]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/sfc/tx.c
Merge tag 'vmwgfx-fixes-3.14-2014-02-18' of git://people.freedesktop.org/~thomash...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27
28 #ifdef EFX_USE_PIO
29
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34 #endif /* EFX_USE_PIO */
35
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39 return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51 struct efx_tx_buffer *buffer =
52 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54 EFX_BUG_ON_PARANOID(buffer->len);
55 EFX_BUG_ON_PARANOID(buffer->flags);
56 EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58 return buffer;
59 }
60
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62 struct efx_tx_buffer *buffer,
63 unsigned int *pkts_compl,
64 unsigned int *bytes_compl)
65 {
66 if (buffer->unmap_len) {
67 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71 DMA_TO_DEVICE);
72 else
73 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74 DMA_TO_DEVICE);
75 buffer->unmap_len = 0;
76 }
77
78 if (buffer->flags & EFX_TX_BUF_SKB) {
79 (*pkts_compl)++;
80 (*bytes_compl) += buffer->skb->len;
81 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
82 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83 "TX queue %d transmission id %x complete\n",
84 tx_queue->queue, tx_queue->read_count);
85 } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86 kfree(buffer->heap_buf);
87 }
88
89 buffer->len = 0;
90 buffer->flags = 0;
91 }
92
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94 struct sk_buff *skb);
95
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99 /* Depending on the NIC revision, we can use descriptor
100 * lengths up to 8K or 8K-1. However, since PCI Express
101 * devices must split read requests at 4K boundaries, there is
102 * little benefit from using descriptors that cross those
103 * boundaries and we keep things simple by not doing so.
104 */
105 unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107 /* Work around hardware bug for unaligned buffers. */
108 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111 return len;
112 }
113
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116 /* Header and payload descriptor for each output segment, plus
117 * one for every input fragment boundary within a segment
118 */
119 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121 /* Possibly one more per segment for the alignment workaround,
122 * or for option descriptors
123 */
124 if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125 max_descs += EFX_TSO_MAX_SEGS;
126
127 /* Possibly more for PCIe page boundaries within input fragments */
128 if (PAGE_SIZE > EFX_PAGE_SIZE)
129 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132 return max_descs;
133 }
134
135 /* Get partner of a TX queue, seen as part of the same net core queue */
136 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
137 {
138 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
139 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
140 else
141 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
142 }
143
144 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
145 {
146 /* We need to consider both queues that the net core sees as one */
147 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
148 struct efx_nic *efx = txq1->efx;
149 unsigned int fill_level;
150
151 fill_level = max(txq1->insert_count - txq1->old_read_count,
152 txq2->insert_count - txq2->old_read_count);
153 if (likely(fill_level < efx->txq_stop_thresh))
154 return;
155
156 /* We used the stale old_read_count above, which gives us a
157 * pessimistic estimate of the fill level (which may even
158 * validly be >= efx->txq_entries). Now try again using
159 * read_count (more likely to be a cache miss).
160 *
161 * If we read read_count and then conditionally stop the
162 * queue, it is possible for the completion path to race with
163 * us and complete all outstanding descriptors in the middle,
164 * after which there will be no more completions to wake it.
165 * Therefore we stop the queue first, then read read_count
166 * (with a memory barrier to ensure the ordering), then
167 * restart the queue if the fill level turns out to be low
168 * enough.
169 */
170 netif_tx_stop_queue(txq1->core_txq);
171 smp_mb();
172 txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
173 txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
174
175 fill_level = max(txq1->insert_count - txq1->old_read_count,
176 txq2->insert_count - txq2->old_read_count);
177 EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
178 if (likely(fill_level < efx->txq_stop_thresh)) {
179 smp_mb();
180 if (likely(!efx->loopback_selftest))
181 netif_tx_start_queue(txq1->core_txq);
182 }
183 }
184
185 #ifdef EFX_USE_PIO
186
187 struct efx_short_copy_buffer {
188 int used;
189 u8 buf[L1_CACHE_BYTES];
190 };
191
192 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
193 * Advances piobuf pointer. Leaves additional data in the copy buffer.
194 */
195 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
196 u8 *data, int len,
197 struct efx_short_copy_buffer *copy_buf)
198 {
199 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
200
201 memcpy_toio(*piobuf, data, block_len);
202 *piobuf += block_len;
203 len -= block_len;
204
205 if (len) {
206 data += block_len;
207 BUG_ON(copy_buf->used);
208 BUG_ON(len > sizeof(copy_buf->buf));
209 memcpy(copy_buf->buf, data, len);
210 copy_buf->used = len;
211 }
212 }
213
214 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
215 * Advances piobuf pointer. Leaves additional data in the copy buffer.
216 */
217 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
218 u8 *data, int len,
219 struct efx_short_copy_buffer *copy_buf)
220 {
221 if (copy_buf->used) {
222 /* if the copy buffer is partially full, fill it up and write */
223 int copy_to_buf =
224 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
225
226 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
227 copy_buf->used += copy_to_buf;
228
229 /* if we didn't fill it up then we're done for now */
230 if (copy_buf->used < sizeof(copy_buf->buf))
231 return;
232
233 memcpy_toio(*piobuf, copy_buf->buf, sizeof(copy_buf->buf));
234 *piobuf += sizeof(copy_buf->buf);
235 data += copy_to_buf;
236 len -= copy_to_buf;
237 copy_buf->used = 0;
238 }
239
240 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
241 }
242
243 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
244 struct efx_short_copy_buffer *copy_buf)
245 {
246 /* if there's anything in it, write the whole buffer, including junk */
247 if (copy_buf->used)
248 memcpy_toio(piobuf, copy_buf->buf, sizeof(copy_buf->buf));
249 }
250
251 /* Traverse skb structure and copy fragments in to PIO buffer.
252 * Advances piobuf pointer.
253 */
254 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
255 u8 __iomem **piobuf,
256 struct efx_short_copy_buffer *copy_buf)
257 {
258 int i;
259
260 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
261 copy_buf);
262
263 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
264 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
265 u8 *vaddr;
266
267 vaddr = kmap_atomic(skb_frag_page(f));
268
269 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
270 skb_frag_size(f), copy_buf);
271 kunmap_atomic(vaddr);
272 }
273
274 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
275 }
276
277 static struct efx_tx_buffer *
278 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
279 {
280 struct efx_tx_buffer *buffer =
281 efx_tx_queue_get_insert_buffer(tx_queue);
282 u8 __iomem *piobuf = tx_queue->piobuf;
283
284 /* Copy to PIO buffer. Ensure the writes are padded to the end
285 * of a cache line, as this is required for write-combining to be
286 * effective on at least x86.
287 */
288
289 if (skb_shinfo(skb)->nr_frags) {
290 /* The size of the copy buffer will ensure all writes
291 * are the size of a cache line.
292 */
293 struct efx_short_copy_buffer copy_buf;
294
295 copy_buf.used = 0;
296
297 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
298 &piobuf, &copy_buf);
299 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
300 } else {
301 /* Pad the write to the size of a cache line.
302 * We can do this because we know the skb_shared_info sruct is
303 * after the source, and the destination buffer is big enough.
304 */
305 BUILD_BUG_ON(L1_CACHE_BYTES >
306 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
307 memcpy_toio(tx_queue->piobuf, skb->data,
308 ALIGN(skb->len, L1_CACHE_BYTES));
309 }
310
311 EFX_POPULATE_QWORD_5(buffer->option,
312 ESF_DZ_TX_DESC_IS_OPT, 1,
313 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
314 ESF_DZ_TX_PIO_CONT, 0,
315 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
316 ESF_DZ_TX_PIO_BUF_ADDR,
317 tx_queue->piobuf_offset);
318 ++tx_queue->pio_packets;
319 ++tx_queue->insert_count;
320 return buffer;
321 }
322 #endif /* EFX_USE_PIO */
323
324 /*
325 * Add a socket buffer to a TX queue
326 *
327 * This maps all fragments of a socket buffer for DMA and adds them to
328 * the TX queue. The queue's insert pointer will be incremented by
329 * the number of fragments in the socket buffer.
330 *
331 * If any DMA mapping fails, any mapped fragments will be unmapped,
332 * the queue's insert pointer will be restored to its original value.
333 *
334 * This function is split out from efx_hard_start_xmit to allow the
335 * loopback test to direct packets via specific TX queues.
336 *
337 * Returns NETDEV_TX_OK.
338 * You must hold netif_tx_lock() to call this function.
339 */
340 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
341 {
342 struct efx_nic *efx = tx_queue->efx;
343 struct device *dma_dev = &efx->pci_dev->dev;
344 struct efx_tx_buffer *buffer;
345 skb_frag_t *fragment;
346 unsigned int len, unmap_len = 0;
347 dma_addr_t dma_addr, unmap_addr = 0;
348 unsigned int dma_len;
349 unsigned short dma_flags;
350 int i = 0;
351
352 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
353
354 if (skb_shinfo(skb)->gso_size)
355 return efx_enqueue_skb_tso(tx_queue, skb);
356
357 /* Get size of the initial fragment */
358 len = skb_headlen(skb);
359
360 /* Pad if necessary */
361 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
362 EFX_BUG_ON_PARANOID(skb->data_len);
363 len = 32 + 1;
364 if (skb_pad(skb, len - skb->len))
365 return NETDEV_TX_OK;
366 }
367
368 /* Consider using PIO for short packets */
369 #ifdef EFX_USE_PIO
370 if (skb->len <= efx_piobuf_size && tx_queue->piobuf &&
371 efx_nic_tx_is_empty(tx_queue) &&
372 efx_nic_tx_is_empty(efx_tx_queue_partner(tx_queue))) {
373 buffer = efx_enqueue_skb_pio(tx_queue, skb);
374 dma_flags = EFX_TX_BUF_OPTION;
375 goto finish_packet;
376 }
377 #endif
378
379 /* Map for DMA. Use dma_map_single rather than dma_map_page
380 * since this is more efficient on machines with sparse
381 * memory.
382 */
383 dma_flags = EFX_TX_BUF_MAP_SINGLE;
384 dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
385
386 /* Process all fragments */
387 while (1) {
388 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
389 goto dma_err;
390
391 /* Store fields for marking in the per-fragment final
392 * descriptor */
393 unmap_len = len;
394 unmap_addr = dma_addr;
395
396 /* Add to TX queue, splitting across DMA boundaries */
397 do {
398 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
399
400 dma_len = efx_max_tx_len(efx, dma_addr);
401 if (likely(dma_len >= len))
402 dma_len = len;
403
404 /* Fill out per descriptor fields */
405 buffer->len = dma_len;
406 buffer->dma_addr = dma_addr;
407 buffer->flags = EFX_TX_BUF_CONT;
408 len -= dma_len;
409 dma_addr += dma_len;
410 ++tx_queue->insert_count;
411 } while (len);
412
413 /* Transfer ownership of the unmapping to the final buffer */
414 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
415 buffer->unmap_len = unmap_len;
416 buffer->dma_offset = buffer->dma_addr - unmap_addr;
417 unmap_len = 0;
418
419 /* Get address and size of next fragment */
420 if (i >= skb_shinfo(skb)->nr_frags)
421 break;
422 fragment = &skb_shinfo(skb)->frags[i];
423 len = skb_frag_size(fragment);
424 i++;
425 /* Map for DMA */
426 dma_flags = 0;
427 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
428 DMA_TO_DEVICE);
429 }
430
431 /* Transfer ownership of the skb to the final buffer */
432 #ifdef EFX_USE_PIO
433 finish_packet:
434 #endif
435 buffer->skb = skb;
436 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
437
438 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
439
440 /* Pass off to hardware */
441 efx_nic_push_buffers(tx_queue);
442
443 efx_tx_maybe_stop_queue(tx_queue);
444
445 return NETDEV_TX_OK;
446
447 dma_err:
448 netif_err(efx, tx_err, efx->net_dev,
449 " TX queue %d could not map skb with %d bytes %d "
450 "fragments for DMA\n", tx_queue->queue, skb->len,
451 skb_shinfo(skb)->nr_frags + 1);
452
453 /* Mark the packet as transmitted, and free the SKB ourselves */
454 dev_kfree_skb_any(skb);
455
456 /* Work backwards until we hit the original insert pointer value */
457 while (tx_queue->insert_count != tx_queue->write_count) {
458 unsigned int pkts_compl = 0, bytes_compl = 0;
459 --tx_queue->insert_count;
460 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
461 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
462 }
463
464 /* Free the fragment we were mid-way through pushing */
465 if (unmap_len) {
466 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
467 dma_unmap_single(dma_dev, unmap_addr, unmap_len,
468 DMA_TO_DEVICE);
469 else
470 dma_unmap_page(dma_dev, unmap_addr, unmap_len,
471 DMA_TO_DEVICE);
472 }
473
474 return NETDEV_TX_OK;
475 }
476
477 /* Remove packets from the TX queue
478 *
479 * This removes packets from the TX queue, up to and including the
480 * specified index.
481 */
482 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
483 unsigned int index,
484 unsigned int *pkts_compl,
485 unsigned int *bytes_compl)
486 {
487 struct efx_nic *efx = tx_queue->efx;
488 unsigned int stop_index, read_ptr;
489
490 stop_index = (index + 1) & tx_queue->ptr_mask;
491 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
492
493 while (read_ptr != stop_index) {
494 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
495
496 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
497 unlikely(buffer->len == 0)) {
498 netif_err(efx, tx_err, efx->net_dev,
499 "TX queue %d spurious TX completion id %x\n",
500 tx_queue->queue, read_ptr);
501 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
502 return;
503 }
504
505 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
506
507 ++tx_queue->read_count;
508 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
509 }
510 }
511
512 /* Initiate a packet transmission. We use one channel per CPU
513 * (sharing when we have more CPUs than channels). On Falcon, the TX
514 * completion events will be directed back to the CPU that transmitted
515 * the packet, which should be cache-efficient.
516 *
517 * Context: non-blocking.
518 * Note that returning anything other than NETDEV_TX_OK will cause the
519 * OS to free the skb.
520 */
521 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
522 struct net_device *net_dev)
523 {
524 struct efx_nic *efx = netdev_priv(net_dev);
525 struct efx_tx_queue *tx_queue;
526 unsigned index, type;
527
528 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
529
530 /* PTP "event" packet */
531 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
532 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
533 return efx_ptp_tx(efx, skb);
534 }
535
536 index = skb_get_queue_mapping(skb);
537 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
538 if (index >= efx->n_tx_channels) {
539 index -= efx->n_tx_channels;
540 type |= EFX_TXQ_TYPE_HIGHPRI;
541 }
542 tx_queue = efx_get_tx_queue(efx, index, type);
543
544 return efx_enqueue_skb(tx_queue, skb);
545 }
546
547 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
548 {
549 struct efx_nic *efx = tx_queue->efx;
550
551 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
552 tx_queue->core_txq =
553 netdev_get_tx_queue(efx->net_dev,
554 tx_queue->queue / EFX_TXQ_TYPES +
555 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
556 efx->n_tx_channels : 0));
557 }
558
559 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
560 {
561 struct efx_nic *efx = netdev_priv(net_dev);
562 struct efx_channel *channel;
563 struct efx_tx_queue *tx_queue;
564 unsigned tc;
565 int rc;
566
567 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
568 return -EINVAL;
569
570 if (num_tc == net_dev->num_tc)
571 return 0;
572
573 for (tc = 0; tc < num_tc; tc++) {
574 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
575 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
576 }
577
578 if (num_tc > net_dev->num_tc) {
579 /* Initialise high-priority queues as necessary */
580 efx_for_each_channel(channel, efx) {
581 efx_for_each_possible_channel_tx_queue(tx_queue,
582 channel) {
583 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
584 continue;
585 if (!tx_queue->buffer) {
586 rc = efx_probe_tx_queue(tx_queue);
587 if (rc)
588 return rc;
589 }
590 if (!tx_queue->initialised)
591 efx_init_tx_queue(tx_queue);
592 efx_init_tx_queue_core_txq(tx_queue);
593 }
594 }
595 } else {
596 /* Reduce number of classes before number of queues */
597 net_dev->num_tc = num_tc;
598 }
599
600 rc = netif_set_real_num_tx_queues(net_dev,
601 max_t(int, num_tc, 1) *
602 efx->n_tx_channels);
603 if (rc)
604 return rc;
605
606 /* Do not destroy high-priority queues when they become
607 * unused. We would have to flush them first, and it is
608 * fairly difficult to flush a subset of TX queues. Leave
609 * it to efx_fini_channels().
610 */
611
612 net_dev->num_tc = num_tc;
613 return 0;
614 }
615
616 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
617 {
618 unsigned fill_level;
619 struct efx_nic *efx = tx_queue->efx;
620 struct efx_tx_queue *txq2;
621 unsigned int pkts_compl = 0, bytes_compl = 0;
622
623 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
624
625 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
626 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
627
628 if (pkts_compl > 1)
629 ++tx_queue->merge_events;
630
631 /* See if we need to restart the netif queue. This memory
632 * barrier ensures that we write read_count (inside
633 * efx_dequeue_buffers()) before reading the queue status.
634 */
635 smp_mb();
636 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
637 likely(efx->port_enabled) &&
638 likely(netif_device_present(efx->net_dev))) {
639 txq2 = efx_tx_queue_partner(tx_queue);
640 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
641 txq2->insert_count - txq2->read_count);
642 if (fill_level <= efx->txq_wake_thresh)
643 netif_tx_wake_queue(tx_queue->core_txq);
644 }
645
646 /* Check whether the hardware queue is now empty */
647 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
648 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
649 if (tx_queue->read_count == tx_queue->old_write_count) {
650 smp_mb();
651 tx_queue->empty_read_count =
652 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
653 }
654 }
655 }
656
657 /* Size of page-based TSO header buffers. Larger blocks must be
658 * allocated from the heap.
659 */
660 #define TSOH_STD_SIZE 128
661 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
662
663 /* At most half the descriptors in the queue at any time will refer to
664 * a TSO header buffer, since they must always be followed by a
665 * payload descriptor referring to an skb.
666 */
667 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
668 {
669 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
670 }
671
672 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
673 {
674 struct efx_nic *efx = tx_queue->efx;
675 unsigned int entries;
676 int rc;
677
678 /* Create the smallest power-of-two aligned ring */
679 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
680 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
681 tx_queue->ptr_mask = entries - 1;
682
683 netif_dbg(efx, probe, efx->net_dev,
684 "creating TX queue %d size %#x mask %#x\n",
685 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
686
687 /* Allocate software ring */
688 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
689 GFP_KERNEL);
690 if (!tx_queue->buffer)
691 return -ENOMEM;
692
693 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
694 tx_queue->tsoh_page =
695 kcalloc(efx_tsoh_page_count(tx_queue),
696 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
697 if (!tx_queue->tsoh_page) {
698 rc = -ENOMEM;
699 goto fail1;
700 }
701 }
702
703 /* Allocate hardware ring */
704 rc = efx_nic_probe_tx(tx_queue);
705 if (rc)
706 goto fail2;
707
708 return 0;
709
710 fail2:
711 kfree(tx_queue->tsoh_page);
712 tx_queue->tsoh_page = NULL;
713 fail1:
714 kfree(tx_queue->buffer);
715 tx_queue->buffer = NULL;
716 return rc;
717 }
718
719 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
720 {
721 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
722 "initialising TX queue %d\n", tx_queue->queue);
723
724 tx_queue->insert_count = 0;
725 tx_queue->write_count = 0;
726 tx_queue->old_write_count = 0;
727 tx_queue->read_count = 0;
728 tx_queue->old_read_count = 0;
729 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
730
731 /* Set up TX descriptor ring */
732 efx_nic_init_tx(tx_queue);
733
734 tx_queue->initialised = true;
735 }
736
737 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
738 {
739 struct efx_tx_buffer *buffer;
740
741 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
742 "shutting down TX queue %d\n", tx_queue->queue);
743
744 if (!tx_queue->buffer)
745 return;
746
747 /* Free any buffers left in the ring */
748 while (tx_queue->read_count != tx_queue->write_count) {
749 unsigned int pkts_compl = 0, bytes_compl = 0;
750 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
751 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
752
753 ++tx_queue->read_count;
754 }
755 netdev_tx_reset_queue(tx_queue->core_txq);
756 }
757
758 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
759 {
760 int i;
761
762 if (!tx_queue->buffer)
763 return;
764
765 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
766 "destroying TX queue %d\n", tx_queue->queue);
767 efx_nic_remove_tx(tx_queue);
768
769 if (tx_queue->tsoh_page) {
770 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
771 efx_nic_free_buffer(tx_queue->efx,
772 &tx_queue->tsoh_page[i]);
773 kfree(tx_queue->tsoh_page);
774 tx_queue->tsoh_page = NULL;
775 }
776
777 kfree(tx_queue->buffer);
778 tx_queue->buffer = NULL;
779 }
780
781
782 /* Efx TCP segmentation acceleration.
783 *
784 * Why? Because by doing it here in the driver we can go significantly
785 * faster than the GSO.
786 *
787 * Requires TX checksum offload support.
788 */
789
790 /* Number of bytes inserted at the start of a TSO header buffer,
791 * similar to NET_IP_ALIGN.
792 */
793 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
794 #define TSOH_OFFSET 0
795 #else
796 #define TSOH_OFFSET NET_IP_ALIGN
797 #endif
798
799 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
800
801 /**
802 * struct tso_state - TSO state for an SKB
803 * @out_len: Remaining length in current segment
804 * @seqnum: Current sequence number
805 * @ipv4_id: Current IPv4 ID, host endian
806 * @packet_space: Remaining space in current packet
807 * @dma_addr: DMA address of current position
808 * @in_len: Remaining length in current SKB fragment
809 * @unmap_len: Length of SKB fragment
810 * @unmap_addr: DMA address of SKB fragment
811 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
812 * @protocol: Network protocol (after any VLAN header)
813 * @ip_off: Offset of IP header
814 * @tcp_off: Offset of TCP header
815 * @header_len: Number of bytes of header
816 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
817 * @header_dma_addr: Header DMA address, when using option descriptors
818 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
819 * descriptors
820 *
821 * The state used during segmentation. It is put into this data structure
822 * just to make it easy to pass into inline functions.
823 */
824 struct tso_state {
825 /* Output position */
826 unsigned out_len;
827 unsigned seqnum;
828 u16 ipv4_id;
829 unsigned packet_space;
830
831 /* Input position */
832 dma_addr_t dma_addr;
833 unsigned in_len;
834 unsigned unmap_len;
835 dma_addr_t unmap_addr;
836 unsigned short dma_flags;
837
838 __be16 protocol;
839 unsigned int ip_off;
840 unsigned int tcp_off;
841 unsigned header_len;
842 unsigned int ip_base_len;
843 dma_addr_t header_dma_addr;
844 unsigned int header_unmap_len;
845 };
846
847
848 /*
849 * Verify that our various assumptions about sk_buffs and the conditions
850 * under which TSO will be attempted hold true. Return the protocol number.
851 */
852 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
853 {
854 __be16 protocol = skb->protocol;
855
856 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
857 protocol);
858 if (protocol == htons(ETH_P_8021Q)) {
859 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
860 protocol = veh->h_vlan_encapsulated_proto;
861 }
862
863 if (protocol == htons(ETH_P_IP)) {
864 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
865 } else {
866 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
867 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
868 }
869 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
870 + (tcp_hdr(skb)->doff << 2u)) >
871 skb_headlen(skb));
872
873 return protocol;
874 }
875
876 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
877 struct efx_tx_buffer *buffer, unsigned int len)
878 {
879 u8 *result;
880
881 EFX_BUG_ON_PARANOID(buffer->len);
882 EFX_BUG_ON_PARANOID(buffer->flags);
883 EFX_BUG_ON_PARANOID(buffer->unmap_len);
884
885 if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
886 unsigned index =
887 (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
888 struct efx_buffer *page_buf =
889 &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
890 unsigned offset =
891 TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
892
893 if (unlikely(!page_buf->addr) &&
894 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
895 GFP_ATOMIC))
896 return NULL;
897
898 result = (u8 *)page_buf->addr + offset;
899 buffer->dma_addr = page_buf->dma_addr + offset;
900 buffer->flags = EFX_TX_BUF_CONT;
901 } else {
902 tx_queue->tso_long_headers++;
903
904 buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
905 if (unlikely(!buffer->heap_buf))
906 return NULL;
907 result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
908 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
909 }
910
911 buffer->len = len;
912
913 return result;
914 }
915
916 /**
917 * efx_tx_queue_insert - push descriptors onto the TX queue
918 * @tx_queue: Efx TX queue
919 * @dma_addr: DMA address of fragment
920 * @len: Length of fragment
921 * @final_buffer: The final buffer inserted into the queue
922 *
923 * Push descriptors onto the TX queue.
924 */
925 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
926 dma_addr_t dma_addr, unsigned len,
927 struct efx_tx_buffer **final_buffer)
928 {
929 struct efx_tx_buffer *buffer;
930 struct efx_nic *efx = tx_queue->efx;
931 unsigned dma_len;
932
933 EFX_BUG_ON_PARANOID(len <= 0);
934
935 while (1) {
936 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
937 ++tx_queue->insert_count;
938
939 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
940 tx_queue->read_count >=
941 efx->txq_entries);
942
943 buffer->dma_addr = dma_addr;
944
945 dma_len = efx_max_tx_len(efx, dma_addr);
946
947 /* If there is enough space to send then do so */
948 if (dma_len >= len)
949 break;
950
951 buffer->len = dma_len;
952 buffer->flags = EFX_TX_BUF_CONT;
953 dma_addr += dma_len;
954 len -= dma_len;
955 }
956
957 EFX_BUG_ON_PARANOID(!len);
958 buffer->len = len;
959 *final_buffer = buffer;
960 }
961
962
963 /*
964 * Put a TSO header into the TX queue.
965 *
966 * This is special-cased because we know that it is small enough to fit in
967 * a single fragment, and we know it doesn't cross a page boundary. It
968 * also allows us to not worry about end-of-packet etc.
969 */
970 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
971 struct efx_tx_buffer *buffer, u8 *header)
972 {
973 if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
974 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
975 header, buffer->len,
976 DMA_TO_DEVICE);
977 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
978 buffer->dma_addr))) {
979 kfree(buffer->heap_buf);
980 buffer->len = 0;
981 buffer->flags = 0;
982 return -ENOMEM;
983 }
984 buffer->unmap_len = buffer->len;
985 buffer->dma_offset = 0;
986 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
987 }
988
989 ++tx_queue->insert_count;
990 return 0;
991 }
992
993
994 /* Remove buffers put into a tx_queue. None of the buffers must have
995 * an skb attached.
996 */
997 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
998 {
999 struct efx_tx_buffer *buffer;
1000
1001 /* Work backwards until we hit the original insert pointer value */
1002 while (tx_queue->insert_count != tx_queue->write_count) {
1003 --tx_queue->insert_count;
1004 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1005 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1006 }
1007 }
1008
1009
1010 /* Parse the SKB header and initialise state. */
1011 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1012 const struct sk_buff *skb)
1013 {
1014 bool use_options = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1015 struct device *dma_dev = &efx->pci_dev->dev;
1016 unsigned int header_len, in_len;
1017 dma_addr_t dma_addr;
1018
1019 st->ip_off = skb_network_header(skb) - skb->data;
1020 st->tcp_off = skb_transport_header(skb) - skb->data;
1021 header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1022 in_len = skb_headlen(skb) - header_len;
1023 st->header_len = header_len;
1024 st->in_len = in_len;
1025 if (st->protocol == htons(ETH_P_IP)) {
1026 st->ip_base_len = st->header_len - st->ip_off;
1027 st->ipv4_id = ntohs(ip_hdr(skb)->id);
1028 } else {
1029 st->ip_base_len = st->header_len - st->tcp_off;
1030 st->ipv4_id = 0;
1031 }
1032 st->seqnum = ntohl(tcp_hdr(skb)->seq);
1033
1034 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1035 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1036 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1037
1038 st->out_len = skb->len - header_len;
1039
1040 if (!use_options) {
1041 st->header_unmap_len = 0;
1042
1043 if (likely(in_len == 0)) {
1044 st->dma_flags = 0;
1045 st->unmap_len = 0;
1046 return 0;
1047 }
1048
1049 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1050 in_len, DMA_TO_DEVICE);
1051 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1052 st->dma_addr = dma_addr;
1053 st->unmap_addr = dma_addr;
1054 st->unmap_len = in_len;
1055 } else {
1056 dma_addr = dma_map_single(dma_dev, skb->data,
1057 skb_headlen(skb), DMA_TO_DEVICE);
1058 st->header_dma_addr = dma_addr;
1059 st->header_unmap_len = skb_headlen(skb);
1060 st->dma_flags = 0;
1061 st->dma_addr = dma_addr + header_len;
1062 st->unmap_len = 0;
1063 }
1064
1065 return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1066 }
1067
1068 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1069 skb_frag_t *frag)
1070 {
1071 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1072 skb_frag_size(frag), DMA_TO_DEVICE);
1073 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1074 st->dma_flags = 0;
1075 st->unmap_len = skb_frag_size(frag);
1076 st->in_len = skb_frag_size(frag);
1077 st->dma_addr = st->unmap_addr;
1078 return 0;
1079 }
1080 return -ENOMEM;
1081 }
1082
1083
1084 /**
1085 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1086 * @tx_queue: Efx TX queue
1087 * @skb: Socket buffer
1088 * @st: TSO state
1089 *
1090 * Form descriptors for the current fragment, until we reach the end
1091 * of fragment or end-of-packet.
1092 */
1093 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1094 const struct sk_buff *skb,
1095 struct tso_state *st)
1096 {
1097 struct efx_tx_buffer *buffer;
1098 int n;
1099
1100 if (st->in_len == 0)
1101 return;
1102 if (st->packet_space == 0)
1103 return;
1104
1105 EFX_BUG_ON_PARANOID(st->in_len <= 0);
1106 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1107
1108 n = min(st->in_len, st->packet_space);
1109
1110 st->packet_space -= n;
1111 st->out_len -= n;
1112 st->in_len -= n;
1113
1114 efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1115
1116 if (st->out_len == 0) {
1117 /* Transfer ownership of the skb */
1118 buffer->skb = skb;
1119 buffer->flags = EFX_TX_BUF_SKB;
1120 } else if (st->packet_space != 0) {
1121 buffer->flags = EFX_TX_BUF_CONT;
1122 }
1123
1124 if (st->in_len == 0) {
1125 /* Transfer ownership of the DMA mapping */
1126 buffer->unmap_len = st->unmap_len;
1127 buffer->dma_offset = buffer->unmap_len - buffer->len;
1128 buffer->flags |= st->dma_flags;
1129 st->unmap_len = 0;
1130 }
1131
1132 st->dma_addr += n;
1133 }
1134
1135
1136 /**
1137 * tso_start_new_packet - generate a new header and prepare for the new packet
1138 * @tx_queue: Efx TX queue
1139 * @skb: Socket buffer
1140 * @st: TSO state
1141 *
1142 * Generate a new header and prepare for the new packet. Return 0 on
1143 * success, or -%ENOMEM if failed to alloc header.
1144 */
1145 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1146 const struct sk_buff *skb,
1147 struct tso_state *st)
1148 {
1149 struct efx_tx_buffer *buffer =
1150 efx_tx_queue_get_insert_buffer(tx_queue);
1151 bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1152 u8 tcp_flags_clear;
1153
1154 if (!is_last) {
1155 st->packet_space = skb_shinfo(skb)->gso_size;
1156 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1157 } else {
1158 st->packet_space = st->out_len;
1159 tcp_flags_clear = 0x00;
1160 }
1161
1162 if (!st->header_unmap_len) {
1163 /* Allocate and insert a DMA-mapped header buffer. */
1164 struct tcphdr *tsoh_th;
1165 unsigned ip_length;
1166 u8 *header;
1167 int rc;
1168
1169 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1170 if (!header)
1171 return -ENOMEM;
1172
1173 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1174
1175 /* Copy and update the headers. */
1176 memcpy(header, skb->data, st->header_len);
1177
1178 tsoh_th->seq = htonl(st->seqnum);
1179 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1180
1181 ip_length = st->ip_base_len + st->packet_space;
1182
1183 if (st->protocol == htons(ETH_P_IP)) {
1184 struct iphdr *tsoh_iph =
1185 (struct iphdr *)(header + st->ip_off);
1186
1187 tsoh_iph->tot_len = htons(ip_length);
1188 tsoh_iph->id = htons(st->ipv4_id);
1189 } else {
1190 struct ipv6hdr *tsoh_iph =
1191 (struct ipv6hdr *)(header + st->ip_off);
1192
1193 tsoh_iph->payload_len = htons(ip_length);
1194 }
1195
1196 rc = efx_tso_put_header(tx_queue, buffer, header);
1197 if (unlikely(rc))
1198 return rc;
1199 } else {
1200 /* Send the original headers with a TSO option descriptor
1201 * in front
1202 */
1203 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1204
1205 buffer->flags = EFX_TX_BUF_OPTION;
1206 buffer->len = 0;
1207 buffer->unmap_len = 0;
1208 EFX_POPULATE_QWORD_5(buffer->option,
1209 ESF_DZ_TX_DESC_IS_OPT, 1,
1210 ESF_DZ_TX_OPTION_TYPE,
1211 ESE_DZ_TX_OPTION_DESC_TSO,
1212 ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1213 ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1214 ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1215 ++tx_queue->insert_count;
1216
1217 /* We mapped the headers in tso_start(). Unmap them
1218 * when the last segment is completed.
1219 */
1220 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1221 buffer->dma_addr = st->header_dma_addr;
1222 buffer->len = st->header_len;
1223 if (is_last) {
1224 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1225 buffer->unmap_len = st->header_unmap_len;
1226 buffer->dma_offset = 0;
1227 /* Ensure we only unmap them once in case of a
1228 * later DMA mapping error and rollback
1229 */
1230 st->header_unmap_len = 0;
1231 } else {
1232 buffer->flags = EFX_TX_BUF_CONT;
1233 buffer->unmap_len = 0;
1234 }
1235 ++tx_queue->insert_count;
1236 }
1237
1238 st->seqnum += skb_shinfo(skb)->gso_size;
1239
1240 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1241 ++st->ipv4_id;
1242
1243 ++tx_queue->tso_packets;
1244
1245 return 0;
1246 }
1247
1248
1249 /**
1250 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1251 * @tx_queue: Efx TX queue
1252 * @skb: Socket buffer
1253 *
1254 * Context: You must hold netif_tx_lock() to call this function.
1255 *
1256 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1257 * @skb was not enqueued. In all cases @skb is consumed. Return
1258 * %NETDEV_TX_OK.
1259 */
1260 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1261 struct sk_buff *skb)
1262 {
1263 struct efx_nic *efx = tx_queue->efx;
1264 int frag_i, rc;
1265 struct tso_state state;
1266
1267 /* Find the packet protocol and sanity-check it */
1268 state.protocol = efx_tso_check_protocol(skb);
1269
1270 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1271
1272 rc = tso_start(&state, efx, skb);
1273 if (rc)
1274 goto mem_err;
1275
1276 if (likely(state.in_len == 0)) {
1277 /* Grab the first payload fragment. */
1278 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1279 frag_i = 0;
1280 rc = tso_get_fragment(&state, efx,
1281 skb_shinfo(skb)->frags + frag_i);
1282 if (rc)
1283 goto mem_err;
1284 } else {
1285 /* Payload starts in the header area. */
1286 frag_i = -1;
1287 }
1288
1289 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1290 goto mem_err;
1291
1292 while (1) {
1293 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1294
1295 /* Move onto the next fragment? */
1296 if (state.in_len == 0) {
1297 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1298 /* End of payload reached. */
1299 break;
1300 rc = tso_get_fragment(&state, efx,
1301 skb_shinfo(skb)->frags + frag_i);
1302 if (rc)
1303 goto mem_err;
1304 }
1305
1306 /* Start at new packet? */
1307 if (state.packet_space == 0 &&
1308 tso_start_new_packet(tx_queue, skb, &state) < 0)
1309 goto mem_err;
1310 }
1311
1312 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1313
1314 /* Pass off to hardware */
1315 efx_nic_push_buffers(tx_queue);
1316
1317 efx_tx_maybe_stop_queue(tx_queue);
1318
1319 tx_queue->tso_bursts++;
1320 return NETDEV_TX_OK;
1321
1322 mem_err:
1323 netif_err(efx, tx_err, efx->net_dev,
1324 "Out of memory for TSO headers, or DMA mapping error\n");
1325 dev_kfree_skb_any(skb);
1326
1327 /* Free the DMA mapping we were in the process of writing out */
1328 if (state.unmap_len) {
1329 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1330 dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1331 state.unmap_len, DMA_TO_DEVICE);
1332 else
1333 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1334 state.unmap_len, DMA_TO_DEVICE);
1335 }
1336
1337 /* Free the header DMA mapping, if using option descriptors */
1338 if (state.header_unmap_len)
1339 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1340 state.header_unmap_len, DMA_TO_DEVICE);
1341
1342 efx_enqueue_unwind(tx_queue);
1343 return NETDEV_TX_OK;
1344 }