]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/sgi/ioc3-eth.c
scsi: qedf: Fix a potential NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / sgi / ioc3-eth.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7 *
8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10 *
11 * References:
12 * o IOC3 ASIC specification 4.51, 1996-04-18
13 * o IEEE 802.3 specification, 2000 edition
14 * o DP38840A Specification, National Semiconductor, March 1997
15 *
16 * To do:
17 *
18 * o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 * o Handle allocation failures in ioc3_init_rings().
20 * o Use prefetching for large packets. What is a good lower limit for
21 * prefetching?
22 * o We're probably allocating a bit too much memory.
23 * o Use hardware checksums.
24 * o Convert to using a IOC3 meta driver.
25 * o Which PHYs might possibly be attached to the IOC3 in real live,
26 * which workarounds are required for them? Do we ever have Lucent's?
27 * o For the 2.5 branch kill the mii-tool ioctls.
28 */
29
30 #define IOC3_NAME "ioc3-eth"
31 #define IOC3_VERSION "2.6.3-4"
32
33 #include <linux/delay.h>
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/gfp.h>
47
48 #ifdef CONFIG_SERIAL_8250
49 #include <linux/serial_core.h>
50 #include <linux/serial_8250.h>
51 #include <linux/serial_reg.h>
52 #endif
53
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/ethtool.h>
57 #include <linux/skbuff.h>
58 #include <net/ip.h>
59
60 #include <asm/byteorder.h>
61 #include <asm/io.h>
62 #include <asm/pgtable.h>
63 #include <linux/uaccess.h>
64 #include <asm/sn/types.h>
65 #include <asm/sn/ioc3.h>
66 #include <asm/pci/bridge.h>
67
68 /*
69 * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
70 * value must be a power of two.
71 */
72 #define RX_BUFFS 64
73
74 #define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
75 #define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
76
77 /* Private per NIC data of the driver. */
78 struct ioc3_private {
79 struct ioc3 *regs;
80 unsigned long *rxr; /* pointer to receiver ring */
81 struct ioc3_etxd *txr;
82 struct sk_buff *rx_skbs[512];
83 struct sk_buff *tx_skbs[128];
84 int rx_ci; /* RX consumer index */
85 int rx_pi; /* RX producer index */
86 int tx_ci; /* TX consumer index */
87 int tx_pi; /* TX producer index */
88 int txqlen;
89 u32 emcr, ehar_h, ehar_l;
90 spinlock_t ioc3_lock;
91 struct mii_if_info mii;
92
93 struct pci_dev *pdev;
94
95 /* Members used by autonegotiation */
96 struct timer_list ioc3_timer;
97 };
98
99 static inline struct net_device *priv_netdev(struct ioc3_private *dev)
100 {
101 return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
102 }
103
104 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
105 static void ioc3_set_multicast_list(struct net_device *dev);
106 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void ioc3_timeout(struct net_device *dev);
108 static inline unsigned int ioc3_hash(const unsigned char *addr);
109 static inline void ioc3_stop(struct ioc3_private *ip);
110 static void ioc3_init(struct net_device *dev);
111
112 static const char ioc3_str[] = "IOC3 Ethernet";
113 static const struct ethtool_ops ioc3_ethtool_ops;
114
115 /* We use this to acquire receive skb's that we can DMA directly into. */
116
117 #define IOC3_CACHELINE 128UL
118
119 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
120 {
121 return (~addr + 1) & (IOC3_CACHELINE - 1UL);
122 }
123
124 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
125 unsigned int gfp_mask)
126 {
127 struct sk_buff *skb;
128
129 skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
130 if (likely(skb)) {
131 int offset = aligned_rx_skb_addr((unsigned long) skb->data);
132 if (offset)
133 skb_reserve(skb, offset);
134 }
135
136 return skb;
137 }
138
139 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
140 {
141 #ifdef CONFIG_SGI_IP27
142 vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
143
144 return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
145 ((unsigned long)ptr & TO_PHYS_MASK);
146 #else
147 return virt_to_bus(ptr);
148 #endif
149 }
150
151 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
152 1644 while it's actually 1664. This one was nasty to track down ... */
153 #define RX_OFFSET 10
154 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
155
156 /* DMA barrier to separate cached and uncached accesses. */
157 #define BARRIER() \
158 __asm__("sync" ::: "memory")
159
160
161 #define IOC3_SIZE 0x100000
162
163 /*
164 * IOC3 is a big endian device
165 *
166 * Unorthodox but makes the users of these macros more readable - the pointer
167 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
168 * in the environment.
169 */
170 #define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
171 #define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
172 #define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
173 #define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
174 #define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
175 #define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
176 #define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
177 #define ioc3_r_eier() be32_to_cpu(ioc3->eier)
178 #define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
179 #define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
180 #define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
181 #define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
182 #define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
183 #define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
184 #define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
185 #define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
186 #define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
187 #define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
188 #define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
189 #define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
190 #define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
191 #define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
192 #define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
193 #define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
194 #define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
195 #define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
196 #define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
197 #define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
198 #define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
199 #define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
200 #define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
201 #define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
202 #define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
203 #define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
204 #define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
205 #define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
206 #define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
207 #define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
208 #define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
209 #define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
210 #define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
211 #define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
212 #define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
213 #define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
214 #define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
215 #define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
216 #define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
217 #define ioc3_r_micr() be32_to_cpu(ioc3->micr)
218 #define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
219 #define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
220 #define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
221 #define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
222 #define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
223
224 static inline u32 mcr_pack(u32 pulse, u32 sample)
225 {
226 return (pulse << 10) | (sample << 2);
227 }
228
229 static int nic_wait(struct ioc3 *ioc3)
230 {
231 u32 mcr;
232
233 do {
234 mcr = ioc3_r_mcr();
235 } while (!(mcr & 2));
236
237 return mcr & 1;
238 }
239
240 static int nic_reset(struct ioc3 *ioc3)
241 {
242 int presence;
243
244 ioc3_w_mcr(mcr_pack(500, 65));
245 presence = nic_wait(ioc3);
246
247 ioc3_w_mcr(mcr_pack(0, 500));
248 nic_wait(ioc3);
249
250 return presence;
251 }
252
253 static inline int nic_read_bit(struct ioc3 *ioc3)
254 {
255 int result;
256
257 ioc3_w_mcr(mcr_pack(6, 13));
258 result = nic_wait(ioc3);
259 ioc3_w_mcr(mcr_pack(0, 100));
260 nic_wait(ioc3);
261
262 return result;
263 }
264
265 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
266 {
267 if (bit)
268 ioc3_w_mcr(mcr_pack(6, 110));
269 else
270 ioc3_w_mcr(mcr_pack(80, 30));
271
272 nic_wait(ioc3);
273 }
274
275 /*
276 * Read a byte from an iButton device
277 */
278 static u32 nic_read_byte(struct ioc3 *ioc3)
279 {
280 u32 result = 0;
281 int i;
282
283 for (i = 0; i < 8; i++)
284 result = (result >> 1) | (nic_read_bit(ioc3) << 7);
285
286 return result;
287 }
288
289 /*
290 * Write a byte to an iButton device
291 */
292 static void nic_write_byte(struct ioc3 *ioc3, int byte)
293 {
294 int i, bit;
295
296 for (i = 8; i; i--) {
297 bit = byte & 1;
298 byte >>= 1;
299
300 nic_write_bit(ioc3, bit);
301 }
302 }
303
304 static u64 nic_find(struct ioc3 *ioc3, int *last)
305 {
306 int a, b, index, disc;
307 u64 address = 0;
308
309 nic_reset(ioc3);
310 /* Search ROM. */
311 nic_write_byte(ioc3, 0xf0);
312
313 /* Algorithm from ``Book of iButton Standards''. */
314 for (index = 0, disc = 0; index < 64; index++) {
315 a = nic_read_bit(ioc3);
316 b = nic_read_bit(ioc3);
317
318 if (a && b) {
319 printk("NIC search failed (not fatal).\n");
320 *last = 0;
321 return 0;
322 }
323
324 if (!a && !b) {
325 if (index == *last) {
326 address |= 1UL << index;
327 } else if (index > *last) {
328 address &= ~(1UL << index);
329 disc = index;
330 } else if ((address & (1UL << index)) == 0)
331 disc = index;
332 nic_write_bit(ioc3, address & (1UL << index));
333 continue;
334 } else {
335 if (a)
336 address |= 1UL << index;
337 else
338 address &= ~(1UL << index);
339 nic_write_bit(ioc3, a);
340 continue;
341 }
342 }
343
344 *last = disc;
345
346 return address;
347 }
348
349 static int nic_init(struct ioc3 *ioc3)
350 {
351 const char *unknown = "unknown";
352 const char *type = unknown;
353 u8 crc;
354 u8 serial[6];
355 int save = 0, i;
356
357 while (1) {
358 u64 reg;
359 reg = nic_find(ioc3, &save);
360
361 switch (reg & 0xff) {
362 case 0x91:
363 type = "DS1981U";
364 break;
365 default:
366 if (save == 0) {
367 /* Let the caller try again. */
368 return -1;
369 }
370 continue;
371 }
372
373 nic_reset(ioc3);
374
375 /* Match ROM. */
376 nic_write_byte(ioc3, 0x55);
377 for (i = 0; i < 8; i++)
378 nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
379
380 reg >>= 8; /* Shift out type. */
381 for (i = 0; i < 6; i++) {
382 serial[i] = reg & 0xff;
383 reg >>= 8;
384 }
385 crc = reg & 0xff;
386 break;
387 }
388
389 printk("Found %s NIC", type);
390 if (type != unknown)
391 printk (" registration number %pM, CRC %02x", serial, crc);
392 printk(".\n");
393
394 return 0;
395 }
396
397 /*
398 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
399 * SN0 / SN00 nodeboards and PCI cards.
400 */
401 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
402 {
403 struct ioc3 *ioc3 = ip->regs;
404 u8 nic[14];
405 int tries = 2; /* There may be some problem with the battery? */
406 int i;
407
408 ioc3_w_gpcr_s(1 << 21);
409
410 while (tries--) {
411 if (!nic_init(ioc3))
412 break;
413 udelay(500);
414 }
415
416 if (tries < 0) {
417 printk("Failed to read MAC address\n");
418 return;
419 }
420
421 /* Read Memory. */
422 nic_write_byte(ioc3, 0xf0);
423 nic_write_byte(ioc3, 0x00);
424 nic_write_byte(ioc3, 0x00);
425
426 for (i = 13; i >= 0; i--)
427 nic[i] = nic_read_byte(ioc3);
428
429 for (i = 2; i < 8; i++)
430 priv_netdev(ip)->dev_addr[i - 2] = nic[i];
431 }
432
433 /*
434 * Ok, this is hosed by design. It's necessary to know what machine the
435 * NIC is in in order to know how to read the NIC address. We also have
436 * to know if it's a PCI card or a NIC in on the node board ...
437 */
438 static void ioc3_get_eaddr(struct ioc3_private *ip)
439 {
440 ioc3_get_eaddr_nic(ip);
441
442 printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
443 }
444
445 static void __ioc3_set_mac_address(struct net_device *dev)
446 {
447 struct ioc3_private *ip = netdev_priv(dev);
448 struct ioc3 *ioc3 = ip->regs;
449
450 ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
451 ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
452 (dev->dev_addr[1] << 8) | dev->dev_addr[0]);
453 }
454
455 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
456 {
457 struct ioc3_private *ip = netdev_priv(dev);
458 struct sockaddr *sa = addr;
459
460 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
461
462 spin_lock_irq(&ip->ioc3_lock);
463 __ioc3_set_mac_address(dev);
464 spin_unlock_irq(&ip->ioc3_lock);
465
466 return 0;
467 }
468
469 /*
470 * Caller must hold the ioc3_lock ever for MII readers. This is also
471 * used to protect the transmitter side but it's low contention.
472 */
473 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
474 {
475 struct ioc3_private *ip = netdev_priv(dev);
476 struct ioc3 *ioc3 = ip->regs;
477
478 while (ioc3_r_micr() & MICR_BUSY);
479 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
480 while (ioc3_r_micr() & MICR_BUSY);
481
482 return ioc3_r_midr_r() & MIDR_DATA_MASK;
483 }
484
485 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
486 {
487 struct ioc3_private *ip = netdev_priv(dev);
488 struct ioc3 *ioc3 = ip->regs;
489
490 while (ioc3_r_micr() & MICR_BUSY);
491 ioc3_w_midr_w(data);
492 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
493 while (ioc3_r_micr() & MICR_BUSY);
494 }
495
496 static int ioc3_mii_init(struct ioc3_private *ip);
497
498 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
499 {
500 struct ioc3_private *ip = netdev_priv(dev);
501 struct ioc3 *ioc3 = ip->regs;
502
503 dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
504 return &dev->stats;
505 }
506
507 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
508 {
509 struct ethhdr *eh = eth_hdr(skb);
510 uint32_t csum, ehsum;
511 unsigned int proto;
512 struct iphdr *ih;
513 uint16_t *ew;
514 unsigned char *cp;
515
516 /*
517 * Did hardware handle the checksum at all? The cases we can handle
518 * are:
519 *
520 * - TCP and UDP checksums of IPv4 only.
521 * - IPv6 would be doable but we keep that for later ...
522 * - Only unfragmented packets. Did somebody already tell you
523 * fragmentation is evil?
524 * - don't care about packet size. Worst case when processing a
525 * malformed packet we'll try to access the packet at ip header +
526 * 64 bytes which is still inside the skb. Even in the unlikely
527 * case where the checksum is right the higher layers will still
528 * drop the packet as appropriate.
529 */
530 if (eh->h_proto != htons(ETH_P_IP))
531 return;
532
533 ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
534 if (ip_is_fragment(ih))
535 return;
536
537 proto = ih->protocol;
538 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
539 return;
540
541 /* Same as tx - compute csum of pseudo header */
542 csum = hwsum +
543 (ih->tot_len - (ih->ihl << 2)) +
544 htons((uint16_t)ih->protocol) +
545 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
546 (ih->daddr >> 16) + (ih->daddr & 0xffff);
547
548 /* Sum up ethernet dest addr, src addr and protocol */
549 ew = (uint16_t *) eh;
550 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
551
552 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
553 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
554
555 csum += 0xffff ^ ehsum;
556
557 /* In the next step we also subtract the 1's complement
558 checksum of the trailing ethernet CRC. */
559 cp = (char *)eh + len; /* points at trailing CRC */
560 if (len & 1) {
561 csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
562 csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
563 } else {
564 csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
565 csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
566 }
567
568 csum = (csum & 0xffff) + (csum >> 16);
569 csum = (csum & 0xffff) + (csum >> 16);
570
571 if (csum == 0xffff)
572 skb->ip_summed = CHECKSUM_UNNECESSARY;
573 }
574
575 static inline void ioc3_rx(struct net_device *dev)
576 {
577 struct ioc3_private *ip = netdev_priv(dev);
578 struct sk_buff *skb, *new_skb;
579 struct ioc3 *ioc3 = ip->regs;
580 int rx_entry, n_entry, len;
581 struct ioc3_erxbuf *rxb;
582 unsigned long *rxr;
583 u32 w0, err;
584
585 rxr = ip->rxr; /* Ring base */
586 rx_entry = ip->rx_ci; /* RX consume index */
587 n_entry = ip->rx_pi;
588
589 skb = ip->rx_skbs[rx_entry];
590 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
591 w0 = be32_to_cpu(rxb->w0);
592
593 while (w0 & ERXBUF_V) {
594 err = be32_to_cpu(rxb->err); /* It's valid ... */
595 if (err & ERXBUF_GOODPKT) {
596 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
597 skb_trim(skb, len);
598 skb->protocol = eth_type_trans(skb, dev);
599
600 new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
601 if (!new_skb) {
602 /* Ouch, drop packet and just recycle packet
603 to keep the ring filled. */
604 dev->stats.rx_dropped++;
605 new_skb = skb;
606 goto next;
607 }
608
609 if (likely(dev->features & NETIF_F_RXCSUM))
610 ioc3_tcpudp_checksum(skb,
611 w0 & ERXBUF_IPCKSUM_MASK, len);
612
613 netif_rx(skb);
614
615 ip->rx_skbs[rx_entry] = NULL; /* Poison */
616
617 /* Because we reserve afterwards. */
618 skb_put(new_skb, (1664 + RX_OFFSET));
619 rxb = (struct ioc3_erxbuf *) new_skb->data;
620 skb_reserve(new_skb, RX_OFFSET);
621
622 dev->stats.rx_packets++; /* Statistics */
623 dev->stats.rx_bytes += len;
624 } else {
625 /* The frame is invalid and the skb never
626 reached the network layer so we can just
627 recycle it. */
628 new_skb = skb;
629 dev->stats.rx_errors++;
630 }
631 if (err & ERXBUF_CRCERR) /* Statistics */
632 dev->stats.rx_crc_errors++;
633 if (err & ERXBUF_FRAMERR)
634 dev->stats.rx_frame_errors++;
635 next:
636 ip->rx_skbs[n_entry] = new_skb;
637 rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
638 rxb->w0 = 0; /* Clear valid flag */
639 n_entry = (n_entry + 1) & 511; /* Update erpir */
640
641 /* Now go on to the next ring entry. */
642 rx_entry = (rx_entry + 1) & 511;
643 skb = ip->rx_skbs[rx_entry];
644 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
645 w0 = be32_to_cpu(rxb->w0);
646 }
647 ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
648 ip->rx_pi = n_entry;
649 ip->rx_ci = rx_entry;
650 }
651
652 static inline void ioc3_tx(struct net_device *dev)
653 {
654 struct ioc3_private *ip = netdev_priv(dev);
655 unsigned long packets, bytes;
656 struct ioc3 *ioc3 = ip->regs;
657 int tx_entry, o_entry;
658 struct sk_buff *skb;
659 u32 etcir;
660
661 spin_lock(&ip->ioc3_lock);
662 etcir = ioc3_r_etcir();
663
664 tx_entry = (etcir >> 7) & 127;
665 o_entry = ip->tx_ci;
666 packets = 0;
667 bytes = 0;
668
669 while (o_entry != tx_entry) {
670 packets++;
671 skb = ip->tx_skbs[o_entry];
672 bytes += skb->len;
673 dev_kfree_skb_irq(skb);
674 ip->tx_skbs[o_entry] = NULL;
675
676 o_entry = (o_entry + 1) & 127; /* Next */
677
678 etcir = ioc3_r_etcir(); /* More pkts sent? */
679 tx_entry = (etcir >> 7) & 127;
680 }
681
682 dev->stats.tx_packets += packets;
683 dev->stats.tx_bytes += bytes;
684 ip->txqlen -= packets;
685
686 if (ip->txqlen < 128)
687 netif_wake_queue(dev);
688
689 ip->tx_ci = o_entry;
690 spin_unlock(&ip->ioc3_lock);
691 }
692
693 /*
694 * Deal with fatal IOC3 errors. This condition might be caused by a hard or
695 * software problems, so we should try to recover
696 * more gracefully if this ever happens. In theory we might be flooded
697 * with such error interrupts if something really goes wrong, so we might
698 * also consider to take the interface down.
699 */
700 static void ioc3_error(struct net_device *dev, u32 eisr)
701 {
702 struct ioc3_private *ip = netdev_priv(dev);
703 unsigned char *iface = dev->name;
704
705 spin_lock(&ip->ioc3_lock);
706
707 if (eisr & EISR_RXOFLO)
708 printk(KERN_ERR "%s: RX overflow.\n", iface);
709 if (eisr & EISR_RXBUFOFLO)
710 printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
711 if (eisr & EISR_RXMEMERR)
712 printk(KERN_ERR "%s: RX PCI error.\n", iface);
713 if (eisr & EISR_RXPARERR)
714 printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
715 if (eisr & EISR_TXBUFUFLO)
716 printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
717 if (eisr & EISR_TXMEMERR)
718 printk(KERN_ERR "%s: TX PCI error.\n", iface);
719
720 ioc3_stop(ip);
721 ioc3_init(dev);
722 ioc3_mii_init(ip);
723
724 netif_wake_queue(dev);
725
726 spin_unlock(&ip->ioc3_lock);
727 }
728
729 /* The interrupt handler does all of the Rx thread work and cleans up
730 after the Tx thread. */
731 static irqreturn_t ioc3_interrupt(int irq, void *_dev)
732 {
733 struct net_device *dev = (struct net_device *)_dev;
734 struct ioc3_private *ip = netdev_priv(dev);
735 struct ioc3 *ioc3 = ip->regs;
736 const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
737 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
738 EISR_TXEXPLICIT | EISR_TXMEMERR;
739 u32 eisr;
740
741 eisr = ioc3_r_eisr() & enabled;
742
743 ioc3_w_eisr(eisr);
744 (void) ioc3_r_eisr(); /* Flush */
745
746 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
747 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
748 ioc3_error(dev, eisr);
749 if (eisr & EISR_RXTIMERINT)
750 ioc3_rx(dev);
751 if (eisr & EISR_TXEXPLICIT)
752 ioc3_tx(dev);
753
754 return IRQ_HANDLED;
755 }
756
757 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
758 {
759 struct ioc3 *ioc3 = ip->regs;
760
761 if (ip->mii.full_duplex) {
762 ioc3_w_etcsr(ETCSR_FD);
763 ip->emcr |= EMCR_DUPLEX;
764 } else {
765 ioc3_w_etcsr(ETCSR_HD);
766 ip->emcr &= ~EMCR_DUPLEX;
767 }
768 ioc3_w_emcr(ip->emcr);
769 }
770
771 static void ioc3_timer(unsigned long data)
772 {
773 struct ioc3_private *ip = (struct ioc3_private *) data;
774
775 /* Print the link status if it has changed */
776 mii_check_media(&ip->mii, 1, 0);
777 ioc3_setup_duplex(ip);
778
779 ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
780 add_timer(&ip->ioc3_timer);
781 }
782
783 /*
784 * Try to find a PHY. There is no apparent relation between the MII addresses
785 * in the SGI documentation and what we find in reality, so we simply probe
786 * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
787 * onboard IOC3s has the special oddity that probing doesn't seem to find it
788 * yet the interface seems to work fine, so if probing fails we for now will
789 * simply default to PHY 31 instead of bailing out.
790 */
791 static int ioc3_mii_init(struct ioc3_private *ip)
792 {
793 struct net_device *dev = priv_netdev(ip);
794 int i, found = 0, res = 0;
795 int ioc3_phy_workaround = 1;
796 u16 word;
797
798 for (i = 0; i < 32; i++) {
799 word = ioc3_mdio_read(dev, i, MII_PHYSID1);
800
801 if (word != 0xffff && word != 0x0000) {
802 found = 1;
803 break; /* Found a PHY */
804 }
805 }
806
807 if (!found) {
808 if (ioc3_phy_workaround)
809 i = 31;
810 else {
811 ip->mii.phy_id = -1;
812 res = -ENODEV;
813 goto out;
814 }
815 }
816
817 ip->mii.phy_id = i;
818
819 out:
820 return res;
821 }
822
823 static void ioc3_mii_start(struct ioc3_private *ip)
824 {
825 ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
826 ip->ioc3_timer.data = (unsigned long) ip;
827 ip->ioc3_timer.function = ioc3_timer;
828 add_timer(&ip->ioc3_timer);
829 }
830
831 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
832 {
833 struct sk_buff *skb;
834 int i;
835
836 for (i = ip->rx_ci; i & 15; i++) {
837 ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
838 ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
839 }
840 ip->rx_pi &= 511;
841 ip->rx_ci &= 511;
842
843 for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
844 struct ioc3_erxbuf *rxb;
845 skb = ip->rx_skbs[i];
846 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
847 rxb->w0 = 0;
848 }
849 }
850
851 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
852 {
853 struct sk_buff *skb;
854 int i;
855
856 for (i=0; i < 128; i++) {
857 skb = ip->tx_skbs[i];
858 if (skb) {
859 ip->tx_skbs[i] = NULL;
860 dev_kfree_skb_any(skb);
861 }
862 ip->txr[i].cmd = 0;
863 }
864 ip->tx_pi = 0;
865 ip->tx_ci = 0;
866 }
867
868 static void ioc3_free_rings(struct ioc3_private *ip)
869 {
870 struct sk_buff *skb;
871 int rx_entry, n_entry;
872
873 if (ip->txr) {
874 ioc3_clean_tx_ring(ip);
875 free_pages((unsigned long)ip->txr, 2);
876 ip->txr = NULL;
877 }
878
879 if (ip->rxr) {
880 n_entry = ip->rx_ci;
881 rx_entry = ip->rx_pi;
882
883 while (n_entry != rx_entry) {
884 skb = ip->rx_skbs[n_entry];
885 if (skb)
886 dev_kfree_skb_any(skb);
887
888 n_entry = (n_entry + 1) & 511;
889 }
890 free_page((unsigned long)ip->rxr);
891 ip->rxr = NULL;
892 }
893 }
894
895 static void ioc3_alloc_rings(struct net_device *dev)
896 {
897 struct ioc3_private *ip = netdev_priv(dev);
898 struct ioc3_erxbuf *rxb;
899 unsigned long *rxr;
900 int i;
901
902 if (ip->rxr == NULL) {
903 /* Allocate and initialize rx ring. 4kb = 512 entries */
904 ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
905 rxr = ip->rxr;
906 if (!rxr)
907 printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
908
909 /* Now the rx buffers. The RX ring may be larger but
910 we only allocate 16 buffers for now. Need to tune
911 this for performance and memory later. */
912 for (i = 0; i < RX_BUFFS; i++) {
913 struct sk_buff *skb;
914
915 skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
916 if (!skb) {
917 show_free_areas(0, NULL);
918 continue;
919 }
920
921 ip->rx_skbs[i] = skb;
922
923 /* Because we reserve afterwards. */
924 skb_put(skb, (1664 + RX_OFFSET));
925 rxb = (struct ioc3_erxbuf *) skb->data;
926 rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
927 skb_reserve(skb, RX_OFFSET);
928 }
929 ip->rx_ci = 0;
930 ip->rx_pi = RX_BUFFS;
931 }
932
933 if (ip->txr == NULL) {
934 /* Allocate and initialize tx rings. 16kb = 128 bufs. */
935 ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
936 if (!ip->txr)
937 printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
938 ip->tx_pi = 0;
939 ip->tx_ci = 0;
940 }
941 }
942
943 static void ioc3_init_rings(struct net_device *dev)
944 {
945 struct ioc3_private *ip = netdev_priv(dev);
946 struct ioc3 *ioc3 = ip->regs;
947 unsigned long ring;
948
949 ioc3_free_rings(ip);
950 ioc3_alloc_rings(dev);
951
952 ioc3_clean_rx_ring(ip);
953 ioc3_clean_tx_ring(ip);
954
955 /* Now the rx ring base, consume & produce registers. */
956 ring = ioc3_map(ip->rxr, 0);
957 ioc3_w_erbr_h(ring >> 32);
958 ioc3_w_erbr_l(ring & 0xffffffff);
959 ioc3_w_ercir(ip->rx_ci << 3);
960 ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
961
962 ring = ioc3_map(ip->txr, 0);
963
964 ip->txqlen = 0; /* nothing queued */
965
966 /* Now the tx ring base, consume & produce registers. */
967 ioc3_w_etbr_h(ring >> 32);
968 ioc3_w_etbr_l(ring & 0xffffffff);
969 ioc3_w_etpir(ip->tx_pi << 7);
970 ioc3_w_etcir(ip->tx_ci << 7);
971 (void) ioc3_r_etcir(); /* Flush */
972 }
973
974 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
975 {
976 struct ioc3 *ioc3 = ip->regs;
977 volatile u32 *ssram0 = &ioc3->ssram[0x0000];
978 volatile u32 *ssram1 = &ioc3->ssram[0x4000];
979 unsigned int pattern = 0x5555;
980
981 /* Assume the larger size SSRAM and enable parity checking */
982 ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
983
984 *ssram0 = pattern;
985 *ssram1 = ~pattern & IOC3_SSRAM_DM;
986
987 if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
988 (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
989 /* set ssram size to 64 KB */
990 ip->emcr = EMCR_RAMPAR;
991 ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
992 } else
993 ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
994 }
995
996 static void ioc3_init(struct net_device *dev)
997 {
998 struct ioc3_private *ip = netdev_priv(dev);
999 struct ioc3 *ioc3 = ip->regs;
1000
1001 del_timer_sync(&ip->ioc3_timer); /* Kill if running */
1002
1003 ioc3_w_emcr(EMCR_RST); /* Reset */
1004 (void) ioc3_r_emcr(); /* Flush WB */
1005 udelay(4); /* Give it time ... */
1006 ioc3_w_emcr(0);
1007 (void) ioc3_r_emcr();
1008
1009 /* Misc registers */
1010 #ifdef CONFIG_SGI_IP27
1011 ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
1012 #else
1013 ioc3_w_erbar(0); /* Let PCI API get it right */
1014 #endif
1015 (void) ioc3_r_etcdc(); /* Clear on read */
1016 ioc3_w_ercsr(15); /* RX low watermark */
1017 ioc3_w_ertr(0); /* Interrupt immediately */
1018 __ioc3_set_mac_address(dev);
1019 ioc3_w_ehar_h(ip->ehar_h);
1020 ioc3_w_ehar_l(ip->ehar_l);
1021 ioc3_w_ersr(42); /* XXX should be random */
1022
1023 ioc3_init_rings(dev);
1024
1025 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1026 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1027 ioc3_w_emcr(ip->emcr);
1028 ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1029 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1030 EISR_TXEXPLICIT | EISR_TXMEMERR);
1031 (void) ioc3_r_eier();
1032 }
1033
1034 static inline void ioc3_stop(struct ioc3_private *ip)
1035 {
1036 struct ioc3 *ioc3 = ip->regs;
1037
1038 ioc3_w_emcr(0); /* Shutup */
1039 ioc3_w_eier(0); /* Disable interrupts */
1040 (void) ioc3_r_eier(); /* Flush */
1041 }
1042
1043 static int ioc3_open(struct net_device *dev)
1044 {
1045 struct ioc3_private *ip = netdev_priv(dev);
1046
1047 if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1048 printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1049
1050 return -EAGAIN;
1051 }
1052
1053 ip->ehar_h = 0;
1054 ip->ehar_l = 0;
1055 ioc3_init(dev);
1056 ioc3_mii_start(ip);
1057
1058 netif_start_queue(dev);
1059 return 0;
1060 }
1061
1062 static int ioc3_close(struct net_device *dev)
1063 {
1064 struct ioc3_private *ip = netdev_priv(dev);
1065
1066 del_timer_sync(&ip->ioc3_timer);
1067
1068 netif_stop_queue(dev);
1069
1070 ioc3_stop(ip);
1071 free_irq(dev->irq, dev);
1072
1073 ioc3_free_rings(ip);
1074 return 0;
1075 }
1076
1077 /*
1078 * MENET cards have four IOC3 chips, which are attached to two sets of
1079 * PCI slot resources each: the primary connections are on slots
1080 * 0..3 and the secondaries are on 4..7
1081 *
1082 * All four ethernets are brought out to connectors; six serial ports
1083 * (a pair from each of the first three IOC3s) are brought out to
1084 * MiniDINs; all other subdevices are left swinging in the wind, leave
1085 * them disabled.
1086 */
1087
1088 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1089 {
1090 struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1091 int ret = 0;
1092
1093 if (dev) {
1094 if (dev->vendor == PCI_VENDOR_ID_SGI &&
1095 dev->device == PCI_DEVICE_ID_SGI_IOC3)
1096 ret = 1;
1097 pci_dev_put(dev);
1098 }
1099
1100 return ret;
1101 }
1102
1103 static int ioc3_is_menet(struct pci_dev *pdev)
1104 {
1105 return pdev->bus->parent == NULL &&
1106 ioc3_adjacent_is_ioc3(pdev, 0) &&
1107 ioc3_adjacent_is_ioc3(pdev, 1) &&
1108 ioc3_adjacent_is_ioc3(pdev, 2);
1109 }
1110
1111 #ifdef CONFIG_SERIAL_8250
1112 /*
1113 * Note about serial ports and consoles:
1114 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1115 * connected to the master node (look in ip27_setup_console() and
1116 * ip27prom_console_write()).
1117 *
1118 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1119 * addresses on a partitioned machine. Since we currently use the ioc3
1120 * serial ports, we use dynamic serial port discovery that the serial.c
1121 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1122 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1123 * than UARTB's, although UARTA on o200s has traditionally been known as
1124 * port 0. So, we just use one serial port from each ioc3 (since the
1125 * serial driver adds addresses to get to higher ports).
1126 *
1127 * The first one to do a register_console becomes the preferred console
1128 * (if there is no kernel command line console= directive). /dev/console
1129 * (ie 5, 1) is then "aliased" into the device number returned by the
1130 * "device" routine referred to in this console structure
1131 * (ip27prom_console_dev).
1132 *
1133 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1134 * around ioc3 oddities in this respect.
1135 *
1136 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1137 * can be programmed in the SCR register if the DLAB bit is set.
1138 *
1139 * Register to interrupt zero because we share the interrupt with
1140 * the serial driver which we don't properly support yet.
1141 *
1142 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1143 * registered.
1144 */
1145 static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1146 {
1147 #define COSMISC_CONSTANT 6
1148
1149 struct uart_8250_port port = {
1150 .port = {
1151 .irq = 0,
1152 .flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1153 .iotype = UPIO_MEM,
1154 .regshift = 0,
1155 .uartclk = (22000000 << 1) / COSMISC_CONSTANT,
1156
1157 .membase = (unsigned char __iomem *) uart,
1158 .mapbase = (unsigned long) uart,
1159 }
1160 };
1161 unsigned char lcr;
1162
1163 lcr = uart->iu_lcr;
1164 uart->iu_lcr = lcr | UART_LCR_DLAB;
1165 uart->iu_scr = COSMISC_CONSTANT,
1166 uart->iu_lcr = lcr;
1167 uart->iu_lcr;
1168 serial8250_register_8250_port(&port);
1169 }
1170
1171 static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1172 {
1173 /*
1174 * We need to recognice and treat the fourth MENET serial as it
1175 * does not have an SuperIO chip attached to it, therefore attempting
1176 * to access it will result in bus errors. We call something an
1177 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1178 * in it. This is paranoid but we want to avoid blowing up on a
1179 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1180 * not paranoid enough ...
1181 */
1182 if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1183 return;
1184
1185 /*
1186 * Switch IOC3 to PIO mode. It probably already was but let's be
1187 * paranoid
1188 */
1189 ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1190 ioc3->gpcr_s;
1191 ioc3->gppr_6 = 0;
1192 ioc3->gppr_6;
1193 ioc3->gppr_7 = 0;
1194 ioc3->gppr_7;
1195 ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1196 ioc3->sscr_a;
1197 ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1198 ioc3->sscr_b;
1199 /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1200 ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1201 SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1202 SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1203 SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1204 ioc3->sio_iec |= SIO_IR_SA_INT;
1205 ioc3->sscr_a = 0;
1206 ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1207 SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1208 SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1209 SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1210 ioc3->sio_iec |= SIO_IR_SB_INT;
1211 ioc3->sscr_b = 0;
1212
1213 ioc3_8250_register(&ioc3->sregs.uarta);
1214 ioc3_8250_register(&ioc3->sregs.uartb);
1215 }
1216 #endif
1217
1218 static const struct net_device_ops ioc3_netdev_ops = {
1219 .ndo_open = ioc3_open,
1220 .ndo_stop = ioc3_close,
1221 .ndo_start_xmit = ioc3_start_xmit,
1222 .ndo_tx_timeout = ioc3_timeout,
1223 .ndo_get_stats = ioc3_get_stats,
1224 .ndo_set_rx_mode = ioc3_set_multicast_list,
1225 .ndo_do_ioctl = ioc3_ioctl,
1226 .ndo_validate_addr = eth_validate_addr,
1227 .ndo_set_mac_address = ioc3_set_mac_address,
1228 };
1229
1230 static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1231 {
1232 unsigned int sw_physid1, sw_physid2;
1233 struct net_device *dev = NULL;
1234 struct ioc3_private *ip;
1235 struct ioc3 *ioc3;
1236 unsigned long ioc3_base, ioc3_size;
1237 u32 vendor, model, rev;
1238 int err, pci_using_dac;
1239
1240 /* Configure DMA attributes. */
1241 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1242 if (!err) {
1243 pci_using_dac = 1;
1244 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1245 if (err < 0) {
1246 printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1247 "for consistent allocations\n", pci_name(pdev));
1248 goto out;
1249 }
1250 } else {
1251 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1252 if (err) {
1253 printk(KERN_ERR "%s: No usable DMA configuration, "
1254 "aborting.\n", pci_name(pdev));
1255 goto out;
1256 }
1257 pci_using_dac = 0;
1258 }
1259
1260 if (pci_enable_device(pdev))
1261 return -ENODEV;
1262
1263 dev = alloc_etherdev(sizeof(struct ioc3_private));
1264 if (!dev) {
1265 err = -ENOMEM;
1266 goto out_disable;
1267 }
1268
1269 if (pci_using_dac)
1270 dev->features |= NETIF_F_HIGHDMA;
1271
1272 err = pci_request_regions(pdev, "ioc3");
1273 if (err)
1274 goto out_free;
1275
1276 SET_NETDEV_DEV(dev, &pdev->dev);
1277
1278 ip = netdev_priv(dev);
1279
1280 dev->irq = pdev->irq;
1281
1282 ioc3_base = pci_resource_start(pdev, 0);
1283 ioc3_size = pci_resource_len(pdev, 0);
1284 ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1285 if (!ioc3) {
1286 printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1287 pci_name(pdev));
1288 err = -ENOMEM;
1289 goto out_res;
1290 }
1291 ip->regs = ioc3;
1292
1293 #ifdef CONFIG_SERIAL_8250
1294 ioc3_serial_probe(pdev, ioc3);
1295 #endif
1296
1297 spin_lock_init(&ip->ioc3_lock);
1298 init_timer(&ip->ioc3_timer);
1299
1300 ioc3_stop(ip);
1301 ioc3_init(dev);
1302
1303 ip->pdev = pdev;
1304
1305 ip->mii.phy_id_mask = 0x1f;
1306 ip->mii.reg_num_mask = 0x1f;
1307 ip->mii.dev = dev;
1308 ip->mii.mdio_read = ioc3_mdio_read;
1309 ip->mii.mdio_write = ioc3_mdio_write;
1310
1311 ioc3_mii_init(ip);
1312
1313 if (ip->mii.phy_id == -1) {
1314 printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1315 pci_name(pdev));
1316 err = -ENODEV;
1317 goto out_stop;
1318 }
1319
1320 ioc3_mii_start(ip);
1321 ioc3_ssram_disc(ip);
1322 ioc3_get_eaddr(ip);
1323
1324 /* The IOC3-specific entries in the device structure. */
1325 dev->watchdog_timeo = 5 * HZ;
1326 dev->netdev_ops = &ioc3_netdev_ops;
1327 dev->ethtool_ops = &ioc3_ethtool_ops;
1328 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1329 dev->features = NETIF_F_IP_CSUM;
1330
1331 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1332 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1333
1334 err = register_netdev(dev);
1335 if (err)
1336 goto out_stop;
1337
1338 mii_check_media(&ip->mii, 1, 1);
1339 ioc3_setup_duplex(ip);
1340
1341 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1342 model = (sw_physid2 >> 4) & 0x3f;
1343 rev = sw_physid2 & 0xf;
1344 printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1345 "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1346 printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1347 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1348
1349 return 0;
1350
1351 out_stop:
1352 ioc3_stop(ip);
1353 del_timer_sync(&ip->ioc3_timer);
1354 ioc3_free_rings(ip);
1355 out_res:
1356 pci_release_regions(pdev);
1357 out_free:
1358 free_netdev(dev);
1359 out_disable:
1360 /*
1361 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1362 * such a weird device ...
1363 */
1364 out:
1365 return err;
1366 }
1367
1368 static void ioc3_remove_one(struct pci_dev *pdev)
1369 {
1370 struct net_device *dev = pci_get_drvdata(pdev);
1371 struct ioc3_private *ip = netdev_priv(dev);
1372 struct ioc3 *ioc3 = ip->regs;
1373
1374 unregister_netdev(dev);
1375 del_timer_sync(&ip->ioc3_timer);
1376
1377 iounmap(ioc3);
1378 pci_release_regions(pdev);
1379 free_netdev(dev);
1380 /*
1381 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1382 * such a weird device ...
1383 */
1384 }
1385
1386 static const struct pci_device_id ioc3_pci_tbl[] = {
1387 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1388 { 0 }
1389 };
1390 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1391
1392 static struct pci_driver ioc3_driver = {
1393 .name = "ioc3-eth",
1394 .id_table = ioc3_pci_tbl,
1395 .probe = ioc3_probe,
1396 .remove = ioc3_remove_one,
1397 };
1398
1399 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1400 {
1401 unsigned long data;
1402 struct ioc3_private *ip = netdev_priv(dev);
1403 struct ioc3 *ioc3 = ip->regs;
1404 unsigned int len;
1405 struct ioc3_etxd *desc;
1406 uint32_t w0 = 0;
1407 int produce;
1408
1409 /*
1410 * IOC3 has a fairly simple minded checksumming hardware which simply
1411 * adds up the 1's complement checksum for the entire packet and
1412 * inserts it at an offset which can be specified in the descriptor
1413 * into the transmit packet. This means we have to compensate for the
1414 * MAC header which should not be summed and the TCP/UDP pseudo headers
1415 * manually.
1416 */
1417 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1418 const struct iphdr *ih = ip_hdr(skb);
1419 const int proto = ntohs(ih->protocol);
1420 unsigned int csoff;
1421 uint32_t csum, ehsum;
1422 uint16_t *eh;
1423
1424 /* The MAC header. skb->mac seem the logic approach
1425 to find the MAC header - except it's a NULL pointer ... */
1426 eh = (uint16_t *) skb->data;
1427
1428 /* Sum up dest addr, src addr and protocol */
1429 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1430
1431 /* Fold ehsum. can't use csum_fold which negates also ... */
1432 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1433 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1434
1435 /* Skip IP header; it's sum is always zero and was
1436 already filled in by ip_output.c */
1437 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1438 ih->tot_len - (ih->ihl << 2),
1439 proto, 0xffff ^ ehsum);
1440
1441 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1442 csum = (csum & 0xffff) + (csum >> 16);
1443
1444 csoff = ETH_HLEN + (ih->ihl << 2);
1445 if (proto == IPPROTO_UDP) {
1446 csoff += offsetof(struct udphdr, check);
1447 udp_hdr(skb)->check = csum;
1448 }
1449 if (proto == IPPROTO_TCP) {
1450 csoff += offsetof(struct tcphdr, check);
1451 tcp_hdr(skb)->check = csum;
1452 }
1453
1454 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1455 }
1456
1457 spin_lock_irq(&ip->ioc3_lock);
1458
1459 data = (unsigned long) skb->data;
1460 len = skb->len;
1461
1462 produce = ip->tx_pi;
1463 desc = &ip->txr[produce];
1464
1465 if (len <= 104) {
1466 /* Short packet, let's copy it directly into the ring. */
1467 skb_copy_from_linear_data(skb, desc->data, skb->len);
1468 if (len < ETH_ZLEN) {
1469 /* Very short packet, pad with zeros at the end. */
1470 memset(desc->data + len, 0, ETH_ZLEN - len);
1471 len = ETH_ZLEN;
1472 }
1473 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1474 desc->bufcnt = cpu_to_be32(len);
1475 } else if ((data ^ (data + len - 1)) & 0x4000) {
1476 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1477 unsigned long s1 = b2 - data;
1478 unsigned long s2 = data + len - b2;
1479
1480 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1481 ETXD_B1V | ETXD_B2V | w0);
1482 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1483 (s2 << ETXD_B2CNT_SHIFT));
1484 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1485 desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
1486 } else {
1487 /* Normal sized packet that doesn't cross a page boundary. */
1488 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1489 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1490 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1491 }
1492
1493 BARRIER();
1494
1495 ip->tx_skbs[produce] = skb; /* Remember skb */
1496 produce = (produce + 1) & 127;
1497 ip->tx_pi = produce;
1498 ioc3_w_etpir(produce << 7); /* Fire ... */
1499
1500 ip->txqlen++;
1501
1502 if (ip->txqlen >= 127)
1503 netif_stop_queue(dev);
1504
1505 spin_unlock_irq(&ip->ioc3_lock);
1506
1507 return NETDEV_TX_OK;
1508 }
1509
1510 static void ioc3_timeout(struct net_device *dev)
1511 {
1512 struct ioc3_private *ip = netdev_priv(dev);
1513
1514 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1515
1516 spin_lock_irq(&ip->ioc3_lock);
1517
1518 ioc3_stop(ip);
1519 ioc3_init(dev);
1520 ioc3_mii_init(ip);
1521 ioc3_mii_start(ip);
1522
1523 spin_unlock_irq(&ip->ioc3_lock);
1524
1525 netif_wake_queue(dev);
1526 }
1527
1528 /*
1529 * Given a multicast ethernet address, this routine calculates the
1530 * address's bit index in the logical address filter mask
1531 */
1532
1533 static inline unsigned int ioc3_hash(const unsigned char *addr)
1534 {
1535 unsigned int temp = 0;
1536 u32 crc;
1537 int bits;
1538
1539 crc = ether_crc_le(ETH_ALEN, addr);
1540
1541 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1542 for (bits = 6; --bits >= 0; ) {
1543 temp <<= 1;
1544 temp |= (crc & 0x1);
1545 crc >>= 1;
1546 }
1547
1548 return temp;
1549 }
1550
1551 static void ioc3_get_drvinfo (struct net_device *dev,
1552 struct ethtool_drvinfo *info)
1553 {
1554 struct ioc3_private *ip = netdev_priv(dev);
1555
1556 strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1557 strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1558 strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1559 }
1560
1561 static int ioc3_get_link_ksettings(struct net_device *dev,
1562 struct ethtool_link_ksettings *cmd)
1563 {
1564 struct ioc3_private *ip = netdev_priv(dev);
1565
1566 spin_lock_irq(&ip->ioc3_lock);
1567 mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1568 spin_unlock_irq(&ip->ioc3_lock);
1569
1570 return 0;
1571 }
1572
1573 static int ioc3_set_link_ksettings(struct net_device *dev,
1574 const struct ethtool_link_ksettings *cmd)
1575 {
1576 struct ioc3_private *ip = netdev_priv(dev);
1577 int rc;
1578
1579 spin_lock_irq(&ip->ioc3_lock);
1580 rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1581 spin_unlock_irq(&ip->ioc3_lock);
1582
1583 return rc;
1584 }
1585
1586 static int ioc3_nway_reset(struct net_device *dev)
1587 {
1588 struct ioc3_private *ip = netdev_priv(dev);
1589 int rc;
1590
1591 spin_lock_irq(&ip->ioc3_lock);
1592 rc = mii_nway_restart(&ip->mii);
1593 spin_unlock_irq(&ip->ioc3_lock);
1594
1595 return rc;
1596 }
1597
1598 static u32 ioc3_get_link(struct net_device *dev)
1599 {
1600 struct ioc3_private *ip = netdev_priv(dev);
1601 int rc;
1602
1603 spin_lock_irq(&ip->ioc3_lock);
1604 rc = mii_link_ok(&ip->mii);
1605 spin_unlock_irq(&ip->ioc3_lock);
1606
1607 return rc;
1608 }
1609
1610 static const struct ethtool_ops ioc3_ethtool_ops = {
1611 .get_drvinfo = ioc3_get_drvinfo,
1612 .nway_reset = ioc3_nway_reset,
1613 .get_link = ioc3_get_link,
1614 .get_link_ksettings = ioc3_get_link_ksettings,
1615 .set_link_ksettings = ioc3_set_link_ksettings,
1616 };
1617
1618 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1619 {
1620 struct ioc3_private *ip = netdev_priv(dev);
1621 int rc;
1622
1623 spin_lock_irq(&ip->ioc3_lock);
1624 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1625 spin_unlock_irq(&ip->ioc3_lock);
1626
1627 return rc;
1628 }
1629
1630 static void ioc3_set_multicast_list(struct net_device *dev)
1631 {
1632 struct netdev_hw_addr *ha;
1633 struct ioc3_private *ip = netdev_priv(dev);
1634 struct ioc3 *ioc3 = ip->regs;
1635 u64 ehar = 0;
1636
1637 netif_stop_queue(dev); /* Lock out others. */
1638
1639 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1640 ip->emcr |= EMCR_PROMISC;
1641 ioc3_w_emcr(ip->emcr);
1642 (void) ioc3_r_emcr();
1643 } else {
1644 ip->emcr &= ~EMCR_PROMISC;
1645 ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
1646 (void) ioc3_r_emcr();
1647
1648 if ((dev->flags & IFF_ALLMULTI) ||
1649 (netdev_mc_count(dev) > 64)) {
1650 /* Too many for hashing to make sense or we want all
1651 multicast packets anyway, so skip computing all the
1652 hashes and just accept all packets. */
1653 ip->ehar_h = 0xffffffff;
1654 ip->ehar_l = 0xffffffff;
1655 } else {
1656 netdev_for_each_mc_addr(ha, dev) {
1657 ehar |= (1UL << ioc3_hash(ha->addr));
1658 }
1659 ip->ehar_h = ehar >> 32;
1660 ip->ehar_l = ehar & 0xffffffff;
1661 }
1662 ioc3_w_ehar_h(ip->ehar_h);
1663 ioc3_w_ehar_l(ip->ehar_l);
1664 }
1665
1666 netif_wake_queue(dev); /* Let us get going again. */
1667 }
1668
1669 module_pci_driver(ioc3_driver);
1670 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1671 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1672 MODULE_LICENSE("GPL");