]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/sfc/rx.c
Merge branch 'pm-cpuidle'
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / sfc / rx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/prefetch.h>
19 #include <linux/moduleparam.h>
20 #include <linux/iommu.h>
21 #include <net/ip.h>
22 #include <net/checksum.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "filter.h"
26 #include "nic.h"
27 #include "selftest.h"
28 #include "workarounds.h"
29
30 /* Preferred number of descriptors to fill at once */
31 #define EFX_RX_PREFERRED_BATCH 8U
32
33 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
34 * ring, this number is divided by the number of buffers per page to calculate
35 * the number of pages to store in the RX page recycle ring.
36 */
37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
39
40 /* Size of buffer allocated for skb header area. */
41 #define EFX_SKB_HEADERS 128u
42
43 /* This is the percentage fill level below which new RX descriptors
44 * will be added to the RX descriptor ring.
45 */
46 static unsigned int rx_refill_threshold;
47
48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
50 EFX_RX_USR_BUF_SIZE)
51
52 /*
53 * RX maximum head room required.
54 *
55 * This must be at least 1 to prevent overflow, plus one packet-worth
56 * to allow pipelined receives.
57 */
58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
59
60 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
61 {
62 return page_address(buf->page) + buf->page_offset;
63 }
64
65 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
66 {
67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
68 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
69 #else
70 const u8 *data = eh + efx->rx_packet_hash_offset;
71 return (u32)data[0] |
72 (u32)data[1] << 8 |
73 (u32)data[2] << 16 |
74 (u32)data[3] << 24;
75 #endif
76 }
77
78 static inline struct efx_rx_buffer *
79 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
80 {
81 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
82 return efx_rx_buffer(rx_queue, 0);
83 else
84 return rx_buf + 1;
85 }
86
87 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
88 struct efx_rx_buffer *rx_buf,
89 unsigned int len)
90 {
91 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
92 DMA_FROM_DEVICE);
93 }
94
95 void efx_rx_config_page_split(struct efx_nic *efx)
96 {
97 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
98 EFX_RX_BUF_ALIGNMENT);
99 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
100 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
101 efx->rx_page_buf_step);
102 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
103 efx->rx_bufs_per_page;
104 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
105 efx->rx_bufs_per_page);
106 }
107
108 /* Check the RX page recycle ring for a page that can be reused. */
109 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
110 {
111 struct efx_nic *efx = rx_queue->efx;
112 struct page *page;
113 struct efx_rx_page_state *state;
114 unsigned index;
115
116 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
117 page = rx_queue->page_ring[index];
118 if (page == NULL)
119 return NULL;
120
121 rx_queue->page_ring[index] = NULL;
122 /* page_remove cannot exceed page_add. */
123 if (rx_queue->page_remove != rx_queue->page_add)
124 ++rx_queue->page_remove;
125
126 /* If page_count is 1 then we hold the only reference to this page. */
127 if (page_count(page) == 1) {
128 ++rx_queue->page_recycle_count;
129 return page;
130 } else {
131 state = page_address(page);
132 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
133 PAGE_SIZE << efx->rx_buffer_order,
134 DMA_FROM_DEVICE);
135 put_page(page);
136 ++rx_queue->page_recycle_failed;
137 }
138
139 return NULL;
140 }
141
142 /**
143 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
144 *
145 * @rx_queue: Efx RX queue
146 *
147 * This allocates a batch of pages, maps them for DMA, and populates
148 * struct efx_rx_buffers for each one. Return a negative error code or
149 * 0 on success. If a single page can be used for multiple buffers,
150 * then the page will either be inserted fully, or not at all.
151 */
152 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
153 {
154 struct efx_nic *efx = rx_queue->efx;
155 struct efx_rx_buffer *rx_buf;
156 struct page *page;
157 unsigned int page_offset;
158 struct efx_rx_page_state *state;
159 dma_addr_t dma_addr;
160 unsigned index, count;
161
162 count = 0;
163 do {
164 page = efx_reuse_page(rx_queue);
165 if (page == NULL) {
166 page = alloc_pages(__GFP_COLD | __GFP_COMP |
167 (atomic ? GFP_ATOMIC : GFP_KERNEL),
168 efx->rx_buffer_order);
169 if (unlikely(page == NULL))
170 return -ENOMEM;
171 dma_addr =
172 dma_map_page(&efx->pci_dev->dev, page, 0,
173 PAGE_SIZE << efx->rx_buffer_order,
174 DMA_FROM_DEVICE);
175 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
176 dma_addr))) {
177 __free_pages(page, efx->rx_buffer_order);
178 return -EIO;
179 }
180 state = page_address(page);
181 state->dma_addr = dma_addr;
182 } else {
183 state = page_address(page);
184 dma_addr = state->dma_addr;
185 }
186
187 dma_addr += sizeof(struct efx_rx_page_state);
188 page_offset = sizeof(struct efx_rx_page_state);
189
190 do {
191 index = rx_queue->added_count & rx_queue->ptr_mask;
192 rx_buf = efx_rx_buffer(rx_queue, index);
193 rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
194 rx_buf->page = page;
195 rx_buf->page_offset = page_offset + efx->rx_ip_align;
196 rx_buf->len = efx->rx_dma_len;
197 rx_buf->flags = 0;
198 ++rx_queue->added_count;
199 get_page(page);
200 dma_addr += efx->rx_page_buf_step;
201 page_offset += efx->rx_page_buf_step;
202 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
203
204 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
205 } while (++count < efx->rx_pages_per_batch);
206
207 return 0;
208 }
209
210 /* Unmap a DMA-mapped page. This function is only called for the final RX
211 * buffer in a page.
212 */
213 static void efx_unmap_rx_buffer(struct efx_nic *efx,
214 struct efx_rx_buffer *rx_buf)
215 {
216 struct page *page = rx_buf->page;
217
218 if (page) {
219 struct efx_rx_page_state *state = page_address(page);
220 dma_unmap_page(&efx->pci_dev->dev,
221 state->dma_addr,
222 PAGE_SIZE << efx->rx_buffer_order,
223 DMA_FROM_DEVICE);
224 }
225 }
226
227 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
228 struct efx_rx_buffer *rx_buf,
229 unsigned int num_bufs)
230 {
231 do {
232 if (rx_buf->page) {
233 put_page(rx_buf->page);
234 rx_buf->page = NULL;
235 }
236 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
237 } while (--num_bufs);
238 }
239
240 /* Attempt to recycle the page if there is an RX recycle ring; the page can
241 * only be added if this is the final RX buffer, to prevent pages being used in
242 * the descriptor ring and appearing in the recycle ring simultaneously.
243 */
244 static void efx_recycle_rx_page(struct efx_channel *channel,
245 struct efx_rx_buffer *rx_buf)
246 {
247 struct page *page = rx_buf->page;
248 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
249 struct efx_nic *efx = rx_queue->efx;
250 unsigned index;
251
252 /* Only recycle the page after processing the final buffer. */
253 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
254 return;
255
256 index = rx_queue->page_add & rx_queue->page_ptr_mask;
257 if (rx_queue->page_ring[index] == NULL) {
258 unsigned read_index = rx_queue->page_remove &
259 rx_queue->page_ptr_mask;
260
261 /* The next slot in the recycle ring is available, but
262 * increment page_remove if the read pointer currently
263 * points here.
264 */
265 if (read_index == index)
266 ++rx_queue->page_remove;
267 rx_queue->page_ring[index] = page;
268 ++rx_queue->page_add;
269 return;
270 }
271 ++rx_queue->page_recycle_full;
272 efx_unmap_rx_buffer(efx, rx_buf);
273 put_page(rx_buf->page);
274 }
275
276 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
277 struct efx_rx_buffer *rx_buf)
278 {
279 /* Release the page reference we hold for the buffer. */
280 if (rx_buf->page)
281 put_page(rx_buf->page);
282
283 /* If this is the last buffer in a page, unmap and free it. */
284 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
285 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
286 efx_free_rx_buffers(rx_queue, rx_buf, 1);
287 }
288 rx_buf->page = NULL;
289 }
290
291 /* Recycle the pages that are used by buffers that have just been received. */
292 static void efx_recycle_rx_pages(struct efx_channel *channel,
293 struct efx_rx_buffer *rx_buf,
294 unsigned int n_frags)
295 {
296 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
297
298 do {
299 efx_recycle_rx_page(channel, rx_buf);
300 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
301 } while (--n_frags);
302 }
303
304 static void efx_discard_rx_packet(struct efx_channel *channel,
305 struct efx_rx_buffer *rx_buf,
306 unsigned int n_frags)
307 {
308 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
309
310 efx_recycle_rx_pages(channel, rx_buf, n_frags);
311
312 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
313 }
314
315 /**
316 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
317 * @rx_queue: RX descriptor queue
318 *
319 * This will aim to fill the RX descriptor queue up to
320 * @rx_queue->@max_fill. If there is insufficient atomic
321 * memory to do so, a slow fill will be scheduled.
322 *
323 * The caller must provide serialisation (none is used here). In practise,
324 * this means this function must run from the NAPI handler, or be called
325 * when NAPI is disabled.
326 */
327 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
328 {
329 struct efx_nic *efx = rx_queue->efx;
330 unsigned int fill_level, batch_size;
331 int space, rc = 0;
332
333 if (!rx_queue->refill_enabled)
334 return;
335
336 /* Calculate current fill level, and exit if we don't need to fill */
337 fill_level = (rx_queue->added_count - rx_queue->removed_count);
338 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
339 if (fill_level >= rx_queue->fast_fill_trigger)
340 goto out;
341
342 /* Record minimum fill level */
343 if (unlikely(fill_level < rx_queue->min_fill)) {
344 if (fill_level)
345 rx_queue->min_fill = fill_level;
346 }
347
348 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
349 space = rx_queue->max_fill - fill_level;
350 EFX_BUG_ON_PARANOID(space < batch_size);
351
352 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
353 "RX queue %d fast-filling descriptor ring from"
354 " level %d to level %d\n",
355 efx_rx_queue_index(rx_queue), fill_level,
356 rx_queue->max_fill);
357
358
359 do {
360 rc = efx_init_rx_buffers(rx_queue, atomic);
361 if (unlikely(rc)) {
362 /* Ensure that we don't leave the rx queue empty */
363 if (rx_queue->added_count == rx_queue->removed_count)
364 efx_schedule_slow_fill(rx_queue);
365 goto out;
366 }
367 } while ((space -= batch_size) >= batch_size);
368
369 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
370 "RX queue %d fast-filled descriptor ring "
371 "to level %d\n", efx_rx_queue_index(rx_queue),
372 rx_queue->added_count - rx_queue->removed_count);
373
374 out:
375 if (rx_queue->notified_count != rx_queue->added_count)
376 efx_nic_notify_rx_desc(rx_queue);
377 }
378
379 void efx_rx_slow_fill(unsigned long context)
380 {
381 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
382
383 /* Post an event to cause NAPI to run and refill the queue */
384 efx_nic_generate_fill_event(rx_queue);
385 ++rx_queue->slow_fill_count;
386 }
387
388 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
389 struct efx_rx_buffer *rx_buf,
390 int len)
391 {
392 struct efx_nic *efx = rx_queue->efx;
393 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
394
395 if (likely(len <= max_len))
396 return;
397
398 /* The packet must be discarded, but this is only a fatal error
399 * if the caller indicated it was
400 */
401 rx_buf->flags |= EFX_RX_PKT_DISCARD;
402
403 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
404 if (net_ratelimit())
405 netif_err(efx, rx_err, efx->net_dev,
406 " RX queue %d seriously overlength "
407 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
408 efx_rx_queue_index(rx_queue), len, max_len,
409 efx->type->rx_buffer_padding);
410 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
411 } else {
412 if (net_ratelimit())
413 netif_err(efx, rx_err, efx->net_dev,
414 " RX queue %d overlength RX event "
415 "(0x%x > 0x%x)\n",
416 efx_rx_queue_index(rx_queue), len, max_len);
417 }
418
419 efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
420 }
421
422 /* Pass a received packet up through GRO. GRO can handle pages
423 * regardless of checksum state and skbs with a good checksum.
424 */
425 static void
426 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
427 unsigned int n_frags, u8 *eh)
428 {
429 struct napi_struct *napi = &channel->napi_str;
430 gro_result_t gro_result;
431 struct efx_nic *efx = channel->efx;
432 struct sk_buff *skb;
433
434 skb = napi_get_frags(napi);
435 if (unlikely(!skb)) {
436 struct efx_rx_queue *rx_queue;
437
438 rx_queue = efx_channel_get_rx_queue(channel);
439 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
440 return;
441 }
442
443 if (efx->net_dev->features & NETIF_F_RXHASH)
444 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
445 PKT_HASH_TYPE_L3);
446 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
447 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
448
449 for (;;) {
450 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
451 rx_buf->page, rx_buf->page_offset,
452 rx_buf->len);
453 rx_buf->page = NULL;
454 skb->len += rx_buf->len;
455 if (skb_shinfo(skb)->nr_frags == n_frags)
456 break;
457
458 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
459 }
460
461 skb->data_len = skb->len;
462 skb->truesize += n_frags * efx->rx_buffer_truesize;
463
464 skb_record_rx_queue(skb, channel->rx_queue.core_index);
465
466 skb_mark_napi_id(skb, &channel->napi_str);
467 gro_result = napi_gro_frags(napi);
468 if (gro_result != GRO_DROP)
469 channel->irq_mod_score += 2;
470 }
471
472 /* Allocate and construct an SKB around page fragments */
473 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
474 struct efx_rx_buffer *rx_buf,
475 unsigned int n_frags,
476 u8 *eh, int hdr_len)
477 {
478 struct efx_nic *efx = channel->efx;
479 struct sk_buff *skb;
480
481 /* Allocate an SKB to store the headers */
482 skb = netdev_alloc_skb(efx->net_dev,
483 efx->rx_ip_align + efx->rx_prefix_size +
484 hdr_len);
485 if (unlikely(skb == NULL)) {
486 atomic_inc(&efx->n_rx_noskb_drops);
487 return NULL;
488 }
489
490 EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
491
492 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
493 efx->rx_prefix_size + hdr_len);
494 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
495 __skb_put(skb, hdr_len);
496
497 /* Append the remaining page(s) onto the frag list */
498 if (rx_buf->len > hdr_len) {
499 rx_buf->page_offset += hdr_len;
500 rx_buf->len -= hdr_len;
501
502 for (;;) {
503 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
504 rx_buf->page, rx_buf->page_offset,
505 rx_buf->len);
506 rx_buf->page = NULL;
507 skb->len += rx_buf->len;
508 skb->data_len += rx_buf->len;
509 if (skb_shinfo(skb)->nr_frags == n_frags)
510 break;
511
512 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
513 }
514 } else {
515 __free_pages(rx_buf->page, efx->rx_buffer_order);
516 rx_buf->page = NULL;
517 n_frags = 0;
518 }
519
520 skb->truesize += n_frags * efx->rx_buffer_truesize;
521
522 /* Move past the ethernet header */
523 skb->protocol = eth_type_trans(skb, efx->net_dev);
524
525 skb_mark_napi_id(skb, &channel->napi_str);
526
527 return skb;
528 }
529
530 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
531 unsigned int n_frags, unsigned int len, u16 flags)
532 {
533 struct efx_nic *efx = rx_queue->efx;
534 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
535 struct efx_rx_buffer *rx_buf;
536
537 rx_queue->rx_packets++;
538
539 rx_buf = efx_rx_buffer(rx_queue, index);
540 rx_buf->flags |= flags;
541
542 /* Validate the number of fragments and completed length */
543 if (n_frags == 1) {
544 if (!(flags & EFX_RX_PKT_PREFIX_LEN))
545 efx_rx_packet__check_len(rx_queue, rx_buf, len);
546 } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
547 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
548 unlikely(len > n_frags * efx->rx_dma_len) ||
549 unlikely(!efx->rx_scatter)) {
550 /* If this isn't an explicit discard request, either
551 * the hardware or the driver is broken.
552 */
553 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
554 rx_buf->flags |= EFX_RX_PKT_DISCARD;
555 }
556
557 netif_vdbg(efx, rx_status, efx->net_dev,
558 "RX queue %d received ids %x-%x len %d %s%s\n",
559 efx_rx_queue_index(rx_queue), index,
560 (index + n_frags - 1) & rx_queue->ptr_mask, len,
561 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
562 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
563
564 /* Discard packet, if instructed to do so. Process the
565 * previous receive first.
566 */
567 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
568 efx_rx_flush_packet(channel);
569 efx_discard_rx_packet(channel, rx_buf, n_frags);
570 return;
571 }
572
573 if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
574 rx_buf->len = len;
575
576 /* Release and/or sync the DMA mapping - assumes all RX buffers
577 * consumed in-order per RX queue.
578 */
579 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
580
581 /* Prefetch nice and early so data will (hopefully) be in cache by
582 * the time we look at it.
583 */
584 prefetch(efx_rx_buf_va(rx_buf));
585
586 rx_buf->page_offset += efx->rx_prefix_size;
587 rx_buf->len -= efx->rx_prefix_size;
588
589 if (n_frags > 1) {
590 /* Release/sync DMA mapping for additional fragments.
591 * Fix length for last fragment.
592 */
593 unsigned int tail_frags = n_frags - 1;
594
595 for (;;) {
596 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
597 if (--tail_frags == 0)
598 break;
599 efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
600 }
601 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
602 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
603 }
604
605 /* All fragments have been DMA-synced, so recycle pages. */
606 rx_buf = efx_rx_buffer(rx_queue, index);
607 efx_recycle_rx_pages(channel, rx_buf, n_frags);
608
609 /* Pipeline receives so that we give time for packet headers to be
610 * prefetched into cache.
611 */
612 efx_rx_flush_packet(channel);
613 channel->rx_pkt_n_frags = n_frags;
614 channel->rx_pkt_index = index;
615 }
616
617 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
618 struct efx_rx_buffer *rx_buf,
619 unsigned int n_frags)
620 {
621 struct sk_buff *skb;
622 u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
623
624 skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
625 if (unlikely(skb == NULL)) {
626 struct efx_rx_queue *rx_queue;
627
628 rx_queue = efx_channel_get_rx_queue(channel);
629 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
630 return;
631 }
632 skb_record_rx_queue(skb, channel->rx_queue.core_index);
633
634 /* Set the SKB flags */
635 skb_checksum_none_assert(skb);
636 if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
637 skb->ip_summed = CHECKSUM_UNNECESSARY;
638
639 efx_rx_skb_attach_timestamp(channel, skb);
640
641 if (channel->type->receive_skb)
642 if (channel->type->receive_skb(channel, skb))
643 return;
644
645 /* Pass the packet up */
646 netif_receive_skb(skb);
647 }
648
649 /* Handle a received packet. Second half: Touches packet payload. */
650 void __efx_rx_packet(struct efx_channel *channel)
651 {
652 struct efx_nic *efx = channel->efx;
653 struct efx_rx_buffer *rx_buf =
654 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
655 u8 *eh = efx_rx_buf_va(rx_buf);
656
657 /* Read length from the prefix if necessary. This already
658 * excludes the length of the prefix itself.
659 */
660 if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
661 rx_buf->len = le16_to_cpup((__le16 *)
662 (eh + efx->rx_packet_len_offset));
663
664 /* If we're in loopback test, then pass the packet directly to the
665 * loopback layer, and free the rx_buf here
666 */
667 if (unlikely(efx->loopback_selftest)) {
668 struct efx_rx_queue *rx_queue;
669
670 efx_loopback_rx_packet(efx, eh, rx_buf->len);
671 rx_queue = efx_channel_get_rx_queue(channel);
672 efx_free_rx_buffers(rx_queue, rx_buf,
673 channel->rx_pkt_n_frags);
674 goto out;
675 }
676
677 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
678 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
679
680 if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb &&
681 !efx_channel_busy_polling(channel))
682 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
683 else
684 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
685 out:
686 channel->rx_pkt_n_frags = 0;
687 }
688
689 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
690 {
691 struct efx_nic *efx = rx_queue->efx;
692 unsigned int entries;
693 int rc;
694
695 /* Create the smallest power-of-two aligned ring */
696 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
697 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
698 rx_queue->ptr_mask = entries - 1;
699
700 netif_dbg(efx, probe, efx->net_dev,
701 "creating RX queue %d size %#x mask %#x\n",
702 efx_rx_queue_index(rx_queue), efx->rxq_entries,
703 rx_queue->ptr_mask);
704
705 /* Allocate RX buffers */
706 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
707 GFP_KERNEL);
708 if (!rx_queue->buffer)
709 return -ENOMEM;
710
711 rc = efx_nic_probe_rx(rx_queue);
712 if (rc) {
713 kfree(rx_queue->buffer);
714 rx_queue->buffer = NULL;
715 }
716
717 return rc;
718 }
719
720 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
721 struct efx_rx_queue *rx_queue)
722 {
723 unsigned int bufs_in_recycle_ring, page_ring_size;
724
725 /* Set the RX recycle ring size */
726 #ifdef CONFIG_PPC64
727 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
728 #else
729 if (iommu_present(&pci_bus_type))
730 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
731 else
732 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
733 #endif /* CONFIG_PPC64 */
734
735 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
736 efx->rx_bufs_per_page);
737 rx_queue->page_ring = kcalloc(page_ring_size,
738 sizeof(*rx_queue->page_ring), GFP_KERNEL);
739 rx_queue->page_ptr_mask = page_ring_size - 1;
740 }
741
742 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
743 {
744 struct efx_nic *efx = rx_queue->efx;
745 unsigned int max_fill, trigger, max_trigger;
746
747 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
748 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
749
750 /* Initialise ptr fields */
751 rx_queue->added_count = 0;
752 rx_queue->notified_count = 0;
753 rx_queue->removed_count = 0;
754 rx_queue->min_fill = -1U;
755 efx_init_rx_recycle_ring(efx, rx_queue);
756
757 rx_queue->page_remove = 0;
758 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
759 rx_queue->page_recycle_count = 0;
760 rx_queue->page_recycle_failed = 0;
761 rx_queue->page_recycle_full = 0;
762
763 /* Initialise limit fields */
764 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
765 max_trigger =
766 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
767 if (rx_refill_threshold != 0) {
768 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
769 if (trigger > max_trigger)
770 trigger = max_trigger;
771 } else {
772 trigger = max_trigger;
773 }
774
775 rx_queue->max_fill = max_fill;
776 rx_queue->fast_fill_trigger = trigger;
777 rx_queue->refill_enabled = true;
778
779 /* Set up RX descriptor ring */
780 efx_nic_init_rx(rx_queue);
781 }
782
783 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
784 {
785 int i;
786 struct efx_nic *efx = rx_queue->efx;
787 struct efx_rx_buffer *rx_buf;
788
789 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
790 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
791
792 del_timer_sync(&rx_queue->slow_fill);
793
794 /* Release RX buffers from the current read ptr to the write ptr */
795 if (rx_queue->buffer) {
796 for (i = rx_queue->removed_count; i < rx_queue->added_count;
797 i++) {
798 unsigned index = i & rx_queue->ptr_mask;
799 rx_buf = efx_rx_buffer(rx_queue, index);
800 efx_fini_rx_buffer(rx_queue, rx_buf);
801 }
802 }
803
804 /* Unmap and release the pages in the recycle ring. Remove the ring. */
805 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
806 struct page *page = rx_queue->page_ring[i];
807 struct efx_rx_page_state *state;
808
809 if (page == NULL)
810 continue;
811
812 state = page_address(page);
813 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
814 PAGE_SIZE << efx->rx_buffer_order,
815 DMA_FROM_DEVICE);
816 put_page(page);
817 }
818 kfree(rx_queue->page_ring);
819 rx_queue->page_ring = NULL;
820 }
821
822 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
823 {
824 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
825 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
826
827 efx_nic_remove_rx(rx_queue);
828
829 kfree(rx_queue->buffer);
830 rx_queue->buffer = NULL;
831 }
832
833
834 module_param(rx_refill_threshold, uint, 0444);
835 MODULE_PARM_DESC(rx_refill_threshold,
836 "RX descriptor ring refill threshold (%)");
837
838 #ifdef CONFIG_RFS_ACCEL
839
840 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
841 u16 rxq_index, u32 flow_id)
842 {
843 struct efx_nic *efx = netdev_priv(net_dev);
844 struct efx_channel *channel;
845 struct efx_filter_spec spec;
846 const __be16 *ports;
847 __be16 ether_type;
848 int nhoff;
849 int rc;
850
851 /* The core RPS/RFS code has already parsed and validated
852 * VLAN, IP and transport headers. We assume they are in the
853 * header area.
854 */
855
856 if (skb->protocol == htons(ETH_P_8021Q)) {
857 const struct vlan_hdr *vh =
858 (const struct vlan_hdr *)skb->data;
859
860 /* We can't filter on the IP 5-tuple and the vlan
861 * together, so just strip the vlan header and filter
862 * on the IP part.
863 */
864 EFX_BUG_ON_PARANOID(skb_headlen(skb) < sizeof(*vh));
865 ether_type = vh->h_vlan_encapsulated_proto;
866 nhoff = sizeof(struct vlan_hdr);
867 } else {
868 ether_type = skb->protocol;
869 nhoff = 0;
870 }
871
872 if (ether_type != htons(ETH_P_IP) && ether_type != htons(ETH_P_IPV6))
873 return -EPROTONOSUPPORT;
874
875 efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
876 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
877 rxq_index);
878 spec.match_flags =
879 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
880 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
881 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
882 spec.ether_type = ether_type;
883
884 if (ether_type == htons(ETH_P_IP)) {
885 const struct iphdr *ip =
886 (const struct iphdr *)(skb->data + nhoff);
887
888 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
889 if (ip_is_fragment(ip))
890 return -EPROTONOSUPPORT;
891 spec.ip_proto = ip->protocol;
892 spec.rem_host[0] = ip->saddr;
893 spec.loc_host[0] = ip->daddr;
894 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
895 ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);
896 } else {
897 const struct ipv6hdr *ip6 =
898 (const struct ipv6hdr *)(skb->data + nhoff);
899
900 EFX_BUG_ON_PARANOID(skb_headlen(skb) <
901 nhoff + sizeof(*ip6) + 4);
902 spec.ip_proto = ip6->nexthdr;
903 memcpy(spec.rem_host, &ip6->saddr, sizeof(ip6->saddr));
904 memcpy(spec.loc_host, &ip6->daddr, sizeof(ip6->daddr));
905 ports = (const __be16 *)(ip6 + 1);
906 }
907
908 spec.rem_port = ports[0];
909 spec.loc_port = ports[1];
910
911 rc = efx->type->filter_rfs_insert(efx, &spec);
912 if (rc < 0)
913 return rc;
914
915 /* Remember this so we can check whether to expire the filter later */
916 efx->rps_flow_id[rc] = flow_id;
917 channel = efx_get_channel(efx, skb_get_rx_queue(skb));
918 ++channel->rfs_filters_added;
919
920 if (ether_type == htons(ETH_P_IP))
921 netif_info(efx, rx_status, efx->net_dev,
922 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
923 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
924 spec.rem_host, ntohs(ports[0]), spec.loc_host,
925 ntohs(ports[1]), rxq_index, flow_id, rc);
926 else
927 netif_info(efx, rx_status, efx->net_dev,
928 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
929 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
930 spec.rem_host, ntohs(ports[0]), spec.loc_host,
931 ntohs(ports[1]), rxq_index, flow_id, rc);
932
933 return rc;
934 }
935
936 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
937 {
938 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
939 unsigned int index, size;
940 u32 flow_id;
941
942 if (!spin_trylock_bh(&efx->filter_lock))
943 return false;
944
945 expire_one = efx->type->filter_rfs_expire_one;
946 index = efx->rps_expire_index;
947 size = efx->type->max_rx_ip_filters;
948 while (quota--) {
949 flow_id = efx->rps_flow_id[index];
950 if (expire_one(efx, flow_id, index))
951 netif_info(efx, rx_status, efx->net_dev,
952 "expired filter %d [flow %u]\n",
953 index, flow_id);
954 if (++index == size)
955 index = 0;
956 }
957 efx->rps_expire_index = index;
958
959 spin_unlock_bh(&efx->filter_lock);
960 return true;
961 }
962
963 #endif /* CONFIG_RFS_ACCEL */
964
965 /**
966 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
967 * @spec: Specification to test
968 *
969 * Return: %true if the specification is a non-drop RX filter that
970 * matches a local MAC address I/G bit value of 1 or matches a local
971 * IPv4 or IPv6 address value in the respective multicast address
972 * range. Otherwise %false.
973 */
974 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
975 {
976 if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
977 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
978 return false;
979
980 if (spec->match_flags &
981 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
982 is_multicast_ether_addr(spec->loc_mac))
983 return true;
984
985 if ((spec->match_flags &
986 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
987 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
988 if (spec->ether_type == htons(ETH_P_IP) &&
989 ipv4_is_multicast(spec->loc_host[0]))
990 return true;
991 if (spec->ether_type == htons(ETH_P_IPV6) &&
992 ((const u8 *)spec->loc_host)[0] == 0xff)
993 return true;
994 }
995
996 return false;
997 }