]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/sfc/nic.c
Merge tag 'sound-3.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24
25 /**************************************************************************
26 *
27 * Configurable values
28 *
29 **************************************************************************
30 */
31
32 /* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
38 */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
48 */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
60
61 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
63
64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
68 efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
74 (_tx_queue)->queue)
75
76 static void efx_magic_event(struct efx_channel *channel, u32 magic);
77
78 /**************************************************************************
79 *
80 * Solarstorm hardware access
81 *
82 **************************************************************************/
83
84 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
85 unsigned int index)
86 {
87 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88 value, index);
89 }
90
91 /* Read the current event from the event queue */
92 static inline efx_qword_t *efx_event(struct efx_channel *channel,
93 unsigned int index)
94 {
95 return ((efx_qword_t *) (channel->eventq.addr)) +
96 (index & channel->eventq_mask);
97 }
98
99 /* See if an event is present
100 *
101 * We check both the high and low dword of the event for all ones. We
102 * wrote all ones when we cleared the event, and no valid event can
103 * have all ones in either its high or low dwords. This approach is
104 * robust against reordering.
105 *
106 * Note that using a single 64-bit comparison is incorrect; even
107 * though the CPU read will be atomic, the DMA write may not be.
108 */
109 static inline int efx_event_present(efx_qword_t *event)
110 {
111 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
112 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 }
114
115 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
116 const efx_oword_t *mask)
117 {
118 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
119 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 }
121
122 int efx_nic_test_registers(struct efx_nic *efx,
123 const struct efx_nic_register_test *regs,
124 size_t n_regs)
125 {
126 unsigned address = 0, i, j;
127 efx_oword_t mask, imask, original, reg, buf;
128
129 for (i = 0; i < n_regs; ++i) {
130 address = regs[i].address;
131 mask = imask = regs[i].mask;
132 EFX_INVERT_OWORD(imask);
133
134 efx_reado(efx, &original, address);
135
136 /* bit sweep on and off */
137 for (j = 0; j < 128; j++) {
138 if (!EFX_EXTRACT_OWORD32(mask, j, j))
139 continue;
140
141 /* Test this testable bit can be set in isolation */
142 EFX_AND_OWORD(reg, original, mask);
143 EFX_SET_OWORD32(reg, j, j, 1);
144
145 efx_writeo(efx, &reg, address);
146 efx_reado(efx, &buf, address);
147
148 if (efx_masked_compare_oword(&reg, &buf, &mask))
149 goto fail;
150
151 /* Test this testable bit can be cleared in isolation */
152 EFX_OR_OWORD(reg, original, mask);
153 EFX_SET_OWORD32(reg, j, j, 0);
154
155 efx_writeo(efx, &reg, address);
156 efx_reado(efx, &buf, address);
157
158 if (efx_masked_compare_oword(&reg, &buf, &mask))
159 goto fail;
160 }
161
162 efx_writeo(efx, &original, address);
163 }
164
165 return 0;
166
167 fail:
168 netif_err(efx, hw, efx->net_dev,
169 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
170 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
171 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
172 return -EIO;
173 }
174
175 /**************************************************************************
176 *
177 * Special buffer handling
178 * Special buffers are used for event queues and the TX and RX
179 * descriptor rings.
180 *
181 *************************************************************************/
182
183 /*
184 * Initialise a special buffer
185 *
186 * This will define a buffer (previously allocated via
187 * efx_alloc_special_buffer()) in the buffer table, allowing
188 * it to be used for event queues, descriptor rings etc.
189 */
190 static void
191 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
192 {
193 efx_qword_t buf_desc;
194 unsigned int index;
195 dma_addr_t dma_addr;
196 int i;
197
198 EFX_BUG_ON_PARANOID(!buffer->addr);
199
200 /* Write buffer descriptors to NIC */
201 for (i = 0; i < buffer->entries; i++) {
202 index = buffer->index + i;
203 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
204 netif_dbg(efx, probe, efx->net_dev,
205 "mapping special buffer %d at %llx\n",
206 index, (unsigned long long)dma_addr);
207 EFX_POPULATE_QWORD_3(buf_desc,
208 FRF_AZ_BUF_ADR_REGION, 0,
209 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
210 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
211 efx_write_buf_tbl(efx, &buf_desc, index);
212 }
213 }
214
215 /* Unmaps a buffer and clears the buffer table entries */
216 static void
217 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
218 {
219 efx_oword_t buf_tbl_upd;
220 unsigned int start = buffer->index;
221 unsigned int end = (buffer->index + buffer->entries - 1);
222
223 if (!buffer->entries)
224 return;
225
226 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
227 buffer->index, buffer->index + buffer->entries - 1);
228
229 EFX_POPULATE_OWORD_4(buf_tbl_upd,
230 FRF_AZ_BUF_UPD_CMD, 0,
231 FRF_AZ_BUF_CLR_CMD, 1,
232 FRF_AZ_BUF_CLR_END_ID, end,
233 FRF_AZ_BUF_CLR_START_ID, start);
234 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
235 }
236
237 /*
238 * Allocate a new special buffer
239 *
240 * This allocates memory for a new buffer, clears it and allocates a
241 * new buffer ID range. It does not write into the buffer table.
242 *
243 * This call will allocate 4KB buffers, since 8KB buffers can't be
244 * used for event queues and descriptor rings.
245 */
246 static int efx_alloc_special_buffer(struct efx_nic *efx,
247 struct efx_special_buffer *buffer,
248 unsigned int len)
249 {
250 len = ALIGN(len, EFX_BUF_SIZE);
251
252 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
253 &buffer->dma_addr, GFP_KERNEL);
254 if (!buffer->addr)
255 return -ENOMEM;
256 buffer->len = len;
257 buffer->entries = len / EFX_BUF_SIZE;
258 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
259
260 /* Select new buffer ID */
261 buffer->index = efx->next_buffer_table;
262 efx->next_buffer_table += buffer->entries;
263 #ifdef CONFIG_SFC_SRIOV
264 BUG_ON(efx_sriov_enabled(efx) &&
265 efx->vf_buftbl_base < efx->next_buffer_table);
266 #endif
267
268 netif_dbg(efx, probe, efx->net_dev,
269 "allocating special buffers %d-%d at %llx+%x "
270 "(virt %p phys %llx)\n", buffer->index,
271 buffer->index + buffer->entries - 1,
272 (u64)buffer->dma_addr, len,
273 buffer->addr, (u64)virt_to_phys(buffer->addr));
274
275 return 0;
276 }
277
278 static void
279 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280 {
281 if (!buffer->addr)
282 return;
283
284 netif_dbg(efx, hw, efx->net_dev,
285 "deallocating special buffers %d-%d at %llx+%x "
286 "(virt %p phys %llx)\n", buffer->index,
287 buffer->index + buffer->entries - 1,
288 (u64)buffer->dma_addr, buffer->len,
289 buffer->addr, (u64)virt_to_phys(buffer->addr));
290
291 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292 buffer->dma_addr);
293 buffer->addr = NULL;
294 buffer->entries = 0;
295 }
296
297 /**************************************************************************
298 *
299 * Generic buffer handling
300 * These buffers are used for interrupt status, MAC stats, etc.
301 *
302 **************************************************************************/
303
304 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305 unsigned int len)
306 {
307 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
308 &buffer->dma_addr, GFP_ATOMIC);
309 if (!buffer->addr)
310 return -ENOMEM;
311 buffer->len = len;
312 memset(buffer->addr, 0, len);
313 return 0;
314 }
315
316 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317 {
318 if (buffer->addr) {
319 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
320 buffer->addr, buffer->dma_addr);
321 buffer->addr = NULL;
322 }
323 }
324
325 /**************************************************************************
326 *
327 * TX path
328 *
329 **************************************************************************/
330
331 /* Returns a pointer to the specified transmit descriptor in the TX
332 * descriptor queue belonging to the specified channel.
333 */
334 static inline efx_qword_t *
335 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336 {
337 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
338 }
339
340 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342 {
343 unsigned write_ptr;
344 efx_dword_t reg;
345
346 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
347 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348 efx_writed_page(tx_queue->efx, &reg,
349 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350 }
351
352 /* Write pointer and first descriptor for TX descriptor ring */
353 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354 const efx_qword_t *txd)
355 {
356 unsigned write_ptr;
357 efx_oword_t reg;
358
359 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361
362 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364 FRF_AZ_TX_DESC_WPTR, write_ptr);
365 reg.qword[0] = *txd;
366 efx_writeo_page(tx_queue->efx, &reg,
367 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368 }
369
370 static inline bool
371 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372 {
373 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374
375 if (empty_read_count == 0)
376 return false;
377
378 tx_queue->empty_read_count = 0;
379 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
380 && tx_queue->write_count - write_count == 1;
381 }
382
383 /* For each entry inserted into the software descriptor ring, create a
384 * descriptor in the hardware TX descriptor ring (in host memory), and
385 * write a doorbell.
386 */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389
390 struct efx_tx_buffer *buffer;
391 efx_qword_t *txd;
392 unsigned write_ptr;
393 unsigned old_write_count = tx_queue->write_count;
394
395 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396
397 do {
398 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399 buffer = &tx_queue->buffer[write_ptr];
400 txd = efx_tx_desc(tx_queue, write_ptr);
401 ++tx_queue->write_count;
402
403 /* Create TX descriptor ring entry */
404 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
405 EFX_POPULATE_QWORD_4(*txd,
406 FSF_AZ_TX_KER_CONT,
407 buffer->flags & EFX_TX_BUF_CONT,
408 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409 FSF_AZ_TX_KER_BUF_REGION, 0,
410 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411 } while (tx_queue->write_count != tx_queue->insert_count);
412
413 wmb(); /* Ensure descriptors are written before they are fetched */
414
415 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416 txd = efx_tx_desc(tx_queue,
417 old_write_count & tx_queue->ptr_mask);
418 efx_push_tx_desc(tx_queue, txd);
419 ++tx_queue->pushes;
420 } else {
421 efx_notify_tx_desc(tx_queue);
422 }
423 }
424
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428 struct efx_nic *efx = tx_queue->efx;
429 unsigned entries;
430
431 entries = tx_queue->ptr_mask + 1;
432 return efx_alloc_special_buffer(efx, &tx_queue->txd,
433 entries * sizeof(efx_qword_t));
434 }
435
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438 struct efx_nic *efx = tx_queue->efx;
439 efx_oword_t reg;
440
441 /* Pin TX descriptor ring */
442 efx_init_special_buffer(efx, &tx_queue->txd);
443
444 /* Push TX descriptor ring to card */
445 EFX_POPULATE_OWORD_10(reg,
446 FRF_AZ_TX_DESCQ_EN, 1,
447 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450 FRF_AZ_TX_DESCQ_EVQ_ID,
451 tx_queue->channel->channel,
452 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454 FRF_AZ_TX_DESCQ_SIZE,
455 __ffs(tx_queue->txd.entries),
456 FRF_AZ_TX_DESCQ_TYPE, 0,
457 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458
459 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463 !csum);
464 }
465
466 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467 tx_queue->queue);
468
469 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470 /* Only 128 bits in this register */
471 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
472
473 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475 __clear_bit_le(tx_queue->queue, &reg);
476 else
477 __set_bit_le(tx_queue->queue, &reg);
478 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479 }
480
481 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482 EFX_POPULATE_OWORD_1(reg,
483 FRF_BZ_TX_PACE,
484 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485 FFE_BZ_TX_PACE_OFF :
486 FFE_BZ_TX_PACE_RESERVED);
487 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488 tx_queue->queue);
489 }
490 }
491
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494 struct efx_nic *efx = tx_queue->efx;
495 efx_oword_t tx_flush_descq;
496
497 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
498 atomic_set(&tx_queue->flush_outstanding, 1);
499
500 EFX_POPULATE_OWORD_2(tx_flush_descq,
501 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
502 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
503 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
504 }
505
506 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
507 {
508 struct efx_nic *efx = tx_queue->efx;
509 efx_oword_t tx_desc_ptr;
510
511 /* Remove TX descriptor ring from card */
512 EFX_ZERO_OWORD(tx_desc_ptr);
513 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
514 tx_queue->queue);
515
516 /* Unpin TX descriptor ring */
517 efx_fini_special_buffer(efx, &tx_queue->txd);
518 }
519
520 /* Free buffers backing TX queue */
521 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
522 {
523 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
524 }
525
526 /**************************************************************************
527 *
528 * RX path
529 *
530 **************************************************************************/
531
532 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
533 static inline efx_qword_t *
534 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
535 {
536 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
537 }
538
539 /* This creates an entry in the RX descriptor queue */
540 static inline void
541 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
542 {
543 struct efx_rx_buffer *rx_buf;
544 efx_qword_t *rxd;
545
546 rxd = efx_rx_desc(rx_queue, index);
547 rx_buf = efx_rx_buffer(rx_queue, index);
548 EFX_POPULATE_QWORD_3(*rxd,
549 FSF_AZ_RX_KER_BUF_SIZE,
550 rx_buf->len -
551 rx_queue->efx->type->rx_buffer_padding,
552 FSF_AZ_RX_KER_BUF_REGION, 0,
553 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
554 }
555
556 /* This writes to the RX_DESC_WPTR register for the specified receive
557 * descriptor ring.
558 */
559 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
560 {
561 struct efx_nic *efx = rx_queue->efx;
562 efx_dword_t reg;
563 unsigned write_ptr;
564
565 while (rx_queue->notified_count != rx_queue->added_count) {
566 efx_build_rx_desc(
567 rx_queue,
568 rx_queue->notified_count & rx_queue->ptr_mask);
569 ++rx_queue->notified_count;
570 }
571
572 wmb();
573 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
574 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
575 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
576 efx_rx_queue_index(rx_queue));
577 }
578
579 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
580 {
581 struct efx_nic *efx = rx_queue->efx;
582 unsigned entries;
583
584 entries = rx_queue->ptr_mask + 1;
585 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
586 entries * sizeof(efx_qword_t));
587 }
588
589 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
590 {
591 efx_oword_t rx_desc_ptr;
592 struct efx_nic *efx = rx_queue->efx;
593 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
594 bool iscsi_digest_en = is_b0;
595
596 netif_dbg(efx, hw, efx->net_dev,
597 "RX queue %d ring in special buffers %d-%d\n",
598 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
599 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
600
601 /* Pin RX descriptor ring */
602 efx_init_special_buffer(efx, &rx_queue->rxd);
603
604 /* Push RX descriptor ring to card */
605 EFX_POPULATE_OWORD_10(rx_desc_ptr,
606 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
607 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
608 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
609 FRF_AZ_RX_DESCQ_EVQ_ID,
610 efx_rx_queue_channel(rx_queue)->channel,
611 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
612 FRF_AZ_RX_DESCQ_LABEL,
613 efx_rx_queue_index(rx_queue),
614 FRF_AZ_RX_DESCQ_SIZE,
615 __ffs(rx_queue->rxd.entries),
616 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
617 /* For >=B0 this is scatter so disable */
618 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
619 FRF_AZ_RX_DESCQ_EN, 1);
620 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
621 efx_rx_queue_index(rx_queue));
622 }
623
624 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
625 {
626 struct efx_nic *efx = rx_queue->efx;
627 efx_oword_t rx_flush_descq;
628
629 EFX_POPULATE_OWORD_2(rx_flush_descq,
630 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
631 FRF_AZ_RX_FLUSH_DESCQ,
632 efx_rx_queue_index(rx_queue));
633 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
634 }
635
636 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
637 {
638 efx_oword_t rx_desc_ptr;
639 struct efx_nic *efx = rx_queue->efx;
640
641 /* Remove RX descriptor ring from card */
642 EFX_ZERO_OWORD(rx_desc_ptr);
643 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
644 efx_rx_queue_index(rx_queue));
645
646 /* Unpin RX descriptor ring */
647 efx_fini_special_buffer(efx, &rx_queue->rxd);
648 }
649
650 /* Free buffers backing RX queue */
651 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
652 {
653 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
654 }
655
656 /**************************************************************************
657 *
658 * Flush handling
659 *
660 **************************************************************************/
661
662 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
663 * or more RX flushes can be kicked off.
664 */
665 static bool efx_flush_wake(struct efx_nic *efx)
666 {
667 /* Ensure that all updates are visible to efx_nic_flush_queues() */
668 smp_mb();
669
670 return (atomic_read(&efx->drain_pending) == 0 ||
671 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
672 && atomic_read(&efx->rxq_flush_pending) > 0));
673 }
674
675 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
676 {
677 bool i = true;
678 efx_oword_t txd_ptr_tbl;
679 struct efx_channel *channel;
680 struct efx_tx_queue *tx_queue;
681
682 efx_for_each_channel(channel, efx) {
683 efx_for_each_channel_tx_queue(tx_queue, channel) {
684 efx_reado_table(efx, &txd_ptr_tbl,
685 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
686 if (EFX_OWORD_FIELD(txd_ptr_tbl,
687 FRF_AZ_TX_DESCQ_FLUSH) ||
688 EFX_OWORD_FIELD(txd_ptr_tbl,
689 FRF_AZ_TX_DESCQ_EN)) {
690 netif_dbg(efx, hw, efx->net_dev,
691 "flush did not complete on TXQ %d\n",
692 tx_queue->queue);
693 i = false;
694 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
695 1, 0)) {
696 /* The flush is complete, but we didn't
697 * receive a flush completion event
698 */
699 netif_dbg(efx, hw, efx->net_dev,
700 "flush complete on TXQ %d, so drain "
701 "the queue\n", tx_queue->queue);
702 /* Don't need to increment drain_pending as it
703 * has already been incremented for the queues
704 * which did not drain
705 */
706 efx_magic_event(channel,
707 EFX_CHANNEL_MAGIC_TX_DRAIN(
708 tx_queue));
709 }
710 }
711 }
712
713 return i;
714 }
715
716 /* Flush all the transmit queues, and continue flushing receive queues until
717 * they're all flushed. Wait for the DRAIN events to be recieved so that there
718 * are no more RX and TX events left on any channel. */
719 int efx_nic_flush_queues(struct efx_nic *efx)
720 {
721 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
722 struct efx_channel *channel;
723 struct efx_rx_queue *rx_queue;
724 struct efx_tx_queue *tx_queue;
725 int rc = 0;
726
727 efx->type->prepare_flush(efx);
728
729 efx_for_each_channel(channel, efx) {
730 efx_for_each_channel_tx_queue(tx_queue, channel) {
731 atomic_inc(&efx->drain_pending);
732 efx_flush_tx_queue(tx_queue);
733 }
734 efx_for_each_channel_rx_queue(rx_queue, channel) {
735 atomic_inc(&efx->drain_pending);
736 rx_queue->flush_pending = true;
737 atomic_inc(&efx->rxq_flush_pending);
738 }
739 }
740
741 while (timeout && atomic_read(&efx->drain_pending) > 0) {
742 /* If SRIOV is enabled, then offload receive queue flushing to
743 * the firmware (though we will still have to poll for
744 * completion). If that fails, fall back to the old scheme.
745 */
746 if (efx_sriov_enabled(efx)) {
747 rc = efx_mcdi_flush_rxqs(efx);
748 if (!rc)
749 goto wait;
750 }
751
752 /* The hardware supports four concurrent rx flushes, each of
753 * which may need to be retried if there is an outstanding
754 * descriptor fetch
755 */
756 efx_for_each_channel(channel, efx) {
757 efx_for_each_channel_rx_queue(rx_queue, channel) {
758 if (atomic_read(&efx->rxq_flush_outstanding) >=
759 EFX_RX_FLUSH_COUNT)
760 break;
761
762 if (rx_queue->flush_pending) {
763 rx_queue->flush_pending = false;
764 atomic_dec(&efx->rxq_flush_pending);
765 atomic_inc(&efx->rxq_flush_outstanding);
766 efx_flush_rx_queue(rx_queue);
767 }
768 }
769 }
770
771 wait:
772 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
773 timeout);
774 }
775
776 if (atomic_read(&efx->drain_pending) &&
777 !efx_check_tx_flush_complete(efx)) {
778 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
779 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
780 atomic_read(&efx->rxq_flush_outstanding),
781 atomic_read(&efx->rxq_flush_pending));
782 rc = -ETIMEDOUT;
783
784 atomic_set(&efx->drain_pending, 0);
785 atomic_set(&efx->rxq_flush_pending, 0);
786 atomic_set(&efx->rxq_flush_outstanding, 0);
787 }
788
789 efx->type->finish_flush(efx);
790
791 return rc;
792 }
793
794 /**************************************************************************
795 *
796 * Event queue processing
797 * Event queues are processed by per-channel tasklets.
798 *
799 **************************************************************************/
800
801 /* Update a channel's event queue's read pointer (RPTR) register
802 *
803 * This writes the EVQ_RPTR_REG register for the specified channel's
804 * event queue.
805 */
806 void efx_nic_eventq_read_ack(struct efx_channel *channel)
807 {
808 efx_dword_t reg;
809 struct efx_nic *efx = channel->efx;
810
811 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
812 channel->eventq_read_ptr & channel->eventq_mask);
813
814 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
815 * of 4 bytes, but it is really 16 bytes just like later revisions.
816 */
817 efx_writed(efx, &reg,
818 efx->type->evq_rptr_tbl_base +
819 FR_BZ_EVQ_RPTR_STEP * channel->channel);
820 }
821
822 /* Use HW to insert a SW defined event */
823 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
824 efx_qword_t *event)
825 {
826 efx_oword_t drv_ev_reg;
827
828 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
829 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
830 drv_ev_reg.u32[0] = event->u32[0];
831 drv_ev_reg.u32[1] = event->u32[1];
832 drv_ev_reg.u32[2] = 0;
833 drv_ev_reg.u32[3] = 0;
834 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
835 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
836 }
837
838 static void efx_magic_event(struct efx_channel *channel, u32 magic)
839 {
840 efx_qword_t event;
841
842 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
843 FSE_AZ_EV_CODE_DRV_GEN_EV,
844 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
845 efx_generate_event(channel->efx, channel->channel, &event);
846 }
847
848 /* Handle a transmit completion event
849 *
850 * The NIC batches TX completion events; the message we receive is of
851 * the form "complete all TX events up to this index".
852 */
853 static int
854 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
855 {
856 unsigned int tx_ev_desc_ptr;
857 unsigned int tx_ev_q_label;
858 struct efx_tx_queue *tx_queue;
859 struct efx_nic *efx = channel->efx;
860 int tx_packets = 0;
861
862 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
863 return 0;
864
865 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
866 /* Transmit completion */
867 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
868 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
869 tx_queue = efx_channel_get_tx_queue(
870 channel, tx_ev_q_label % EFX_TXQ_TYPES);
871 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
872 tx_queue->ptr_mask);
873 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
874 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
875 /* Rewrite the FIFO write pointer */
876 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
877 tx_queue = efx_channel_get_tx_queue(
878 channel, tx_ev_q_label % EFX_TXQ_TYPES);
879
880 netif_tx_lock(efx->net_dev);
881 efx_notify_tx_desc(tx_queue);
882 netif_tx_unlock(efx->net_dev);
883 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
884 EFX_WORKAROUND_10727(efx)) {
885 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
886 } else {
887 netif_err(efx, tx_err, efx->net_dev,
888 "channel %d unexpected TX event "
889 EFX_QWORD_FMT"\n", channel->channel,
890 EFX_QWORD_VAL(*event));
891 }
892
893 return tx_packets;
894 }
895
896 /* Detect errors included in the rx_evt_pkt_ok bit. */
897 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
898 const efx_qword_t *event)
899 {
900 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
901 struct efx_nic *efx = rx_queue->efx;
902 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
903 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
904 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
905 bool rx_ev_other_err, rx_ev_pause_frm;
906 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
907 unsigned rx_ev_pkt_type;
908
909 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
910 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
911 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
912 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
913 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
914 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
915 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
916 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
917 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
918 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
919 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
920 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
921 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
922 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
923 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
924
925 /* Every error apart from tobe_disc and pause_frm */
926 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
927 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
928 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
929
930 /* Count errors that are not in MAC stats. Ignore expected
931 * checksum errors during self-test. */
932 if (rx_ev_frm_trunc)
933 ++channel->n_rx_frm_trunc;
934 else if (rx_ev_tobe_disc)
935 ++channel->n_rx_tobe_disc;
936 else if (!efx->loopback_selftest) {
937 if (rx_ev_ip_hdr_chksum_err)
938 ++channel->n_rx_ip_hdr_chksum_err;
939 else if (rx_ev_tcp_udp_chksum_err)
940 ++channel->n_rx_tcp_udp_chksum_err;
941 }
942
943 /* TOBE_DISC is expected on unicast mismatches; don't print out an
944 * error message. FRM_TRUNC indicates RXDP dropped the packet due
945 * to a FIFO overflow.
946 */
947 #ifdef DEBUG
948 if (rx_ev_other_err && net_ratelimit()) {
949 netif_dbg(efx, rx_err, efx->net_dev,
950 " RX queue %d unexpected RX event "
951 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
952 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
953 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
954 rx_ev_ip_hdr_chksum_err ?
955 " [IP_HDR_CHKSUM_ERR]" : "",
956 rx_ev_tcp_udp_chksum_err ?
957 " [TCP_UDP_CHKSUM_ERR]" : "",
958 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
959 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
960 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
961 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
962 rx_ev_pause_frm ? " [PAUSE]" : "");
963 }
964 #endif
965
966 /* The frame must be discarded if any of these are true. */
967 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
968 rx_ev_tobe_disc | rx_ev_pause_frm) ?
969 EFX_RX_PKT_DISCARD : 0;
970 }
971
972 /* Handle receive events that are not in-order. */
973 static void
974 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
975 {
976 struct efx_nic *efx = rx_queue->efx;
977 unsigned expected, dropped;
978
979 expected = rx_queue->removed_count & rx_queue->ptr_mask;
980 dropped = (index - expected) & rx_queue->ptr_mask;
981 netif_info(efx, rx_err, efx->net_dev,
982 "dropped %d events (index=%d expected=%d)\n",
983 dropped, index, expected);
984
985 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
986 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
987 }
988
989 /* Handle a packet received event
990 *
991 * The NIC gives a "discard" flag if it's a unicast packet with the
992 * wrong destination address
993 * Also "is multicast" and "matches multicast filter" flags can be used to
994 * discard non-matching multicast packets.
995 */
996 static void
997 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
998 {
999 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1000 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1001 unsigned expected_ptr;
1002 bool rx_ev_pkt_ok;
1003 u16 flags;
1004 struct efx_rx_queue *rx_queue;
1005 struct efx_nic *efx = channel->efx;
1006
1007 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1008 return;
1009
1010 /* Basic packet information */
1011 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1012 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1013 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1014 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
1015 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
1016 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1017 channel->channel);
1018
1019 rx_queue = efx_channel_get_rx_queue(channel);
1020
1021 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1022 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1023 if (unlikely(rx_ev_desc_ptr != expected_ptr))
1024 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
1025
1026 if (likely(rx_ev_pkt_ok)) {
1027 /* If packet is marked as OK and packet type is TCP/IP or
1028 * UDP/IP, then we can rely on the hardware checksum.
1029 */
1030 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
1031 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
1032 EFX_RX_PKT_CSUMMED : 0;
1033 } else {
1034 flags = efx_handle_rx_not_ok(rx_queue, event);
1035 }
1036
1037 /* Detect multicast packets that didn't match the filter */
1038 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1039 if (rx_ev_mcast_pkt) {
1040 unsigned int rx_ev_mcast_hash_match =
1041 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1042
1043 if (unlikely(!rx_ev_mcast_hash_match)) {
1044 ++channel->n_rx_mcast_mismatch;
1045 flags |= EFX_RX_PKT_DISCARD;
1046 }
1047 }
1048
1049 channel->irq_mod_score += 2;
1050
1051 /* Handle received packet */
1052 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1053 }
1054
1055 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1056 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1057 * of all transmit completions.
1058 */
1059 static void
1060 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1061 {
1062 struct efx_tx_queue *tx_queue;
1063 int qid;
1064
1065 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1066 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1067 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1068 qid % EFX_TXQ_TYPES);
1069 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1070 efx_magic_event(tx_queue->channel,
1071 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1072 }
1073 }
1074 }
1075
1076 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1077 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1078 * the RX queue back to the mask of RX queues in need of flushing.
1079 */
1080 static void
1081 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1082 {
1083 struct efx_channel *channel;
1084 struct efx_rx_queue *rx_queue;
1085 int qid;
1086 bool failed;
1087
1088 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1089 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1090 if (qid >= efx->n_channels)
1091 return;
1092 channel = efx_get_channel(efx, qid);
1093 if (!efx_channel_has_rx_queue(channel))
1094 return;
1095 rx_queue = efx_channel_get_rx_queue(channel);
1096
1097 if (failed) {
1098 netif_info(efx, hw, efx->net_dev,
1099 "RXQ %d flush retry\n", qid);
1100 rx_queue->flush_pending = true;
1101 atomic_inc(&efx->rxq_flush_pending);
1102 } else {
1103 efx_magic_event(efx_rx_queue_channel(rx_queue),
1104 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1105 }
1106 atomic_dec(&efx->rxq_flush_outstanding);
1107 if (efx_flush_wake(efx))
1108 wake_up(&efx->flush_wq);
1109 }
1110
1111 static void
1112 efx_handle_drain_event(struct efx_channel *channel)
1113 {
1114 struct efx_nic *efx = channel->efx;
1115
1116 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1117 atomic_dec(&efx->drain_pending);
1118 if (efx_flush_wake(efx))
1119 wake_up(&efx->flush_wq);
1120 }
1121
1122 static void
1123 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1124 {
1125 struct efx_nic *efx = channel->efx;
1126 struct efx_rx_queue *rx_queue =
1127 efx_channel_has_rx_queue(channel) ?
1128 efx_channel_get_rx_queue(channel) : NULL;
1129 unsigned magic, code;
1130
1131 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1132 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1133
1134 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1135 channel->event_test_cpu = raw_smp_processor_id();
1136 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1137 /* The queue must be empty, so we won't receive any rx
1138 * events, so efx_process_channel() won't refill the
1139 * queue. Refill it here */
1140 efx_fast_push_rx_descriptors(rx_queue);
1141 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1142 rx_queue->enabled = false;
1143 efx_handle_drain_event(channel);
1144 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1145 efx_handle_drain_event(channel);
1146 } else {
1147 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1148 "generated event "EFX_QWORD_FMT"\n",
1149 channel->channel, EFX_QWORD_VAL(*event));
1150 }
1151 }
1152
1153 static void
1154 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1155 {
1156 struct efx_nic *efx = channel->efx;
1157 unsigned int ev_sub_code;
1158 unsigned int ev_sub_data;
1159
1160 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1161 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1162
1163 switch (ev_sub_code) {
1164 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1165 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1166 channel->channel, ev_sub_data);
1167 efx_handle_tx_flush_done(efx, event);
1168 efx_sriov_tx_flush_done(efx, event);
1169 break;
1170 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1171 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1172 channel->channel, ev_sub_data);
1173 efx_handle_rx_flush_done(efx, event);
1174 efx_sriov_rx_flush_done(efx, event);
1175 break;
1176 case FSE_AZ_EVQ_INIT_DONE_EV:
1177 netif_dbg(efx, hw, efx->net_dev,
1178 "channel %d EVQ %d initialised\n",
1179 channel->channel, ev_sub_data);
1180 break;
1181 case FSE_AZ_SRM_UPD_DONE_EV:
1182 netif_vdbg(efx, hw, efx->net_dev,
1183 "channel %d SRAM update done\n", channel->channel);
1184 break;
1185 case FSE_AZ_WAKE_UP_EV:
1186 netif_vdbg(efx, hw, efx->net_dev,
1187 "channel %d RXQ %d wakeup event\n",
1188 channel->channel, ev_sub_data);
1189 break;
1190 case FSE_AZ_TIMER_EV:
1191 netif_vdbg(efx, hw, efx->net_dev,
1192 "channel %d RX queue %d timer expired\n",
1193 channel->channel, ev_sub_data);
1194 break;
1195 case FSE_AA_RX_RECOVER_EV:
1196 netif_err(efx, rx_err, efx->net_dev,
1197 "channel %d seen DRIVER RX_RESET event. "
1198 "Resetting.\n", channel->channel);
1199 atomic_inc(&efx->rx_reset);
1200 efx_schedule_reset(efx,
1201 EFX_WORKAROUND_6555(efx) ?
1202 RESET_TYPE_RX_RECOVERY :
1203 RESET_TYPE_DISABLE);
1204 break;
1205 case FSE_BZ_RX_DSC_ERROR_EV:
1206 if (ev_sub_data < EFX_VI_BASE) {
1207 netif_err(efx, rx_err, efx->net_dev,
1208 "RX DMA Q %d reports descriptor fetch error."
1209 " RX Q %d is disabled.\n", ev_sub_data,
1210 ev_sub_data);
1211 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1212 } else
1213 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1214 break;
1215 case FSE_BZ_TX_DSC_ERROR_EV:
1216 if (ev_sub_data < EFX_VI_BASE) {
1217 netif_err(efx, tx_err, efx->net_dev,
1218 "TX DMA Q %d reports descriptor fetch error."
1219 " TX Q %d is disabled.\n", ev_sub_data,
1220 ev_sub_data);
1221 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1222 } else
1223 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1224 break;
1225 default:
1226 netif_vdbg(efx, hw, efx->net_dev,
1227 "channel %d unknown driver event code %d "
1228 "data %04x\n", channel->channel, ev_sub_code,
1229 ev_sub_data);
1230 break;
1231 }
1232 }
1233
1234 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1235 {
1236 struct efx_nic *efx = channel->efx;
1237 unsigned int read_ptr;
1238 efx_qword_t event, *p_event;
1239 int ev_code;
1240 int tx_packets = 0;
1241 int spent = 0;
1242
1243 read_ptr = channel->eventq_read_ptr;
1244
1245 for (;;) {
1246 p_event = efx_event(channel, read_ptr);
1247 event = *p_event;
1248
1249 if (!efx_event_present(&event))
1250 /* End of events */
1251 break;
1252
1253 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1254 "channel %d event is "EFX_QWORD_FMT"\n",
1255 channel->channel, EFX_QWORD_VAL(event));
1256
1257 /* Clear this event by marking it all ones */
1258 EFX_SET_QWORD(*p_event);
1259
1260 ++read_ptr;
1261
1262 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1263
1264 switch (ev_code) {
1265 case FSE_AZ_EV_CODE_RX_EV:
1266 efx_handle_rx_event(channel, &event);
1267 if (++spent == budget)
1268 goto out;
1269 break;
1270 case FSE_AZ_EV_CODE_TX_EV:
1271 tx_packets += efx_handle_tx_event(channel, &event);
1272 if (tx_packets > efx->txq_entries) {
1273 spent = budget;
1274 goto out;
1275 }
1276 break;
1277 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1278 efx_handle_generated_event(channel, &event);
1279 break;
1280 case FSE_AZ_EV_CODE_DRIVER_EV:
1281 efx_handle_driver_event(channel, &event);
1282 break;
1283 case FSE_CZ_EV_CODE_USER_EV:
1284 efx_sriov_event(channel, &event);
1285 break;
1286 case FSE_CZ_EV_CODE_MCDI_EV:
1287 efx_mcdi_process_event(channel, &event);
1288 break;
1289 case FSE_AZ_EV_CODE_GLOBAL_EV:
1290 if (efx->type->handle_global_event &&
1291 efx->type->handle_global_event(channel, &event))
1292 break;
1293 /* else fall through */
1294 default:
1295 netif_err(channel->efx, hw, channel->efx->net_dev,
1296 "channel %d unknown event type %d (data "
1297 EFX_QWORD_FMT ")\n", channel->channel,
1298 ev_code, EFX_QWORD_VAL(event));
1299 }
1300 }
1301
1302 out:
1303 channel->eventq_read_ptr = read_ptr;
1304 return spent;
1305 }
1306
1307 /* Check whether an event is present in the eventq at the current
1308 * read pointer. Only useful for self-test.
1309 */
1310 bool efx_nic_event_present(struct efx_channel *channel)
1311 {
1312 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1313 }
1314
1315 /* Allocate buffer table entries for event queue */
1316 int efx_nic_probe_eventq(struct efx_channel *channel)
1317 {
1318 struct efx_nic *efx = channel->efx;
1319 unsigned entries;
1320
1321 entries = channel->eventq_mask + 1;
1322 return efx_alloc_special_buffer(efx, &channel->eventq,
1323 entries * sizeof(efx_qword_t));
1324 }
1325
1326 void efx_nic_init_eventq(struct efx_channel *channel)
1327 {
1328 efx_oword_t reg;
1329 struct efx_nic *efx = channel->efx;
1330
1331 netif_dbg(efx, hw, efx->net_dev,
1332 "channel %d event queue in special buffers %d-%d\n",
1333 channel->channel, channel->eventq.index,
1334 channel->eventq.index + channel->eventq.entries - 1);
1335
1336 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1337 EFX_POPULATE_OWORD_3(reg,
1338 FRF_CZ_TIMER_Q_EN, 1,
1339 FRF_CZ_HOST_NOTIFY_MODE, 0,
1340 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1341 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1342 }
1343
1344 /* Pin event queue buffer */
1345 efx_init_special_buffer(efx, &channel->eventq);
1346
1347 /* Fill event queue with all ones (i.e. empty events) */
1348 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1349
1350 /* Push event queue to card */
1351 EFX_POPULATE_OWORD_3(reg,
1352 FRF_AZ_EVQ_EN, 1,
1353 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1354 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1355 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1356 channel->channel);
1357
1358 efx->type->push_irq_moderation(channel);
1359 }
1360
1361 void efx_nic_fini_eventq(struct efx_channel *channel)
1362 {
1363 efx_oword_t reg;
1364 struct efx_nic *efx = channel->efx;
1365
1366 /* Remove event queue from card */
1367 EFX_ZERO_OWORD(reg);
1368 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1369 channel->channel);
1370 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1371 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1372
1373 /* Unpin event queue */
1374 efx_fini_special_buffer(efx, &channel->eventq);
1375 }
1376
1377 /* Free buffers backing event queue */
1378 void efx_nic_remove_eventq(struct efx_channel *channel)
1379 {
1380 efx_free_special_buffer(channel->efx, &channel->eventq);
1381 }
1382
1383
1384 void efx_nic_event_test_start(struct efx_channel *channel)
1385 {
1386 channel->event_test_cpu = -1;
1387 smp_wmb();
1388 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1389 }
1390
1391 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1392 {
1393 efx_magic_event(efx_rx_queue_channel(rx_queue),
1394 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1395 }
1396
1397 /**************************************************************************
1398 *
1399 * Hardware interrupts
1400 * The hardware interrupt handler does very little work; all the event
1401 * queue processing is carried out by per-channel tasklets.
1402 *
1403 **************************************************************************/
1404
1405 /* Enable/disable/generate interrupts */
1406 static inline void efx_nic_interrupts(struct efx_nic *efx,
1407 bool enabled, bool force)
1408 {
1409 efx_oword_t int_en_reg_ker;
1410
1411 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1412 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413 FRF_AZ_KER_INT_KER, force,
1414 FRF_AZ_DRV_INT_EN_KER, enabled);
1415 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1416 }
1417
1418 void efx_nic_enable_interrupts(struct efx_nic *efx)
1419 {
1420 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1421 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1422
1423 efx_nic_interrupts(efx, true, false);
1424 }
1425
1426 void efx_nic_disable_interrupts(struct efx_nic *efx)
1427 {
1428 /* Disable interrupts */
1429 efx_nic_interrupts(efx, false, false);
1430 }
1431
1432 /* Generate a test interrupt
1433 * Interrupt must already have been enabled, otherwise nasty things
1434 * may happen.
1435 */
1436 void efx_nic_irq_test_start(struct efx_nic *efx)
1437 {
1438 efx->last_irq_cpu = -1;
1439 smp_wmb();
1440 efx_nic_interrupts(efx, true, true);
1441 }
1442
1443 /* Process a fatal interrupt
1444 * Disable bus mastering ASAP and schedule a reset
1445 */
1446 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1447 {
1448 struct falcon_nic_data *nic_data = efx->nic_data;
1449 efx_oword_t *int_ker = efx->irq_status.addr;
1450 efx_oword_t fatal_intr;
1451 int error, mem_perr;
1452
1453 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1454 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1455
1456 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1457 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1458 EFX_OWORD_VAL(fatal_intr),
1459 error ? "disabling bus mastering" : "no recognised error");
1460
1461 /* If this is a memory parity error dump which blocks are offending */
1462 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1463 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1464 if (mem_perr) {
1465 efx_oword_t reg;
1466 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1467 netif_err(efx, hw, efx->net_dev,
1468 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1469 EFX_OWORD_VAL(reg));
1470 }
1471
1472 /* Disable both devices */
1473 pci_clear_master(efx->pci_dev);
1474 if (efx_nic_is_dual_func(efx))
1475 pci_clear_master(nic_data->pci_dev2);
1476 efx_nic_disable_interrupts(efx);
1477
1478 /* Count errors and reset or disable the NIC accordingly */
1479 if (efx->int_error_count == 0 ||
1480 time_after(jiffies, efx->int_error_expire)) {
1481 efx->int_error_count = 0;
1482 efx->int_error_expire =
1483 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1484 }
1485 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1486 netif_err(efx, hw, efx->net_dev,
1487 "SYSTEM ERROR - reset scheduled\n");
1488 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1489 } else {
1490 netif_err(efx, hw, efx->net_dev,
1491 "SYSTEM ERROR - max number of errors seen."
1492 "NIC will be disabled\n");
1493 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1494 }
1495
1496 return IRQ_HANDLED;
1497 }
1498
1499 /* Handle a legacy interrupt
1500 * Acknowledges the interrupt and schedule event queue processing.
1501 */
1502 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1503 {
1504 struct efx_nic *efx = dev_id;
1505 efx_oword_t *int_ker = efx->irq_status.addr;
1506 irqreturn_t result = IRQ_NONE;
1507 struct efx_channel *channel;
1508 efx_dword_t reg;
1509 u32 queues;
1510 int syserr;
1511
1512 /* Could this be ours? If interrupts are disabled then the
1513 * channel state may not be valid.
1514 */
1515 if (!efx->legacy_irq_enabled)
1516 return result;
1517
1518 /* Read the ISR which also ACKs the interrupts */
1519 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1520 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1521
1522 /* Handle non-event-queue sources */
1523 if (queues & (1U << efx->irq_level)) {
1524 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1525 if (unlikely(syserr))
1526 return efx_nic_fatal_interrupt(efx);
1527 efx->last_irq_cpu = raw_smp_processor_id();
1528 }
1529
1530 if (queues != 0) {
1531 if (EFX_WORKAROUND_15783(efx))
1532 efx->irq_zero_count = 0;
1533
1534 /* Schedule processing of any interrupting queues */
1535 efx_for_each_channel(channel, efx) {
1536 if (queues & 1)
1537 efx_schedule_channel_irq(channel);
1538 queues >>= 1;
1539 }
1540 result = IRQ_HANDLED;
1541
1542 } else if (EFX_WORKAROUND_15783(efx)) {
1543 efx_qword_t *event;
1544
1545 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1546 * because this might be a shared interrupt. */
1547 if (efx->irq_zero_count++ == 0)
1548 result = IRQ_HANDLED;
1549
1550 /* Ensure we schedule or rearm all event queues */
1551 efx_for_each_channel(channel, efx) {
1552 event = efx_event(channel, channel->eventq_read_ptr);
1553 if (efx_event_present(event))
1554 efx_schedule_channel_irq(channel);
1555 else
1556 efx_nic_eventq_read_ack(channel);
1557 }
1558 }
1559
1560 if (result == IRQ_HANDLED)
1561 netif_vdbg(efx, intr, efx->net_dev,
1562 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1563 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1564
1565 return result;
1566 }
1567
1568 /* Handle an MSI interrupt
1569 *
1570 * Handle an MSI hardware interrupt. This routine schedules event
1571 * queue processing. No interrupt acknowledgement cycle is necessary.
1572 * Also, we never need to check that the interrupt is for us, since
1573 * MSI interrupts cannot be shared.
1574 */
1575 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1576 {
1577 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1578 struct efx_nic *efx = channel->efx;
1579 efx_oword_t *int_ker = efx->irq_status.addr;
1580 int syserr;
1581
1582 netif_vdbg(efx, intr, efx->net_dev,
1583 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1584 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1585
1586 /* Handle non-event-queue sources */
1587 if (channel->channel == efx->irq_level) {
1588 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1589 if (unlikely(syserr))
1590 return efx_nic_fatal_interrupt(efx);
1591 efx->last_irq_cpu = raw_smp_processor_id();
1592 }
1593
1594 /* Schedule processing of the channel */
1595 efx_schedule_channel_irq(channel);
1596
1597 return IRQ_HANDLED;
1598 }
1599
1600
1601 /* Setup RSS indirection table.
1602 * This maps from the hash value of the packet to RXQ
1603 */
1604 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1605 {
1606 size_t i = 0;
1607 efx_dword_t dword;
1608
1609 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1610 return;
1611
1612 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1613 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1614
1615 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1616 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1617 efx->rx_indir_table[i]);
1618 efx_writed(efx, &dword,
1619 FR_BZ_RX_INDIRECTION_TBL +
1620 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1621 }
1622 }
1623
1624 /* Hook interrupt handler(s)
1625 * Try MSI and then legacy interrupts.
1626 */
1627 int efx_nic_init_interrupt(struct efx_nic *efx)
1628 {
1629 struct efx_channel *channel;
1630 int rc;
1631
1632 if (!EFX_INT_MODE_USE_MSI(efx)) {
1633 irq_handler_t handler;
1634 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1635 handler = efx_legacy_interrupt;
1636 else
1637 handler = falcon_legacy_interrupt_a1;
1638
1639 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1640 efx->name, efx);
1641 if (rc) {
1642 netif_err(efx, drv, efx->net_dev,
1643 "failed to hook legacy IRQ %d\n",
1644 efx->pci_dev->irq);
1645 goto fail1;
1646 }
1647 return 0;
1648 }
1649
1650 /* Hook MSI or MSI-X interrupt */
1651 efx_for_each_channel(channel, efx) {
1652 rc = request_irq(channel->irq, efx_msi_interrupt,
1653 IRQF_PROBE_SHARED, /* Not shared */
1654 efx->channel_name[channel->channel],
1655 &efx->channel[channel->channel]);
1656 if (rc) {
1657 netif_err(efx, drv, efx->net_dev,
1658 "failed to hook IRQ %d\n", channel->irq);
1659 goto fail2;
1660 }
1661 }
1662
1663 return 0;
1664
1665 fail2:
1666 efx_for_each_channel(channel, efx)
1667 free_irq(channel->irq, &efx->channel[channel->channel]);
1668 fail1:
1669 return rc;
1670 }
1671
1672 void efx_nic_fini_interrupt(struct efx_nic *efx)
1673 {
1674 struct efx_channel *channel;
1675 efx_oword_t reg;
1676
1677 /* Disable MSI/MSI-X interrupts */
1678 efx_for_each_channel(channel, efx) {
1679 if (channel->irq)
1680 free_irq(channel->irq, &efx->channel[channel->channel]);
1681 }
1682
1683 /* ACK legacy interrupt */
1684 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1685 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1686 else
1687 falcon_irq_ack_a1(efx);
1688
1689 /* Disable legacy interrupt */
1690 if (efx->legacy_irq)
1691 free_irq(efx->legacy_irq, efx);
1692 }
1693
1694 /* Looks at available SRAM resources and works out how many queues we
1695 * can support, and where things like descriptor caches should live.
1696 *
1697 * SRAM is split up as follows:
1698 * 0 buftbl entries for channels
1699 * efx->vf_buftbl_base buftbl entries for SR-IOV
1700 * efx->rx_dc_base RX descriptor caches
1701 * efx->tx_dc_base TX descriptor caches
1702 */
1703 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1704 {
1705 unsigned vi_count, buftbl_min;
1706
1707 /* Account for the buffer table entries backing the datapath channels
1708 * and the descriptor caches for those channels.
1709 */
1710 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1711 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1712 efx->n_channels * EFX_MAX_EVQ_SIZE)
1713 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1714 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1715
1716 #ifdef CONFIG_SFC_SRIOV
1717 if (efx_sriov_wanted(efx)) {
1718 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1719
1720 efx->vf_buftbl_base = buftbl_min;
1721
1722 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1723 vi_count = max(vi_count, EFX_VI_BASE);
1724 buftbl_free = (sram_lim_qw - buftbl_min -
1725 vi_count * vi_dc_entries);
1726
1727 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1728 efx_vf_size(efx));
1729 vf_limit = min(buftbl_free / entries_per_vf,
1730 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1731
1732 if (efx->vf_count > vf_limit) {
1733 netif_err(efx, probe, efx->net_dev,
1734 "Reducing VF count from from %d to %d\n",
1735 efx->vf_count, vf_limit);
1736 efx->vf_count = vf_limit;
1737 }
1738 vi_count += efx->vf_count * efx_vf_size(efx);
1739 }
1740 #endif
1741
1742 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1743 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1744 }
1745
1746 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1747 {
1748 efx_oword_t altera_build;
1749 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1750 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1751 }
1752
1753 void efx_nic_init_common(struct efx_nic *efx)
1754 {
1755 efx_oword_t temp;
1756
1757 /* Set positions of descriptor caches in SRAM. */
1758 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1759 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1760 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1761 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1762
1763 /* Set TX descriptor cache size. */
1764 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1765 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1766 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1767
1768 /* Set RX descriptor cache size. Set low watermark to size-8, as
1769 * this allows most efficient prefetching.
1770 */
1771 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1772 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1773 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1774 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1775 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1776
1777 /* Program INT_KER address */
1778 EFX_POPULATE_OWORD_2(temp,
1779 FRF_AZ_NORM_INT_VEC_DIS_KER,
1780 EFX_INT_MODE_USE_MSI(efx),
1781 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1782 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1783
1784 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1785 /* Use an interrupt level unused by event queues */
1786 efx->irq_level = 0x1f;
1787 else
1788 /* Use a valid MSI-X vector */
1789 efx->irq_level = 0;
1790
1791 /* Enable all the genuinely fatal interrupts. (They are still
1792 * masked by the overall interrupt mask, controlled by
1793 * falcon_interrupts()).
1794 *
1795 * Note: All other fatal interrupts are enabled
1796 */
1797 EFX_POPULATE_OWORD_3(temp,
1798 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1799 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1800 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1801 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1802 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1803 EFX_INVERT_OWORD(temp);
1804 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1805
1806 efx_nic_push_rx_indir_table(efx);
1807
1808 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1809 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1810 */
1811 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1812 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1813 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1814 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1815 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1816 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1817 /* Enable SW_EV to inherit in char driver - assume harmless here */
1818 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1819 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1820 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1821 /* Disable hardware watchdog which can misfire */
1822 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1823 /* Squash TX of packets of 16 bytes or less */
1824 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1825 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1826 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1827
1828 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1829 EFX_POPULATE_OWORD_4(temp,
1830 /* Default values */
1831 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1832 FRF_BZ_TX_PACE_SB_AF, 0xb,
1833 FRF_BZ_TX_PACE_FB_BASE, 0,
1834 /* Allow large pace values in the
1835 * fast bin. */
1836 FRF_BZ_TX_PACE_BIN_TH,
1837 FFE_BZ_TX_PACE_RESERVED);
1838 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1839 }
1840 }
1841
1842 /* Register dump */
1843
1844 #define REGISTER_REVISION_A 1
1845 #define REGISTER_REVISION_B 2
1846 #define REGISTER_REVISION_C 3
1847 #define REGISTER_REVISION_Z 3 /* latest revision */
1848
1849 struct efx_nic_reg {
1850 u32 offset:24;
1851 u32 min_revision:2, max_revision:2;
1852 };
1853
1854 #define REGISTER(name, min_rev, max_rev) { \
1855 FR_ ## min_rev ## max_rev ## _ ## name, \
1856 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1857 }
1858 #define REGISTER_AA(name) REGISTER(name, A, A)
1859 #define REGISTER_AB(name) REGISTER(name, A, B)
1860 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1861 #define REGISTER_BB(name) REGISTER(name, B, B)
1862 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1863 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1864
1865 static const struct efx_nic_reg efx_nic_regs[] = {
1866 REGISTER_AZ(ADR_REGION),
1867 REGISTER_AZ(INT_EN_KER),
1868 REGISTER_BZ(INT_EN_CHAR),
1869 REGISTER_AZ(INT_ADR_KER),
1870 REGISTER_BZ(INT_ADR_CHAR),
1871 /* INT_ACK_KER is WO */
1872 /* INT_ISR0 is RC */
1873 REGISTER_AZ(HW_INIT),
1874 REGISTER_CZ(USR_EV_CFG),
1875 REGISTER_AB(EE_SPI_HCMD),
1876 REGISTER_AB(EE_SPI_HADR),
1877 REGISTER_AB(EE_SPI_HDATA),
1878 REGISTER_AB(EE_BASE_PAGE),
1879 REGISTER_AB(EE_VPD_CFG0),
1880 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1881 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1882 /* PCIE_CORE_INDIRECT is indirect */
1883 REGISTER_AB(NIC_STAT),
1884 REGISTER_AB(GPIO_CTL),
1885 REGISTER_AB(GLB_CTL),
1886 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1887 REGISTER_BZ(DP_CTRL),
1888 REGISTER_AZ(MEM_STAT),
1889 REGISTER_AZ(CS_DEBUG),
1890 REGISTER_AZ(ALTERA_BUILD),
1891 REGISTER_AZ(CSR_SPARE),
1892 REGISTER_AB(PCIE_SD_CTL0123),
1893 REGISTER_AB(PCIE_SD_CTL45),
1894 REGISTER_AB(PCIE_PCS_CTL_STAT),
1895 /* DEBUG_DATA_OUT is not used */
1896 /* DRV_EV is WO */
1897 REGISTER_AZ(EVQ_CTL),
1898 REGISTER_AZ(EVQ_CNT1),
1899 REGISTER_AZ(EVQ_CNT2),
1900 REGISTER_AZ(BUF_TBL_CFG),
1901 REGISTER_AZ(SRM_RX_DC_CFG),
1902 REGISTER_AZ(SRM_TX_DC_CFG),
1903 REGISTER_AZ(SRM_CFG),
1904 /* BUF_TBL_UPD is WO */
1905 REGISTER_AZ(SRM_UPD_EVQ),
1906 REGISTER_AZ(SRAM_PARITY),
1907 REGISTER_AZ(RX_CFG),
1908 REGISTER_BZ(RX_FILTER_CTL),
1909 /* RX_FLUSH_DESCQ is WO */
1910 REGISTER_AZ(RX_DC_CFG),
1911 REGISTER_AZ(RX_DC_PF_WM),
1912 REGISTER_BZ(RX_RSS_TKEY),
1913 /* RX_NODESC_DROP is RC */
1914 REGISTER_AA(RX_SELF_RST),
1915 /* RX_DEBUG, RX_PUSH_DROP are not used */
1916 REGISTER_CZ(RX_RSS_IPV6_REG1),
1917 REGISTER_CZ(RX_RSS_IPV6_REG2),
1918 REGISTER_CZ(RX_RSS_IPV6_REG3),
1919 /* TX_FLUSH_DESCQ is WO */
1920 REGISTER_AZ(TX_DC_CFG),
1921 REGISTER_AA(TX_CHKSM_CFG),
1922 REGISTER_AZ(TX_CFG),
1923 /* TX_PUSH_DROP is not used */
1924 REGISTER_AZ(TX_RESERVED),
1925 REGISTER_BZ(TX_PACE),
1926 /* TX_PACE_DROP_QID is RC */
1927 REGISTER_BB(TX_VLAN),
1928 REGISTER_BZ(TX_IPFIL_PORTEN),
1929 REGISTER_AB(MD_TXD),
1930 REGISTER_AB(MD_RXD),
1931 REGISTER_AB(MD_CS),
1932 REGISTER_AB(MD_PHY_ADR),
1933 REGISTER_AB(MD_ID),
1934 /* MD_STAT is RC */
1935 REGISTER_AB(MAC_STAT_DMA),
1936 REGISTER_AB(MAC_CTRL),
1937 REGISTER_BB(GEN_MODE),
1938 REGISTER_AB(MAC_MC_HASH_REG0),
1939 REGISTER_AB(MAC_MC_HASH_REG1),
1940 REGISTER_AB(GM_CFG1),
1941 REGISTER_AB(GM_CFG2),
1942 /* GM_IPG and GM_HD are not used */
1943 REGISTER_AB(GM_MAX_FLEN),
1944 /* GM_TEST is not used */
1945 REGISTER_AB(GM_ADR1),
1946 REGISTER_AB(GM_ADR2),
1947 REGISTER_AB(GMF_CFG0),
1948 REGISTER_AB(GMF_CFG1),
1949 REGISTER_AB(GMF_CFG2),
1950 REGISTER_AB(GMF_CFG3),
1951 REGISTER_AB(GMF_CFG4),
1952 REGISTER_AB(GMF_CFG5),
1953 REGISTER_BB(TX_SRC_MAC_CTL),
1954 REGISTER_AB(XM_ADR_LO),
1955 REGISTER_AB(XM_ADR_HI),
1956 REGISTER_AB(XM_GLB_CFG),
1957 REGISTER_AB(XM_TX_CFG),
1958 REGISTER_AB(XM_RX_CFG),
1959 REGISTER_AB(XM_MGT_INT_MASK),
1960 REGISTER_AB(XM_FC),
1961 REGISTER_AB(XM_PAUSE_TIME),
1962 REGISTER_AB(XM_TX_PARAM),
1963 REGISTER_AB(XM_RX_PARAM),
1964 /* XM_MGT_INT_MSK (note no 'A') is RC */
1965 REGISTER_AB(XX_PWR_RST),
1966 REGISTER_AB(XX_SD_CTL),
1967 REGISTER_AB(XX_TXDRV_CTL),
1968 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1969 /* XX_CORE_STAT is partly RC */
1970 };
1971
1972 struct efx_nic_reg_table {
1973 u32 offset:24;
1974 u32 min_revision:2, max_revision:2;
1975 u32 step:6, rows:21;
1976 };
1977
1978 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1979 offset, \
1980 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1981 step, rows \
1982 }
1983 #define REGISTER_TABLE(name, min_rev, max_rev) \
1984 REGISTER_TABLE_DIMENSIONS( \
1985 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1986 min_rev, max_rev, \
1987 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1988 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1989 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1990 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1991 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1992 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1993 #define REGISTER_TABLE_BB_CZ(name) \
1994 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1995 FR_BZ_ ## name ## _STEP, \
1996 FR_BB_ ## name ## _ROWS), \
1997 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1998 FR_BZ_ ## name ## _STEP, \
1999 FR_CZ_ ## name ## _ROWS)
2000 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2001
2002 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2003 /* DRIVER is not used */
2004 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2005 REGISTER_TABLE_BB(TX_IPFIL_TBL),
2006 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2007 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2008 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2009 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2010 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2011 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2012 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2013 /* We can't reasonably read all of the buffer table (up to 8MB!).
2014 * However this driver will only use a few entries. Reading
2015 * 1K entries allows for some expansion of queue count and
2016 * size before we need to change the version. */
2017 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2018 A, A, 8, 1024),
2019 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2020 B, Z, 8, 1024),
2021 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2022 REGISTER_TABLE_BB_CZ(TIMER_TBL),
2023 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2024 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2025 /* TX_FILTER_TBL0 is huge and not used by this driver */
2026 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2027 REGISTER_TABLE_CZ(MC_TREG_SMEM),
2028 /* MSIX_PBA_TABLE is not mapped */
2029 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2030 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2031 };
2032
2033 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2034 {
2035 const struct efx_nic_reg *reg;
2036 const struct efx_nic_reg_table *table;
2037 size_t len = 0;
2038
2039 for (reg = efx_nic_regs;
2040 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2041 reg++)
2042 if (efx->type->revision >= reg->min_revision &&
2043 efx->type->revision <= reg->max_revision)
2044 len += sizeof(efx_oword_t);
2045
2046 for (table = efx_nic_reg_tables;
2047 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2048 table++)
2049 if (efx->type->revision >= table->min_revision &&
2050 efx->type->revision <= table->max_revision)
2051 len += table->rows * min_t(size_t, table->step, 16);
2052
2053 return len;
2054 }
2055
2056 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2057 {
2058 const struct efx_nic_reg *reg;
2059 const struct efx_nic_reg_table *table;
2060
2061 for (reg = efx_nic_regs;
2062 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2063 reg++) {
2064 if (efx->type->revision >= reg->min_revision &&
2065 efx->type->revision <= reg->max_revision) {
2066 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2067 buf += sizeof(efx_oword_t);
2068 }
2069 }
2070
2071 for (table = efx_nic_reg_tables;
2072 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2073 table++) {
2074 size_t size, i;
2075
2076 if (!(efx->type->revision >= table->min_revision &&
2077 efx->type->revision <= table->max_revision))
2078 continue;
2079
2080 size = min_t(size_t, table->step, 16);
2081
2082 for (i = 0; i < table->rows; i++) {
2083 switch (table->step) {
2084 case 4: /* 32-bit SRAM */
2085 efx_readd(efx, buf, table->offset + 4 * i);
2086 break;
2087 case 8: /* 64-bit SRAM */
2088 efx_sram_readq(efx,
2089 efx->membase + table->offset,
2090 buf, i);
2091 break;
2092 case 16: /* 128-bit-readable register */
2093 efx_reado_table(efx, buf, table->offset, i);
2094 break;
2095 case 32: /* 128-bit register, interleaved */
2096 efx_reado_table(efx, buf, table->offset, 2 * i);
2097 break;
2098 default:
2099 WARN_ON(1);
2100 return;
2101 }
2102 buf += size;
2103 }
2104 }
2105 }