]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/smsc/smc91x.c
4823b6a51134c8debd8a49d81c0a3e48812c4143
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / smsc / smc91x.c
1 /*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4 *
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 *
24 * Arguments:
25 * io = for the base address
26 * irq = for the IRQ
27 * nowait = 0 for normal wait states, 1 eliminates additional wait states
28 *
29 * original author:
30 * Erik Stahlman <erik@vt.edu>
31 *
32 * hardware multicast code:
33 * Peter Cammaert <pc@denkart.be>
34 *
35 * contributors:
36 * Daris A Nevil <dnevil@snmc.com>
37 * Nicolas Pitre <nico@fluxnic.net>
38 * Russell King <rmk@arm.linux.org.uk>
39 *
40 * History:
41 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
42 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
43 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
44 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
45 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
46 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
47 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
48 * more bus abstraction, big cleanup, etc.
49 * 29/09/03 Russell King - add driver model support
50 * - ethtool support
51 * - convert to use generic MII interface
52 * - add link up/down notification
53 * - don't try to handle full negotiation in
54 * smc_phy_configure
55 * - clean up (and fix stack overrun) in PHY
56 * MII read/write functions
57 * 22/09/04 Nicolas Pitre big update (see commit log for details)
58 */
59 static const char version[] =
60 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61
62 /* Debugging level */
63 #ifndef SMC_DEBUG
64 #define SMC_DEBUG 0
65 #endif
66
67
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/sched.h>
71 #include <linux/delay.h>
72 #include <linux/interrupt.h>
73 #include <linux/irq.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/crc32.h>
77 #include <linux/platform_device.h>
78 #include <linux/spinlock.h>
79 #include <linux/ethtool.h>
80 #include <linux/mii.h>
81 #include <linux/workqueue.h>
82 #include <linux/of.h>
83 #include <linux/of_device.h>
84 #include <linux/of_gpio.h>
85
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89
90 #include <asm/io.h>
91
92 #include "smc91x.h"
93
94 #if defined(CONFIG_ASSABET_NEPONSET)
95 #include <mach/assabet.h>
96 #include <mach/neponset.h>
97 #endif
98
99 #ifndef SMC_NOWAIT
100 # define SMC_NOWAIT 0
101 #endif
102 static int nowait = SMC_NOWAIT;
103 module_param(nowait, int, 0400);
104 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
105
106 /*
107 * Transmit timeout, default 5 seconds.
108 */
109 static int watchdog = 1000;
110 module_param(watchdog, int, 0400);
111 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
112
113 MODULE_LICENSE("GPL");
114 MODULE_ALIAS("platform:smc91x");
115
116 /*
117 * The internal workings of the driver. If you are changing anything
118 * here with the SMC stuff, you should have the datasheet and know
119 * what you are doing.
120 */
121 #define CARDNAME "smc91x"
122
123 /*
124 * Use power-down feature of the chip
125 */
126 #define POWER_DOWN 1
127
128 /*
129 * Wait time for memory to be free. This probably shouldn't be
130 * tuned that much, as waiting for this means nothing else happens
131 * in the system
132 */
133 #define MEMORY_WAIT_TIME 16
134
135 /*
136 * The maximum number of processing loops allowed for each call to the
137 * IRQ handler.
138 */
139 #define MAX_IRQ_LOOPS 8
140
141 /*
142 * This selects whether TX packets are sent one by one to the SMC91x internal
143 * memory and throttled until transmission completes. This may prevent
144 * RX overruns a litle by keeping much of the memory free for RX packets
145 * but to the expense of reduced TX throughput and increased IRQ overhead.
146 * Note this is not a cure for a too slow data bus or too high IRQ latency.
147 */
148 #define THROTTLE_TX_PKTS 0
149
150 /*
151 * The MII clock high/low times. 2x this number gives the MII clock period
152 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
153 */
154 #define MII_DELAY 1
155
156 #define DBG(n, dev, fmt, ...) \
157 do { \
158 if (SMC_DEBUG >= (n)) \
159 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
160 } while (0)
161
162 #define PRINTK(dev, fmt, ...) \
163 do { \
164 if (SMC_DEBUG > 0) \
165 netdev_info(dev, fmt, ##__VA_ARGS__); \
166 else \
167 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
168 } while (0)
169
170 #if SMC_DEBUG > 3
171 static void PRINT_PKT(u_char *buf, int length)
172 {
173 int i;
174 int remainder;
175 int lines;
176
177 lines = length / 16;
178 remainder = length % 16;
179
180 for (i = 0; i < lines ; i ++) {
181 int cur;
182 printk(KERN_DEBUG);
183 for (cur = 0; cur < 8; cur++) {
184 u_char a, b;
185 a = *buf++;
186 b = *buf++;
187 pr_cont("%02x%02x ", a, b);
188 }
189 pr_cont("\n");
190 }
191 printk(KERN_DEBUG);
192 for (i = 0; i < remainder/2 ; i++) {
193 u_char a, b;
194 a = *buf++;
195 b = *buf++;
196 pr_cont("%02x%02x ", a, b);
197 }
198 pr_cont("\n");
199 }
200 #else
201 static inline void PRINT_PKT(u_char *buf, int length) { }
202 #endif
203
204
205 /* this enables an interrupt in the interrupt mask register */
206 #define SMC_ENABLE_INT(lp, x) do { \
207 unsigned char mask; \
208 unsigned long smc_enable_flags; \
209 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
210 mask = SMC_GET_INT_MASK(lp); \
211 mask |= (x); \
212 SMC_SET_INT_MASK(lp, mask); \
213 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
214 } while (0)
215
216 /* this disables an interrupt from the interrupt mask register */
217 #define SMC_DISABLE_INT(lp, x) do { \
218 unsigned char mask; \
219 unsigned long smc_disable_flags; \
220 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
221 mask = SMC_GET_INT_MASK(lp); \
222 mask &= ~(x); \
223 SMC_SET_INT_MASK(lp, mask); \
224 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
225 } while (0)
226
227 /*
228 * Wait while MMU is busy. This is usually in the order of a few nanosecs
229 * if at all, but let's avoid deadlocking the system if the hardware
230 * decides to go south.
231 */
232 #define SMC_WAIT_MMU_BUSY(lp) do { \
233 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
234 unsigned long timeout = jiffies + 2; \
235 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
236 if (time_after(jiffies, timeout)) { \
237 netdev_dbg(dev, "timeout %s line %d\n", \
238 __FILE__, __LINE__); \
239 break; \
240 } \
241 cpu_relax(); \
242 } \
243 } \
244 } while (0)
245
246
247 /*
248 * this does a soft reset on the device
249 */
250 static void smc_reset(struct net_device *dev)
251 {
252 struct smc_local *lp = netdev_priv(dev);
253 void __iomem *ioaddr = lp->base;
254 unsigned int ctl, cfg;
255 struct sk_buff *pending_skb;
256
257 DBG(2, dev, "%s\n", __func__);
258
259 /* Disable all interrupts, block TX tasklet */
260 spin_lock_irq(&lp->lock);
261 SMC_SELECT_BANK(lp, 2);
262 SMC_SET_INT_MASK(lp, 0);
263 pending_skb = lp->pending_tx_skb;
264 lp->pending_tx_skb = NULL;
265 spin_unlock_irq(&lp->lock);
266
267 /* free any pending tx skb */
268 if (pending_skb) {
269 dev_kfree_skb(pending_skb);
270 dev->stats.tx_errors++;
271 dev->stats.tx_aborted_errors++;
272 }
273
274 /*
275 * This resets the registers mostly to defaults, but doesn't
276 * affect EEPROM. That seems unnecessary
277 */
278 SMC_SELECT_BANK(lp, 0);
279 SMC_SET_RCR(lp, RCR_SOFTRST);
280
281 /*
282 * Setup the Configuration Register
283 * This is necessary because the CONFIG_REG is not affected
284 * by a soft reset
285 */
286 SMC_SELECT_BANK(lp, 1);
287
288 cfg = CONFIG_DEFAULT;
289
290 /*
291 * Setup for fast accesses if requested. If the card/system
292 * can't handle it then there will be no recovery except for
293 * a hard reset or power cycle
294 */
295 if (lp->cfg.flags & SMC91X_NOWAIT)
296 cfg |= CONFIG_NO_WAIT;
297
298 /*
299 * Release from possible power-down state
300 * Configuration register is not affected by Soft Reset
301 */
302 cfg |= CONFIG_EPH_POWER_EN;
303
304 SMC_SET_CONFIG(lp, cfg);
305
306 /* this should pause enough for the chip to be happy */
307 /*
308 * elaborate? What does the chip _need_? --jgarzik
309 *
310 * This seems to be undocumented, but something the original
311 * driver(s) have always done. Suspect undocumented timing
312 * info/determined empirically. --rmk
313 */
314 udelay(1);
315
316 /* Disable transmit and receive functionality */
317 SMC_SELECT_BANK(lp, 0);
318 SMC_SET_RCR(lp, RCR_CLEAR);
319 SMC_SET_TCR(lp, TCR_CLEAR);
320
321 SMC_SELECT_BANK(lp, 1);
322 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
323
324 /*
325 * Set the control register to automatically release successfully
326 * transmitted packets, to make the best use out of our limited
327 * memory
328 */
329 if(!THROTTLE_TX_PKTS)
330 ctl |= CTL_AUTO_RELEASE;
331 else
332 ctl &= ~CTL_AUTO_RELEASE;
333 SMC_SET_CTL(lp, ctl);
334
335 /* Reset the MMU */
336 SMC_SELECT_BANK(lp, 2);
337 SMC_SET_MMU_CMD(lp, MC_RESET);
338 SMC_WAIT_MMU_BUSY(lp);
339 }
340
341 /*
342 * Enable Interrupts, Receive, and Transmit
343 */
344 static void smc_enable(struct net_device *dev)
345 {
346 struct smc_local *lp = netdev_priv(dev);
347 void __iomem *ioaddr = lp->base;
348 int mask;
349
350 DBG(2, dev, "%s\n", __func__);
351
352 /* see the header file for options in TCR/RCR DEFAULT */
353 SMC_SELECT_BANK(lp, 0);
354 SMC_SET_TCR(lp, lp->tcr_cur_mode);
355 SMC_SET_RCR(lp, lp->rcr_cur_mode);
356
357 SMC_SELECT_BANK(lp, 1);
358 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
359
360 /* now, enable interrupts */
361 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
362 if (lp->version >= (CHIP_91100 << 4))
363 mask |= IM_MDINT;
364 SMC_SELECT_BANK(lp, 2);
365 SMC_SET_INT_MASK(lp, mask);
366
367 /*
368 * From this point the register bank must _NOT_ be switched away
369 * to something else than bank 2 without proper locking against
370 * races with any tasklet or interrupt handlers until smc_shutdown()
371 * or smc_reset() is called.
372 */
373 }
374
375 /*
376 * this puts the device in an inactive state
377 */
378 static void smc_shutdown(struct net_device *dev)
379 {
380 struct smc_local *lp = netdev_priv(dev);
381 void __iomem *ioaddr = lp->base;
382 struct sk_buff *pending_skb;
383
384 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
385
386 /* no more interrupts for me */
387 spin_lock_irq(&lp->lock);
388 SMC_SELECT_BANK(lp, 2);
389 SMC_SET_INT_MASK(lp, 0);
390 pending_skb = lp->pending_tx_skb;
391 lp->pending_tx_skb = NULL;
392 spin_unlock_irq(&lp->lock);
393 if (pending_skb)
394 dev_kfree_skb(pending_skb);
395
396 /* and tell the card to stay away from that nasty outside world */
397 SMC_SELECT_BANK(lp, 0);
398 SMC_SET_RCR(lp, RCR_CLEAR);
399 SMC_SET_TCR(lp, TCR_CLEAR);
400
401 #ifdef POWER_DOWN
402 /* finally, shut the chip down */
403 SMC_SELECT_BANK(lp, 1);
404 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
405 #endif
406 }
407
408 /*
409 * This is the procedure to handle the receipt of a packet.
410 */
411 static inline void smc_rcv(struct net_device *dev)
412 {
413 struct smc_local *lp = netdev_priv(dev);
414 void __iomem *ioaddr = lp->base;
415 unsigned int packet_number, status, packet_len;
416
417 DBG(3, dev, "%s\n", __func__);
418
419 packet_number = SMC_GET_RXFIFO(lp);
420 if (unlikely(packet_number & RXFIFO_REMPTY)) {
421 PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
422 return;
423 }
424
425 /* read from start of packet */
426 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
427
428 /* First two words are status and packet length */
429 SMC_GET_PKT_HDR(lp, status, packet_len);
430 packet_len &= 0x07ff; /* mask off top bits */
431 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
432 packet_number, status, packet_len, packet_len);
433
434 back:
435 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
436 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
437 /* accept VLAN packets */
438 status &= ~RS_TOOLONG;
439 goto back;
440 }
441 if (packet_len < 6) {
442 /* bloody hardware */
443 netdev_err(dev, "fubar (rxlen %u status %x\n",
444 packet_len, status);
445 status |= RS_TOOSHORT;
446 }
447 SMC_WAIT_MMU_BUSY(lp);
448 SMC_SET_MMU_CMD(lp, MC_RELEASE);
449 dev->stats.rx_errors++;
450 if (status & RS_ALGNERR)
451 dev->stats.rx_frame_errors++;
452 if (status & (RS_TOOSHORT | RS_TOOLONG))
453 dev->stats.rx_length_errors++;
454 if (status & RS_BADCRC)
455 dev->stats.rx_crc_errors++;
456 } else {
457 struct sk_buff *skb;
458 unsigned char *data;
459 unsigned int data_len;
460
461 /* set multicast stats */
462 if (status & RS_MULTICAST)
463 dev->stats.multicast++;
464
465 /*
466 * Actual payload is packet_len - 6 (or 5 if odd byte).
467 * We want skb_reserve(2) and the final ctrl word
468 * (2 bytes, possibly containing the payload odd byte).
469 * Furthermore, we add 2 bytes to allow rounding up to
470 * multiple of 4 bytes on 32 bit buses.
471 * Hence packet_len - 6 + 2 + 2 + 2.
472 */
473 skb = netdev_alloc_skb(dev, packet_len);
474 if (unlikely(skb == NULL)) {
475 SMC_WAIT_MMU_BUSY(lp);
476 SMC_SET_MMU_CMD(lp, MC_RELEASE);
477 dev->stats.rx_dropped++;
478 return;
479 }
480
481 /* Align IP header to 32 bits */
482 skb_reserve(skb, 2);
483
484 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
485 if (lp->version == 0x90)
486 status |= RS_ODDFRAME;
487
488 /*
489 * If odd length: packet_len - 5,
490 * otherwise packet_len - 6.
491 * With the trailing ctrl byte it's packet_len - 4.
492 */
493 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
494 data = skb_put(skb, data_len);
495 SMC_PULL_DATA(lp, data, packet_len - 4);
496
497 SMC_WAIT_MMU_BUSY(lp);
498 SMC_SET_MMU_CMD(lp, MC_RELEASE);
499
500 PRINT_PKT(data, packet_len - 4);
501
502 skb->protocol = eth_type_trans(skb, dev);
503 netif_rx(skb);
504 dev->stats.rx_packets++;
505 dev->stats.rx_bytes += data_len;
506 }
507 }
508
509 #ifdef CONFIG_SMP
510 /*
511 * On SMP we have the following problem:
512 *
513 * A = smc_hardware_send_pkt()
514 * B = smc_hard_start_xmit()
515 * C = smc_interrupt()
516 *
517 * A and B can never be executed simultaneously. However, at least on UP,
518 * it is possible (and even desirable) for C to interrupt execution of
519 * A or B in order to have better RX reliability and avoid overruns.
520 * C, just like A and B, must have exclusive access to the chip and
521 * each of them must lock against any other concurrent access.
522 * Unfortunately this is not possible to have C suspend execution of A or
523 * B taking place on another CPU. On UP this is no an issue since A and B
524 * are run from softirq context and C from hard IRQ context, and there is
525 * no other CPU where concurrent access can happen.
526 * If ever there is a way to force at least B and C to always be executed
527 * on the same CPU then we could use read/write locks to protect against
528 * any other concurrent access and C would always interrupt B. But life
529 * isn't that easy in a SMP world...
530 */
531 #define smc_special_trylock(lock, flags) \
532 ({ \
533 int __ret; \
534 local_irq_save(flags); \
535 __ret = spin_trylock(lock); \
536 if (!__ret) \
537 local_irq_restore(flags); \
538 __ret; \
539 })
540 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
541 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
542 #else
543 #define smc_special_trylock(lock, flags) ((void)flags, true)
544 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
545 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
546 #endif
547
548 /*
549 * This is called to actually send a packet to the chip.
550 */
551 static void smc_hardware_send_pkt(unsigned long data)
552 {
553 struct net_device *dev = (struct net_device *)data;
554 struct smc_local *lp = netdev_priv(dev);
555 void __iomem *ioaddr = lp->base;
556 struct sk_buff *skb;
557 unsigned int packet_no, len;
558 unsigned char *buf;
559 unsigned long flags;
560
561 DBG(3, dev, "%s\n", __func__);
562
563 if (!smc_special_trylock(&lp->lock, flags)) {
564 netif_stop_queue(dev);
565 tasklet_schedule(&lp->tx_task);
566 return;
567 }
568
569 skb = lp->pending_tx_skb;
570 if (unlikely(!skb)) {
571 smc_special_unlock(&lp->lock, flags);
572 return;
573 }
574 lp->pending_tx_skb = NULL;
575
576 packet_no = SMC_GET_AR(lp);
577 if (unlikely(packet_no & AR_FAILED)) {
578 netdev_err(dev, "Memory allocation failed.\n");
579 dev->stats.tx_errors++;
580 dev->stats.tx_fifo_errors++;
581 smc_special_unlock(&lp->lock, flags);
582 goto done;
583 }
584
585 /* point to the beginning of the packet */
586 SMC_SET_PN(lp, packet_no);
587 SMC_SET_PTR(lp, PTR_AUTOINC);
588
589 buf = skb->data;
590 len = skb->len;
591 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
592 packet_no, len, len, buf);
593 PRINT_PKT(buf, len);
594
595 /*
596 * Send the packet length (+6 for status words, length, and ctl.
597 * The card will pad to 64 bytes with zeroes if packet is too small.
598 */
599 SMC_PUT_PKT_HDR(lp, 0, len + 6);
600
601 /* send the actual data */
602 SMC_PUSH_DATA(lp, buf, len & ~1);
603
604 /* Send final ctl word with the last byte if there is one */
605 SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
606 DATA_REG(lp));
607
608 /*
609 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
610 * have the effect of having at most one packet queued for TX
611 * in the chip's memory at all time.
612 *
613 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
614 * when memory allocation (MC_ALLOC) does not succeed right away.
615 */
616 if (THROTTLE_TX_PKTS)
617 netif_stop_queue(dev);
618
619 /* queue the packet for TX */
620 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
621 smc_special_unlock(&lp->lock, flags);
622
623 netif_trans_update(dev);
624 dev->stats.tx_packets++;
625 dev->stats.tx_bytes += len;
626
627 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
628
629 done: if (!THROTTLE_TX_PKTS)
630 netif_wake_queue(dev);
631
632 dev_consume_skb_any(skb);
633 }
634
635 /*
636 * Since I am not sure if I will have enough room in the chip's ram
637 * to store the packet, I call this routine which either sends it
638 * now, or set the card to generates an interrupt when ready
639 * for the packet.
640 */
641 static netdev_tx_t
642 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
643 {
644 struct smc_local *lp = netdev_priv(dev);
645 void __iomem *ioaddr = lp->base;
646 unsigned int numPages, poll_count, status;
647 unsigned long flags;
648
649 DBG(3, dev, "%s\n", __func__);
650
651 BUG_ON(lp->pending_tx_skb != NULL);
652
653 /*
654 * The MMU wants the number of pages to be the number of 256 bytes
655 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
656 *
657 * The 91C111 ignores the size bits, but earlier models don't.
658 *
659 * Pkt size for allocating is data length +6 (for additional status
660 * words, length and ctl)
661 *
662 * If odd size then last byte is included in ctl word.
663 */
664 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
665 if (unlikely(numPages > 7)) {
666 netdev_warn(dev, "Far too big packet error.\n");
667 dev->stats.tx_errors++;
668 dev->stats.tx_dropped++;
669 dev_kfree_skb_any(skb);
670 return NETDEV_TX_OK;
671 }
672
673 smc_special_lock(&lp->lock, flags);
674
675 /* now, try to allocate the memory */
676 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
677
678 /*
679 * Poll the chip for a short amount of time in case the
680 * allocation succeeds quickly.
681 */
682 poll_count = MEMORY_WAIT_TIME;
683 do {
684 status = SMC_GET_INT(lp);
685 if (status & IM_ALLOC_INT) {
686 SMC_ACK_INT(lp, IM_ALLOC_INT);
687 break;
688 }
689 } while (--poll_count);
690
691 smc_special_unlock(&lp->lock, flags);
692
693 lp->pending_tx_skb = skb;
694 if (!poll_count) {
695 /* oh well, wait until the chip finds memory later */
696 netif_stop_queue(dev);
697 DBG(2, dev, "TX memory allocation deferred.\n");
698 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
699 } else {
700 /*
701 * Allocation succeeded: push packet to the chip's own memory
702 * immediately.
703 */
704 smc_hardware_send_pkt((unsigned long)dev);
705 }
706
707 return NETDEV_TX_OK;
708 }
709
710 /*
711 * This handles a TX interrupt, which is only called when:
712 * - a TX error occurred, or
713 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
714 */
715 static void smc_tx(struct net_device *dev)
716 {
717 struct smc_local *lp = netdev_priv(dev);
718 void __iomem *ioaddr = lp->base;
719 unsigned int saved_packet, packet_no, tx_status, pkt_len;
720
721 DBG(3, dev, "%s\n", __func__);
722
723 /* If the TX FIFO is empty then nothing to do */
724 packet_no = SMC_GET_TXFIFO(lp);
725 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
726 PRINTK(dev, "smc_tx with nothing on FIFO.\n");
727 return;
728 }
729
730 /* select packet to read from */
731 saved_packet = SMC_GET_PN(lp);
732 SMC_SET_PN(lp, packet_no);
733
734 /* read the first word (status word) from this packet */
735 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
736 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
737 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
738 tx_status, packet_no);
739
740 if (!(tx_status & ES_TX_SUC))
741 dev->stats.tx_errors++;
742
743 if (tx_status & ES_LOSTCARR)
744 dev->stats.tx_carrier_errors++;
745
746 if (tx_status & (ES_LATCOL | ES_16COL)) {
747 PRINTK(dev, "%s occurred on last xmit\n",
748 (tx_status & ES_LATCOL) ?
749 "late collision" : "too many collisions");
750 dev->stats.tx_window_errors++;
751 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
752 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
753 }
754 }
755
756 /* kill the packet */
757 SMC_WAIT_MMU_BUSY(lp);
758 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
759
760 /* Don't restore Packet Number Reg until busy bit is cleared */
761 SMC_WAIT_MMU_BUSY(lp);
762 SMC_SET_PN(lp, saved_packet);
763
764 /* re-enable transmit */
765 SMC_SELECT_BANK(lp, 0);
766 SMC_SET_TCR(lp, lp->tcr_cur_mode);
767 SMC_SELECT_BANK(lp, 2);
768 }
769
770
771 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
772
773 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
774 {
775 struct smc_local *lp = netdev_priv(dev);
776 void __iomem *ioaddr = lp->base;
777 unsigned int mii_reg, mask;
778
779 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
780 mii_reg |= MII_MDOE;
781
782 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
783 if (val & mask)
784 mii_reg |= MII_MDO;
785 else
786 mii_reg &= ~MII_MDO;
787
788 SMC_SET_MII(lp, mii_reg);
789 udelay(MII_DELAY);
790 SMC_SET_MII(lp, mii_reg | MII_MCLK);
791 udelay(MII_DELAY);
792 }
793 }
794
795 static unsigned int smc_mii_in(struct net_device *dev, int bits)
796 {
797 struct smc_local *lp = netdev_priv(dev);
798 void __iomem *ioaddr = lp->base;
799 unsigned int mii_reg, mask, val;
800
801 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
802 SMC_SET_MII(lp, mii_reg);
803
804 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
805 if (SMC_GET_MII(lp) & MII_MDI)
806 val |= mask;
807
808 SMC_SET_MII(lp, mii_reg);
809 udelay(MII_DELAY);
810 SMC_SET_MII(lp, mii_reg | MII_MCLK);
811 udelay(MII_DELAY);
812 }
813
814 return val;
815 }
816
817 /*
818 * Reads a register from the MII Management serial interface
819 */
820 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
821 {
822 struct smc_local *lp = netdev_priv(dev);
823 void __iomem *ioaddr = lp->base;
824 unsigned int phydata;
825
826 SMC_SELECT_BANK(lp, 3);
827
828 /* Idle - 32 ones */
829 smc_mii_out(dev, 0xffffffff, 32);
830
831 /* Start code (01) + read (10) + phyaddr + phyreg */
832 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
833
834 /* Turnaround (2bits) + phydata */
835 phydata = smc_mii_in(dev, 18);
836
837 /* Return to idle state */
838 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
839
840 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
841 __func__, phyaddr, phyreg, phydata);
842
843 SMC_SELECT_BANK(lp, 2);
844 return phydata;
845 }
846
847 /*
848 * Writes a register to the MII Management serial interface
849 */
850 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
851 int phydata)
852 {
853 struct smc_local *lp = netdev_priv(dev);
854 void __iomem *ioaddr = lp->base;
855
856 SMC_SELECT_BANK(lp, 3);
857
858 /* Idle - 32 ones */
859 smc_mii_out(dev, 0xffffffff, 32);
860
861 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
862 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
863
864 /* Return to idle state */
865 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
866
867 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
868 __func__, phyaddr, phyreg, phydata);
869
870 SMC_SELECT_BANK(lp, 2);
871 }
872
873 /*
874 * Finds and reports the PHY address
875 */
876 static void smc_phy_detect(struct net_device *dev)
877 {
878 struct smc_local *lp = netdev_priv(dev);
879 int phyaddr;
880
881 DBG(2, dev, "%s\n", __func__);
882
883 lp->phy_type = 0;
884
885 /*
886 * Scan all 32 PHY addresses if necessary, starting at
887 * PHY#1 to PHY#31, and then PHY#0 last.
888 */
889 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
890 unsigned int id1, id2;
891
892 /* Read the PHY identifiers */
893 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
894 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
895
896 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
897 id1, id2);
898
899 /* Make sure it is a valid identifier */
900 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
901 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
902 /* Save the PHY's address */
903 lp->mii.phy_id = phyaddr & 31;
904 lp->phy_type = id1 << 16 | id2;
905 break;
906 }
907 }
908 }
909
910 /*
911 * Sets the PHY to a configuration as determined by the user
912 */
913 static int smc_phy_fixed(struct net_device *dev)
914 {
915 struct smc_local *lp = netdev_priv(dev);
916 void __iomem *ioaddr = lp->base;
917 int phyaddr = lp->mii.phy_id;
918 int bmcr, cfg1;
919
920 DBG(3, dev, "%s\n", __func__);
921
922 /* Enter Link Disable state */
923 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
924 cfg1 |= PHY_CFG1_LNKDIS;
925 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
926
927 /*
928 * Set our fixed capabilities
929 * Disable auto-negotiation
930 */
931 bmcr = 0;
932
933 if (lp->ctl_rfduplx)
934 bmcr |= BMCR_FULLDPLX;
935
936 if (lp->ctl_rspeed == 100)
937 bmcr |= BMCR_SPEED100;
938
939 /* Write our capabilities to the phy control register */
940 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
941
942 /* Re-Configure the Receive/Phy Control register */
943 SMC_SELECT_BANK(lp, 0);
944 SMC_SET_RPC(lp, lp->rpc_cur_mode);
945 SMC_SELECT_BANK(lp, 2);
946
947 return 1;
948 }
949
950 /**
951 * smc_phy_reset - reset the phy
952 * @dev: net device
953 * @phy: phy address
954 *
955 * Issue a software reset for the specified PHY and
956 * wait up to 100ms for the reset to complete. We should
957 * not access the PHY for 50ms after issuing the reset.
958 *
959 * The time to wait appears to be dependent on the PHY.
960 *
961 * Must be called with lp->lock locked.
962 */
963 static int smc_phy_reset(struct net_device *dev, int phy)
964 {
965 struct smc_local *lp = netdev_priv(dev);
966 unsigned int bmcr;
967 int timeout;
968
969 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
970
971 for (timeout = 2; timeout; timeout--) {
972 spin_unlock_irq(&lp->lock);
973 msleep(50);
974 spin_lock_irq(&lp->lock);
975
976 bmcr = smc_phy_read(dev, phy, MII_BMCR);
977 if (!(bmcr & BMCR_RESET))
978 break;
979 }
980
981 return bmcr & BMCR_RESET;
982 }
983
984 /**
985 * smc_phy_powerdown - powerdown phy
986 * @dev: net device
987 *
988 * Power down the specified PHY
989 */
990 static void smc_phy_powerdown(struct net_device *dev)
991 {
992 struct smc_local *lp = netdev_priv(dev);
993 unsigned int bmcr;
994 int phy = lp->mii.phy_id;
995
996 if (lp->phy_type == 0)
997 return;
998
999 /* We need to ensure that no calls to smc_phy_configure are
1000 pending.
1001 */
1002 cancel_work_sync(&lp->phy_configure);
1003
1004 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1005 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1006 }
1007
1008 /**
1009 * smc_phy_check_media - check the media status and adjust TCR
1010 * @dev: net device
1011 * @init: set true for initialisation
1012 *
1013 * Select duplex mode depending on negotiation state. This
1014 * also updates our carrier state.
1015 */
1016 static void smc_phy_check_media(struct net_device *dev, int init)
1017 {
1018 struct smc_local *lp = netdev_priv(dev);
1019 void __iomem *ioaddr = lp->base;
1020
1021 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1022 /* duplex state has changed */
1023 if (lp->mii.full_duplex) {
1024 lp->tcr_cur_mode |= TCR_SWFDUP;
1025 } else {
1026 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1027 }
1028
1029 SMC_SELECT_BANK(lp, 0);
1030 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1031 }
1032 }
1033
1034 /*
1035 * Configures the specified PHY through the MII management interface
1036 * using Autonegotiation.
1037 * Calls smc_phy_fixed() if the user has requested a certain config.
1038 * If RPC ANEG bit is set, the media selection is dependent purely on
1039 * the selection by the MII (either in the MII BMCR reg or the result
1040 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1041 * is controlled by the RPC SPEED and RPC DPLX bits.
1042 */
1043 static void smc_phy_configure(struct work_struct *work)
1044 {
1045 struct smc_local *lp =
1046 container_of(work, struct smc_local, phy_configure);
1047 struct net_device *dev = lp->dev;
1048 void __iomem *ioaddr = lp->base;
1049 int phyaddr = lp->mii.phy_id;
1050 int my_phy_caps; /* My PHY capabilities */
1051 int my_ad_caps; /* My Advertised capabilities */
1052 int status;
1053
1054 DBG(3, dev, "smc_program_phy()\n");
1055
1056 spin_lock_irq(&lp->lock);
1057
1058 /*
1059 * We should not be called if phy_type is zero.
1060 */
1061 if (lp->phy_type == 0)
1062 goto smc_phy_configure_exit;
1063
1064 if (smc_phy_reset(dev, phyaddr)) {
1065 netdev_info(dev, "PHY reset timed out\n");
1066 goto smc_phy_configure_exit;
1067 }
1068
1069 /*
1070 * Enable PHY Interrupts (for register 18)
1071 * Interrupts listed here are disabled
1072 */
1073 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1074 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1075 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1076 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1077
1078 /* Configure the Receive/Phy Control register */
1079 SMC_SELECT_BANK(lp, 0);
1080 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1081
1082 /* If the user requested no auto neg, then go set his request */
1083 if (lp->mii.force_media) {
1084 smc_phy_fixed(dev);
1085 goto smc_phy_configure_exit;
1086 }
1087
1088 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1089 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1090
1091 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1092 netdev_info(dev, "Auto negotiation NOT supported\n");
1093 smc_phy_fixed(dev);
1094 goto smc_phy_configure_exit;
1095 }
1096
1097 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1098
1099 if (my_phy_caps & BMSR_100BASE4)
1100 my_ad_caps |= ADVERTISE_100BASE4;
1101 if (my_phy_caps & BMSR_100FULL)
1102 my_ad_caps |= ADVERTISE_100FULL;
1103 if (my_phy_caps & BMSR_100HALF)
1104 my_ad_caps |= ADVERTISE_100HALF;
1105 if (my_phy_caps & BMSR_10FULL)
1106 my_ad_caps |= ADVERTISE_10FULL;
1107 if (my_phy_caps & BMSR_10HALF)
1108 my_ad_caps |= ADVERTISE_10HALF;
1109
1110 /* Disable capabilities not selected by our user */
1111 if (lp->ctl_rspeed != 100)
1112 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1113
1114 if (!lp->ctl_rfduplx)
1115 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1116
1117 /* Update our Auto-Neg Advertisement Register */
1118 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1119 lp->mii.advertising = my_ad_caps;
1120
1121 /*
1122 * Read the register back. Without this, it appears that when
1123 * auto-negotiation is restarted, sometimes it isn't ready and
1124 * the link does not come up.
1125 */
1126 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1127
1128 DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1129 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1130
1131 /* Restart auto-negotiation process in order to advertise my caps */
1132 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1133
1134 smc_phy_check_media(dev, 1);
1135
1136 smc_phy_configure_exit:
1137 SMC_SELECT_BANK(lp, 2);
1138 spin_unlock_irq(&lp->lock);
1139 }
1140
1141 /*
1142 * smc_phy_interrupt
1143 *
1144 * Purpose: Handle interrupts relating to PHY register 18. This is
1145 * called from the "hard" interrupt handler under our private spinlock.
1146 */
1147 static void smc_phy_interrupt(struct net_device *dev)
1148 {
1149 struct smc_local *lp = netdev_priv(dev);
1150 int phyaddr = lp->mii.phy_id;
1151 int phy18;
1152
1153 DBG(2, dev, "%s\n", __func__);
1154
1155 if (lp->phy_type == 0)
1156 return;
1157
1158 for(;;) {
1159 smc_phy_check_media(dev, 0);
1160
1161 /* Read PHY Register 18, Status Output */
1162 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1163 if ((phy18 & PHY_INT_INT) == 0)
1164 break;
1165 }
1166 }
1167
1168 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1169
1170 static void smc_10bt_check_media(struct net_device *dev, int init)
1171 {
1172 struct smc_local *lp = netdev_priv(dev);
1173 void __iomem *ioaddr = lp->base;
1174 unsigned int old_carrier, new_carrier;
1175
1176 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1177
1178 SMC_SELECT_BANK(lp, 0);
1179 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1180 SMC_SELECT_BANK(lp, 2);
1181
1182 if (init || (old_carrier != new_carrier)) {
1183 if (!new_carrier) {
1184 netif_carrier_off(dev);
1185 } else {
1186 netif_carrier_on(dev);
1187 }
1188 if (netif_msg_link(lp))
1189 netdev_info(dev, "link %s\n",
1190 new_carrier ? "up" : "down");
1191 }
1192 }
1193
1194 static void smc_eph_interrupt(struct net_device *dev)
1195 {
1196 struct smc_local *lp = netdev_priv(dev);
1197 void __iomem *ioaddr = lp->base;
1198 unsigned int ctl;
1199
1200 smc_10bt_check_media(dev, 0);
1201
1202 SMC_SELECT_BANK(lp, 1);
1203 ctl = SMC_GET_CTL(lp);
1204 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1205 SMC_SET_CTL(lp, ctl);
1206 SMC_SELECT_BANK(lp, 2);
1207 }
1208
1209 /*
1210 * This is the main routine of the driver, to handle the device when
1211 * it needs some attention.
1212 */
1213 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1214 {
1215 struct net_device *dev = dev_id;
1216 struct smc_local *lp = netdev_priv(dev);
1217 void __iomem *ioaddr = lp->base;
1218 int status, mask, timeout, card_stats;
1219 int saved_pointer;
1220
1221 DBG(3, dev, "%s\n", __func__);
1222
1223 spin_lock(&lp->lock);
1224
1225 /* A preamble may be used when there is a potential race
1226 * between the interruptible transmit functions and this
1227 * ISR. */
1228 SMC_INTERRUPT_PREAMBLE;
1229
1230 saved_pointer = SMC_GET_PTR(lp);
1231 mask = SMC_GET_INT_MASK(lp);
1232 SMC_SET_INT_MASK(lp, 0);
1233
1234 /* set a timeout value, so I don't stay here forever */
1235 timeout = MAX_IRQ_LOOPS;
1236
1237 do {
1238 status = SMC_GET_INT(lp);
1239
1240 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1241 status, mask,
1242 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1243 meminfo = SMC_GET_MIR(lp);
1244 SMC_SELECT_BANK(lp, 2); meminfo; }),
1245 SMC_GET_FIFO(lp));
1246
1247 status &= mask;
1248 if (!status)
1249 break;
1250
1251 if (status & IM_TX_INT) {
1252 /* do this before RX as it will free memory quickly */
1253 DBG(3, dev, "TX int\n");
1254 smc_tx(dev);
1255 SMC_ACK_INT(lp, IM_TX_INT);
1256 if (THROTTLE_TX_PKTS)
1257 netif_wake_queue(dev);
1258 } else if (status & IM_RCV_INT) {
1259 DBG(3, dev, "RX irq\n");
1260 smc_rcv(dev);
1261 } else if (status & IM_ALLOC_INT) {
1262 DBG(3, dev, "Allocation irq\n");
1263 tasklet_hi_schedule(&lp->tx_task);
1264 mask &= ~IM_ALLOC_INT;
1265 } else if (status & IM_TX_EMPTY_INT) {
1266 DBG(3, dev, "TX empty\n");
1267 mask &= ~IM_TX_EMPTY_INT;
1268
1269 /* update stats */
1270 SMC_SELECT_BANK(lp, 0);
1271 card_stats = SMC_GET_COUNTER(lp);
1272 SMC_SELECT_BANK(lp, 2);
1273
1274 /* single collisions */
1275 dev->stats.collisions += card_stats & 0xF;
1276 card_stats >>= 4;
1277
1278 /* multiple collisions */
1279 dev->stats.collisions += card_stats & 0xF;
1280 } else if (status & IM_RX_OVRN_INT) {
1281 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1282 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1283 eph_st = SMC_GET_EPH_STATUS(lp);
1284 SMC_SELECT_BANK(lp, 2); eph_st; }));
1285 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1286 dev->stats.rx_errors++;
1287 dev->stats.rx_fifo_errors++;
1288 } else if (status & IM_EPH_INT) {
1289 smc_eph_interrupt(dev);
1290 } else if (status & IM_MDINT) {
1291 SMC_ACK_INT(lp, IM_MDINT);
1292 smc_phy_interrupt(dev);
1293 } else if (status & IM_ERCV_INT) {
1294 SMC_ACK_INT(lp, IM_ERCV_INT);
1295 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1296 }
1297 } while (--timeout);
1298
1299 /* restore register states */
1300 SMC_SET_PTR(lp, saved_pointer);
1301 SMC_SET_INT_MASK(lp, mask);
1302 spin_unlock(&lp->lock);
1303
1304 #ifndef CONFIG_NET_POLL_CONTROLLER
1305 if (timeout == MAX_IRQ_LOOPS)
1306 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1307 mask);
1308 #endif
1309 DBG(3, dev, "Interrupt done (%d loops)\n",
1310 MAX_IRQ_LOOPS - timeout);
1311
1312 /*
1313 * We return IRQ_HANDLED unconditionally here even if there was
1314 * nothing to do. There is a possibility that a packet might
1315 * get enqueued into the chip right after TX_EMPTY_INT is raised
1316 * but just before the CPU acknowledges the IRQ.
1317 * Better take an unneeded IRQ in some occasions than complexifying
1318 * the code for all cases.
1319 */
1320 return IRQ_HANDLED;
1321 }
1322
1323 #ifdef CONFIG_NET_POLL_CONTROLLER
1324 /*
1325 * Polling receive - used by netconsole and other diagnostic tools
1326 * to allow network i/o with interrupts disabled.
1327 */
1328 static void smc_poll_controller(struct net_device *dev)
1329 {
1330 disable_irq(dev->irq);
1331 smc_interrupt(dev->irq, dev);
1332 enable_irq(dev->irq);
1333 }
1334 #endif
1335
1336 /* Our watchdog timed out. Called by the networking layer */
1337 static void smc_timeout(struct net_device *dev)
1338 {
1339 struct smc_local *lp = netdev_priv(dev);
1340 void __iomem *ioaddr = lp->base;
1341 int status, mask, eph_st, meminfo, fifo;
1342
1343 DBG(2, dev, "%s\n", __func__);
1344
1345 spin_lock_irq(&lp->lock);
1346 status = SMC_GET_INT(lp);
1347 mask = SMC_GET_INT_MASK(lp);
1348 fifo = SMC_GET_FIFO(lp);
1349 SMC_SELECT_BANK(lp, 0);
1350 eph_st = SMC_GET_EPH_STATUS(lp);
1351 meminfo = SMC_GET_MIR(lp);
1352 SMC_SELECT_BANK(lp, 2);
1353 spin_unlock_irq(&lp->lock);
1354 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1355 status, mask, meminfo, fifo, eph_st);
1356
1357 smc_reset(dev);
1358 smc_enable(dev);
1359
1360 /*
1361 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1362 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1363 * which calls schedule(). Hence we use a work queue.
1364 */
1365 if (lp->phy_type != 0)
1366 schedule_work(&lp->phy_configure);
1367
1368 /* We can accept TX packets again */
1369 netif_trans_update(dev); /* prevent tx timeout */
1370 netif_wake_queue(dev);
1371 }
1372
1373 /*
1374 * This routine will, depending on the values passed to it,
1375 * either make it accept multicast packets, go into
1376 * promiscuous mode (for TCPDUMP and cousins) or accept
1377 * a select set of multicast packets
1378 */
1379 static void smc_set_multicast_list(struct net_device *dev)
1380 {
1381 struct smc_local *lp = netdev_priv(dev);
1382 void __iomem *ioaddr = lp->base;
1383 unsigned char multicast_table[8];
1384 int update_multicast = 0;
1385
1386 DBG(2, dev, "%s\n", __func__);
1387
1388 if (dev->flags & IFF_PROMISC) {
1389 DBG(2, dev, "RCR_PRMS\n");
1390 lp->rcr_cur_mode |= RCR_PRMS;
1391 }
1392
1393 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1394 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1395 when promiscuous mode is turned on.
1396 */
1397
1398 /*
1399 * Here, I am setting this to accept all multicast packets.
1400 * I don't need to zero the multicast table, because the flag is
1401 * checked before the table is
1402 */
1403 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1404 DBG(2, dev, "RCR_ALMUL\n");
1405 lp->rcr_cur_mode |= RCR_ALMUL;
1406 }
1407
1408 /*
1409 * This sets the internal hardware table to filter out unwanted
1410 * multicast packets before they take up memory.
1411 *
1412 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1413 * address are the offset into the table. If that bit is 1, then the
1414 * multicast packet is accepted. Otherwise, it's dropped silently.
1415 *
1416 * To use the 6 bits as an offset into the table, the high 3 bits are
1417 * the number of the 8 bit register, while the low 3 bits are the bit
1418 * within that register.
1419 */
1420 else if (!netdev_mc_empty(dev)) {
1421 struct netdev_hw_addr *ha;
1422
1423 /* table for flipping the order of 3 bits */
1424 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1425
1426 /* start with a table of all zeros: reject all */
1427 memset(multicast_table, 0, sizeof(multicast_table));
1428
1429 netdev_for_each_mc_addr(ha, dev) {
1430 int position;
1431
1432 /* only use the low order bits */
1433 position = crc32_le(~0, ha->addr, 6) & 0x3f;
1434
1435 /* do some messy swapping to put the bit in the right spot */
1436 multicast_table[invert3[position&7]] |=
1437 (1<<invert3[(position>>3)&7]);
1438 }
1439
1440 /* be sure I get rid of flags I might have set */
1441 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1442
1443 /* now, the table can be loaded into the chipset */
1444 update_multicast = 1;
1445 } else {
1446 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1447 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1448
1449 /*
1450 * since I'm disabling all multicast entirely, I need to
1451 * clear the multicast list
1452 */
1453 memset(multicast_table, 0, sizeof(multicast_table));
1454 update_multicast = 1;
1455 }
1456
1457 spin_lock_irq(&lp->lock);
1458 SMC_SELECT_BANK(lp, 0);
1459 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1460 if (update_multicast) {
1461 SMC_SELECT_BANK(lp, 3);
1462 SMC_SET_MCAST(lp, multicast_table);
1463 }
1464 SMC_SELECT_BANK(lp, 2);
1465 spin_unlock_irq(&lp->lock);
1466 }
1467
1468
1469 /*
1470 * Open and Initialize the board
1471 *
1472 * Set up everything, reset the card, etc..
1473 */
1474 static int
1475 smc_open(struct net_device *dev)
1476 {
1477 struct smc_local *lp = netdev_priv(dev);
1478
1479 DBG(2, dev, "%s\n", __func__);
1480
1481 /* Setup the default Register Modes */
1482 lp->tcr_cur_mode = TCR_DEFAULT;
1483 lp->rcr_cur_mode = RCR_DEFAULT;
1484 lp->rpc_cur_mode = RPC_DEFAULT |
1485 lp->cfg.leda << RPC_LSXA_SHFT |
1486 lp->cfg.ledb << RPC_LSXB_SHFT;
1487
1488 /*
1489 * If we are not using a MII interface, we need to
1490 * monitor our own carrier signal to detect faults.
1491 */
1492 if (lp->phy_type == 0)
1493 lp->tcr_cur_mode |= TCR_MON_CSN;
1494
1495 /* reset the hardware */
1496 smc_reset(dev);
1497 smc_enable(dev);
1498
1499 /* Configure the PHY, initialize the link state */
1500 if (lp->phy_type != 0)
1501 smc_phy_configure(&lp->phy_configure);
1502 else {
1503 spin_lock_irq(&lp->lock);
1504 smc_10bt_check_media(dev, 1);
1505 spin_unlock_irq(&lp->lock);
1506 }
1507
1508 netif_start_queue(dev);
1509 return 0;
1510 }
1511
1512 /*
1513 * smc_close
1514 *
1515 * this makes the board clean up everything that it can
1516 * and not talk to the outside world. Caused by
1517 * an 'ifconfig ethX down'
1518 */
1519 static int smc_close(struct net_device *dev)
1520 {
1521 struct smc_local *lp = netdev_priv(dev);
1522
1523 DBG(2, dev, "%s\n", __func__);
1524
1525 netif_stop_queue(dev);
1526 netif_carrier_off(dev);
1527
1528 /* clear everything */
1529 smc_shutdown(dev);
1530 tasklet_kill(&lp->tx_task);
1531 smc_phy_powerdown(dev);
1532 return 0;
1533 }
1534
1535 /*
1536 * Ethtool support
1537 */
1538 static int
1539 smc_ethtool_get_link_ksettings(struct net_device *dev,
1540 struct ethtool_link_ksettings *cmd)
1541 {
1542 struct smc_local *lp = netdev_priv(dev);
1543
1544 if (lp->phy_type != 0) {
1545 spin_lock_irq(&lp->lock);
1546 mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1547 spin_unlock_irq(&lp->lock);
1548 } else {
1549 u32 supported = SUPPORTED_10baseT_Half |
1550 SUPPORTED_10baseT_Full |
1551 SUPPORTED_TP | SUPPORTED_AUI;
1552
1553 if (lp->ctl_rspeed == 10)
1554 cmd->base.speed = SPEED_10;
1555 else if (lp->ctl_rspeed == 100)
1556 cmd->base.speed = SPEED_100;
1557
1558 cmd->base.autoneg = AUTONEG_DISABLE;
1559 cmd->base.port = 0;
1560 cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1561 DUPLEX_FULL : DUPLEX_HALF;
1562
1563 ethtool_convert_legacy_u32_to_link_mode(
1564 cmd->link_modes.supported, supported);
1565 }
1566
1567 return 0;
1568 }
1569
1570 static int
1571 smc_ethtool_set_link_ksettings(struct net_device *dev,
1572 const struct ethtool_link_ksettings *cmd)
1573 {
1574 struct smc_local *lp = netdev_priv(dev);
1575 int ret;
1576
1577 if (lp->phy_type != 0) {
1578 spin_lock_irq(&lp->lock);
1579 ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1580 spin_unlock_irq(&lp->lock);
1581 } else {
1582 if (cmd->base.autoneg != AUTONEG_DISABLE ||
1583 cmd->base.speed != SPEED_10 ||
1584 (cmd->base.duplex != DUPLEX_HALF &&
1585 cmd->base.duplex != DUPLEX_FULL) ||
1586 (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1587 return -EINVAL;
1588
1589 // lp->port = cmd->base.port;
1590 lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1591
1592 // if (netif_running(dev))
1593 // smc_set_port(dev);
1594
1595 ret = 0;
1596 }
1597
1598 return ret;
1599 }
1600
1601 static void
1602 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1603 {
1604 strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1605 strlcpy(info->version, version, sizeof(info->version));
1606 strlcpy(info->bus_info, dev_name(dev->dev.parent),
1607 sizeof(info->bus_info));
1608 }
1609
1610 static int smc_ethtool_nwayreset(struct net_device *dev)
1611 {
1612 struct smc_local *lp = netdev_priv(dev);
1613 int ret = -EINVAL;
1614
1615 if (lp->phy_type != 0) {
1616 spin_lock_irq(&lp->lock);
1617 ret = mii_nway_restart(&lp->mii);
1618 spin_unlock_irq(&lp->lock);
1619 }
1620
1621 return ret;
1622 }
1623
1624 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1625 {
1626 struct smc_local *lp = netdev_priv(dev);
1627 return lp->msg_enable;
1628 }
1629
1630 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1631 {
1632 struct smc_local *lp = netdev_priv(dev);
1633 lp->msg_enable = level;
1634 }
1635
1636 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1637 {
1638 u16 ctl;
1639 struct smc_local *lp = netdev_priv(dev);
1640 void __iomem *ioaddr = lp->base;
1641
1642 spin_lock_irq(&lp->lock);
1643 /* load word into GP register */
1644 SMC_SELECT_BANK(lp, 1);
1645 SMC_SET_GP(lp, word);
1646 /* set the address to put the data in EEPROM */
1647 SMC_SELECT_BANK(lp, 2);
1648 SMC_SET_PTR(lp, addr);
1649 /* tell it to write */
1650 SMC_SELECT_BANK(lp, 1);
1651 ctl = SMC_GET_CTL(lp);
1652 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1653 /* wait for it to finish */
1654 do {
1655 udelay(1);
1656 } while (SMC_GET_CTL(lp) & CTL_STORE);
1657 /* clean up */
1658 SMC_SET_CTL(lp, ctl);
1659 SMC_SELECT_BANK(lp, 2);
1660 spin_unlock_irq(&lp->lock);
1661 return 0;
1662 }
1663
1664 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1665 {
1666 u16 ctl;
1667 struct smc_local *lp = netdev_priv(dev);
1668 void __iomem *ioaddr = lp->base;
1669
1670 spin_lock_irq(&lp->lock);
1671 /* set the EEPROM address to get the data from */
1672 SMC_SELECT_BANK(lp, 2);
1673 SMC_SET_PTR(lp, addr | PTR_READ);
1674 /* tell it to load */
1675 SMC_SELECT_BANK(lp, 1);
1676 SMC_SET_GP(lp, 0xffff); /* init to known */
1677 ctl = SMC_GET_CTL(lp);
1678 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1679 /* wait for it to finish */
1680 do {
1681 udelay(1);
1682 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1683 /* read word from GP register */
1684 *word = SMC_GET_GP(lp);
1685 /* clean up */
1686 SMC_SET_CTL(lp, ctl);
1687 SMC_SELECT_BANK(lp, 2);
1688 spin_unlock_irq(&lp->lock);
1689 return 0;
1690 }
1691
1692 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1693 {
1694 return 0x23 * 2;
1695 }
1696
1697 static int smc_ethtool_geteeprom(struct net_device *dev,
1698 struct ethtool_eeprom *eeprom, u8 *data)
1699 {
1700 int i;
1701 int imax;
1702
1703 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1704 eeprom->len, eeprom->offset, eeprom->offset);
1705 imax = smc_ethtool_geteeprom_len(dev);
1706 for (i = 0; i < eeprom->len; i += 2) {
1707 int ret;
1708 u16 wbuf;
1709 int offset = i + eeprom->offset;
1710 if (offset > imax)
1711 break;
1712 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1713 if (ret != 0)
1714 return ret;
1715 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1716 data[i] = (wbuf >> 8) & 0xff;
1717 data[i+1] = wbuf & 0xff;
1718 }
1719 return 0;
1720 }
1721
1722 static int smc_ethtool_seteeprom(struct net_device *dev,
1723 struct ethtool_eeprom *eeprom, u8 *data)
1724 {
1725 int i;
1726 int imax;
1727
1728 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1729 eeprom->len, eeprom->offset, eeprom->offset);
1730 imax = smc_ethtool_geteeprom_len(dev);
1731 for (i = 0; i < eeprom->len; i += 2) {
1732 int ret;
1733 u16 wbuf;
1734 int offset = i + eeprom->offset;
1735 if (offset > imax)
1736 break;
1737 wbuf = (data[i] << 8) | data[i + 1];
1738 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1739 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1740 if (ret != 0)
1741 return ret;
1742 }
1743 return 0;
1744 }
1745
1746
1747 static const struct ethtool_ops smc_ethtool_ops = {
1748 .get_drvinfo = smc_ethtool_getdrvinfo,
1749
1750 .get_msglevel = smc_ethtool_getmsglevel,
1751 .set_msglevel = smc_ethtool_setmsglevel,
1752 .nway_reset = smc_ethtool_nwayreset,
1753 .get_link = ethtool_op_get_link,
1754 .get_eeprom_len = smc_ethtool_geteeprom_len,
1755 .get_eeprom = smc_ethtool_geteeprom,
1756 .set_eeprom = smc_ethtool_seteeprom,
1757 .get_link_ksettings = smc_ethtool_get_link_ksettings,
1758 .set_link_ksettings = smc_ethtool_set_link_ksettings,
1759 };
1760
1761 static const struct net_device_ops smc_netdev_ops = {
1762 .ndo_open = smc_open,
1763 .ndo_stop = smc_close,
1764 .ndo_start_xmit = smc_hard_start_xmit,
1765 .ndo_tx_timeout = smc_timeout,
1766 .ndo_set_rx_mode = smc_set_multicast_list,
1767 .ndo_validate_addr = eth_validate_addr,
1768 .ndo_set_mac_address = eth_mac_addr,
1769 #ifdef CONFIG_NET_POLL_CONTROLLER
1770 .ndo_poll_controller = smc_poll_controller,
1771 #endif
1772 };
1773
1774 /*
1775 * smc_findirq
1776 *
1777 * This routine has a simple purpose -- make the SMC chip generate an
1778 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1779 */
1780 /*
1781 * does this still work?
1782 *
1783 * I just deleted auto_irq.c, since it was never built...
1784 * --jgarzik
1785 */
1786 static int smc_findirq(struct smc_local *lp)
1787 {
1788 void __iomem *ioaddr = lp->base;
1789 int timeout = 20;
1790 unsigned long cookie;
1791
1792 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1793
1794 cookie = probe_irq_on();
1795
1796 /*
1797 * What I try to do here is trigger an ALLOC_INT. This is done
1798 * by allocating a small chunk of memory, which will give an interrupt
1799 * when done.
1800 */
1801 /* enable ALLOCation interrupts ONLY */
1802 SMC_SELECT_BANK(lp, 2);
1803 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1804
1805 /*
1806 * Allocate 512 bytes of memory. Note that the chip was just
1807 * reset so all the memory is available
1808 */
1809 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1810
1811 /*
1812 * Wait until positive that the interrupt has been generated
1813 */
1814 do {
1815 int int_status;
1816 udelay(10);
1817 int_status = SMC_GET_INT(lp);
1818 if (int_status & IM_ALLOC_INT)
1819 break; /* got the interrupt */
1820 } while (--timeout);
1821
1822 /*
1823 * there is really nothing that I can do here if timeout fails,
1824 * as autoirq_report will return a 0 anyway, which is what I
1825 * want in this case. Plus, the clean up is needed in both
1826 * cases.
1827 */
1828
1829 /* and disable all interrupts again */
1830 SMC_SET_INT_MASK(lp, 0);
1831
1832 /* and return what I found */
1833 return probe_irq_off(cookie);
1834 }
1835
1836 /*
1837 * Function: smc_probe(unsigned long ioaddr)
1838 *
1839 * Purpose:
1840 * Tests to see if a given ioaddr points to an SMC91x chip.
1841 * Returns a 0 on success
1842 *
1843 * Algorithm:
1844 * (1) see if the high byte of BANK_SELECT is 0x33
1845 * (2) compare the ioaddr with the base register's address
1846 * (3) see if I recognize the chip ID in the appropriate register
1847 *
1848 * Here I do typical initialization tasks.
1849 *
1850 * o Initialize the structure if needed
1851 * o print out my vanity message if not done so already
1852 * o print out what type of hardware is detected
1853 * o print out the ethernet address
1854 * o find the IRQ
1855 * o set up my private data
1856 * o configure the dev structure with my subroutines
1857 * o actually GRAB the irq.
1858 * o GRAB the region
1859 */
1860 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1861 unsigned long irq_flags)
1862 {
1863 struct smc_local *lp = netdev_priv(dev);
1864 int retval;
1865 unsigned int val, revision_register;
1866 const char *version_string;
1867
1868 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1869
1870 /* First, see if the high byte is 0x33 */
1871 val = SMC_CURRENT_BANK(lp);
1872 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1873 CARDNAME, val);
1874 if ((val & 0xFF00) != 0x3300) {
1875 if ((val & 0xFF) == 0x33) {
1876 netdev_warn(dev,
1877 "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1878 CARDNAME, ioaddr);
1879 }
1880 retval = -ENODEV;
1881 goto err_out;
1882 }
1883
1884 /*
1885 * The above MIGHT indicate a device, but I need to write to
1886 * further test this.
1887 */
1888 SMC_SELECT_BANK(lp, 0);
1889 val = SMC_CURRENT_BANK(lp);
1890 if ((val & 0xFF00) != 0x3300) {
1891 retval = -ENODEV;
1892 goto err_out;
1893 }
1894
1895 /*
1896 * well, we've already written once, so hopefully another
1897 * time won't hurt. This time, I need to switch the bank
1898 * register to bank 1, so I can access the base address
1899 * register
1900 */
1901 SMC_SELECT_BANK(lp, 1);
1902 val = SMC_GET_BASE(lp);
1903 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1904 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1905 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1906 CARDNAME, ioaddr, val);
1907 }
1908
1909 /*
1910 * check if the revision register is something that I
1911 * recognize. These might need to be added to later,
1912 * as future revisions could be added.
1913 */
1914 SMC_SELECT_BANK(lp, 3);
1915 revision_register = SMC_GET_REV(lp);
1916 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1917 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1918 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1919 /* I don't recognize this chip, so... */
1920 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1921 CARDNAME, ioaddr, revision_register);
1922
1923 retval = -ENODEV;
1924 goto err_out;
1925 }
1926
1927 /* At this point I'll assume that the chip is an SMC91x. */
1928 pr_info_once("%s\n", version);
1929
1930 /* fill in some of the fields */
1931 dev->base_addr = (unsigned long)ioaddr;
1932 lp->base = ioaddr;
1933 lp->version = revision_register & 0xff;
1934 spin_lock_init(&lp->lock);
1935
1936 /* Get the MAC address */
1937 SMC_SELECT_BANK(lp, 1);
1938 SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1939
1940 /* now, reset the chip, and put it into a known state */
1941 smc_reset(dev);
1942
1943 /*
1944 * If dev->irq is 0, then the device has to be banged on to see
1945 * what the IRQ is.
1946 *
1947 * This banging doesn't always detect the IRQ, for unknown reasons.
1948 * a workaround is to reset the chip and try again.
1949 *
1950 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1951 * be what is requested on the command line. I don't do that, mostly
1952 * because the card that I have uses a non-standard method of accessing
1953 * the IRQs, and because this _should_ work in most configurations.
1954 *
1955 * Specifying an IRQ is done with the assumption that the user knows
1956 * what (s)he is doing. No checking is done!!!!
1957 */
1958 if (dev->irq < 1) {
1959 int trials;
1960
1961 trials = 3;
1962 while (trials--) {
1963 dev->irq = smc_findirq(lp);
1964 if (dev->irq)
1965 break;
1966 /* kick the card and try again */
1967 smc_reset(dev);
1968 }
1969 }
1970 if (dev->irq == 0) {
1971 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1972 retval = -ENODEV;
1973 goto err_out;
1974 }
1975 dev->irq = irq_canonicalize(dev->irq);
1976
1977 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1978 dev->netdev_ops = &smc_netdev_ops;
1979 dev->ethtool_ops = &smc_ethtool_ops;
1980
1981 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1982 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1983 lp->dev = dev;
1984 lp->mii.phy_id_mask = 0x1f;
1985 lp->mii.reg_num_mask = 0x1f;
1986 lp->mii.force_media = 0;
1987 lp->mii.full_duplex = 0;
1988 lp->mii.dev = dev;
1989 lp->mii.mdio_read = smc_phy_read;
1990 lp->mii.mdio_write = smc_phy_write;
1991
1992 /*
1993 * Locate the phy, if any.
1994 */
1995 if (lp->version >= (CHIP_91100 << 4))
1996 smc_phy_detect(dev);
1997
1998 /* then shut everything down to save power */
1999 smc_shutdown(dev);
2000 smc_phy_powerdown(dev);
2001
2002 /* Set default parameters */
2003 lp->msg_enable = NETIF_MSG_LINK;
2004 lp->ctl_rfduplx = 0;
2005 lp->ctl_rspeed = 10;
2006
2007 if (lp->version >= (CHIP_91100 << 4)) {
2008 lp->ctl_rfduplx = 1;
2009 lp->ctl_rspeed = 100;
2010 }
2011
2012 /* Grab the IRQ */
2013 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2014 if (retval)
2015 goto err_out;
2016
2017 #ifdef CONFIG_ARCH_PXA
2018 # ifdef SMC_USE_PXA_DMA
2019 lp->cfg.flags |= SMC91X_USE_DMA;
2020 # endif
2021 if (lp->cfg.flags & SMC91X_USE_DMA) {
2022 dma_cap_mask_t mask;
2023
2024 dma_cap_zero(mask);
2025 dma_cap_set(DMA_SLAVE, mask);
2026 lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2027 }
2028 #endif
2029
2030 retval = register_netdev(dev);
2031 if (retval == 0) {
2032 /* now, print out the card info, in a short format.. */
2033 netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2034 version_string, revision_register & 0x0f,
2035 lp->base, dev->irq);
2036
2037 if (lp->dma_chan)
2038 pr_cont(" DMA %p", lp->dma_chan);
2039
2040 pr_cont("%s%s\n",
2041 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2042 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2043
2044 if (!is_valid_ether_addr(dev->dev_addr)) {
2045 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2046 } else {
2047 /* Print the Ethernet address */
2048 netdev_info(dev, "Ethernet addr: %pM\n",
2049 dev->dev_addr);
2050 }
2051
2052 if (lp->phy_type == 0) {
2053 PRINTK(dev, "No PHY found\n");
2054 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2055 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2056 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2057 PRINTK(dev, "PHY LAN83C180\n");
2058 }
2059 }
2060
2061 err_out:
2062 #ifdef CONFIG_ARCH_PXA
2063 if (retval && lp->dma_chan)
2064 dma_release_channel(lp->dma_chan);
2065 #endif
2066 return retval;
2067 }
2068
2069 static int smc_enable_device(struct platform_device *pdev)
2070 {
2071 struct net_device *ndev = platform_get_drvdata(pdev);
2072 struct smc_local *lp = netdev_priv(ndev);
2073 unsigned long flags;
2074 unsigned char ecor, ecsr;
2075 void __iomem *addr;
2076 struct resource * res;
2077
2078 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2079 if (!res)
2080 return 0;
2081
2082 /*
2083 * Map the attribute space. This is overkill, but clean.
2084 */
2085 addr = ioremap(res->start, ATTRIB_SIZE);
2086 if (!addr)
2087 return -ENOMEM;
2088
2089 /*
2090 * Reset the device. We must disable IRQs around this
2091 * since a reset causes the IRQ line become active.
2092 */
2093 local_irq_save(flags);
2094 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2095 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2096 readb(addr + (ECOR << SMC_IO_SHIFT));
2097
2098 /*
2099 * Wait 100us for the chip to reset.
2100 */
2101 udelay(100);
2102
2103 /*
2104 * The device will ignore all writes to the enable bit while
2105 * reset is asserted, even if the reset bit is cleared in the
2106 * same write. Must clear reset first, then enable the device.
2107 */
2108 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2109 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2110
2111 /*
2112 * Set the appropriate byte/word mode.
2113 */
2114 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2115 if (!SMC_16BIT(lp))
2116 ecsr |= ECSR_IOIS8;
2117 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2118 local_irq_restore(flags);
2119
2120 iounmap(addr);
2121
2122 /*
2123 * Wait for the chip to wake up. We could poll the control
2124 * register in the main register space, but that isn't mapped
2125 * yet. We know this is going to take 750us.
2126 */
2127 msleep(1);
2128
2129 return 0;
2130 }
2131
2132 static int smc_request_attrib(struct platform_device *pdev,
2133 struct net_device *ndev)
2134 {
2135 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2136 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2137
2138 if (!res)
2139 return 0;
2140
2141 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2142 return -EBUSY;
2143
2144 return 0;
2145 }
2146
2147 static void smc_release_attrib(struct platform_device *pdev,
2148 struct net_device *ndev)
2149 {
2150 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2151 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2152
2153 if (res)
2154 release_mem_region(res->start, ATTRIB_SIZE);
2155 }
2156
2157 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2158 {
2159 if (SMC_CAN_USE_DATACS) {
2160 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2161 struct smc_local *lp = netdev_priv(ndev);
2162
2163 if (!res)
2164 return;
2165
2166 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2167 netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2168 CARDNAME);
2169 return;
2170 }
2171
2172 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2173 }
2174 }
2175
2176 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2177 {
2178 if (SMC_CAN_USE_DATACS) {
2179 struct smc_local *lp = netdev_priv(ndev);
2180 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2181
2182 if (lp->datacs)
2183 iounmap(lp->datacs);
2184
2185 lp->datacs = NULL;
2186
2187 if (res)
2188 release_mem_region(res->start, SMC_DATA_EXTENT);
2189 }
2190 }
2191
2192 static const struct acpi_device_id smc91x_acpi_match[] = {
2193 { "LNRO0003", 0 },
2194 { }
2195 };
2196 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2197
2198 #if IS_BUILTIN(CONFIG_OF)
2199 static const struct of_device_id smc91x_match[] = {
2200 { .compatible = "smsc,lan91c94", },
2201 { .compatible = "smsc,lan91c111", },
2202 {},
2203 };
2204 MODULE_DEVICE_TABLE(of, smc91x_match);
2205
2206 /**
2207 * of_try_set_control_gpio - configure a gpio if it exists
2208 */
2209 static int try_toggle_control_gpio(struct device *dev,
2210 struct gpio_desc **desc,
2211 const char *name, int index,
2212 int value, unsigned int nsdelay)
2213 {
2214 struct gpio_desc *gpio = *desc;
2215 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2216
2217 gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2218 if (IS_ERR(gpio))
2219 return PTR_ERR(gpio);
2220
2221 if (gpio) {
2222 if (nsdelay)
2223 usleep_range(nsdelay, 2 * nsdelay);
2224 gpiod_set_value_cansleep(gpio, value);
2225 }
2226 *desc = gpio;
2227
2228 return 0;
2229 }
2230 #endif
2231
2232 /*
2233 * smc_init(void)
2234 * Input parameters:
2235 * dev->base_addr == 0, try to find all possible locations
2236 * dev->base_addr > 0x1ff, this is the address to check
2237 * dev->base_addr == <anything else>, return failure code
2238 *
2239 * Output:
2240 * 0 --> there is a device
2241 * anything else, error
2242 */
2243 static int smc_drv_probe(struct platform_device *pdev)
2244 {
2245 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2246 const struct of_device_id *match = NULL;
2247 struct smc_local *lp;
2248 struct net_device *ndev;
2249 struct resource *res;
2250 unsigned int __iomem *addr;
2251 unsigned long irq_flags = SMC_IRQ_FLAGS;
2252 unsigned long irq_resflags;
2253 int ret;
2254
2255 ndev = alloc_etherdev(sizeof(struct smc_local));
2256 if (!ndev) {
2257 ret = -ENOMEM;
2258 goto out;
2259 }
2260 SET_NETDEV_DEV(ndev, &pdev->dev);
2261
2262 /* get configuration from platform data, only allow use of
2263 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2264 */
2265
2266 lp = netdev_priv(ndev);
2267 lp->cfg.flags = 0;
2268
2269 if (pd) {
2270 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2271 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2272
2273 if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2274 dev_err(&pdev->dev,
2275 "at least one of 8-bit or 16-bit access support is required.\n");
2276 ret = -ENXIO;
2277 goto out_free_netdev;
2278 }
2279 }
2280
2281 #if IS_BUILTIN(CONFIG_OF)
2282 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2283 if (match) {
2284 u32 val;
2285
2286 /* Optional pwrdwn GPIO configured? */
2287 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2288 "power", 0, 0, 100);
2289 if (ret)
2290 return ret;
2291
2292 /*
2293 * Optional reset GPIO configured? Minimum 100 ns reset needed
2294 * according to LAN91C96 datasheet page 14.
2295 */
2296 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2297 "reset", 0, 0, 100);
2298 if (ret)
2299 return ret;
2300
2301 /*
2302 * Need to wait for optional EEPROM to load, max 750 us according
2303 * to LAN91C96 datasheet page 55.
2304 */
2305 if (lp->reset_gpio)
2306 usleep_range(750, 1000);
2307
2308 /* Combination of IO widths supported, default to 16-bit */
2309 if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2310 &val)) {
2311 if (val & 1)
2312 lp->cfg.flags |= SMC91X_USE_8BIT;
2313 if ((val == 0) || (val & 2))
2314 lp->cfg.flags |= SMC91X_USE_16BIT;
2315 if (val & 4)
2316 lp->cfg.flags |= SMC91X_USE_32BIT;
2317 } else {
2318 lp->cfg.flags |= SMC91X_USE_16BIT;
2319 }
2320 if (!device_property_read_u32(&pdev->dev, "reg-shift",
2321 &val))
2322 lp->io_shift = val;
2323 lp->cfg.pxa_u16_align4 =
2324 device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2325 }
2326 #endif
2327
2328 if (!pd && !match) {
2329 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2330 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2331 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2332 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2333 }
2334
2335 if (!lp->cfg.leda && !lp->cfg.ledb) {
2336 lp->cfg.leda = RPC_LSA_DEFAULT;
2337 lp->cfg.ledb = RPC_LSB_DEFAULT;
2338 }
2339
2340 ndev->dma = (unsigned char)-1;
2341
2342 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2343 if (!res)
2344 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2345 if (!res) {
2346 ret = -ENODEV;
2347 goto out_free_netdev;
2348 }
2349
2350
2351 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2352 ret = -EBUSY;
2353 goto out_free_netdev;
2354 }
2355
2356 ndev->irq = platform_get_irq(pdev, 0);
2357 if (ndev->irq < 0) {
2358 ret = ndev->irq;
2359 goto out_release_io;
2360 }
2361 /*
2362 * If this platform does not specify any special irqflags, or if
2363 * the resource supplies a trigger, override the irqflags with
2364 * the trigger flags from the resource.
2365 */
2366 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2367 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2368 irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2369
2370 ret = smc_request_attrib(pdev, ndev);
2371 if (ret)
2372 goto out_release_io;
2373 #if defined(CONFIG_ASSABET_NEPONSET)
2374 if (machine_is_assabet() && machine_has_neponset())
2375 neponset_ncr_set(NCR_ENET_OSC_EN);
2376 #endif
2377 platform_set_drvdata(pdev, ndev);
2378 ret = smc_enable_device(pdev);
2379 if (ret)
2380 goto out_release_attrib;
2381
2382 addr = ioremap(res->start, SMC_IO_EXTENT);
2383 if (!addr) {
2384 ret = -ENOMEM;
2385 goto out_release_attrib;
2386 }
2387
2388 #ifdef CONFIG_ARCH_PXA
2389 {
2390 struct smc_local *lp = netdev_priv(ndev);
2391 lp->device = &pdev->dev;
2392 lp->physaddr = res->start;
2393
2394 }
2395 #endif
2396
2397 ret = smc_probe(ndev, addr, irq_flags);
2398 if (ret != 0)
2399 goto out_iounmap;
2400
2401 smc_request_datacs(pdev, ndev);
2402
2403 return 0;
2404
2405 out_iounmap:
2406 iounmap(addr);
2407 out_release_attrib:
2408 smc_release_attrib(pdev, ndev);
2409 out_release_io:
2410 release_mem_region(res->start, SMC_IO_EXTENT);
2411 out_free_netdev:
2412 free_netdev(ndev);
2413 out:
2414 pr_info("%s: not found (%d).\n", CARDNAME, ret);
2415
2416 return ret;
2417 }
2418
2419 static int smc_drv_remove(struct platform_device *pdev)
2420 {
2421 struct net_device *ndev = platform_get_drvdata(pdev);
2422 struct smc_local *lp = netdev_priv(ndev);
2423 struct resource *res;
2424
2425 unregister_netdev(ndev);
2426
2427 free_irq(ndev->irq, ndev);
2428
2429 #ifdef CONFIG_ARCH_PXA
2430 if (lp->dma_chan)
2431 dma_release_channel(lp->dma_chan);
2432 #endif
2433 iounmap(lp->base);
2434
2435 smc_release_datacs(pdev,ndev);
2436 smc_release_attrib(pdev,ndev);
2437
2438 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2439 if (!res)
2440 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2441 release_mem_region(res->start, SMC_IO_EXTENT);
2442
2443 free_netdev(ndev);
2444
2445 return 0;
2446 }
2447
2448 static int smc_drv_suspend(struct device *dev)
2449 {
2450 struct net_device *ndev = dev_get_drvdata(dev);
2451
2452 if (ndev) {
2453 if (netif_running(ndev)) {
2454 netif_device_detach(ndev);
2455 smc_shutdown(ndev);
2456 smc_phy_powerdown(ndev);
2457 }
2458 }
2459 return 0;
2460 }
2461
2462 static int smc_drv_resume(struct device *dev)
2463 {
2464 struct platform_device *pdev = to_platform_device(dev);
2465 struct net_device *ndev = platform_get_drvdata(pdev);
2466
2467 if (ndev) {
2468 struct smc_local *lp = netdev_priv(ndev);
2469 smc_enable_device(pdev);
2470 if (netif_running(ndev)) {
2471 smc_reset(ndev);
2472 smc_enable(ndev);
2473 if (lp->phy_type != 0)
2474 smc_phy_configure(&lp->phy_configure);
2475 netif_device_attach(ndev);
2476 }
2477 }
2478 return 0;
2479 }
2480
2481 static const struct dev_pm_ops smc_drv_pm_ops = {
2482 .suspend = smc_drv_suspend,
2483 .resume = smc_drv_resume,
2484 };
2485
2486 static struct platform_driver smc_driver = {
2487 .probe = smc_drv_probe,
2488 .remove = smc_drv_remove,
2489 .driver = {
2490 .name = CARDNAME,
2491 .pm = &smc_drv_pm_ops,
2492 .of_match_table = of_match_ptr(smc91x_match),
2493 .acpi_match_table = smc91x_acpi_match,
2494 },
2495 };
2496
2497 module_platform_driver(smc_driver);