size_t hdr_len,
1378 const efx_dword_t *sdu, size_t sdu_len);
1379 bool (*mcdi_poll_response)(struct efx_nic *efx);
1380 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1381 size_t pdu_offset, size_t pdu_len);
1382 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1383 void (*mcdi_reboot_detected)(struct efx_nic *efx);
1384 void (*irq_enable_master)(struct efx_nic *efx);
1385 int (*irq_test_generate)(struct efx_nic *efx);
1386 void (*irq_disable_non_ev)(struct efx_nic *efx);
1387 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1388 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1389 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1390 void (*tx_init)(struct efx_tx_queue *tx_queue);
1391 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1392 void (*tx_write)(struct efx_tx_queue *tx_queue);
1393 netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1394 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1395 dma_addr_t dma_addr, unsigned int len);
1396 int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1397 const u32 *rx_indir_table, const u8 *key);
1398 int (*rx_pull_rss_config)(struct efx_nic *efx);
1399 int (*rx_push_rss_context_config)(struct efx_nic *efx,
1400 struct efx_rss_context *ctx,
1401 const u32 *rx_indir_table,
1402 const u8 *key);
1403 int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1404 struct efx_rss_context *ctx);
1405 void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1406 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1407 void (*rx_init)(struct efx_rx_queue *rx_queue);
1408 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1409 void (*rx_write)(struct efx_rx_queue *rx_queue);
1410 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1411 void (*rx_packet)(struct efx_channel *channel);
1412 int (*ev_probe)(struct efx_channel *channel);
1413 int (*ev_init)(struct efx_channel *channel);
1414 void (*ev_fini)(struct efx_channel *channel);
1415 void (*ev_remove)(struct efx_channel *channel);
1416 int (*ev_process)(struct efx_channel *channel, int quota);
1417 void (*ev_read_ack)(struct efx_channel *channel);
1418 void (*ev_test_generate)(struct efx_channel *channel);
1419 int (*filter_table_probe)(struct efx_nic *efx);
1420 void (*filter_table_restore)(struct efx_nic *efx);
1421 void (*filter_table_remove)(struct efx_nic *efx);
1422 void (*filter_update_rx_scatter)(struct efx_nic *efx);
1423 s32 (*filter_insert)(struct efx_nic *efx,
1424 struct efx_filter_spec *spec, bool replace);
1425 int (*filter_remove_safe)(struct efx_nic *efx,
1426 enum efx_filter_priority priority,
1427 u32 filter_id);
1428 int (*filter_get_safe)(struct efx_nic *efx,
1429 enum efx_filter_priority priority,
1430 u32 filter_id, struct efx_filter_spec *);
1431 int (*filter_clear_rx)(struct efx_nic *efx,
1432 enum efx_filter_priority priority);
1433 u32 (*filter_count_rx_used)(struct efx_nic *efx,
1434 enum efx_filter_priority priority);
1435 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1436 s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1437 enum efx_filter_priority priority,
1438 u32 *buf, u32 size);
1439 #ifdef CONFIG_RFS_ACCEL
1440 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1441 unsigned int index);
1442 #endif
1443 #ifdef CONFIG_SFC_MTD
1444 int (*mtd_probe)(struct efx_nic *efx);
1445 void (*mtd_rename)(struct efx_mtd_partition *part);
1446 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1447 size_t *retlen, u8 *buffer);
1448 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1449 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1450 size_t *retlen, const u8 *buffer);
1451 int (*mtd_sync)(struct mtd_info *mtd);
1452 #endif
1453 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1454 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1455 int (*ptp_set_ts_config)(struct efx_nic *efx,
1456 struct hwtstamp_config *init);
1457 int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1458 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1459 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1460 int (*get_phys_port_id)(struct efx_nic *efx,
1461 struct netdev_phys_item_id *ppid);
1462 int (*sriov_init)(struct efx_nic *efx);
1463 void (*sriov_fini)(struct efx_nic *efx);
1464 bool (*sriov_wanted)(struct efx_nic *efx);
1465 void (*sriov_reset)(struct efx_nic *efx);
1466 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1467 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1468 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1469 u8 qos);
1470 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1471 bool spoofchk);
1472 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1473 struct ifla_vf_info *ivi);
1474 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1475 int link_state);
1476 int (*vswitching_probe)(struct efx_nic *efx);
1477 int (*vswitching_restore)(struct efx_nic *efx);
1478 void (*vswitching_remove)(struct efx_nic *efx);
1479 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1480 int (*set_mac_address)(struct efx_nic *efx);
1481 u32 (*tso_versions)(struct efx_nic *efx);
1482 int (*udp_tnl_push_ports)(struct efx_nic *efx);
1483 bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1484 size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1485 size_t len);
1486 void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1487
1488 int revision;
1489 unsigned int txd_ptr_tbl_base;
1490 unsigned int rxd_ptr_tbl_base;
1491 unsigned int buf_tbl_base;
1492 unsigned int evq_ptr_tbl_base;
1493 unsigned int evq_rptr_tbl_base;
1494 u64 max_dma_mask;
1495 unsigned int rx_prefix_size;
1496 unsigned int rx_hash_offset;
1497 unsigned int rx_ts_offset;
1498 unsigned int rx_buffer_padding;
1499 bool can_rx_scatter;
1500 bool always_rx_scatter;
1501 bool option_descriptors;
1502 unsigned int min_interrupt_mode;
1503 unsigned int timer_period_max;
1504 netdev_features_t offload_features;
1505 int mcdi_max_ver;
1506 unsigned int max_rx_ip_filters;
1507 u32 hwtstamp_filters;
1508 unsigned int rx_hash_key_size;
1509 };
1510
1511 /**************************************************************************
1512 *
1513 * Prototypes and inline functions
1514 *
1515 *************************************************************************/
1516
1517 static inline struct efx_channel *
1518 efx_get_channel(struct efx_nic *efx, unsigned index)
1519 {
1520 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1521 return efx->channel[index];
1522 }
1523
1524 /* Iterate over all used channels */
1525 #define efx_for_each_channel(_channel, _efx) \
1526 for (_channel = (_efx)->channel[0]; \
1527 _channel; \
1528 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1529 (_efx)->channel[_channel->channel + 1] : NULL)
1530
1531 /* Iterate over all used channels in reverse */
1532 #define efx_for_each_channel_rev(_channel, _efx) \
1533 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1534 _channel; \
1535 _channel = _channel->channel ? \
1536 (_efx)->channel[_channel->channel - 1] : NULL)
1537
1538 static inline struct efx_channel *
1539 efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1540 {
1541 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1542 return efx->channel[efx->tx_channel_offset + index];
1543 }
1544
1545 static inline struct efx_tx_queue *
1546 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1547 {
1548 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1549 type >= efx->tx_queues_per_channel);
1550 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1551 }
1552
1553 static inline struct efx_channel *
1554 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1555 {
1556 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1557 return efx->channel[efx->xdp_channel_offset + index];
1558 }
1559
1560 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1561 {
1562 return channel->channel - channel->efx->xdp_channel_offset <
1563 channel->efx->n_xdp_channels;
1564 }
1565
1566 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1567 {
1568 return true;
1569 }
1570
1571 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1572 {
1573 if (efx_channel_is_xdp_tx(channel))
1574 return channel->efx->xdp_tx_per_channel;
1575 return channel->efx->tx_queues_per_channel;
1576 }
1577
1578 static inline struct efx_tx_queue *
1579 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1580 {
1581 EFX_WARN_ON_ONCE_PARANOID(type >= efx_channel_num_tx_queues(channel));
1582 return &channel->tx_queue[type];
1583 }
1584
1585 /* Iterate over all TX queues belonging to a channel */
1586 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
1587 if (!efx_channel_has_tx_queues(_channel)) \
1588 ; \
1589 else \
1590 for (_tx_queue = (_channel)->tx_queue; \
1591 _tx_queue < (_channel)->tx_queue + \
1592 efx_channel_num_tx_queues(_channel); \
1593 _tx_queue++)
1594
1595 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1596 {
1597 return channel->rx_queue.core_index >= 0;
1598 }
1599
1600 static inline struct efx_rx_queue *
1601 efx_channel_get_rx_queue(struct efx_channel *channel)
1602 {
1603 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1604 return &channel->rx_queue;
1605 }
1606
1607 /* Iterate over all RX queues belonging to a channel */
1608 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
1609 if (!efx_channel_has_rx_queue(_channel)) \
1610 ; \
1611 else \
1612 for (_rx_queue = &(_channel)->rx_queue; \
1613 _rx_queue; \
1614 _rx_queue = NULL)
1615
1616 static inline struct efx_channel *
1617 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1618 {
1619 return container_of(rx_queue, struct efx_channel, rx_queue);
1620 }
1621
1622 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1623 {
1624 return efx_rx_queue_channel(rx_queue)->channel;
1625 }
1626
1627 /* Returns a pointer to the specified receive buffer in the RX
1628 * descriptor queue.
1629 */
1630 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1631 unsigned int index)
1632 {
1633 return &rx_queue->buffer[index];
1634 }
1635
1636 static inline struct efx_rx_buffer *
1637 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1638 {
1639 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1640 return efx_rx_buffer(rx_queue, 0);
1641 else
1642 return rx_buf + 1;
1643 }
1644
1645 /**
1646 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1647 *
1648 * This calculates the maximum frame length that will be used for a
1649 * given MTU. The frame length will be equal to the MTU plus a
1650 * constant amount of header space and padding. This is the quantity
1651 * that the net driver will program into the MAC as the maximum frame
1652 * length.
1653 *
1654 * The 10G MAC requires 8-byte alignment on the frame
1655 * length, so we round up to the nearest 8.
1656 *
1657 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1658 * XGMII cycle). If the frame length reaches the maximum value in the
1659 * same cycle, the XMAC can miss the IPG altogether. We work around
1660 * this by adding a further 16 bytes.
1661 */
1662 #define EFX_FRAME_PAD 16
1663 #define EFX_MAX_FRAME_LEN(mtu) \
1664 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1665
1666 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1667 {
1668 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1669 }
1670 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1671 {
1672 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1673 }
1674
1675 /* Get the max fill level of the TX queues on this channel */
1676 static inline unsigned int
1677 efx_channel_tx_fill_level(struct efx_channel *channel)
1678 {
1679 struct efx_tx_queue *tx_queue;
1680 unsigned int fill_level = 0;
1681
1682 /* This function is currently only used by EF100, which maybe
1683 * could do something simpler and just compute the fill level
1684 * of the single TXQ that's really in use.
1685 */
1686 efx_for_each_channel_tx_queue(tx_queue, channel)
1687 fill_level = max(fill_level,
1688 tx_queue->insert_count - tx_queue->read_count);
1689
1690 return fill_level;
1691 }
1692
1693 /* Get all supported features.
1694 * If a feature is not fixed, it is present in hw_features.
1695 * If a feature is fixed, it does not present in hw_features, but
1696 * always in features.
1697 */
1698 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1699 {
1700 const struct net_device *net_dev = efx->net_dev;
1701
1702 return net_dev->features | net_dev->hw_features;
1703 }
1704
1705 /* Get the current TX queue insert index. */
1706 static inline unsigned int
1707 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1708 {
1709 return tx_queue->insert_count & tx_queue->ptr_mask;
1710 }
1711
1712 /* Get a TX buffer. */
1713 static inline struct efx_tx_buffer *
1714 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1715 {
1716 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1717 }
1718
1719 /* Get a TX buffer, checking it's not currently in use. */
1720 static inline struct efx_tx_buffer *
1721 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1722 {
1723 struct efx_tx_buffer *buffer =
1724 __efx_tx_queue_get_insert_buffer(tx_queue);
1725
1726 EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1727 EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1728 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1729
1730 return buffer;
1731 }
1732
1733 #endif /* EFX_NET_DRIVER_H */