]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/sfc/tx.c
sfc: pass valid pointers from efx_enqueue_unwind
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "tx.h"
26 #include "workarounds.h"
27 #include "ef10_regs.h"
28
29 #ifdef EFX_USE_PIO
30
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34 #endif /* EFX_USE_PIO */
35
36 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
37 struct efx_tx_buffer *buffer)
38 {
39 unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
40 struct efx_buffer *page_buf =
41 &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
42 unsigned int offset =
43 ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
44
45 if (unlikely(!page_buf->addr) &&
46 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
47 GFP_ATOMIC))
48 return NULL;
49 buffer->dma_addr = page_buf->dma_addr + offset;
50 buffer->unmap_len = 0;
51 return (u8 *)page_buf->addr + offset;
52 }
53
54 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
55 struct efx_tx_buffer *buffer, size_t len)
56 {
57 if (len > EFX_TX_CB_SIZE)
58 return NULL;
59 return efx_tx_get_copy_buffer(tx_queue, buffer);
60 }
61
62 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
63 struct efx_tx_buffer *buffer,
64 unsigned int *pkts_compl,
65 unsigned int *bytes_compl)
66 {
67 if (buffer->unmap_len) {
68 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
69 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
70 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
71 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
72 DMA_TO_DEVICE);
73 else
74 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
75 DMA_TO_DEVICE);
76 buffer->unmap_len = 0;
77 }
78
79 if (buffer->flags & EFX_TX_BUF_SKB) {
80 EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
81 (*pkts_compl)++;
82 (*bytes_compl) += buffer->skb->len;
83 dev_consume_skb_any((struct sk_buff *)buffer->skb);
84 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
85 "TX queue %d transmission id %x complete\n",
86 tx_queue->queue, tx_queue->read_count);
87 }
88
89 buffer->len = 0;
90 buffer->flags = 0;
91 }
92
93 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
94 {
95 /* Header and payload descriptor for each output segment, plus
96 * one for every input fragment boundary within a segment
97 */
98 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
99
100 /* Possibly one more per segment for option descriptors */
101 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
102 max_descs += EFX_TSO_MAX_SEGS;
103
104 /* Possibly more for PCIe page boundaries within input fragments */
105 if (PAGE_SIZE > EFX_PAGE_SIZE)
106 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
107 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
108
109 return max_descs;
110 }
111
112 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
113 {
114 /* We need to consider both queues that the net core sees as one */
115 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
116 struct efx_nic *efx = txq1->efx;
117 unsigned int fill_level;
118
119 fill_level = max(txq1->insert_count - txq1->old_read_count,
120 txq2->insert_count - txq2->old_read_count);
121 if (likely(fill_level < efx->txq_stop_thresh))
122 return;
123
124 /* We used the stale old_read_count above, which gives us a
125 * pessimistic estimate of the fill level (which may even
126 * validly be >= efx->txq_entries). Now try again using
127 * read_count (more likely to be a cache miss).
128 *
129 * If we read read_count and then conditionally stop the
130 * queue, it is possible for the completion path to race with
131 * us and complete all outstanding descriptors in the middle,
132 * after which there will be no more completions to wake it.
133 * Therefore we stop the queue first, then read read_count
134 * (with a memory barrier to ensure the ordering), then
135 * restart the queue if the fill level turns out to be low
136 * enough.
137 */
138 netif_tx_stop_queue(txq1->core_txq);
139 smp_mb();
140 txq1->old_read_count = READ_ONCE(txq1->read_count);
141 txq2->old_read_count = READ_ONCE(txq2->read_count);
142
143 fill_level = max(txq1->insert_count - txq1->old_read_count,
144 txq2->insert_count - txq2->old_read_count);
145 EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
146 if (likely(fill_level < efx->txq_stop_thresh)) {
147 smp_mb();
148 if (likely(!efx->loopback_selftest))
149 netif_tx_start_queue(txq1->core_txq);
150 }
151 }
152
153 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
154 struct sk_buff *skb)
155 {
156 unsigned int copy_len = skb->len;
157 struct efx_tx_buffer *buffer;
158 u8 *copy_buffer;
159 int rc;
160
161 EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
162
163 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
164
165 copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
166 if (unlikely(!copy_buffer))
167 return -ENOMEM;
168
169 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
170 EFX_WARN_ON_PARANOID(rc);
171 buffer->len = copy_len;
172
173 buffer->skb = skb;
174 buffer->flags = EFX_TX_BUF_SKB;
175
176 ++tx_queue->insert_count;
177 return rc;
178 }
179
180 #ifdef EFX_USE_PIO
181
182 struct efx_short_copy_buffer {
183 int used;
184 u8 buf[L1_CACHE_BYTES];
185 };
186
187 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
188 * Advances piobuf pointer. Leaves additional data in the copy buffer.
189 */
190 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
191 u8 *data, int len,
192 struct efx_short_copy_buffer *copy_buf)
193 {
194 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
195
196 __iowrite64_copy(*piobuf, data, block_len >> 3);
197 *piobuf += block_len;
198 len -= block_len;
199
200 if (len) {
201 data += block_len;
202 BUG_ON(copy_buf->used);
203 BUG_ON(len > sizeof(copy_buf->buf));
204 memcpy(copy_buf->buf, data, len);
205 copy_buf->used = len;
206 }
207 }
208
209 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
210 * Advances piobuf pointer. Leaves additional data in the copy buffer.
211 */
212 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
213 u8 *data, int len,
214 struct efx_short_copy_buffer *copy_buf)
215 {
216 if (copy_buf->used) {
217 /* if the copy buffer is partially full, fill it up and write */
218 int copy_to_buf =
219 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
220
221 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
222 copy_buf->used += copy_to_buf;
223
224 /* if we didn't fill it up then we're done for now */
225 if (copy_buf->used < sizeof(copy_buf->buf))
226 return;
227
228 __iowrite64_copy(*piobuf, copy_buf->buf,
229 sizeof(copy_buf->buf) >> 3);
230 *piobuf += sizeof(copy_buf->buf);
231 data += copy_to_buf;
232 len -= copy_to_buf;
233 copy_buf->used = 0;
234 }
235
236 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
237 }
238
239 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
240 struct efx_short_copy_buffer *copy_buf)
241 {
242 /* if there's anything in it, write the whole buffer, including junk */
243 if (copy_buf->used)
244 __iowrite64_copy(piobuf, copy_buf->buf,
245 sizeof(copy_buf->buf) >> 3);
246 }
247
248 /* Traverse skb structure and copy fragments in to PIO buffer.
249 * Advances piobuf pointer.
250 */
251 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
252 u8 __iomem **piobuf,
253 struct efx_short_copy_buffer *copy_buf)
254 {
255 int i;
256
257 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
258 copy_buf);
259
260 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
261 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
262 u8 *vaddr;
263
264 vaddr = kmap_atomic(skb_frag_page(f));
265
266 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
267 skb_frag_size(f), copy_buf);
268 kunmap_atomic(vaddr);
269 }
270
271 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
272 }
273
274 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
275 struct sk_buff *skb)
276 {
277 struct efx_tx_buffer *buffer =
278 efx_tx_queue_get_insert_buffer(tx_queue);
279 u8 __iomem *piobuf = tx_queue->piobuf;
280
281 /* Copy to PIO buffer. Ensure the writes are padded to the end
282 * of a cache line, as this is required for write-combining to be
283 * effective on at least x86.
284 */
285
286 if (skb_shinfo(skb)->nr_frags) {
287 /* The size of the copy buffer will ensure all writes
288 * are the size of a cache line.
289 */
290 struct efx_short_copy_buffer copy_buf;
291
292 copy_buf.used = 0;
293
294 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
295 &piobuf, &copy_buf);
296 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
297 } else {
298 /* Pad the write to the size of a cache line.
299 * We can do this because we know the skb_shared_info struct is
300 * after the source, and the destination buffer is big enough.
301 */
302 BUILD_BUG_ON(L1_CACHE_BYTES >
303 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
304 __iowrite64_copy(tx_queue->piobuf, skb->data,
305 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
306 }
307
308 buffer->skb = skb;
309 buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
310
311 EFX_POPULATE_QWORD_5(buffer->option,
312 ESF_DZ_TX_DESC_IS_OPT, 1,
313 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
314 ESF_DZ_TX_PIO_CONT, 0,
315 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
316 ESF_DZ_TX_PIO_BUF_ADDR,
317 tx_queue->piobuf_offset);
318 ++tx_queue->insert_count;
319 return 0;
320 }
321 #endif /* EFX_USE_PIO */
322
323 static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
324 dma_addr_t dma_addr,
325 size_t len)
326 {
327 const struct efx_nic_type *nic_type = tx_queue->efx->type;
328 struct efx_tx_buffer *buffer;
329 unsigned int dma_len;
330
331 /* Map the fragment taking account of NIC-dependent DMA limits. */
332 do {
333 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
334 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
335
336 buffer->len = dma_len;
337 buffer->dma_addr = dma_addr;
338 buffer->flags = EFX_TX_BUF_CONT;
339 len -= dma_len;
340 dma_addr += dma_len;
341 ++tx_queue->insert_count;
342 } while (len);
343
344 return buffer;
345 }
346
347 /* Map all data from an SKB for DMA and create descriptors on the queue.
348 */
349 static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
350 unsigned int segment_count)
351 {
352 struct efx_nic *efx = tx_queue->efx;
353 struct device *dma_dev = &efx->pci_dev->dev;
354 unsigned int frag_index, nr_frags;
355 dma_addr_t dma_addr, unmap_addr;
356 unsigned short dma_flags;
357 size_t len, unmap_len;
358
359 nr_frags = skb_shinfo(skb)->nr_frags;
360 frag_index = 0;
361
362 /* Map header data. */
363 len = skb_headlen(skb);
364 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
365 dma_flags = EFX_TX_BUF_MAP_SINGLE;
366 unmap_len = len;
367 unmap_addr = dma_addr;
368
369 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
370 return -EIO;
371
372 if (segment_count) {
373 /* For TSO we need to put the header in to a separate
374 * descriptor. Map this separately if necessary.
375 */
376 size_t header_len = skb_transport_header(skb) - skb->data +
377 (tcp_hdr(skb)->doff << 2u);
378
379 if (header_len != len) {
380 tx_queue->tso_long_headers++;
381 efx_tx_map_chunk(tx_queue, dma_addr, header_len);
382 len -= header_len;
383 dma_addr += header_len;
384 }
385 }
386
387 /* Add descriptors for each fragment. */
388 do {
389 struct efx_tx_buffer *buffer;
390 skb_frag_t *fragment;
391
392 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
393
394 /* The final descriptor for a fragment is responsible for
395 * unmapping the whole fragment.
396 */
397 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
398 buffer->unmap_len = unmap_len;
399 buffer->dma_offset = buffer->dma_addr - unmap_addr;
400
401 if (frag_index >= nr_frags) {
402 /* Store SKB details with the final buffer for
403 * the completion.
404 */
405 buffer->skb = skb;
406 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
407 return 0;
408 }
409
410 /* Move on to the next fragment. */
411 fragment = &skb_shinfo(skb)->frags[frag_index++];
412 len = skb_frag_size(fragment);
413 dma_addr = skb_frag_dma_map(dma_dev, fragment,
414 0, len, DMA_TO_DEVICE);
415 dma_flags = 0;
416 unmap_len = len;
417 unmap_addr = dma_addr;
418
419 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
420 return -EIO;
421 } while (1);
422 }
423
424 /* Remove buffers put into a tx_queue. None of the buffers must have
425 * an skb attached.
426 */
427 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
428 {
429 struct efx_tx_buffer *buffer;
430 unsigned int bytes_compl = 0;
431 unsigned int pkts_compl = 0;
432
433 /* Work backwards until we hit the original insert pointer value */
434 while (tx_queue->insert_count != tx_queue->write_count) {
435 --tx_queue->insert_count;
436 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
437 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
438 }
439 }
440
441 /*
442 * Fallback to software TSO.
443 *
444 * This is used if we are unable to send a GSO packet through hardware TSO.
445 * This should only ever happen due to per-queue restrictions - unsupported
446 * packets should first be filtered by the feature flags.
447 *
448 * Returns 0 on success, error code otherwise.
449 */
450 static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
451 struct sk_buff *skb)
452 {
453 struct sk_buff *segments, *next;
454
455 segments = skb_gso_segment(skb, 0);
456 if (IS_ERR(segments))
457 return PTR_ERR(segments);
458
459 dev_kfree_skb_any(skb);
460 skb = segments;
461
462 while (skb) {
463 next = skb->next;
464 skb->next = NULL;
465
466 if (next)
467 skb->xmit_more = true;
468 efx_enqueue_skb(tx_queue, skb);
469 skb = next;
470 }
471
472 return 0;
473 }
474
475 /*
476 * Add a socket buffer to a TX queue
477 *
478 * This maps all fragments of a socket buffer for DMA and adds them to
479 * the TX queue. The queue's insert pointer will be incremented by
480 * the number of fragments in the socket buffer.
481 *
482 * If any DMA mapping fails, any mapped fragments will be unmapped,
483 * the queue's insert pointer will be restored to its original value.
484 *
485 * This function is split out from efx_hard_start_xmit to allow the
486 * loopback test to direct packets via specific TX queues.
487 *
488 * Returns NETDEV_TX_OK.
489 * You must hold netif_tx_lock() to call this function.
490 */
491 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
492 {
493 bool data_mapped = false;
494 unsigned int segments;
495 unsigned int skb_len;
496 int rc;
497
498 skb_len = skb->len;
499 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
500 if (segments == 1)
501 segments = 0; /* Don't use TSO for a single segment. */
502
503 /* Handle TSO first - it's *possible* (although unlikely) that we might
504 * be passed a packet to segment that's smaller than the copybreak/PIO
505 * size limit.
506 */
507 if (segments) {
508 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
509 rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
510 if (rc == -EINVAL) {
511 rc = efx_tx_tso_fallback(tx_queue, skb);
512 tx_queue->tso_fallbacks++;
513 if (rc == 0)
514 return 0;
515 }
516 if (rc)
517 goto err;
518 #ifdef EFX_USE_PIO
519 } else if (skb_len <= efx_piobuf_size && !skb->xmit_more &&
520 efx_nic_may_tx_pio(tx_queue)) {
521 /* Use PIO for short packets with an empty queue. */
522 if (efx_enqueue_skb_pio(tx_queue, skb))
523 goto err;
524 tx_queue->pio_packets++;
525 data_mapped = true;
526 #endif
527 } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
528 /* Pad short packets or coalesce short fragmented packets. */
529 if (efx_enqueue_skb_copy(tx_queue, skb))
530 goto err;
531 tx_queue->cb_packets++;
532 data_mapped = true;
533 }
534
535 /* Map for DMA and create descriptors if we haven't done so already. */
536 if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
537 goto err;
538
539 /* Update BQL */
540 netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
541
542 /* Pass off to hardware */
543 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
544 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
545
546 /* There could be packets left on the partner queue if those
547 * SKBs had skb->xmit_more set. If we do not push those they
548 * could be left for a long time and cause a netdev watchdog.
549 */
550 if (txq2->xmit_more_available)
551 efx_nic_push_buffers(txq2);
552
553 efx_nic_push_buffers(tx_queue);
554 } else {
555 tx_queue->xmit_more_available = skb->xmit_more;
556 }
557
558 if (segments) {
559 tx_queue->tso_bursts++;
560 tx_queue->tso_packets += segments;
561 tx_queue->tx_packets += segments;
562 } else {
563 tx_queue->tx_packets++;
564 }
565
566 efx_tx_maybe_stop_queue(tx_queue);
567
568 return NETDEV_TX_OK;
569
570
571 err:
572 efx_enqueue_unwind(tx_queue);
573 dev_kfree_skb_any(skb);
574 return NETDEV_TX_OK;
575 }
576
577 /* Remove packets from the TX queue
578 *
579 * This removes packets from the TX queue, up to and including the
580 * specified index.
581 */
582 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
583 unsigned int index,
584 unsigned int *pkts_compl,
585 unsigned int *bytes_compl)
586 {
587 struct efx_nic *efx = tx_queue->efx;
588 unsigned int stop_index, read_ptr;
589
590 stop_index = (index + 1) & tx_queue->ptr_mask;
591 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
592
593 while (read_ptr != stop_index) {
594 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
595
596 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
597 unlikely(buffer->len == 0)) {
598 netif_err(efx, tx_err, efx->net_dev,
599 "TX queue %d spurious TX completion id %x\n",
600 tx_queue->queue, read_ptr);
601 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
602 return;
603 }
604
605 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
606
607 ++tx_queue->read_count;
608 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
609 }
610 }
611
612 /* Initiate a packet transmission. We use one channel per CPU
613 * (sharing when we have more CPUs than channels). On Falcon, the TX
614 * completion events will be directed back to the CPU that transmitted
615 * the packet, which should be cache-efficient.
616 *
617 * Context: non-blocking.
618 * Note that returning anything other than NETDEV_TX_OK will cause the
619 * OS to free the skb.
620 */
621 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
622 struct net_device *net_dev)
623 {
624 struct efx_nic *efx = netdev_priv(net_dev);
625 struct efx_tx_queue *tx_queue;
626 unsigned index, type;
627
628 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
629
630 /* PTP "event" packet */
631 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
632 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
633 return efx_ptp_tx(efx, skb);
634 }
635
636 index = skb_get_queue_mapping(skb);
637 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
638 if (index >= efx->n_tx_channels) {
639 index -= efx->n_tx_channels;
640 type |= EFX_TXQ_TYPE_HIGHPRI;
641 }
642 tx_queue = efx_get_tx_queue(efx, index, type);
643
644 return efx_enqueue_skb(tx_queue, skb);
645 }
646
647 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
648 {
649 struct efx_nic *efx = tx_queue->efx;
650
651 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
652 tx_queue->core_txq =
653 netdev_get_tx_queue(efx->net_dev,
654 tx_queue->queue / EFX_TXQ_TYPES +
655 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
656 efx->n_tx_channels : 0));
657 }
658
659 int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
660 void *type_data)
661 {
662 struct efx_nic *efx = netdev_priv(net_dev);
663 struct tc_mqprio_qopt *mqprio = type_data;
664 struct efx_channel *channel;
665 struct efx_tx_queue *tx_queue;
666 unsigned tc, num_tc;
667 int rc;
668
669 if (type != TC_SETUP_QDISC_MQPRIO)
670 return -EOPNOTSUPP;
671
672 num_tc = mqprio->num_tc;
673
674 if (num_tc > EFX_MAX_TX_TC)
675 return -EINVAL;
676
677 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
678
679 if (num_tc == net_dev->num_tc)
680 return 0;
681
682 for (tc = 0; tc < num_tc; tc++) {
683 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
684 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
685 }
686
687 if (num_tc > net_dev->num_tc) {
688 /* Initialise high-priority queues as necessary */
689 efx_for_each_channel(channel, efx) {
690 efx_for_each_possible_channel_tx_queue(tx_queue,
691 channel) {
692 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
693 continue;
694 if (!tx_queue->buffer) {
695 rc = efx_probe_tx_queue(tx_queue);
696 if (rc)
697 return rc;
698 }
699 if (!tx_queue->initialised)
700 efx_init_tx_queue(tx_queue);
701 efx_init_tx_queue_core_txq(tx_queue);
702 }
703 }
704 } else {
705 /* Reduce number of classes before number of queues */
706 net_dev->num_tc = num_tc;
707 }
708
709 rc = netif_set_real_num_tx_queues(net_dev,
710 max_t(int, num_tc, 1) *
711 efx->n_tx_channels);
712 if (rc)
713 return rc;
714
715 /* Do not destroy high-priority queues when they become
716 * unused. We would have to flush them first, and it is
717 * fairly difficult to flush a subset of TX queues. Leave
718 * it to efx_fini_channels().
719 */
720
721 net_dev->num_tc = num_tc;
722 return 0;
723 }
724
725 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
726 {
727 unsigned fill_level;
728 struct efx_nic *efx = tx_queue->efx;
729 struct efx_tx_queue *txq2;
730 unsigned int pkts_compl = 0, bytes_compl = 0;
731
732 EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
733
734 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
735 tx_queue->pkts_compl += pkts_compl;
736 tx_queue->bytes_compl += bytes_compl;
737
738 if (pkts_compl > 1)
739 ++tx_queue->merge_events;
740
741 /* See if we need to restart the netif queue. This memory
742 * barrier ensures that we write read_count (inside
743 * efx_dequeue_buffers()) before reading the queue status.
744 */
745 smp_mb();
746 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
747 likely(efx->port_enabled) &&
748 likely(netif_device_present(efx->net_dev))) {
749 txq2 = efx_tx_queue_partner(tx_queue);
750 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
751 txq2->insert_count - txq2->read_count);
752 if (fill_level <= efx->txq_wake_thresh)
753 netif_tx_wake_queue(tx_queue->core_txq);
754 }
755
756 /* Check whether the hardware queue is now empty */
757 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
758 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
759 if (tx_queue->read_count == tx_queue->old_write_count) {
760 smp_mb();
761 tx_queue->empty_read_count =
762 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
763 }
764 }
765 }
766
767 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
768 {
769 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
770 }
771
772 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
773 {
774 struct efx_nic *efx = tx_queue->efx;
775 unsigned int entries;
776 int rc;
777
778 /* Create the smallest power-of-two aligned ring */
779 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
780 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
781 tx_queue->ptr_mask = entries - 1;
782
783 netif_dbg(efx, probe, efx->net_dev,
784 "creating TX queue %d size %#x mask %#x\n",
785 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
786
787 /* Allocate software ring */
788 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
789 GFP_KERNEL);
790 if (!tx_queue->buffer)
791 return -ENOMEM;
792
793 tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
794 sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
795 if (!tx_queue->cb_page) {
796 rc = -ENOMEM;
797 goto fail1;
798 }
799
800 /* Allocate hardware ring */
801 rc = efx_nic_probe_tx(tx_queue);
802 if (rc)
803 goto fail2;
804
805 return 0;
806
807 fail2:
808 kfree(tx_queue->cb_page);
809 tx_queue->cb_page = NULL;
810 fail1:
811 kfree(tx_queue->buffer);
812 tx_queue->buffer = NULL;
813 return rc;
814 }
815
816 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
817 {
818 struct efx_nic *efx = tx_queue->efx;
819
820 netif_dbg(efx, drv, efx->net_dev,
821 "initialising TX queue %d\n", tx_queue->queue);
822
823 tx_queue->insert_count = 0;
824 tx_queue->write_count = 0;
825 tx_queue->packet_write_count = 0;
826 tx_queue->old_write_count = 0;
827 tx_queue->read_count = 0;
828 tx_queue->old_read_count = 0;
829 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
830 tx_queue->xmit_more_available = false;
831
832 /* Set up default function pointers. These may get replaced by
833 * efx_nic_init_tx() based off NIC/queue capabilities.
834 */
835 tx_queue->handle_tso = efx_enqueue_skb_tso;
836
837 /* Set up TX descriptor ring */
838 efx_nic_init_tx(tx_queue);
839
840 tx_queue->initialised = true;
841 }
842
843 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
844 {
845 struct efx_tx_buffer *buffer;
846
847 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
848 "shutting down TX queue %d\n", tx_queue->queue);
849
850 if (!tx_queue->buffer)
851 return;
852
853 /* Free any buffers left in the ring */
854 while (tx_queue->read_count != tx_queue->write_count) {
855 unsigned int pkts_compl = 0, bytes_compl = 0;
856 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
857 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
858
859 ++tx_queue->read_count;
860 }
861 tx_queue->xmit_more_available = false;
862 netdev_tx_reset_queue(tx_queue->core_txq);
863 }
864
865 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
866 {
867 int i;
868
869 if (!tx_queue->buffer)
870 return;
871
872 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
873 "destroying TX queue %d\n", tx_queue->queue);
874 efx_nic_remove_tx(tx_queue);
875
876 if (tx_queue->cb_page) {
877 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
878 efx_nic_free_buffer(tx_queue->efx,
879 &tx_queue->cb_page[i]);
880 kfree(tx_queue->cb_page);
881 tx_queue->cb_page = NULL;
882 }
883
884 kfree(tx_queue->buffer);
885 tx_queue->buffer = NULL;
886 }