]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/sfc/nic.c
sfc: Enable RX DMA scattering where possible
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24
25 /**************************************************************************
26 *
27 * Configurable values
28 *
29 **************************************************************************
30 */
31
32 /* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
38 */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
48 */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
60
61 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
63
64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
68 efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
74 (_tx_queue)->queue)
75
76 static void efx_magic_event(struct efx_channel *channel, u32 magic);
77
78 /**************************************************************************
79 *
80 * Solarstorm hardware access
81 *
82 **************************************************************************/
83
84 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
85 unsigned int index)
86 {
87 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88 value, index);
89 }
90
91 /* Read the current event from the event queue */
92 static inline efx_qword_t *efx_event(struct efx_channel *channel,
93 unsigned int index)
94 {
95 return ((efx_qword_t *) (channel->eventq.addr)) +
96 (index & channel->eventq_mask);
97 }
98
99 /* See if an event is present
100 *
101 * We check both the high and low dword of the event for all ones. We
102 * wrote all ones when we cleared the event, and no valid event can
103 * have all ones in either its high or low dwords. This approach is
104 * robust against reordering.
105 *
106 * Note that using a single 64-bit comparison is incorrect; even
107 * though the CPU read will be atomic, the DMA write may not be.
108 */
109 static inline int efx_event_present(efx_qword_t *event)
110 {
111 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
112 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 }
114
115 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
116 const efx_oword_t *mask)
117 {
118 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
119 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 }
121
122 int efx_nic_test_registers(struct efx_nic *efx,
123 const struct efx_nic_register_test *regs,
124 size_t n_regs)
125 {
126 unsigned address = 0, i, j;
127 efx_oword_t mask, imask, original, reg, buf;
128
129 for (i = 0; i < n_regs; ++i) {
130 address = regs[i].address;
131 mask = imask = regs[i].mask;
132 EFX_INVERT_OWORD(imask);
133
134 efx_reado(efx, &original, address);
135
136 /* bit sweep on and off */
137 for (j = 0; j < 128; j++) {
138 if (!EFX_EXTRACT_OWORD32(mask, j, j))
139 continue;
140
141 /* Test this testable bit can be set in isolation */
142 EFX_AND_OWORD(reg, original, mask);
143 EFX_SET_OWORD32(reg, j, j, 1);
144
145 efx_writeo(efx, &reg, address);
146 efx_reado(efx, &buf, address);
147
148 if (efx_masked_compare_oword(&reg, &buf, &mask))
149 goto fail;
150
151 /* Test this testable bit can be cleared in isolation */
152 EFX_OR_OWORD(reg, original, mask);
153 EFX_SET_OWORD32(reg, j, j, 0);
154
155 efx_writeo(efx, &reg, address);
156 efx_reado(efx, &buf, address);
157
158 if (efx_masked_compare_oword(&reg, &buf, &mask))
159 goto fail;
160 }
161
162 efx_writeo(efx, &original, address);
163 }
164
165 return 0;
166
167 fail:
168 netif_err(efx, hw, efx->net_dev,
169 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
170 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
171 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
172 return -EIO;
173 }
174
175 /**************************************************************************
176 *
177 * Special buffer handling
178 * Special buffers are used for event queues and the TX and RX
179 * descriptor rings.
180 *
181 *************************************************************************/
182
183 /*
184 * Initialise a special buffer
185 *
186 * This will define a buffer (previously allocated via
187 * efx_alloc_special_buffer()) in the buffer table, allowing
188 * it to be used for event queues, descriptor rings etc.
189 */
190 static void
191 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
192 {
193 efx_qword_t buf_desc;
194 unsigned int index;
195 dma_addr_t dma_addr;
196 int i;
197
198 EFX_BUG_ON_PARANOID(!buffer->addr);
199
200 /* Write buffer descriptors to NIC */
201 for (i = 0; i < buffer->entries; i++) {
202 index = buffer->index + i;
203 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
204 netif_dbg(efx, probe, efx->net_dev,
205 "mapping special buffer %d at %llx\n",
206 index, (unsigned long long)dma_addr);
207 EFX_POPULATE_QWORD_3(buf_desc,
208 FRF_AZ_BUF_ADR_REGION, 0,
209 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
210 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
211 efx_write_buf_tbl(efx, &buf_desc, index);
212 }
213 }
214
215 /* Unmaps a buffer and clears the buffer table entries */
216 static void
217 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
218 {
219 efx_oword_t buf_tbl_upd;
220 unsigned int start = buffer->index;
221 unsigned int end = (buffer->index + buffer->entries - 1);
222
223 if (!buffer->entries)
224 return;
225
226 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
227 buffer->index, buffer->index + buffer->entries - 1);
228
229 EFX_POPULATE_OWORD_4(buf_tbl_upd,
230 FRF_AZ_BUF_UPD_CMD, 0,
231 FRF_AZ_BUF_CLR_CMD, 1,
232 FRF_AZ_BUF_CLR_END_ID, end,
233 FRF_AZ_BUF_CLR_START_ID, start);
234 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
235 }
236
237 /*
238 * Allocate a new special buffer
239 *
240 * This allocates memory for a new buffer, clears it and allocates a
241 * new buffer ID range. It does not write into the buffer table.
242 *
243 * This call will allocate 4KB buffers, since 8KB buffers can't be
244 * used for event queues and descriptor rings.
245 */
246 static int efx_alloc_special_buffer(struct efx_nic *efx,
247 struct efx_special_buffer *buffer,
248 unsigned int len)
249 {
250 len = ALIGN(len, EFX_BUF_SIZE);
251
252 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
253 &buffer->dma_addr, GFP_KERNEL);
254 if (!buffer->addr)
255 return -ENOMEM;
256 buffer->len = len;
257 buffer->entries = len / EFX_BUF_SIZE;
258 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
259
260 /* Select new buffer ID */
261 buffer->index = efx->next_buffer_table;
262 efx->next_buffer_table += buffer->entries;
263 #ifdef CONFIG_SFC_SRIOV
264 BUG_ON(efx_sriov_enabled(efx) &&
265 efx->vf_buftbl_base < efx->next_buffer_table);
266 #endif
267
268 netif_dbg(efx, probe, efx->net_dev,
269 "allocating special buffers %d-%d at %llx+%x "
270 "(virt %p phys %llx)\n", buffer->index,
271 buffer->index + buffer->entries - 1,
272 (u64)buffer->dma_addr, len,
273 buffer->addr, (u64)virt_to_phys(buffer->addr));
274
275 return 0;
276 }
277
278 static void
279 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280 {
281 if (!buffer->addr)
282 return;
283
284 netif_dbg(efx, hw, efx->net_dev,
285 "deallocating special buffers %d-%d at %llx+%x "
286 "(virt %p phys %llx)\n", buffer->index,
287 buffer->index + buffer->entries - 1,
288 (u64)buffer->dma_addr, buffer->len,
289 buffer->addr, (u64)virt_to_phys(buffer->addr));
290
291 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292 buffer->dma_addr);
293 buffer->addr = NULL;
294 buffer->entries = 0;
295 }
296
297 /**************************************************************************
298 *
299 * Generic buffer handling
300 * These buffers are used for interrupt status, MAC stats, etc.
301 *
302 **************************************************************************/
303
304 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305 unsigned int len)
306 {
307 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
308 &buffer->dma_addr, GFP_ATOMIC);
309 if (!buffer->addr)
310 return -ENOMEM;
311 buffer->len = len;
312 memset(buffer->addr, 0, len);
313 return 0;
314 }
315
316 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317 {
318 if (buffer->addr) {
319 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
320 buffer->addr, buffer->dma_addr);
321 buffer->addr = NULL;
322 }
323 }
324
325 /**************************************************************************
326 *
327 * TX path
328 *
329 **************************************************************************/
330
331 /* Returns a pointer to the specified transmit descriptor in the TX
332 * descriptor queue belonging to the specified channel.
333 */
334 static inline efx_qword_t *
335 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336 {
337 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
338 }
339
340 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342 {
343 unsigned write_ptr;
344 efx_dword_t reg;
345
346 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
347 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348 efx_writed_page(tx_queue->efx, &reg,
349 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350 }
351
352 /* Write pointer and first descriptor for TX descriptor ring */
353 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354 const efx_qword_t *txd)
355 {
356 unsigned write_ptr;
357 efx_oword_t reg;
358
359 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361
362 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364 FRF_AZ_TX_DESC_WPTR, write_ptr);
365 reg.qword[0] = *txd;
366 efx_writeo_page(tx_queue->efx, &reg,
367 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368 }
369
370 static inline bool
371 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372 {
373 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374
375 if (empty_read_count == 0)
376 return false;
377
378 tx_queue->empty_read_count = 0;
379 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
380 }
381
382 /* For each entry inserted into the software descriptor ring, create a
383 * descriptor in the hardware TX descriptor ring (in host memory), and
384 * write a doorbell.
385 */
386 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
387 {
388
389 struct efx_tx_buffer *buffer;
390 efx_qword_t *txd;
391 unsigned write_ptr;
392 unsigned old_write_count = tx_queue->write_count;
393
394 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
395
396 do {
397 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
398 buffer = &tx_queue->buffer[write_ptr];
399 txd = efx_tx_desc(tx_queue, write_ptr);
400 ++tx_queue->write_count;
401
402 /* Create TX descriptor ring entry */
403 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
404 EFX_POPULATE_QWORD_4(*txd,
405 FSF_AZ_TX_KER_CONT,
406 buffer->flags & EFX_TX_BUF_CONT,
407 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
408 FSF_AZ_TX_KER_BUF_REGION, 0,
409 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
410 } while (tx_queue->write_count != tx_queue->insert_count);
411
412 wmb(); /* Ensure descriptors are written before they are fetched */
413
414 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
415 txd = efx_tx_desc(tx_queue,
416 old_write_count & tx_queue->ptr_mask);
417 efx_push_tx_desc(tx_queue, txd);
418 ++tx_queue->pushes;
419 } else {
420 efx_notify_tx_desc(tx_queue);
421 }
422 }
423
424 /* Allocate hardware resources for a TX queue */
425 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
426 {
427 struct efx_nic *efx = tx_queue->efx;
428 unsigned entries;
429
430 entries = tx_queue->ptr_mask + 1;
431 return efx_alloc_special_buffer(efx, &tx_queue->txd,
432 entries * sizeof(efx_qword_t));
433 }
434
435 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
436 {
437 struct efx_nic *efx = tx_queue->efx;
438 efx_oword_t reg;
439
440 /* Pin TX descriptor ring */
441 efx_init_special_buffer(efx, &tx_queue->txd);
442
443 /* Push TX descriptor ring to card */
444 EFX_POPULATE_OWORD_10(reg,
445 FRF_AZ_TX_DESCQ_EN, 1,
446 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
447 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
448 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
449 FRF_AZ_TX_DESCQ_EVQ_ID,
450 tx_queue->channel->channel,
451 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
452 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
453 FRF_AZ_TX_DESCQ_SIZE,
454 __ffs(tx_queue->txd.entries),
455 FRF_AZ_TX_DESCQ_TYPE, 0,
456 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
457
458 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
459 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
460 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
461 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
462 !csum);
463 }
464
465 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
466 tx_queue->queue);
467
468 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
469 /* Only 128 bits in this register */
470 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
471
472 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
473 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
474 __clear_bit_le(tx_queue->queue, &reg);
475 else
476 __set_bit_le(tx_queue->queue, &reg);
477 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
478 }
479
480 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
481 EFX_POPULATE_OWORD_1(reg,
482 FRF_BZ_TX_PACE,
483 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
484 FFE_BZ_TX_PACE_OFF :
485 FFE_BZ_TX_PACE_RESERVED);
486 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
487 tx_queue->queue);
488 }
489 }
490
491 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
492 {
493 struct efx_nic *efx = tx_queue->efx;
494 efx_oword_t tx_flush_descq;
495
496 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
497 atomic_set(&tx_queue->flush_outstanding, 1);
498
499 EFX_POPULATE_OWORD_2(tx_flush_descq,
500 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
501 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
502 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
503 }
504
505 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
506 {
507 struct efx_nic *efx = tx_queue->efx;
508 efx_oword_t tx_desc_ptr;
509
510 /* Remove TX descriptor ring from card */
511 EFX_ZERO_OWORD(tx_desc_ptr);
512 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
513 tx_queue->queue);
514
515 /* Unpin TX descriptor ring */
516 efx_fini_special_buffer(efx, &tx_queue->txd);
517 }
518
519 /* Free buffers backing TX queue */
520 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
521 {
522 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
523 }
524
525 /**************************************************************************
526 *
527 * RX path
528 *
529 **************************************************************************/
530
531 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
532 static inline efx_qword_t *
533 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
534 {
535 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
536 }
537
538 /* This creates an entry in the RX descriptor queue */
539 static inline void
540 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
541 {
542 struct efx_rx_buffer *rx_buf;
543 efx_qword_t *rxd;
544
545 rxd = efx_rx_desc(rx_queue, index);
546 rx_buf = efx_rx_buffer(rx_queue, index);
547 EFX_POPULATE_QWORD_3(*rxd,
548 FSF_AZ_RX_KER_BUF_SIZE,
549 rx_buf->len -
550 rx_queue->efx->type->rx_buffer_padding,
551 FSF_AZ_RX_KER_BUF_REGION, 0,
552 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
553 }
554
555 /* This writes to the RX_DESC_WPTR register for the specified receive
556 * descriptor ring.
557 */
558 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
559 {
560 struct efx_nic *efx = rx_queue->efx;
561 efx_dword_t reg;
562 unsigned write_ptr;
563
564 while (rx_queue->notified_count != rx_queue->added_count) {
565 efx_build_rx_desc(
566 rx_queue,
567 rx_queue->notified_count & rx_queue->ptr_mask);
568 ++rx_queue->notified_count;
569 }
570
571 wmb();
572 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
573 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
574 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
575 efx_rx_queue_index(rx_queue));
576 }
577
578 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
579 {
580 struct efx_nic *efx = rx_queue->efx;
581 unsigned entries;
582
583 entries = rx_queue->ptr_mask + 1;
584 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
585 entries * sizeof(efx_qword_t));
586 }
587
588 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
589 {
590 efx_oword_t rx_desc_ptr;
591 struct efx_nic *efx = rx_queue->efx;
592 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
593 bool iscsi_digest_en = is_b0;
594 bool jumbo_en;
595
596 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
597 * DMA to continue after a PCIe page boundary (and scattering
598 * is not possible). In Falcon B0 and Siena, it enables
599 * scatter.
600 */
601 jumbo_en = !is_b0 || efx->rx_scatter;
602
603 netif_dbg(efx, hw, efx->net_dev,
604 "RX queue %d ring in special buffers %d-%d\n",
605 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
606 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
607
608 rx_queue->scatter_n = 0;
609
610 /* Pin RX descriptor ring */
611 efx_init_special_buffer(efx, &rx_queue->rxd);
612
613 /* Push RX descriptor ring to card */
614 EFX_POPULATE_OWORD_10(rx_desc_ptr,
615 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
616 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
617 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
618 FRF_AZ_RX_DESCQ_EVQ_ID,
619 efx_rx_queue_channel(rx_queue)->channel,
620 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
621 FRF_AZ_RX_DESCQ_LABEL,
622 efx_rx_queue_index(rx_queue),
623 FRF_AZ_RX_DESCQ_SIZE,
624 __ffs(rx_queue->rxd.entries),
625 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
626 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
627 FRF_AZ_RX_DESCQ_EN, 1);
628 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
629 efx_rx_queue_index(rx_queue));
630 }
631
632 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
633 {
634 struct efx_nic *efx = rx_queue->efx;
635 efx_oword_t rx_flush_descq;
636
637 EFX_POPULATE_OWORD_2(rx_flush_descq,
638 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
639 FRF_AZ_RX_FLUSH_DESCQ,
640 efx_rx_queue_index(rx_queue));
641 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
642 }
643
644 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
645 {
646 efx_oword_t rx_desc_ptr;
647 struct efx_nic *efx = rx_queue->efx;
648
649 /* Remove RX descriptor ring from card */
650 EFX_ZERO_OWORD(rx_desc_ptr);
651 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
652 efx_rx_queue_index(rx_queue));
653
654 /* Unpin RX descriptor ring */
655 efx_fini_special_buffer(efx, &rx_queue->rxd);
656 }
657
658 /* Free buffers backing RX queue */
659 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
660 {
661 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
662 }
663
664 /**************************************************************************
665 *
666 * Flush handling
667 *
668 **************************************************************************/
669
670 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
671 * or more RX flushes can be kicked off.
672 */
673 static bool efx_flush_wake(struct efx_nic *efx)
674 {
675 /* Ensure that all updates are visible to efx_nic_flush_queues() */
676 smp_mb();
677
678 return (atomic_read(&efx->drain_pending) == 0 ||
679 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
680 && atomic_read(&efx->rxq_flush_pending) > 0));
681 }
682
683 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
684 {
685 bool i = true;
686 efx_oword_t txd_ptr_tbl;
687 struct efx_channel *channel;
688 struct efx_tx_queue *tx_queue;
689
690 efx_for_each_channel(channel, efx) {
691 efx_for_each_channel_tx_queue(tx_queue, channel) {
692 efx_reado_table(efx, &txd_ptr_tbl,
693 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
694 if (EFX_OWORD_FIELD(txd_ptr_tbl,
695 FRF_AZ_TX_DESCQ_FLUSH) ||
696 EFX_OWORD_FIELD(txd_ptr_tbl,
697 FRF_AZ_TX_DESCQ_EN)) {
698 netif_dbg(efx, hw, efx->net_dev,
699 "flush did not complete on TXQ %d\n",
700 tx_queue->queue);
701 i = false;
702 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
703 1, 0)) {
704 /* The flush is complete, but we didn't
705 * receive a flush completion event
706 */
707 netif_dbg(efx, hw, efx->net_dev,
708 "flush complete on TXQ %d, so drain "
709 "the queue\n", tx_queue->queue);
710 /* Don't need to increment drain_pending as it
711 * has already been incremented for the queues
712 * which did not drain
713 */
714 efx_magic_event(channel,
715 EFX_CHANNEL_MAGIC_TX_DRAIN(
716 tx_queue));
717 }
718 }
719 }
720
721 return i;
722 }
723
724 /* Flush all the transmit queues, and continue flushing receive queues until
725 * they're all flushed. Wait for the DRAIN events to be recieved so that there
726 * are no more RX and TX events left on any channel. */
727 int efx_nic_flush_queues(struct efx_nic *efx)
728 {
729 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
730 struct efx_channel *channel;
731 struct efx_rx_queue *rx_queue;
732 struct efx_tx_queue *tx_queue;
733 int rc = 0;
734
735 efx->type->prepare_flush(efx);
736
737 efx_for_each_channel(channel, efx) {
738 efx_for_each_channel_tx_queue(tx_queue, channel) {
739 atomic_inc(&efx->drain_pending);
740 efx_flush_tx_queue(tx_queue);
741 }
742 efx_for_each_channel_rx_queue(rx_queue, channel) {
743 atomic_inc(&efx->drain_pending);
744 rx_queue->flush_pending = true;
745 atomic_inc(&efx->rxq_flush_pending);
746 }
747 }
748
749 while (timeout && atomic_read(&efx->drain_pending) > 0) {
750 /* If SRIOV is enabled, then offload receive queue flushing to
751 * the firmware (though we will still have to poll for
752 * completion). If that fails, fall back to the old scheme.
753 */
754 if (efx_sriov_enabled(efx)) {
755 rc = efx_mcdi_flush_rxqs(efx);
756 if (!rc)
757 goto wait;
758 }
759
760 /* The hardware supports four concurrent rx flushes, each of
761 * which may need to be retried if there is an outstanding
762 * descriptor fetch
763 */
764 efx_for_each_channel(channel, efx) {
765 efx_for_each_channel_rx_queue(rx_queue, channel) {
766 if (atomic_read(&efx->rxq_flush_outstanding) >=
767 EFX_RX_FLUSH_COUNT)
768 break;
769
770 if (rx_queue->flush_pending) {
771 rx_queue->flush_pending = false;
772 atomic_dec(&efx->rxq_flush_pending);
773 atomic_inc(&efx->rxq_flush_outstanding);
774 efx_flush_rx_queue(rx_queue);
775 }
776 }
777 }
778
779 wait:
780 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
781 timeout);
782 }
783
784 if (atomic_read(&efx->drain_pending) &&
785 !efx_check_tx_flush_complete(efx)) {
786 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
787 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
788 atomic_read(&efx->rxq_flush_outstanding),
789 atomic_read(&efx->rxq_flush_pending));
790 rc = -ETIMEDOUT;
791
792 atomic_set(&efx->drain_pending, 0);
793 atomic_set(&efx->rxq_flush_pending, 0);
794 atomic_set(&efx->rxq_flush_outstanding, 0);
795 }
796
797 efx->type->finish_flush(efx);
798
799 return rc;
800 }
801
802 /**************************************************************************
803 *
804 * Event queue processing
805 * Event queues are processed by per-channel tasklets.
806 *
807 **************************************************************************/
808
809 /* Update a channel's event queue's read pointer (RPTR) register
810 *
811 * This writes the EVQ_RPTR_REG register for the specified channel's
812 * event queue.
813 */
814 void efx_nic_eventq_read_ack(struct efx_channel *channel)
815 {
816 efx_dword_t reg;
817 struct efx_nic *efx = channel->efx;
818
819 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
820 channel->eventq_read_ptr & channel->eventq_mask);
821
822 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
823 * of 4 bytes, but it is really 16 bytes just like later revisions.
824 */
825 efx_writed(efx, &reg,
826 efx->type->evq_rptr_tbl_base +
827 FR_BZ_EVQ_RPTR_STEP * channel->channel);
828 }
829
830 /* Use HW to insert a SW defined event */
831 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
832 efx_qword_t *event)
833 {
834 efx_oword_t drv_ev_reg;
835
836 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
837 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
838 drv_ev_reg.u32[0] = event->u32[0];
839 drv_ev_reg.u32[1] = event->u32[1];
840 drv_ev_reg.u32[2] = 0;
841 drv_ev_reg.u32[3] = 0;
842 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
843 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
844 }
845
846 static void efx_magic_event(struct efx_channel *channel, u32 magic)
847 {
848 efx_qword_t event;
849
850 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
851 FSE_AZ_EV_CODE_DRV_GEN_EV,
852 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
853 efx_generate_event(channel->efx, channel->channel, &event);
854 }
855
856 /* Handle a transmit completion event
857 *
858 * The NIC batches TX completion events; the message we receive is of
859 * the form "complete all TX events up to this index".
860 */
861 static int
862 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
863 {
864 unsigned int tx_ev_desc_ptr;
865 unsigned int tx_ev_q_label;
866 struct efx_tx_queue *tx_queue;
867 struct efx_nic *efx = channel->efx;
868 int tx_packets = 0;
869
870 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
871 return 0;
872
873 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
874 /* Transmit completion */
875 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
876 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
877 tx_queue = efx_channel_get_tx_queue(
878 channel, tx_ev_q_label % EFX_TXQ_TYPES);
879 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
880 tx_queue->ptr_mask);
881 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
882 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
883 /* Rewrite the FIFO write pointer */
884 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
885 tx_queue = efx_channel_get_tx_queue(
886 channel, tx_ev_q_label % EFX_TXQ_TYPES);
887
888 netif_tx_lock(efx->net_dev);
889 efx_notify_tx_desc(tx_queue);
890 netif_tx_unlock(efx->net_dev);
891 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
892 EFX_WORKAROUND_10727(efx)) {
893 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
894 } else {
895 netif_err(efx, tx_err, efx->net_dev,
896 "channel %d unexpected TX event "
897 EFX_QWORD_FMT"\n", channel->channel,
898 EFX_QWORD_VAL(*event));
899 }
900
901 return tx_packets;
902 }
903
904 /* Detect errors included in the rx_evt_pkt_ok bit. */
905 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
906 const efx_qword_t *event)
907 {
908 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
909 struct efx_nic *efx = rx_queue->efx;
910 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
911 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
912 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
913 bool rx_ev_other_err, rx_ev_pause_frm;
914 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
915 unsigned rx_ev_pkt_type;
916
917 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
918 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
919 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
920 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
921 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
922 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
923 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
924 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
925 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
926 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
927 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
928 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
929 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
930 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
931 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
932
933 /* Every error apart from tobe_disc and pause_frm */
934 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
935 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
936 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
937
938 /* Count errors that are not in MAC stats. Ignore expected
939 * checksum errors during self-test. */
940 if (rx_ev_frm_trunc)
941 ++channel->n_rx_frm_trunc;
942 else if (rx_ev_tobe_disc)
943 ++channel->n_rx_tobe_disc;
944 else if (!efx->loopback_selftest) {
945 if (rx_ev_ip_hdr_chksum_err)
946 ++channel->n_rx_ip_hdr_chksum_err;
947 else if (rx_ev_tcp_udp_chksum_err)
948 ++channel->n_rx_tcp_udp_chksum_err;
949 }
950
951 /* TOBE_DISC is expected on unicast mismatches; don't print out an
952 * error message. FRM_TRUNC indicates RXDP dropped the packet due
953 * to a FIFO overflow.
954 */
955 #ifdef DEBUG
956 if (rx_ev_other_err && net_ratelimit()) {
957 netif_dbg(efx, rx_err, efx->net_dev,
958 " RX queue %d unexpected RX event "
959 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
960 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
961 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
962 rx_ev_ip_hdr_chksum_err ?
963 " [IP_HDR_CHKSUM_ERR]" : "",
964 rx_ev_tcp_udp_chksum_err ?
965 " [TCP_UDP_CHKSUM_ERR]" : "",
966 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
967 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
968 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
969 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
970 rx_ev_pause_frm ? " [PAUSE]" : "");
971 }
972 #endif
973
974 /* The frame must be discarded if any of these are true. */
975 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
976 rx_ev_tobe_disc | rx_ev_pause_frm) ?
977 EFX_RX_PKT_DISCARD : 0;
978 }
979
980 /* Handle receive events that are not in-order. Return true if this
981 * can be handled as a partial packet discard, false if it's more
982 * serious.
983 */
984 static bool
985 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
986 {
987 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
988 struct efx_nic *efx = rx_queue->efx;
989 unsigned expected, dropped;
990
991 if (rx_queue->scatter_n &&
992 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
993 rx_queue->ptr_mask)) {
994 ++channel->n_rx_nodesc_trunc;
995 return true;
996 }
997
998 expected = rx_queue->removed_count & rx_queue->ptr_mask;
999 dropped = (index - expected) & rx_queue->ptr_mask;
1000 netif_info(efx, rx_err, efx->net_dev,
1001 "dropped %d events (index=%d expected=%d)\n",
1002 dropped, index, expected);
1003
1004 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1005 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1006 return false;
1007 }
1008
1009 /* Handle a packet received event
1010 *
1011 * The NIC gives a "discard" flag if it's a unicast packet with the
1012 * wrong destination address
1013 * Also "is multicast" and "matches multicast filter" flags can be used to
1014 * discard non-matching multicast packets.
1015 */
1016 static void
1017 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
1018 {
1019 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1020 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1021 unsigned expected_ptr;
1022 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
1023 u16 flags;
1024 struct efx_rx_queue *rx_queue;
1025 struct efx_nic *efx = channel->efx;
1026
1027 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1028 return;
1029
1030 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1031 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1032 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1033 channel->channel);
1034
1035 rx_queue = efx_channel_get_rx_queue(channel);
1036
1037 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1038 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1039 rx_queue->ptr_mask);
1040
1041 /* Check for partial drops and other errors */
1042 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1043 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1044 if (rx_ev_desc_ptr != expected_ptr &&
1045 !efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1046 return;
1047
1048 /* Discard all pending fragments */
1049 if (rx_queue->scatter_n) {
1050 efx_rx_packet(
1051 rx_queue,
1052 rx_queue->removed_count & rx_queue->ptr_mask,
1053 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1054 rx_queue->removed_count += rx_queue->scatter_n;
1055 rx_queue->scatter_n = 0;
1056 }
1057
1058 /* Return if there is no new fragment */
1059 if (rx_ev_desc_ptr != expected_ptr)
1060 return;
1061
1062 /* Discard new fragment if not SOP */
1063 if (!rx_ev_sop) {
1064 efx_rx_packet(
1065 rx_queue,
1066 rx_queue->removed_count & rx_queue->ptr_mask,
1067 1, 0, EFX_RX_PKT_DISCARD);
1068 ++rx_queue->removed_count;
1069 return;
1070 }
1071 }
1072
1073 ++rx_queue->scatter_n;
1074 if (rx_ev_cont)
1075 return;
1076
1077 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1078 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1079 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1080
1081 if (likely(rx_ev_pkt_ok)) {
1082 /* If packet is marked as OK and packet type is TCP/IP or
1083 * UDP/IP, then we can rely on the hardware checksum.
1084 */
1085 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
1086 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
1087 EFX_RX_PKT_CSUMMED : 0;
1088 } else {
1089 flags = efx_handle_rx_not_ok(rx_queue, event);
1090 }
1091
1092 /* Detect multicast packets that didn't match the filter */
1093 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1094 if (rx_ev_mcast_pkt) {
1095 unsigned int rx_ev_mcast_hash_match =
1096 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1097
1098 if (unlikely(!rx_ev_mcast_hash_match)) {
1099 ++channel->n_rx_mcast_mismatch;
1100 flags |= EFX_RX_PKT_DISCARD;
1101 }
1102 }
1103
1104 channel->irq_mod_score += 2;
1105
1106 /* Handle received packet */
1107 efx_rx_packet(rx_queue,
1108 rx_queue->removed_count & rx_queue->ptr_mask,
1109 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1110 rx_queue->removed_count += rx_queue->scatter_n;
1111 rx_queue->scatter_n = 0;
1112 }
1113
1114 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1115 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1116 * of all transmit completions.
1117 */
1118 static void
1119 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1120 {
1121 struct efx_tx_queue *tx_queue;
1122 int qid;
1123
1124 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1125 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1126 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1127 qid % EFX_TXQ_TYPES);
1128 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1129 efx_magic_event(tx_queue->channel,
1130 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1131 }
1132 }
1133 }
1134
1135 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1136 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1137 * the RX queue back to the mask of RX queues in need of flushing.
1138 */
1139 static void
1140 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1141 {
1142 struct efx_channel *channel;
1143 struct efx_rx_queue *rx_queue;
1144 int qid;
1145 bool failed;
1146
1147 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1148 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1149 if (qid >= efx->n_channels)
1150 return;
1151 channel = efx_get_channel(efx, qid);
1152 if (!efx_channel_has_rx_queue(channel))
1153 return;
1154 rx_queue = efx_channel_get_rx_queue(channel);
1155
1156 if (failed) {
1157 netif_info(efx, hw, efx->net_dev,
1158 "RXQ %d flush retry\n", qid);
1159 rx_queue->flush_pending = true;
1160 atomic_inc(&efx->rxq_flush_pending);
1161 } else {
1162 efx_magic_event(efx_rx_queue_channel(rx_queue),
1163 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1164 }
1165 atomic_dec(&efx->rxq_flush_outstanding);
1166 if (efx_flush_wake(efx))
1167 wake_up(&efx->flush_wq);
1168 }
1169
1170 static void
1171 efx_handle_drain_event(struct efx_channel *channel)
1172 {
1173 struct efx_nic *efx = channel->efx;
1174
1175 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1176 atomic_dec(&efx->drain_pending);
1177 if (efx_flush_wake(efx))
1178 wake_up(&efx->flush_wq);
1179 }
1180
1181 static void
1182 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1183 {
1184 struct efx_nic *efx = channel->efx;
1185 struct efx_rx_queue *rx_queue =
1186 efx_channel_has_rx_queue(channel) ?
1187 efx_channel_get_rx_queue(channel) : NULL;
1188 unsigned magic, code;
1189
1190 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1191 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1192
1193 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1194 channel->event_test_cpu = raw_smp_processor_id();
1195 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1196 /* The queue must be empty, so we won't receive any rx
1197 * events, so efx_process_channel() won't refill the
1198 * queue. Refill it here */
1199 efx_fast_push_rx_descriptors(rx_queue);
1200 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1201 rx_queue->enabled = false;
1202 efx_handle_drain_event(channel);
1203 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1204 efx_handle_drain_event(channel);
1205 } else {
1206 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1207 "generated event "EFX_QWORD_FMT"\n",
1208 channel->channel, EFX_QWORD_VAL(*event));
1209 }
1210 }
1211
1212 static void
1213 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1214 {
1215 struct efx_nic *efx = channel->efx;
1216 unsigned int ev_sub_code;
1217 unsigned int ev_sub_data;
1218
1219 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1220 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1221
1222 switch (ev_sub_code) {
1223 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1224 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1225 channel->channel, ev_sub_data);
1226 efx_handle_tx_flush_done(efx, event);
1227 efx_sriov_tx_flush_done(efx, event);
1228 break;
1229 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1230 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1231 channel->channel, ev_sub_data);
1232 efx_handle_rx_flush_done(efx, event);
1233 efx_sriov_rx_flush_done(efx, event);
1234 break;
1235 case FSE_AZ_EVQ_INIT_DONE_EV:
1236 netif_dbg(efx, hw, efx->net_dev,
1237 "channel %d EVQ %d initialised\n",
1238 channel->channel, ev_sub_data);
1239 break;
1240 case FSE_AZ_SRM_UPD_DONE_EV:
1241 netif_vdbg(efx, hw, efx->net_dev,
1242 "channel %d SRAM update done\n", channel->channel);
1243 break;
1244 case FSE_AZ_WAKE_UP_EV:
1245 netif_vdbg(efx, hw, efx->net_dev,
1246 "channel %d RXQ %d wakeup event\n",
1247 channel->channel, ev_sub_data);
1248 break;
1249 case FSE_AZ_TIMER_EV:
1250 netif_vdbg(efx, hw, efx->net_dev,
1251 "channel %d RX queue %d timer expired\n",
1252 channel->channel, ev_sub_data);
1253 break;
1254 case FSE_AA_RX_RECOVER_EV:
1255 netif_err(efx, rx_err, efx->net_dev,
1256 "channel %d seen DRIVER RX_RESET event. "
1257 "Resetting.\n", channel->channel);
1258 atomic_inc(&efx->rx_reset);
1259 efx_schedule_reset(efx,
1260 EFX_WORKAROUND_6555(efx) ?
1261 RESET_TYPE_RX_RECOVERY :
1262 RESET_TYPE_DISABLE);
1263 break;
1264 case FSE_BZ_RX_DSC_ERROR_EV:
1265 if (ev_sub_data < EFX_VI_BASE) {
1266 netif_err(efx, rx_err, efx->net_dev,
1267 "RX DMA Q %d reports descriptor fetch error."
1268 " RX Q %d is disabled.\n", ev_sub_data,
1269 ev_sub_data);
1270 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1271 } else
1272 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1273 break;
1274 case FSE_BZ_TX_DSC_ERROR_EV:
1275 if (ev_sub_data < EFX_VI_BASE) {
1276 netif_err(efx, tx_err, efx->net_dev,
1277 "TX DMA Q %d reports descriptor fetch error."
1278 " TX Q %d is disabled.\n", ev_sub_data,
1279 ev_sub_data);
1280 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1281 } else
1282 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1283 break;
1284 default:
1285 netif_vdbg(efx, hw, efx->net_dev,
1286 "channel %d unknown driver event code %d "
1287 "data %04x\n", channel->channel, ev_sub_code,
1288 ev_sub_data);
1289 break;
1290 }
1291 }
1292
1293 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1294 {
1295 struct efx_nic *efx = channel->efx;
1296 unsigned int read_ptr;
1297 efx_qword_t event, *p_event;
1298 int ev_code;
1299 int tx_packets = 0;
1300 int spent = 0;
1301
1302 read_ptr = channel->eventq_read_ptr;
1303
1304 for (;;) {
1305 p_event = efx_event(channel, read_ptr);
1306 event = *p_event;
1307
1308 if (!efx_event_present(&event))
1309 /* End of events */
1310 break;
1311
1312 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1313 "channel %d event is "EFX_QWORD_FMT"\n",
1314 channel->channel, EFX_QWORD_VAL(event));
1315
1316 /* Clear this event by marking it all ones */
1317 EFX_SET_QWORD(*p_event);
1318
1319 ++read_ptr;
1320
1321 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1322
1323 switch (ev_code) {
1324 case FSE_AZ_EV_CODE_RX_EV:
1325 efx_handle_rx_event(channel, &event);
1326 if (++spent == budget)
1327 goto out;
1328 break;
1329 case FSE_AZ_EV_CODE_TX_EV:
1330 tx_packets += efx_handle_tx_event(channel, &event);
1331 if (tx_packets > efx->txq_entries) {
1332 spent = budget;
1333 goto out;
1334 }
1335 break;
1336 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1337 efx_handle_generated_event(channel, &event);
1338 break;
1339 case FSE_AZ_EV_CODE_DRIVER_EV:
1340 efx_handle_driver_event(channel, &event);
1341 break;
1342 case FSE_CZ_EV_CODE_USER_EV:
1343 efx_sriov_event(channel, &event);
1344 break;
1345 case FSE_CZ_EV_CODE_MCDI_EV:
1346 efx_mcdi_process_event(channel, &event);
1347 break;
1348 case FSE_AZ_EV_CODE_GLOBAL_EV:
1349 if (efx->type->handle_global_event &&
1350 efx->type->handle_global_event(channel, &event))
1351 break;
1352 /* else fall through */
1353 default:
1354 netif_err(channel->efx, hw, channel->efx->net_dev,
1355 "channel %d unknown event type %d (data "
1356 EFX_QWORD_FMT ")\n", channel->channel,
1357 ev_code, EFX_QWORD_VAL(event));
1358 }
1359 }
1360
1361 out:
1362 channel->eventq_read_ptr = read_ptr;
1363 return spent;
1364 }
1365
1366 /* Check whether an event is present in the eventq at the current
1367 * read pointer. Only useful for self-test.
1368 */
1369 bool efx_nic_event_present(struct efx_channel *channel)
1370 {
1371 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1372 }
1373
1374 /* Allocate buffer table entries for event queue */
1375 int efx_nic_probe_eventq(struct efx_channel *channel)
1376 {
1377 struct efx_nic *efx = channel->efx;
1378 unsigned entries;
1379
1380 entries = channel->eventq_mask + 1;
1381 return efx_alloc_special_buffer(efx, &channel->eventq,
1382 entries * sizeof(efx_qword_t));
1383 }
1384
1385 void efx_nic_init_eventq(struct efx_channel *channel)
1386 {
1387 efx_oword_t reg;
1388 struct efx_nic *efx = channel->efx;
1389
1390 netif_dbg(efx, hw, efx->net_dev,
1391 "channel %d event queue in special buffers %d-%d\n",
1392 channel->channel, channel->eventq.index,
1393 channel->eventq.index + channel->eventq.entries - 1);
1394
1395 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1396 EFX_POPULATE_OWORD_3(reg,
1397 FRF_CZ_TIMER_Q_EN, 1,
1398 FRF_CZ_HOST_NOTIFY_MODE, 0,
1399 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1400 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1401 }
1402
1403 /* Pin event queue buffer */
1404 efx_init_special_buffer(efx, &channel->eventq);
1405
1406 /* Fill event queue with all ones (i.e. empty events) */
1407 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1408
1409 /* Push event queue to card */
1410 EFX_POPULATE_OWORD_3(reg,
1411 FRF_AZ_EVQ_EN, 1,
1412 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1413 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1414 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1415 channel->channel);
1416
1417 efx->type->push_irq_moderation(channel);
1418 }
1419
1420 void efx_nic_fini_eventq(struct efx_channel *channel)
1421 {
1422 efx_oword_t reg;
1423 struct efx_nic *efx = channel->efx;
1424
1425 /* Remove event queue from card */
1426 EFX_ZERO_OWORD(reg);
1427 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1428 channel->channel);
1429 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1430 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1431
1432 /* Unpin event queue */
1433 efx_fini_special_buffer(efx, &channel->eventq);
1434 }
1435
1436 /* Free buffers backing event queue */
1437 void efx_nic_remove_eventq(struct efx_channel *channel)
1438 {
1439 efx_free_special_buffer(channel->efx, &channel->eventq);
1440 }
1441
1442
1443 void efx_nic_event_test_start(struct efx_channel *channel)
1444 {
1445 channel->event_test_cpu = -1;
1446 smp_wmb();
1447 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1448 }
1449
1450 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1451 {
1452 efx_magic_event(efx_rx_queue_channel(rx_queue),
1453 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1454 }
1455
1456 /**************************************************************************
1457 *
1458 * Hardware interrupts
1459 * The hardware interrupt handler does very little work; all the event
1460 * queue processing is carried out by per-channel tasklets.
1461 *
1462 **************************************************************************/
1463
1464 /* Enable/disable/generate interrupts */
1465 static inline void efx_nic_interrupts(struct efx_nic *efx,
1466 bool enabled, bool force)
1467 {
1468 efx_oword_t int_en_reg_ker;
1469
1470 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1471 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1472 FRF_AZ_KER_INT_KER, force,
1473 FRF_AZ_DRV_INT_EN_KER, enabled);
1474 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1475 }
1476
1477 void efx_nic_enable_interrupts(struct efx_nic *efx)
1478 {
1479 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1480 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1481
1482 efx_nic_interrupts(efx, true, false);
1483 }
1484
1485 void efx_nic_disable_interrupts(struct efx_nic *efx)
1486 {
1487 /* Disable interrupts */
1488 efx_nic_interrupts(efx, false, false);
1489 }
1490
1491 /* Generate a test interrupt
1492 * Interrupt must already have been enabled, otherwise nasty things
1493 * may happen.
1494 */
1495 void efx_nic_irq_test_start(struct efx_nic *efx)
1496 {
1497 efx->last_irq_cpu = -1;
1498 smp_wmb();
1499 efx_nic_interrupts(efx, true, true);
1500 }
1501
1502 /* Process a fatal interrupt
1503 * Disable bus mastering ASAP and schedule a reset
1504 */
1505 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1506 {
1507 struct falcon_nic_data *nic_data = efx->nic_data;
1508 efx_oword_t *int_ker = efx->irq_status.addr;
1509 efx_oword_t fatal_intr;
1510 int error, mem_perr;
1511
1512 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1513 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1514
1515 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1516 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1517 EFX_OWORD_VAL(fatal_intr),
1518 error ? "disabling bus mastering" : "no recognised error");
1519
1520 /* If this is a memory parity error dump which blocks are offending */
1521 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1522 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1523 if (mem_perr) {
1524 efx_oword_t reg;
1525 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1526 netif_err(efx, hw, efx->net_dev,
1527 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1528 EFX_OWORD_VAL(reg));
1529 }
1530
1531 /* Disable both devices */
1532 pci_clear_master(efx->pci_dev);
1533 if (efx_nic_is_dual_func(efx))
1534 pci_clear_master(nic_data->pci_dev2);
1535 efx_nic_disable_interrupts(efx);
1536
1537 /* Count errors and reset or disable the NIC accordingly */
1538 if (efx->int_error_count == 0 ||
1539 time_after(jiffies, efx->int_error_expire)) {
1540 efx->int_error_count = 0;
1541 efx->int_error_expire =
1542 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1543 }
1544 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1545 netif_err(efx, hw, efx->net_dev,
1546 "SYSTEM ERROR - reset scheduled\n");
1547 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1548 } else {
1549 netif_err(efx, hw, efx->net_dev,
1550 "SYSTEM ERROR - max number of errors seen."
1551 "NIC will be disabled\n");
1552 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1553 }
1554
1555 return IRQ_HANDLED;
1556 }
1557
1558 /* Handle a legacy interrupt
1559 * Acknowledges the interrupt and schedule event queue processing.
1560 */
1561 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1562 {
1563 struct efx_nic *efx = dev_id;
1564 efx_oword_t *int_ker = efx->irq_status.addr;
1565 irqreturn_t result = IRQ_NONE;
1566 struct efx_channel *channel;
1567 efx_dword_t reg;
1568 u32 queues;
1569 int syserr;
1570
1571 /* Could this be ours? If interrupts are disabled then the
1572 * channel state may not be valid.
1573 */
1574 if (!efx->legacy_irq_enabled)
1575 return result;
1576
1577 /* Read the ISR which also ACKs the interrupts */
1578 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1579 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1580
1581 /* Handle non-event-queue sources */
1582 if (queues & (1U << efx->irq_level)) {
1583 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1584 if (unlikely(syserr))
1585 return efx_nic_fatal_interrupt(efx);
1586 efx->last_irq_cpu = raw_smp_processor_id();
1587 }
1588
1589 if (queues != 0) {
1590 if (EFX_WORKAROUND_15783(efx))
1591 efx->irq_zero_count = 0;
1592
1593 /* Schedule processing of any interrupting queues */
1594 efx_for_each_channel(channel, efx) {
1595 if (queues & 1)
1596 efx_schedule_channel_irq(channel);
1597 queues >>= 1;
1598 }
1599 result = IRQ_HANDLED;
1600
1601 } else if (EFX_WORKAROUND_15783(efx)) {
1602 efx_qword_t *event;
1603
1604 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1605 * because this might be a shared interrupt. */
1606 if (efx->irq_zero_count++ == 0)
1607 result = IRQ_HANDLED;
1608
1609 /* Ensure we schedule or rearm all event queues */
1610 efx_for_each_channel(channel, efx) {
1611 event = efx_event(channel, channel->eventq_read_ptr);
1612 if (efx_event_present(event))
1613 efx_schedule_channel_irq(channel);
1614 else
1615 efx_nic_eventq_read_ack(channel);
1616 }
1617 }
1618
1619 if (result == IRQ_HANDLED)
1620 netif_vdbg(efx, intr, efx->net_dev,
1621 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1622 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1623
1624 return result;
1625 }
1626
1627 /* Handle an MSI interrupt
1628 *
1629 * Handle an MSI hardware interrupt. This routine schedules event
1630 * queue processing. No interrupt acknowledgement cycle is necessary.
1631 * Also, we never need to check that the interrupt is for us, since
1632 * MSI interrupts cannot be shared.
1633 */
1634 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1635 {
1636 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1637 struct efx_nic *efx = channel->efx;
1638 efx_oword_t *int_ker = efx->irq_status.addr;
1639 int syserr;
1640
1641 netif_vdbg(efx, intr, efx->net_dev,
1642 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1643 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1644
1645 /* Handle non-event-queue sources */
1646 if (channel->channel == efx->irq_level) {
1647 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1648 if (unlikely(syserr))
1649 return efx_nic_fatal_interrupt(efx);
1650 efx->last_irq_cpu = raw_smp_processor_id();
1651 }
1652
1653 /* Schedule processing of the channel */
1654 efx_schedule_channel_irq(channel);
1655
1656 return IRQ_HANDLED;
1657 }
1658
1659
1660 /* Setup RSS indirection table.
1661 * This maps from the hash value of the packet to RXQ
1662 */
1663 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1664 {
1665 size_t i = 0;
1666 efx_dword_t dword;
1667
1668 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1669 return;
1670
1671 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1672 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1673
1674 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1675 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1676 efx->rx_indir_table[i]);
1677 efx_writed(efx, &dword,
1678 FR_BZ_RX_INDIRECTION_TBL +
1679 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1680 }
1681 }
1682
1683 /* Hook interrupt handler(s)
1684 * Try MSI and then legacy interrupts.
1685 */
1686 int efx_nic_init_interrupt(struct efx_nic *efx)
1687 {
1688 struct efx_channel *channel;
1689 int rc;
1690
1691 if (!EFX_INT_MODE_USE_MSI(efx)) {
1692 irq_handler_t handler;
1693 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1694 handler = efx_legacy_interrupt;
1695 else
1696 handler = falcon_legacy_interrupt_a1;
1697
1698 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1699 efx->name, efx);
1700 if (rc) {
1701 netif_err(efx, drv, efx->net_dev,
1702 "failed to hook legacy IRQ %d\n",
1703 efx->pci_dev->irq);
1704 goto fail1;
1705 }
1706 return 0;
1707 }
1708
1709 /* Hook MSI or MSI-X interrupt */
1710 efx_for_each_channel(channel, efx) {
1711 rc = request_irq(channel->irq, efx_msi_interrupt,
1712 IRQF_PROBE_SHARED, /* Not shared */
1713 efx->channel_name[channel->channel],
1714 &efx->channel[channel->channel]);
1715 if (rc) {
1716 netif_err(efx, drv, efx->net_dev,
1717 "failed to hook IRQ %d\n", channel->irq);
1718 goto fail2;
1719 }
1720 }
1721
1722 return 0;
1723
1724 fail2:
1725 efx_for_each_channel(channel, efx)
1726 free_irq(channel->irq, &efx->channel[channel->channel]);
1727 fail1:
1728 return rc;
1729 }
1730
1731 void efx_nic_fini_interrupt(struct efx_nic *efx)
1732 {
1733 struct efx_channel *channel;
1734 efx_oword_t reg;
1735
1736 /* Disable MSI/MSI-X interrupts */
1737 efx_for_each_channel(channel, efx) {
1738 if (channel->irq)
1739 free_irq(channel->irq, &efx->channel[channel->channel]);
1740 }
1741
1742 /* ACK legacy interrupt */
1743 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1744 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1745 else
1746 falcon_irq_ack_a1(efx);
1747
1748 /* Disable legacy interrupt */
1749 if (efx->legacy_irq)
1750 free_irq(efx->legacy_irq, efx);
1751 }
1752
1753 /* Looks at available SRAM resources and works out how many queues we
1754 * can support, and where things like descriptor caches should live.
1755 *
1756 * SRAM is split up as follows:
1757 * 0 buftbl entries for channels
1758 * efx->vf_buftbl_base buftbl entries for SR-IOV
1759 * efx->rx_dc_base RX descriptor caches
1760 * efx->tx_dc_base TX descriptor caches
1761 */
1762 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1763 {
1764 unsigned vi_count, buftbl_min;
1765
1766 /* Account for the buffer table entries backing the datapath channels
1767 * and the descriptor caches for those channels.
1768 */
1769 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1770 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1771 efx->n_channels * EFX_MAX_EVQ_SIZE)
1772 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1773 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1774
1775 #ifdef CONFIG_SFC_SRIOV
1776 if (efx_sriov_wanted(efx)) {
1777 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1778
1779 efx->vf_buftbl_base = buftbl_min;
1780
1781 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1782 vi_count = max(vi_count, EFX_VI_BASE);
1783 buftbl_free = (sram_lim_qw - buftbl_min -
1784 vi_count * vi_dc_entries);
1785
1786 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1787 efx_vf_size(efx));
1788 vf_limit = min(buftbl_free / entries_per_vf,
1789 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1790
1791 if (efx->vf_count > vf_limit) {
1792 netif_err(efx, probe, efx->net_dev,
1793 "Reducing VF count from from %d to %d\n",
1794 efx->vf_count, vf_limit);
1795 efx->vf_count = vf_limit;
1796 }
1797 vi_count += efx->vf_count * efx_vf_size(efx);
1798 }
1799 #endif
1800
1801 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1802 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1803 }
1804
1805 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1806 {
1807 efx_oword_t altera_build;
1808 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1809 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1810 }
1811
1812 void efx_nic_init_common(struct efx_nic *efx)
1813 {
1814 efx_oword_t temp;
1815
1816 /* Set positions of descriptor caches in SRAM. */
1817 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1818 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1819 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1820 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1821
1822 /* Set TX descriptor cache size. */
1823 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1824 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1825 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1826
1827 /* Set RX descriptor cache size. Set low watermark to size-8, as
1828 * this allows most efficient prefetching.
1829 */
1830 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1831 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1832 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1833 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1834 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1835
1836 /* Program INT_KER address */
1837 EFX_POPULATE_OWORD_2(temp,
1838 FRF_AZ_NORM_INT_VEC_DIS_KER,
1839 EFX_INT_MODE_USE_MSI(efx),
1840 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1841 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1842
1843 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1844 /* Use an interrupt level unused by event queues */
1845 efx->irq_level = 0x1f;
1846 else
1847 /* Use a valid MSI-X vector */
1848 efx->irq_level = 0;
1849
1850 /* Enable all the genuinely fatal interrupts. (They are still
1851 * masked by the overall interrupt mask, controlled by
1852 * falcon_interrupts()).
1853 *
1854 * Note: All other fatal interrupts are enabled
1855 */
1856 EFX_POPULATE_OWORD_3(temp,
1857 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1858 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1859 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1860 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1861 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1862 EFX_INVERT_OWORD(temp);
1863 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1864
1865 efx_nic_push_rx_indir_table(efx);
1866
1867 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1868 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1869 */
1870 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1871 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1872 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1873 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1874 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1875 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1876 /* Enable SW_EV to inherit in char driver - assume harmless here */
1877 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1878 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1879 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1880 /* Disable hardware watchdog which can misfire */
1881 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1882 /* Squash TX of packets of 16 bytes or less */
1883 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1884 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1885 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1886
1887 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1888 EFX_POPULATE_OWORD_4(temp,
1889 /* Default values */
1890 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1891 FRF_BZ_TX_PACE_SB_AF, 0xb,
1892 FRF_BZ_TX_PACE_FB_BASE, 0,
1893 /* Allow large pace values in the
1894 * fast bin. */
1895 FRF_BZ_TX_PACE_BIN_TH,
1896 FFE_BZ_TX_PACE_RESERVED);
1897 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1898 }
1899 }
1900
1901 /* Register dump */
1902
1903 #define REGISTER_REVISION_A 1
1904 #define REGISTER_REVISION_B 2
1905 #define REGISTER_REVISION_C 3
1906 #define REGISTER_REVISION_Z 3 /* latest revision */
1907
1908 struct efx_nic_reg {
1909 u32 offset:24;
1910 u32 min_revision:2, max_revision:2;
1911 };
1912
1913 #define REGISTER(name, min_rev, max_rev) { \
1914 FR_ ## min_rev ## max_rev ## _ ## name, \
1915 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1916 }
1917 #define REGISTER_AA(name) REGISTER(name, A, A)
1918 #define REGISTER_AB(name) REGISTER(name, A, B)
1919 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1920 #define REGISTER_BB(name) REGISTER(name, B, B)
1921 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1922 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1923
1924 static const struct efx_nic_reg efx_nic_regs[] = {
1925 REGISTER_AZ(ADR_REGION),
1926 REGISTER_AZ(INT_EN_KER),
1927 REGISTER_BZ(INT_EN_CHAR),
1928 REGISTER_AZ(INT_ADR_KER),
1929 REGISTER_BZ(INT_ADR_CHAR),
1930 /* INT_ACK_KER is WO */
1931 /* INT_ISR0 is RC */
1932 REGISTER_AZ(HW_INIT),
1933 REGISTER_CZ(USR_EV_CFG),
1934 REGISTER_AB(EE_SPI_HCMD),
1935 REGISTER_AB(EE_SPI_HADR),
1936 REGISTER_AB(EE_SPI_HDATA),
1937 REGISTER_AB(EE_BASE_PAGE),
1938 REGISTER_AB(EE_VPD_CFG0),
1939 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1940 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1941 /* PCIE_CORE_INDIRECT is indirect */
1942 REGISTER_AB(NIC_STAT),
1943 REGISTER_AB(GPIO_CTL),
1944 REGISTER_AB(GLB_CTL),
1945 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1946 REGISTER_BZ(DP_CTRL),
1947 REGISTER_AZ(MEM_STAT),
1948 REGISTER_AZ(CS_DEBUG),
1949 REGISTER_AZ(ALTERA_BUILD),
1950 REGISTER_AZ(CSR_SPARE),
1951 REGISTER_AB(PCIE_SD_CTL0123),
1952 REGISTER_AB(PCIE_SD_CTL45),
1953 REGISTER_AB(PCIE_PCS_CTL_STAT),
1954 /* DEBUG_DATA_OUT is not used */
1955 /* DRV_EV is WO */
1956 REGISTER_AZ(EVQ_CTL),
1957 REGISTER_AZ(EVQ_CNT1),
1958 REGISTER_AZ(EVQ_CNT2),
1959 REGISTER_AZ(BUF_TBL_CFG),
1960 REGISTER_AZ(SRM_RX_DC_CFG),
1961 REGISTER_AZ(SRM_TX_DC_CFG),
1962 REGISTER_AZ(SRM_CFG),
1963 /* BUF_TBL_UPD is WO */
1964 REGISTER_AZ(SRM_UPD_EVQ),
1965 REGISTER_AZ(SRAM_PARITY),
1966 REGISTER_AZ(RX_CFG),
1967 REGISTER_BZ(RX_FILTER_CTL),
1968 /* RX_FLUSH_DESCQ is WO */
1969 REGISTER_AZ(RX_DC_CFG),
1970 REGISTER_AZ(RX_DC_PF_WM),
1971 REGISTER_BZ(RX_RSS_TKEY),
1972 /* RX_NODESC_DROP is RC */
1973 REGISTER_AA(RX_SELF_RST),
1974 /* RX_DEBUG, RX_PUSH_DROP are not used */
1975 REGISTER_CZ(RX_RSS_IPV6_REG1),
1976 REGISTER_CZ(RX_RSS_IPV6_REG2),
1977 REGISTER_CZ(RX_RSS_IPV6_REG3),
1978 /* TX_FLUSH_DESCQ is WO */
1979 REGISTER_AZ(TX_DC_CFG),
1980 REGISTER_AA(TX_CHKSM_CFG),
1981 REGISTER_AZ(TX_CFG),
1982 /* TX_PUSH_DROP is not used */
1983 REGISTER_AZ(TX_RESERVED),
1984 REGISTER_BZ(TX_PACE),
1985 /* TX_PACE_DROP_QID is RC */
1986 REGISTER_BB(TX_VLAN),
1987 REGISTER_BZ(TX_IPFIL_PORTEN),
1988 REGISTER_AB(MD_TXD),
1989 REGISTER_AB(MD_RXD),
1990 REGISTER_AB(MD_CS),
1991 REGISTER_AB(MD_PHY_ADR),
1992 REGISTER_AB(MD_ID),
1993 /* MD_STAT is RC */
1994 REGISTER_AB(MAC_STAT_DMA),
1995 REGISTER_AB(MAC_CTRL),
1996 REGISTER_BB(GEN_MODE),
1997 REGISTER_AB(MAC_MC_HASH_REG0),
1998 REGISTER_AB(MAC_MC_HASH_REG1),
1999 REGISTER_AB(GM_CFG1),
2000 REGISTER_AB(GM_CFG2),
2001 /* GM_IPG and GM_HD are not used */
2002 REGISTER_AB(GM_MAX_FLEN),
2003 /* GM_TEST is not used */
2004 REGISTER_AB(GM_ADR1),
2005 REGISTER_AB(GM_ADR2),
2006 REGISTER_AB(GMF_CFG0),
2007 REGISTER_AB(GMF_CFG1),
2008 REGISTER_AB(GMF_CFG2),
2009 REGISTER_AB(GMF_CFG3),
2010 REGISTER_AB(GMF_CFG4),
2011 REGISTER_AB(GMF_CFG5),
2012 REGISTER_BB(TX_SRC_MAC_CTL),
2013 REGISTER_AB(XM_ADR_LO),
2014 REGISTER_AB(XM_ADR_HI),
2015 REGISTER_AB(XM_GLB_CFG),
2016 REGISTER_AB(XM_TX_CFG),
2017 REGISTER_AB(XM_RX_CFG),
2018 REGISTER_AB(XM_MGT_INT_MASK),
2019 REGISTER_AB(XM_FC),
2020 REGISTER_AB(XM_PAUSE_TIME),
2021 REGISTER_AB(XM_TX_PARAM),
2022 REGISTER_AB(XM_RX_PARAM),
2023 /* XM_MGT_INT_MSK (note no 'A') is RC */
2024 REGISTER_AB(XX_PWR_RST),
2025 REGISTER_AB(XX_SD_CTL),
2026 REGISTER_AB(XX_TXDRV_CTL),
2027 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
2028 /* XX_CORE_STAT is partly RC */
2029 };
2030
2031 struct efx_nic_reg_table {
2032 u32 offset:24;
2033 u32 min_revision:2, max_revision:2;
2034 u32 step:6, rows:21;
2035 };
2036
2037 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
2038 offset, \
2039 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
2040 step, rows \
2041 }
2042 #define REGISTER_TABLE(name, min_rev, max_rev) \
2043 REGISTER_TABLE_DIMENSIONS( \
2044 name, FR_ ## min_rev ## max_rev ## _ ## name, \
2045 min_rev, max_rev, \
2046 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
2047 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
2048 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
2049 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
2050 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
2051 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
2052 #define REGISTER_TABLE_BB_CZ(name) \
2053 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
2054 FR_BZ_ ## name ## _STEP, \
2055 FR_BB_ ## name ## _ROWS), \
2056 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
2057 FR_BZ_ ## name ## _STEP, \
2058 FR_CZ_ ## name ## _ROWS)
2059 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2060
2061 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2062 /* DRIVER is not used */
2063 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2064 REGISTER_TABLE_BB(TX_IPFIL_TBL),
2065 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2066 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2067 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2068 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2069 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2070 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2071 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2072 /* We can't reasonably read all of the buffer table (up to 8MB!).
2073 * However this driver will only use a few entries. Reading
2074 * 1K entries allows for some expansion of queue count and
2075 * size before we need to change the version. */
2076 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2077 A, A, 8, 1024),
2078 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2079 B, Z, 8, 1024),
2080 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2081 REGISTER_TABLE_BB_CZ(TIMER_TBL),
2082 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2083 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2084 /* TX_FILTER_TBL0 is huge and not used by this driver */
2085 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2086 REGISTER_TABLE_CZ(MC_TREG_SMEM),
2087 /* MSIX_PBA_TABLE is not mapped */
2088 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2089 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2090 };
2091
2092 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2093 {
2094 const struct efx_nic_reg *reg;
2095 const struct efx_nic_reg_table *table;
2096 size_t len = 0;
2097
2098 for (reg = efx_nic_regs;
2099 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2100 reg++)
2101 if (efx->type->revision >= reg->min_revision &&
2102 efx->type->revision <= reg->max_revision)
2103 len += sizeof(efx_oword_t);
2104
2105 for (table = efx_nic_reg_tables;
2106 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2107 table++)
2108 if (efx->type->revision >= table->min_revision &&
2109 efx->type->revision <= table->max_revision)
2110 len += table->rows * min_t(size_t, table->step, 16);
2111
2112 return len;
2113 }
2114
2115 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2116 {
2117 const struct efx_nic_reg *reg;
2118 const struct efx_nic_reg_table *table;
2119
2120 for (reg = efx_nic_regs;
2121 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2122 reg++) {
2123 if (efx->type->revision >= reg->min_revision &&
2124 efx->type->revision <= reg->max_revision) {
2125 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2126 buf += sizeof(efx_oword_t);
2127 }
2128 }
2129
2130 for (table = efx_nic_reg_tables;
2131 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2132 table++) {
2133 size_t size, i;
2134
2135 if (!(efx->type->revision >= table->min_revision &&
2136 efx->type->revision <= table->max_revision))
2137 continue;
2138
2139 size = min_t(size_t, table->step, 16);
2140
2141 for (i = 0; i < table->rows; i++) {
2142 switch (table->step) {
2143 case 4: /* 32-bit SRAM */
2144 efx_readd(efx, buf, table->offset + 4 * i);
2145 break;
2146 case 8: /* 64-bit SRAM */
2147 efx_sram_readq(efx,
2148 efx->membase + table->offset,
2149 buf, i);
2150 break;
2151 case 16: /* 128-bit-readable register */
2152 efx_reado_table(efx, buf, table->offset, i);
2153 break;
2154 case 32: /* 128-bit register, interleaved */
2155 efx_reado_table(efx, buf, table->offset, 2 * i);
2156 break;
2157 default:
2158 WARN_ON(1);
2159 return;
2160 }
2161 buf += size;
2162 }
2163 }
2164 }