]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/sfc/rx.c
879ff5849bbd181e58e9d5be8e75f28d89f2ddad
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / sfc / rx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <net/ip.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH 8
29
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
32
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS 64u
35
36 /*
37 * rx_alloc_method - RX buffer allocation method
38 *
39 * This driver supports two methods for allocating and using RX buffers:
40 * each RX buffer may be backed by an skb or by an order-n page.
41 *
42 * When GRO is in use then the second method has a lower overhead,
43 * since we don't have to allocate then free skbs on reassembled frames.
44 *
45 * Values:
46 * - RX_ALLOC_METHOD_AUTO = 0
47 * - RX_ALLOC_METHOD_SKB = 1
48 * - RX_ALLOC_METHOD_PAGE = 2
49 *
50 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51 * controlled by the parameters below.
52 *
53 * - Since pushing and popping descriptors are separated by the rx_queue
54 * size, so the watermarks should be ~rxd_size.
55 * - The performance win by using page-based allocation for GRO is less
56 * than the performance hit of using page-based allocation of non-GRO,
57 * so the watermarks should reflect this.
58 *
59 * Per channel we maintain a single variable, updated by each channel:
60 *
61 * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62 * RX_ALLOC_FACTOR_SKB)
63 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64 * limits the hysteresis), and update the allocation strategy:
65 *
66 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
68 */
69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
70
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
75
76 /* This is the percentage fill level below which new RX descriptors
77 * will be added to the RX descriptor ring.
78 */
79 static unsigned int rx_refill_threshold;
80
81 /*
82 * RX maximum head room required.
83 *
84 * This must be at least 1 to prevent overflow and at least 2 to allow
85 * pipelined receives.
86 */
87 #define EFX_RXD_HEAD_ROOM 2
88
89 /* Offset of ethernet header within page */
90 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
91 struct efx_rx_buffer *buf)
92 {
93 return buf->page_offset + efx->type->rx_buffer_hash_size;
94 }
95 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
96 {
97 return PAGE_SIZE << efx->rx_buffer_order;
98 }
99
100 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
101 {
102 if (buf->flags & EFX_RX_BUF_PAGE)
103 return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
104 else
105 return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
106 }
107
108 static inline u32 efx_rx_buf_hash(const u8 *eh)
109 {
110 /* The ethernet header is always directly after any hash. */
111 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
112 return __le32_to_cpup((const __le32 *)(eh - 4));
113 #else
114 const u8 *data = eh - 4;
115 return (u32)data[0] |
116 (u32)data[1] << 8 |
117 (u32)data[2] << 16 |
118 (u32)data[3] << 24;
119 #endif
120 }
121
122 /**
123 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
124 *
125 * @rx_queue: Efx RX queue
126 *
127 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
128 * struct efx_rx_buffer for each one. Return a negative error code or 0
129 * on success. May fail having only inserted fewer than EFX_RX_BATCH
130 * buffers.
131 */
132 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
133 {
134 struct efx_nic *efx = rx_queue->efx;
135 struct net_device *net_dev = efx->net_dev;
136 struct efx_rx_buffer *rx_buf;
137 struct sk_buff *skb;
138 int skb_len = efx->rx_buffer_len;
139 unsigned index, count;
140
141 for (count = 0; count < EFX_RX_BATCH; ++count) {
142 index = rx_queue->added_count & rx_queue->ptr_mask;
143 rx_buf = efx_rx_buffer(rx_queue, index);
144
145 rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
146 if (unlikely(!skb))
147 return -ENOMEM;
148
149 /* Adjust the SKB for padding */
150 skb_reserve(skb, NET_IP_ALIGN);
151 rx_buf->len = skb_len - NET_IP_ALIGN;
152 rx_buf->flags = 0;
153
154 rx_buf->dma_addr = dma_map_single(&efx->pci_dev->dev,
155 skb->data, rx_buf->len,
156 DMA_FROM_DEVICE);
157 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
158 rx_buf->dma_addr))) {
159 dev_kfree_skb_any(skb);
160 rx_buf->u.skb = NULL;
161 return -EIO;
162 }
163
164 ++rx_queue->added_count;
165 ++rx_queue->alloc_skb_count;
166 }
167
168 return 0;
169 }
170
171 /**
172 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
173 *
174 * @rx_queue: Efx RX queue
175 *
176 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
177 * and populates struct efx_rx_buffers for each one. Return a negative error
178 * code or 0 on success. If a single page can be split between two buffers,
179 * then the page will either be inserted fully, or not at at all.
180 */
181 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
182 {
183 struct efx_nic *efx = rx_queue->efx;
184 struct efx_rx_buffer *rx_buf;
185 struct page *page;
186 unsigned int page_offset;
187 struct efx_rx_page_state *state;
188 dma_addr_t dma_addr;
189 unsigned index, count;
190
191 /* We can split a page between two buffers */
192 BUILD_BUG_ON(EFX_RX_BATCH & 1);
193
194 for (count = 0; count < EFX_RX_BATCH; ++count) {
195 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
196 efx->rx_buffer_order);
197 if (unlikely(page == NULL))
198 return -ENOMEM;
199 dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
200 efx_rx_buf_size(efx),
201 DMA_FROM_DEVICE);
202 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
203 __free_pages(page, efx->rx_buffer_order);
204 return -EIO;
205 }
206 state = page_address(page);
207 state->refcnt = 0;
208 state->dma_addr = dma_addr;
209
210 dma_addr += sizeof(struct efx_rx_page_state);
211 page_offset = sizeof(struct efx_rx_page_state);
212
213 split:
214 index = rx_queue->added_count & rx_queue->ptr_mask;
215 rx_buf = efx_rx_buffer(rx_queue, index);
216 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
217 rx_buf->u.page = page;
218 rx_buf->page_offset = page_offset;
219 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
220 rx_buf->flags = EFX_RX_BUF_PAGE;
221 ++rx_queue->added_count;
222 ++rx_queue->alloc_page_count;
223 ++state->refcnt;
224
225 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
226 /* Use the second half of the page */
227 get_page(page);
228 dma_addr += (PAGE_SIZE >> 1);
229 page_offset += (PAGE_SIZE >> 1);
230 ++count;
231 goto split;
232 }
233 }
234
235 return 0;
236 }
237
238 static void efx_unmap_rx_buffer(struct efx_nic *efx,
239 struct efx_rx_buffer *rx_buf,
240 unsigned int used_len)
241 {
242 if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
243 struct efx_rx_page_state *state;
244
245 state = page_address(rx_buf->u.page);
246 if (--state->refcnt == 0) {
247 dma_unmap_page(&efx->pci_dev->dev,
248 state->dma_addr,
249 efx_rx_buf_size(efx),
250 DMA_FROM_DEVICE);
251 } else if (used_len) {
252 dma_sync_single_for_cpu(&efx->pci_dev->dev,
253 rx_buf->dma_addr, used_len,
254 DMA_FROM_DEVICE);
255 }
256 } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
257 dma_unmap_single(&efx->pci_dev->dev, rx_buf->dma_addr,
258 rx_buf->len, DMA_FROM_DEVICE);
259 }
260 }
261
262 static void efx_free_rx_buffer(struct efx_nic *efx,
263 struct efx_rx_buffer *rx_buf)
264 {
265 if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
266 __free_pages(rx_buf->u.page, efx->rx_buffer_order);
267 rx_buf->u.page = NULL;
268 } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
269 dev_kfree_skb_any(rx_buf->u.skb);
270 rx_buf->u.skb = NULL;
271 }
272 }
273
274 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
275 struct efx_rx_buffer *rx_buf)
276 {
277 efx_unmap_rx_buffer(rx_queue->efx, rx_buf, 0);
278 efx_free_rx_buffer(rx_queue->efx, rx_buf);
279 }
280
281 /* Attempt to resurrect the other receive buffer that used to share this page,
282 * which had previously been passed up to the kernel and freed. */
283 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
284 struct efx_rx_buffer *rx_buf)
285 {
286 struct efx_rx_page_state *state = page_address(rx_buf->u.page);
287 struct efx_rx_buffer *new_buf;
288 unsigned fill_level, index;
289
290 /* +1 because efx_rx_packet() incremented removed_count. +1 because
291 * we'd like to insert an additional descriptor whilst leaving
292 * EFX_RXD_HEAD_ROOM for the non-recycle path */
293 fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
294 if (unlikely(fill_level > rx_queue->max_fill)) {
295 /* We could place "state" on a list, and drain the list in
296 * efx_fast_push_rx_descriptors(). For now, this will do. */
297 return;
298 }
299
300 ++state->refcnt;
301 get_page(rx_buf->u.page);
302
303 index = rx_queue->added_count & rx_queue->ptr_mask;
304 new_buf = efx_rx_buffer(rx_queue, index);
305 new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
306 new_buf->u.page = rx_buf->u.page;
307 new_buf->len = rx_buf->len;
308 new_buf->flags = EFX_RX_BUF_PAGE;
309 ++rx_queue->added_count;
310 }
311
312 /* Recycle the given rx buffer directly back into the rx_queue. There is
313 * always room to add this buffer, because we've just popped a buffer. */
314 static void efx_recycle_rx_buffer(struct efx_channel *channel,
315 struct efx_rx_buffer *rx_buf)
316 {
317 struct efx_nic *efx = channel->efx;
318 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
319 struct efx_rx_buffer *new_buf;
320 unsigned index;
321
322 rx_buf->flags &= EFX_RX_BUF_PAGE;
323
324 if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
325 efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
326 page_count(rx_buf->u.page) == 1)
327 efx_resurrect_rx_buffer(rx_queue, rx_buf);
328
329 index = rx_queue->added_count & rx_queue->ptr_mask;
330 new_buf = efx_rx_buffer(rx_queue, index);
331
332 memcpy(new_buf, rx_buf, sizeof(*new_buf));
333 rx_buf->u.page = NULL;
334 ++rx_queue->added_count;
335 }
336
337 /**
338 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
339 * @rx_queue: RX descriptor queue
340 *
341 * This will aim to fill the RX descriptor queue up to
342 * @rx_queue->@max_fill. If there is insufficient atomic
343 * memory to do so, a slow fill will be scheduled.
344 *
345 * The caller must provide serialisation (none is used here). In practise,
346 * this means this function must run from the NAPI handler, or be called
347 * when NAPI is disabled.
348 */
349 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
350 {
351 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
352 unsigned fill_level;
353 int space, rc = 0;
354
355 /* Calculate current fill level, and exit if we don't need to fill */
356 fill_level = (rx_queue->added_count - rx_queue->removed_count);
357 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
358 if (fill_level >= rx_queue->fast_fill_trigger)
359 goto out;
360
361 /* Record minimum fill level */
362 if (unlikely(fill_level < rx_queue->min_fill)) {
363 if (fill_level)
364 rx_queue->min_fill = fill_level;
365 }
366
367 space = rx_queue->max_fill - fill_level;
368 EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
369
370 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
371 "RX queue %d fast-filling descriptor ring from"
372 " level %d to level %d using %s allocation\n",
373 efx_rx_queue_index(rx_queue), fill_level,
374 rx_queue->max_fill,
375 channel->rx_alloc_push_pages ? "page" : "skb");
376
377 do {
378 if (channel->rx_alloc_push_pages)
379 rc = efx_init_rx_buffers_page(rx_queue);
380 else
381 rc = efx_init_rx_buffers_skb(rx_queue);
382 if (unlikely(rc)) {
383 /* Ensure that we don't leave the rx queue empty */
384 if (rx_queue->added_count == rx_queue->removed_count)
385 efx_schedule_slow_fill(rx_queue);
386 goto out;
387 }
388 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
389
390 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
391 "RX queue %d fast-filled descriptor ring "
392 "to level %d\n", efx_rx_queue_index(rx_queue),
393 rx_queue->added_count - rx_queue->removed_count);
394
395 out:
396 if (rx_queue->notified_count != rx_queue->added_count)
397 efx_nic_notify_rx_desc(rx_queue);
398 }
399
400 void efx_rx_slow_fill(unsigned long context)
401 {
402 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
403
404 /* Post an event to cause NAPI to run and refill the queue */
405 efx_nic_generate_fill_event(rx_queue);
406 ++rx_queue->slow_fill_count;
407 }
408
409 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
410 struct efx_rx_buffer *rx_buf,
411 int len, bool *leak_packet)
412 {
413 struct efx_nic *efx = rx_queue->efx;
414 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
415
416 if (likely(len <= max_len))
417 return;
418
419 /* The packet must be discarded, but this is only a fatal error
420 * if the caller indicated it was
421 */
422 rx_buf->flags |= EFX_RX_PKT_DISCARD;
423
424 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
425 if (net_ratelimit())
426 netif_err(efx, rx_err, efx->net_dev,
427 " RX queue %d seriously overlength "
428 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
429 efx_rx_queue_index(rx_queue), len, max_len,
430 efx->type->rx_buffer_padding);
431 /* If this buffer was skb-allocated, then the meta
432 * data at the end of the skb will be trashed. So
433 * we have no choice but to leak the fragment.
434 */
435 *leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
436 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
437 } else {
438 if (net_ratelimit())
439 netif_err(efx, rx_err, efx->net_dev,
440 " RX queue %d overlength RX event "
441 "(0x%x > 0x%x)\n",
442 efx_rx_queue_index(rx_queue), len, max_len);
443 }
444
445 efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
446 }
447
448 /* Pass a received packet up through GRO. GRO can handle pages
449 * regardless of checksum state and skbs with a good checksum.
450 */
451 static void efx_rx_packet_gro(struct efx_channel *channel,
452 struct efx_rx_buffer *rx_buf,
453 const u8 *eh)
454 {
455 struct napi_struct *napi = &channel->napi_str;
456 gro_result_t gro_result;
457
458 if (rx_buf->flags & EFX_RX_BUF_PAGE) {
459 struct efx_nic *efx = channel->efx;
460 struct page *page = rx_buf->u.page;
461 struct sk_buff *skb;
462
463 rx_buf->u.page = NULL;
464
465 skb = napi_get_frags(napi);
466 if (!skb) {
467 put_page(page);
468 return;
469 }
470
471 if (efx->net_dev->features & NETIF_F_RXHASH)
472 skb->rxhash = efx_rx_buf_hash(eh);
473
474 skb_fill_page_desc(skb, 0, page,
475 efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
476
477 skb->len = rx_buf->len;
478 skb->data_len = rx_buf->len;
479 skb->truesize += rx_buf->len;
480 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
481 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
482
483 skb_record_rx_queue(skb, channel->rx_queue.core_index);
484
485 gro_result = napi_gro_frags(napi);
486 } else {
487 struct sk_buff *skb = rx_buf->u.skb;
488
489 EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
490 rx_buf->u.skb = NULL;
491 skb->ip_summed = CHECKSUM_UNNECESSARY;
492
493 gro_result = napi_gro_receive(napi, skb);
494 }
495
496 if (gro_result == GRO_NORMAL) {
497 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
498 } else if (gro_result != GRO_DROP) {
499 channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
500 channel->irq_mod_score += 2;
501 }
502 }
503
504 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
505 unsigned int len, u16 flags)
506 {
507 struct efx_nic *efx = rx_queue->efx;
508 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
509 struct efx_rx_buffer *rx_buf;
510 bool leak_packet = false;
511
512 rx_buf = efx_rx_buffer(rx_queue, index);
513 rx_buf->flags |= flags;
514
515 /* This allows the refill path to post another buffer.
516 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
517 * isn't overwritten yet.
518 */
519 rx_queue->removed_count++;
520
521 /* Validate the length encoded in the event vs the descriptor pushed */
522 efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
523
524 netif_vdbg(efx, rx_status, efx->net_dev,
525 "RX queue %d received id %x at %llx+%x %s%s\n",
526 efx_rx_queue_index(rx_queue), index,
527 (unsigned long long)rx_buf->dma_addr, len,
528 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
529 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
530
531 /* Discard packet, if instructed to do so */
532 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
533 if (unlikely(leak_packet))
534 channel->n_skbuff_leaks++;
535 else
536 efx_recycle_rx_buffer(channel, rx_buf);
537
538 /* Don't hold off the previous receive */
539 rx_buf = NULL;
540 goto out;
541 }
542
543 /* Release and/or sync DMA mapping - assumes all RX buffers
544 * consumed in-order per RX queue
545 */
546 efx_unmap_rx_buffer(efx, rx_buf, len);
547
548 /* Prefetch nice and early so data will (hopefully) be in cache by
549 * the time we look at it.
550 */
551 prefetch(efx_rx_buf_eh(efx, rx_buf));
552
553 /* Pipeline receives so that we give time for packet headers to be
554 * prefetched into cache.
555 */
556 rx_buf->len = len - efx->type->rx_buffer_hash_size;
557 out:
558 if (channel->rx_pkt)
559 __efx_rx_packet(channel, channel->rx_pkt);
560 channel->rx_pkt = rx_buf;
561 }
562
563 static void efx_rx_deliver(struct efx_channel *channel,
564 struct efx_rx_buffer *rx_buf)
565 {
566 struct sk_buff *skb;
567
568 /* We now own the SKB */
569 skb = rx_buf->u.skb;
570 rx_buf->u.skb = NULL;
571
572 /* Set the SKB flags */
573 skb_checksum_none_assert(skb);
574
575 /* Record the rx_queue */
576 skb_record_rx_queue(skb, channel->rx_queue.core_index);
577
578 /* Pass the packet up */
579 if (channel->type->receive_skb)
580 channel->type->receive_skb(channel, skb);
581 else
582 netif_receive_skb(skb);
583
584 /* Update allocation strategy method */
585 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
586 }
587
588 /* Handle a received packet. Second half: Touches packet payload. */
589 void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
590 {
591 struct efx_nic *efx = channel->efx;
592 u8 *eh = efx_rx_buf_eh(efx, rx_buf);
593
594 /* If we're in loopback test, then pass the packet directly to the
595 * loopback layer, and free the rx_buf here
596 */
597 if (unlikely(efx->loopback_selftest)) {
598 efx_loopback_rx_packet(efx, eh, rx_buf->len);
599 efx_free_rx_buffer(efx, rx_buf);
600 return;
601 }
602
603 if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
604 struct sk_buff *skb = rx_buf->u.skb;
605
606 prefetch(skb_shinfo(skb));
607
608 skb_reserve(skb, efx->type->rx_buffer_hash_size);
609 skb_put(skb, rx_buf->len);
610
611 if (efx->net_dev->features & NETIF_F_RXHASH)
612 skb->rxhash = efx_rx_buf_hash(eh);
613
614 /* Move past the ethernet header. rx_buf->data still points
615 * at the ethernet header */
616 skb->protocol = eth_type_trans(skb, efx->net_dev);
617
618 skb_record_rx_queue(skb, channel->rx_queue.core_index);
619 }
620
621 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
622 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
623
624 if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)) &&
625 !channel->type->receive_skb)
626 efx_rx_packet_gro(channel, rx_buf, eh);
627 else
628 efx_rx_deliver(channel, rx_buf);
629 }
630
631 void efx_rx_strategy(struct efx_channel *channel)
632 {
633 enum efx_rx_alloc_method method = rx_alloc_method;
634
635 if (channel->type->receive_skb) {
636 channel->rx_alloc_push_pages = false;
637 return;
638 }
639
640 /* Only makes sense to use page based allocation if GRO is enabled */
641 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
642 method = RX_ALLOC_METHOD_SKB;
643 } else if (method == RX_ALLOC_METHOD_AUTO) {
644 /* Constrain the rx_alloc_level */
645 if (channel->rx_alloc_level < 0)
646 channel->rx_alloc_level = 0;
647 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
648 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
649
650 /* Decide on the allocation method */
651 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
652 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
653 }
654
655 /* Push the option */
656 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
657 }
658
659 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
660 {
661 struct efx_nic *efx = rx_queue->efx;
662 unsigned int entries;
663 int rc;
664
665 /* Create the smallest power-of-two aligned ring */
666 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
667 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
668 rx_queue->ptr_mask = entries - 1;
669
670 netif_dbg(efx, probe, efx->net_dev,
671 "creating RX queue %d size %#x mask %#x\n",
672 efx_rx_queue_index(rx_queue), efx->rxq_entries,
673 rx_queue->ptr_mask);
674
675 /* Allocate RX buffers */
676 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
677 GFP_KERNEL);
678 if (!rx_queue->buffer)
679 return -ENOMEM;
680
681 rc = efx_nic_probe_rx(rx_queue);
682 if (rc) {
683 kfree(rx_queue->buffer);
684 rx_queue->buffer = NULL;
685 }
686 return rc;
687 }
688
689 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
690 {
691 struct efx_nic *efx = rx_queue->efx;
692 unsigned int max_fill, trigger, max_trigger;
693
694 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
695 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
696
697 /* Initialise ptr fields */
698 rx_queue->added_count = 0;
699 rx_queue->notified_count = 0;
700 rx_queue->removed_count = 0;
701 rx_queue->min_fill = -1U;
702
703 /* Initialise limit fields */
704 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
705 max_trigger = max_fill - EFX_RX_BATCH;
706 if (rx_refill_threshold != 0) {
707 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
708 if (trigger > max_trigger)
709 trigger = max_trigger;
710 } else {
711 trigger = max_trigger;
712 }
713
714 rx_queue->max_fill = max_fill;
715 rx_queue->fast_fill_trigger = trigger;
716
717 /* Set up RX descriptor ring */
718 rx_queue->enabled = true;
719 efx_nic_init_rx(rx_queue);
720 }
721
722 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
723 {
724 int i;
725 struct efx_rx_buffer *rx_buf;
726
727 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
728 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
729
730 /* A flush failure might have left rx_queue->enabled */
731 rx_queue->enabled = false;
732
733 del_timer_sync(&rx_queue->slow_fill);
734 efx_nic_fini_rx(rx_queue);
735
736 /* Release RX buffers NB start at index 0 not current HW ptr */
737 if (rx_queue->buffer) {
738 for (i = 0; i <= rx_queue->ptr_mask; i++) {
739 rx_buf = efx_rx_buffer(rx_queue, i);
740 efx_fini_rx_buffer(rx_queue, rx_buf);
741 }
742 }
743 }
744
745 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
746 {
747 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
748 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
749
750 efx_nic_remove_rx(rx_queue);
751
752 kfree(rx_queue->buffer);
753 rx_queue->buffer = NULL;
754 }
755
756
757 module_param(rx_alloc_method, int, 0644);
758 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
759
760 module_param(rx_refill_threshold, uint, 0444);
761 MODULE_PARM_DESC(rx_refill_threshold,
762 "RX descriptor ring refill threshold (%)");
763