]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/smsc/smc91x.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / smsc / smc91x.c
1 /*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4 *
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 *
24 * Arguments:
25 * io = for the base address
26 * irq = for the IRQ
27 * nowait = 0 for normal wait states, 1 eliminates additional wait states
28 *
29 * original author:
30 * Erik Stahlman <erik@vt.edu>
31 *
32 * hardware multicast code:
33 * Peter Cammaert <pc@denkart.be>
34 *
35 * contributors:
36 * Daris A Nevil <dnevil@snmc.com>
37 * Nicolas Pitre <nico@fluxnic.net>
38 * Russell King <rmk@arm.linux.org.uk>
39 *
40 * History:
41 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
42 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
43 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
44 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
45 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
46 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
47 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
48 * more bus abstraction, big cleanup, etc.
49 * 29/09/03 Russell King - add driver model support
50 * - ethtool support
51 * - convert to use generic MII interface
52 * - add link up/down notification
53 * - don't try to handle full negotiation in
54 * smc_phy_configure
55 * - clean up (and fix stack overrun) in PHY
56 * MII read/write functions
57 * 22/09/04 Nicolas Pitre big update (see commit log for details)
58 */
59 static const char version[] =
60 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61
62 /* Debugging level */
63 #ifndef SMC_DEBUG
64 #define SMC_DEBUG 0
65 #endif
66
67
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/sched.h>
71 #include <linux/delay.h>
72 #include <linux/interrupt.h>
73 #include <linux/irq.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/crc32.h>
77 #include <linux/platform_device.h>
78 #include <linux/spinlock.h>
79 #include <linux/ethtool.h>
80 #include <linux/mii.h>
81 #include <linux/workqueue.h>
82 #include <linux/of.h>
83 #include <linux/of_device.h>
84 #include <linux/of_gpio.h>
85
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89
90 #include <asm/io.h>
91
92 #include "smc91x.h"
93
94 #if defined(CONFIG_ASSABET_NEPONSET)
95 #include <mach/assabet.h>
96 #include <mach/neponset.h>
97 #endif
98
99 #ifndef SMC_NOWAIT
100 # define SMC_NOWAIT 0
101 #endif
102 static int nowait = SMC_NOWAIT;
103 module_param(nowait, int, 0400);
104 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
105
106 /*
107 * Transmit timeout, default 5 seconds.
108 */
109 static int watchdog = 1000;
110 module_param(watchdog, int, 0400);
111 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
112
113 MODULE_LICENSE("GPL");
114 MODULE_ALIAS("platform:smc91x");
115
116 /*
117 * The internal workings of the driver. If you are changing anything
118 * here with the SMC stuff, you should have the datasheet and know
119 * what you are doing.
120 */
121 #define CARDNAME "smc91x"
122
123 /*
124 * Use power-down feature of the chip
125 */
126 #define POWER_DOWN 1
127
128 /*
129 * Wait time for memory to be free. This probably shouldn't be
130 * tuned that much, as waiting for this means nothing else happens
131 * in the system
132 */
133 #define MEMORY_WAIT_TIME 16
134
135 /*
136 * The maximum number of processing loops allowed for each call to the
137 * IRQ handler.
138 */
139 #define MAX_IRQ_LOOPS 8
140
141 /*
142 * This selects whether TX packets are sent one by one to the SMC91x internal
143 * memory and throttled until transmission completes. This may prevent
144 * RX overruns a litle by keeping much of the memory free for RX packets
145 * but to the expense of reduced TX throughput and increased IRQ overhead.
146 * Note this is not a cure for a too slow data bus or too high IRQ latency.
147 */
148 #define THROTTLE_TX_PKTS 0
149
150 /*
151 * The MII clock high/low times. 2x this number gives the MII clock period
152 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
153 */
154 #define MII_DELAY 1
155
156 #define DBG(n, dev, fmt, ...) \
157 do { \
158 if (SMC_DEBUG >= (n)) \
159 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
160 } while (0)
161
162 #define PRINTK(dev, fmt, ...) \
163 do { \
164 if (SMC_DEBUG > 0) \
165 netdev_info(dev, fmt, ##__VA_ARGS__); \
166 else \
167 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
168 } while (0)
169
170 #if SMC_DEBUG > 3
171 static void PRINT_PKT(u_char *buf, int length)
172 {
173 int i;
174 int remainder;
175 int lines;
176
177 lines = length / 16;
178 remainder = length % 16;
179
180 for (i = 0; i < lines ; i ++) {
181 int cur;
182 printk(KERN_DEBUG);
183 for (cur = 0; cur < 8; cur++) {
184 u_char a, b;
185 a = *buf++;
186 b = *buf++;
187 pr_cont("%02x%02x ", a, b);
188 }
189 pr_cont("\n");
190 }
191 printk(KERN_DEBUG);
192 for (i = 0; i < remainder/2 ; i++) {
193 u_char a, b;
194 a = *buf++;
195 b = *buf++;
196 pr_cont("%02x%02x ", a, b);
197 }
198 pr_cont("\n");
199 }
200 #else
201 static inline void PRINT_PKT(u_char *buf, int length) { }
202 #endif
203
204
205 /* this enables an interrupt in the interrupt mask register */
206 #define SMC_ENABLE_INT(lp, x) do { \
207 unsigned char mask; \
208 unsigned long smc_enable_flags; \
209 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
210 mask = SMC_GET_INT_MASK(lp); \
211 mask |= (x); \
212 SMC_SET_INT_MASK(lp, mask); \
213 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
214 } while (0)
215
216 /* this disables an interrupt from the interrupt mask register */
217 #define SMC_DISABLE_INT(lp, x) do { \
218 unsigned char mask; \
219 unsigned long smc_disable_flags; \
220 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
221 mask = SMC_GET_INT_MASK(lp); \
222 mask &= ~(x); \
223 SMC_SET_INT_MASK(lp, mask); \
224 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
225 } while (0)
226
227 /*
228 * Wait while MMU is busy. This is usually in the order of a few nanosecs
229 * if at all, but let's avoid deadlocking the system if the hardware
230 * decides to go south.
231 */
232 #define SMC_WAIT_MMU_BUSY(lp) do { \
233 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
234 unsigned long timeout = jiffies + 2; \
235 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
236 if (time_after(jiffies, timeout)) { \
237 netdev_dbg(dev, "timeout %s line %d\n", \
238 __FILE__, __LINE__); \
239 break; \
240 } \
241 cpu_relax(); \
242 } \
243 } \
244 } while (0)
245
246
247 /*
248 * this does a soft reset on the device
249 */
250 static void smc_reset(struct net_device *dev)
251 {
252 struct smc_local *lp = netdev_priv(dev);
253 void __iomem *ioaddr = lp->base;
254 unsigned int ctl, cfg;
255 struct sk_buff *pending_skb;
256
257 DBG(2, dev, "%s\n", __func__);
258
259 /* Disable all interrupts, block TX tasklet */
260 spin_lock_irq(&lp->lock);
261 SMC_SELECT_BANK(lp, 2);
262 SMC_SET_INT_MASK(lp, 0);
263 pending_skb = lp->pending_tx_skb;
264 lp->pending_tx_skb = NULL;
265 spin_unlock_irq(&lp->lock);
266
267 /* free any pending tx skb */
268 if (pending_skb) {
269 dev_kfree_skb(pending_skb);
270 dev->stats.tx_errors++;
271 dev->stats.tx_aborted_errors++;
272 }
273
274 /*
275 * This resets the registers mostly to defaults, but doesn't
276 * affect EEPROM. That seems unnecessary
277 */
278 SMC_SELECT_BANK(lp, 0);
279 SMC_SET_RCR(lp, RCR_SOFTRST);
280
281 /*
282 * Setup the Configuration Register
283 * This is necessary because the CONFIG_REG is not affected
284 * by a soft reset
285 */
286 SMC_SELECT_BANK(lp, 1);
287
288 cfg = CONFIG_DEFAULT;
289
290 /*
291 * Setup for fast accesses if requested. If the card/system
292 * can't handle it then there will be no recovery except for
293 * a hard reset or power cycle
294 */
295 if (lp->cfg.flags & SMC91X_NOWAIT)
296 cfg |= CONFIG_NO_WAIT;
297
298 /*
299 * Release from possible power-down state
300 * Configuration register is not affected by Soft Reset
301 */
302 cfg |= CONFIG_EPH_POWER_EN;
303
304 SMC_SET_CONFIG(lp, cfg);
305
306 /* this should pause enough for the chip to be happy */
307 /*
308 * elaborate? What does the chip _need_? --jgarzik
309 *
310 * This seems to be undocumented, but something the original
311 * driver(s) have always done. Suspect undocumented timing
312 * info/determined empirically. --rmk
313 */
314 udelay(1);
315
316 /* Disable transmit and receive functionality */
317 SMC_SELECT_BANK(lp, 0);
318 SMC_SET_RCR(lp, RCR_CLEAR);
319 SMC_SET_TCR(lp, TCR_CLEAR);
320
321 SMC_SELECT_BANK(lp, 1);
322 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
323
324 /*
325 * Set the control register to automatically release successfully
326 * transmitted packets, to make the best use out of our limited
327 * memory
328 */
329 if(!THROTTLE_TX_PKTS)
330 ctl |= CTL_AUTO_RELEASE;
331 else
332 ctl &= ~CTL_AUTO_RELEASE;
333 SMC_SET_CTL(lp, ctl);
334
335 /* Reset the MMU */
336 SMC_SELECT_BANK(lp, 2);
337 SMC_SET_MMU_CMD(lp, MC_RESET);
338 SMC_WAIT_MMU_BUSY(lp);
339 }
340
341 /*
342 * Enable Interrupts, Receive, and Transmit
343 */
344 static void smc_enable(struct net_device *dev)
345 {
346 struct smc_local *lp = netdev_priv(dev);
347 void __iomem *ioaddr = lp->base;
348 int mask;
349
350 DBG(2, dev, "%s\n", __func__);
351
352 /* see the header file for options in TCR/RCR DEFAULT */
353 SMC_SELECT_BANK(lp, 0);
354 SMC_SET_TCR(lp, lp->tcr_cur_mode);
355 SMC_SET_RCR(lp, lp->rcr_cur_mode);
356
357 SMC_SELECT_BANK(lp, 1);
358 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
359
360 /* now, enable interrupts */
361 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
362 if (lp->version >= (CHIP_91100 << 4))
363 mask |= IM_MDINT;
364 SMC_SELECT_BANK(lp, 2);
365 SMC_SET_INT_MASK(lp, mask);
366
367 /*
368 * From this point the register bank must _NOT_ be switched away
369 * to something else than bank 2 without proper locking against
370 * races with any tasklet or interrupt handlers until smc_shutdown()
371 * or smc_reset() is called.
372 */
373 }
374
375 /*
376 * this puts the device in an inactive state
377 */
378 static void smc_shutdown(struct net_device *dev)
379 {
380 struct smc_local *lp = netdev_priv(dev);
381 void __iomem *ioaddr = lp->base;
382 struct sk_buff *pending_skb;
383
384 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
385
386 /* no more interrupts for me */
387 spin_lock_irq(&lp->lock);
388 SMC_SELECT_BANK(lp, 2);
389 SMC_SET_INT_MASK(lp, 0);
390 pending_skb = lp->pending_tx_skb;
391 lp->pending_tx_skb = NULL;
392 spin_unlock_irq(&lp->lock);
393 if (pending_skb)
394 dev_kfree_skb(pending_skb);
395
396 /* and tell the card to stay away from that nasty outside world */
397 SMC_SELECT_BANK(lp, 0);
398 SMC_SET_RCR(lp, RCR_CLEAR);
399 SMC_SET_TCR(lp, TCR_CLEAR);
400
401 #ifdef POWER_DOWN
402 /* finally, shut the chip down */
403 SMC_SELECT_BANK(lp, 1);
404 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
405 #endif
406 }
407
408 /*
409 * This is the procedure to handle the receipt of a packet.
410 */
411 static inline void smc_rcv(struct net_device *dev)
412 {
413 struct smc_local *lp = netdev_priv(dev);
414 void __iomem *ioaddr = lp->base;
415 unsigned int packet_number, status, packet_len;
416
417 DBG(3, dev, "%s\n", __func__);
418
419 packet_number = SMC_GET_RXFIFO(lp);
420 if (unlikely(packet_number & RXFIFO_REMPTY)) {
421 PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
422 return;
423 }
424
425 /* read from start of packet */
426 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
427
428 /* First two words are status and packet length */
429 SMC_GET_PKT_HDR(lp, status, packet_len);
430 packet_len &= 0x07ff; /* mask off top bits */
431 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
432 packet_number, status, packet_len, packet_len);
433
434 back:
435 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
436 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
437 /* accept VLAN packets */
438 status &= ~RS_TOOLONG;
439 goto back;
440 }
441 if (packet_len < 6) {
442 /* bloody hardware */
443 netdev_err(dev, "fubar (rxlen %u status %x\n",
444 packet_len, status);
445 status |= RS_TOOSHORT;
446 }
447 SMC_WAIT_MMU_BUSY(lp);
448 SMC_SET_MMU_CMD(lp, MC_RELEASE);
449 dev->stats.rx_errors++;
450 if (status & RS_ALGNERR)
451 dev->stats.rx_frame_errors++;
452 if (status & (RS_TOOSHORT | RS_TOOLONG))
453 dev->stats.rx_length_errors++;
454 if (status & RS_BADCRC)
455 dev->stats.rx_crc_errors++;
456 } else {
457 struct sk_buff *skb;
458 unsigned char *data;
459 unsigned int data_len;
460
461 /* set multicast stats */
462 if (status & RS_MULTICAST)
463 dev->stats.multicast++;
464
465 /*
466 * Actual payload is packet_len - 6 (or 5 if odd byte).
467 * We want skb_reserve(2) and the final ctrl word
468 * (2 bytes, possibly containing the payload odd byte).
469 * Furthermore, we add 2 bytes to allow rounding up to
470 * multiple of 4 bytes on 32 bit buses.
471 * Hence packet_len - 6 + 2 + 2 + 2.
472 */
473 skb = netdev_alloc_skb(dev, packet_len);
474 if (unlikely(skb == NULL)) {
475 SMC_WAIT_MMU_BUSY(lp);
476 SMC_SET_MMU_CMD(lp, MC_RELEASE);
477 dev->stats.rx_dropped++;
478 return;
479 }
480
481 /* Align IP header to 32 bits */
482 skb_reserve(skb, 2);
483
484 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
485 if (lp->version == 0x90)
486 status |= RS_ODDFRAME;
487
488 /*
489 * If odd length: packet_len - 5,
490 * otherwise packet_len - 6.
491 * With the trailing ctrl byte it's packet_len - 4.
492 */
493 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
494 data = skb_put(skb, data_len);
495 SMC_PULL_DATA(lp, data, packet_len - 4);
496
497 SMC_WAIT_MMU_BUSY(lp);
498 SMC_SET_MMU_CMD(lp, MC_RELEASE);
499
500 PRINT_PKT(data, packet_len - 4);
501
502 skb->protocol = eth_type_trans(skb, dev);
503 netif_rx(skb);
504 dev->stats.rx_packets++;
505 dev->stats.rx_bytes += data_len;
506 }
507 }
508
509 #ifdef CONFIG_SMP
510 /*
511 * On SMP we have the following problem:
512 *
513 * A = smc_hardware_send_pkt()
514 * B = smc_hard_start_xmit()
515 * C = smc_interrupt()
516 *
517 * A and B can never be executed simultaneously. However, at least on UP,
518 * it is possible (and even desirable) for C to interrupt execution of
519 * A or B in order to have better RX reliability and avoid overruns.
520 * C, just like A and B, must have exclusive access to the chip and
521 * each of them must lock against any other concurrent access.
522 * Unfortunately this is not possible to have C suspend execution of A or
523 * B taking place on another CPU. On UP this is no an issue since A and B
524 * are run from softirq context and C from hard IRQ context, and there is
525 * no other CPU where concurrent access can happen.
526 * If ever there is a way to force at least B and C to always be executed
527 * on the same CPU then we could use read/write locks to protect against
528 * any other concurrent access and C would always interrupt B. But life
529 * isn't that easy in a SMP world...
530 */
531 #define smc_special_trylock(lock, flags) \
532 ({ \
533 int __ret; \
534 local_irq_save(flags); \
535 __ret = spin_trylock(lock); \
536 if (!__ret) \
537 local_irq_restore(flags); \
538 __ret; \
539 })
540 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
541 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
542 #else
543 #define smc_special_trylock(lock, flags) ((void)flags, true)
544 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
545 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
546 #endif
547
548 /*
549 * This is called to actually send a packet to the chip.
550 */
551 static void smc_hardware_send_pkt(unsigned long data)
552 {
553 struct net_device *dev = (struct net_device *)data;
554 struct smc_local *lp = netdev_priv(dev);
555 void __iomem *ioaddr = lp->base;
556 struct sk_buff *skb;
557 unsigned int packet_no, len;
558 unsigned char *buf;
559 unsigned long flags;
560
561 DBG(3, dev, "%s\n", __func__);
562
563 if (!smc_special_trylock(&lp->lock, flags)) {
564 netif_stop_queue(dev);
565 tasklet_schedule(&lp->tx_task);
566 return;
567 }
568
569 skb = lp->pending_tx_skb;
570 if (unlikely(!skb)) {
571 smc_special_unlock(&lp->lock, flags);
572 return;
573 }
574 lp->pending_tx_skb = NULL;
575
576 packet_no = SMC_GET_AR(lp);
577 if (unlikely(packet_no & AR_FAILED)) {
578 netdev_err(dev, "Memory allocation failed.\n");
579 dev->stats.tx_errors++;
580 dev->stats.tx_fifo_errors++;
581 smc_special_unlock(&lp->lock, flags);
582 goto done;
583 }
584
585 /* point to the beginning of the packet */
586 SMC_SET_PN(lp, packet_no);
587 SMC_SET_PTR(lp, PTR_AUTOINC);
588
589 buf = skb->data;
590 len = skb->len;
591 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
592 packet_no, len, len, buf);
593 PRINT_PKT(buf, len);
594
595 /*
596 * Send the packet length (+6 for status words, length, and ctl.
597 * The card will pad to 64 bytes with zeroes if packet is too small.
598 */
599 SMC_PUT_PKT_HDR(lp, 0, len + 6);
600
601 /* send the actual data */
602 SMC_PUSH_DATA(lp, buf, len & ~1);
603
604 /* Send final ctl word with the last byte if there is one */
605 SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
606 DATA_REG(lp));
607
608 /*
609 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
610 * have the effect of having at most one packet queued for TX
611 * in the chip's memory at all time.
612 *
613 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
614 * when memory allocation (MC_ALLOC) does not succeed right away.
615 */
616 if (THROTTLE_TX_PKTS)
617 netif_stop_queue(dev);
618
619 /* queue the packet for TX */
620 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
621 smc_special_unlock(&lp->lock, flags);
622
623 netif_trans_update(dev);
624 dev->stats.tx_packets++;
625 dev->stats.tx_bytes += len;
626
627 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
628
629 done: if (!THROTTLE_TX_PKTS)
630 netif_wake_queue(dev);
631
632 dev_consume_skb_any(skb);
633 }
634
635 /*
636 * Since I am not sure if I will have enough room in the chip's ram
637 * to store the packet, I call this routine which either sends it
638 * now, or set the card to generates an interrupt when ready
639 * for the packet.
640 */
641 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
642 {
643 struct smc_local *lp = netdev_priv(dev);
644 void __iomem *ioaddr = lp->base;
645 unsigned int numPages, poll_count, status;
646 unsigned long flags;
647
648 DBG(3, dev, "%s\n", __func__);
649
650 BUG_ON(lp->pending_tx_skb != NULL);
651
652 /*
653 * The MMU wants the number of pages to be the number of 256 bytes
654 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
655 *
656 * The 91C111 ignores the size bits, but earlier models don't.
657 *
658 * Pkt size for allocating is data length +6 (for additional status
659 * words, length and ctl)
660 *
661 * If odd size then last byte is included in ctl word.
662 */
663 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
664 if (unlikely(numPages > 7)) {
665 netdev_warn(dev, "Far too big packet error.\n");
666 dev->stats.tx_errors++;
667 dev->stats.tx_dropped++;
668 dev_kfree_skb_any(skb);
669 return NETDEV_TX_OK;
670 }
671
672 smc_special_lock(&lp->lock, flags);
673
674 /* now, try to allocate the memory */
675 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
676
677 /*
678 * Poll the chip for a short amount of time in case the
679 * allocation succeeds quickly.
680 */
681 poll_count = MEMORY_WAIT_TIME;
682 do {
683 status = SMC_GET_INT(lp);
684 if (status & IM_ALLOC_INT) {
685 SMC_ACK_INT(lp, IM_ALLOC_INT);
686 break;
687 }
688 } while (--poll_count);
689
690 smc_special_unlock(&lp->lock, flags);
691
692 lp->pending_tx_skb = skb;
693 if (!poll_count) {
694 /* oh well, wait until the chip finds memory later */
695 netif_stop_queue(dev);
696 DBG(2, dev, "TX memory allocation deferred.\n");
697 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
698 } else {
699 /*
700 * Allocation succeeded: push packet to the chip's own memory
701 * immediately.
702 */
703 smc_hardware_send_pkt((unsigned long)dev);
704 }
705
706 return NETDEV_TX_OK;
707 }
708
709 /*
710 * This handles a TX interrupt, which is only called when:
711 * - a TX error occurred, or
712 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
713 */
714 static void smc_tx(struct net_device *dev)
715 {
716 struct smc_local *lp = netdev_priv(dev);
717 void __iomem *ioaddr = lp->base;
718 unsigned int saved_packet, packet_no, tx_status, pkt_len;
719
720 DBG(3, dev, "%s\n", __func__);
721
722 /* If the TX FIFO is empty then nothing to do */
723 packet_no = SMC_GET_TXFIFO(lp);
724 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
725 PRINTK(dev, "smc_tx with nothing on FIFO.\n");
726 return;
727 }
728
729 /* select packet to read from */
730 saved_packet = SMC_GET_PN(lp);
731 SMC_SET_PN(lp, packet_no);
732
733 /* read the first word (status word) from this packet */
734 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
735 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
736 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
737 tx_status, packet_no);
738
739 if (!(tx_status & ES_TX_SUC))
740 dev->stats.tx_errors++;
741
742 if (tx_status & ES_LOSTCARR)
743 dev->stats.tx_carrier_errors++;
744
745 if (tx_status & (ES_LATCOL | ES_16COL)) {
746 PRINTK(dev, "%s occurred on last xmit\n",
747 (tx_status & ES_LATCOL) ?
748 "late collision" : "too many collisions");
749 dev->stats.tx_window_errors++;
750 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
751 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
752 }
753 }
754
755 /* kill the packet */
756 SMC_WAIT_MMU_BUSY(lp);
757 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
758
759 /* Don't restore Packet Number Reg until busy bit is cleared */
760 SMC_WAIT_MMU_BUSY(lp);
761 SMC_SET_PN(lp, saved_packet);
762
763 /* re-enable transmit */
764 SMC_SELECT_BANK(lp, 0);
765 SMC_SET_TCR(lp, lp->tcr_cur_mode);
766 SMC_SELECT_BANK(lp, 2);
767 }
768
769
770 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
771
772 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
773 {
774 struct smc_local *lp = netdev_priv(dev);
775 void __iomem *ioaddr = lp->base;
776 unsigned int mii_reg, mask;
777
778 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
779 mii_reg |= MII_MDOE;
780
781 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
782 if (val & mask)
783 mii_reg |= MII_MDO;
784 else
785 mii_reg &= ~MII_MDO;
786
787 SMC_SET_MII(lp, mii_reg);
788 udelay(MII_DELAY);
789 SMC_SET_MII(lp, mii_reg | MII_MCLK);
790 udelay(MII_DELAY);
791 }
792 }
793
794 static unsigned int smc_mii_in(struct net_device *dev, int bits)
795 {
796 struct smc_local *lp = netdev_priv(dev);
797 void __iomem *ioaddr = lp->base;
798 unsigned int mii_reg, mask, val;
799
800 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
801 SMC_SET_MII(lp, mii_reg);
802
803 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
804 if (SMC_GET_MII(lp) & MII_MDI)
805 val |= mask;
806
807 SMC_SET_MII(lp, mii_reg);
808 udelay(MII_DELAY);
809 SMC_SET_MII(lp, mii_reg | MII_MCLK);
810 udelay(MII_DELAY);
811 }
812
813 return val;
814 }
815
816 /*
817 * Reads a register from the MII Management serial interface
818 */
819 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
820 {
821 struct smc_local *lp = netdev_priv(dev);
822 void __iomem *ioaddr = lp->base;
823 unsigned int phydata;
824
825 SMC_SELECT_BANK(lp, 3);
826
827 /* Idle - 32 ones */
828 smc_mii_out(dev, 0xffffffff, 32);
829
830 /* Start code (01) + read (10) + phyaddr + phyreg */
831 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
832
833 /* Turnaround (2bits) + phydata */
834 phydata = smc_mii_in(dev, 18);
835
836 /* Return to idle state */
837 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
838
839 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
840 __func__, phyaddr, phyreg, phydata);
841
842 SMC_SELECT_BANK(lp, 2);
843 return phydata;
844 }
845
846 /*
847 * Writes a register to the MII Management serial interface
848 */
849 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
850 int phydata)
851 {
852 struct smc_local *lp = netdev_priv(dev);
853 void __iomem *ioaddr = lp->base;
854
855 SMC_SELECT_BANK(lp, 3);
856
857 /* Idle - 32 ones */
858 smc_mii_out(dev, 0xffffffff, 32);
859
860 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
861 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
862
863 /* Return to idle state */
864 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
865
866 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
867 __func__, phyaddr, phyreg, phydata);
868
869 SMC_SELECT_BANK(lp, 2);
870 }
871
872 /*
873 * Finds and reports the PHY address
874 */
875 static void smc_phy_detect(struct net_device *dev)
876 {
877 struct smc_local *lp = netdev_priv(dev);
878 int phyaddr;
879
880 DBG(2, dev, "%s\n", __func__);
881
882 lp->phy_type = 0;
883
884 /*
885 * Scan all 32 PHY addresses if necessary, starting at
886 * PHY#1 to PHY#31, and then PHY#0 last.
887 */
888 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
889 unsigned int id1, id2;
890
891 /* Read the PHY identifiers */
892 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
893 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
894
895 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
896 id1, id2);
897
898 /* Make sure it is a valid identifier */
899 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
900 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
901 /* Save the PHY's address */
902 lp->mii.phy_id = phyaddr & 31;
903 lp->phy_type = id1 << 16 | id2;
904 break;
905 }
906 }
907 }
908
909 /*
910 * Sets the PHY to a configuration as determined by the user
911 */
912 static int smc_phy_fixed(struct net_device *dev)
913 {
914 struct smc_local *lp = netdev_priv(dev);
915 void __iomem *ioaddr = lp->base;
916 int phyaddr = lp->mii.phy_id;
917 int bmcr, cfg1;
918
919 DBG(3, dev, "%s\n", __func__);
920
921 /* Enter Link Disable state */
922 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
923 cfg1 |= PHY_CFG1_LNKDIS;
924 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
925
926 /*
927 * Set our fixed capabilities
928 * Disable auto-negotiation
929 */
930 bmcr = 0;
931
932 if (lp->ctl_rfduplx)
933 bmcr |= BMCR_FULLDPLX;
934
935 if (lp->ctl_rspeed == 100)
936 bmcr |= BMCR_SPEED100;
937
938 /* Write our capabilities to the phy control register */
939 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
940
941 /* Re-Configure the Receive/Phy Control register */
942 SMC_SELECT_BANK(lp, 0);
943 SMC_SET_RPC(lp, lp->rpc_cur_mode);
944 SMC_SELECT_BANK(lp, 2);
945
946 return 1;
947 }
948
949 /**
950 * smc_phy_reset - reset the phy
951 * @dev: net device
952 * @phy: phy address
953 *
954 * Issue a software reset for the specified PHY and
955 * wait up to 100ms for the reset to complete. We should
956 * not access the PHY for 50ms after issuing the reset.
957 *
958 * The time to wait appears to be dependent on the PHY.
959 *
960 * Must be called with lp->lock locked.
961 */
962 static int smc_phy_reset(struct net_device *dev, int phy)
963 {
964 struct smc_local *lp = netdev_priv(dev);
965 unsigned int bmcr;
966 int timeout;
967
968 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
969
970 for (timeout = 2; timeout; timeout--) {
971 spin_unlock_irq(&lp->lock);
972 msleep(50);
973 spin_lock_irq(&lp->lock);
974
975 bmcr = smc_phy_read(dev, phy, MII_BMCR);
976 if (!(bmcr & BMCR_RESET))
977 break;
978 }
979
980 return bmcr & BMCR_RESET;
981 }
982
983 /**
984 * smc_phy_powerdown - powerdown phy
985 * @dev: net device
986 *
987 * Power down the specified PHY
988 */
989 static void smc_phy_powerdown(struct net_device *dev)
990 {
991 struct smc_local *lp = netdev_priv(dev);
992 unsigned int bmcr;
993 int phy = lp->mii.phy_id;
994
995 if (lp->phy_type == 0)
996 return;
997
998 /* We need to ensure that no calls to smc_phy_configure are
999 pending.
1000 */
1001 cancel_work_sync(&lp->phy_configure);
1002
1003 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1004 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1005 }
1006
1007 /**
1008 * smc_phy_check_media - check the media status and adjust TCR
1009 * @dev: net device
1010 * @init: set true for initialisation
1011 *
1012 * Select duplex mode depending on negotiation state. This
1013 * also updates our carrier state.
1014 */
1015 static void smc_phy_check_media(struct net_device *dev, int init)
1016 {
1017 struct smc_local *lp = netdev_priv(dev);
1018 void __iomem *ioaddr = lp->base;
1019
1020 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1021 /* duplex state has changed */
1022 if (lp->mii.full_duplex) {
1023 lp->tcr_cur_mode |= TCR_SWFDUP;
1024 } else {
1025 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1026 }
1027
1028 SMC_SELECT_BANK(lp, 0);
1029 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1030 }
1031 }
1032
1033 /*
1034 * Configures the specified PHY through the MII management interface
1035 * using Autonegotiation.
1036 * Calls smc_phy_fixed() if the user has requested a certain config.
1037 * If RPC ANEG bit is set, the media selection is dependent purely on
1038 * the selection by the MII (either in the MII BMCR reg or the result
1039 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1040 * is controlled by the RPC SPEED and RPC DPLX bits.
1041 */
1042 static void smc_phy_configure(struct work_struct *work)
1043 {
1044 struct smc_local *lp =
1045 container_of(work, struct smc_local, phy_configure);
1046 struct net_device *dev = lp->dev;
1047 void __iomem *ioaddr = lp->base;
1048 int phyaddr = lp->mii.phy_id;
1049 int my_phy_caps; /* My PHY capabilities */
1050 int my_ad_caps; /* My Advertised capabilities */
1051 int status;
1052
1053 DBG(3, dev, "smc_program_phy()\n");
1054
1055 spin_lock_irq(&lp->lock);
1056
1057 /*
1058 * We should not be called if phy_type is zero.
1059 */
1060 if (lp->phy_type == 0)
1061 goto smc_phy_configure_exit;
1062
1063 if (smc_phy_reset(dev, phyaddr)) {
1064 netdev_info(dev, "PHY reset timed out\n");
1065 goto smc_phy_configure_exit;
1066 }
1067
1068 /*
1069 * Enable PHY Interrupts (for register 18)
1070 * Interrupts listed here are disabled
1071 */
1072 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1073 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1074 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1075 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1076
1077 /* Configure the Receive/Phy Control register */
1078 SMC_SELECT_BANK(lp, 0);
1079 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1080
1081 /* If the user requested no auto neg, then go set his request */
1082 if (lp->mii.force_media) {
1083 smc_phy_fixed(dev);
1084 goto smc_phy_configure_exit;
1085 }
1086
1087 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1088 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1089
1090 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1091 netdev_info(dev, "Auto negotiation NOT supported\n");
1092 smc_phy_fixed(dev);
1093 goto smc_phy_configure_exit;
1094 }
1095
1096 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1097
1098 if (my_phy_caps & BMSR_100BASE4)
1099 my_ad_caps |= ADVERTISE_100BASE4;
1100 if (my_phy_caps & BMSR_100FULL)
1101 my_ad_caps |= ADVERTISE_100FULL;
1102 if (my_phy_caps & BMSR_100HALF)
1103 my_ad_caps |= ADVERTISE_100HALF;
1104 if (my_phy_caps & BMSR_10FULL)
1105 my_ad_caps |= ADVERTISE_10FULL;
1106 if (my_phy_caps & BMSR_10HALF)
1107 my_ad_caps |= ADVERTISE_10HALF;
1108
1109 /* Disable capabilities not selected by our user */
1110 if (lp->ctl_rspeed != 100)
1111 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1112
1113 if (!lp->ctl_rfduplx)
1114 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1115
1116 /* Update our Auto-Neg Advertisement Register */
1117 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1118 lp->mii.advertising = my_ad_caps;
1119
1120 /*
1121 * Read the register back. Without this, it appears that when
1122 * auto-negotiation is restarted, sometimes it isn't ready and
1123 * the link does not come up.
1124 */
1125 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1126
1127 DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1128 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1129
1130 /* Restart auto-negotiation process in order to advertise my caps */
1131 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1132
1133 smc_phy_check_media(dev, 1);
1134
1135 smc_phy_configure_exit:
1136 SMC_SELECT_BANK(lp, 2);
1137 spin_unlock_irq(&lp->lock);
1138 }
1139
1140 /*
1141 * smc_phy_interrupt
1142 *
1143 * Purpose: Handle interrupts relating to PHY register 18. This is
1144 * called from the "hard" interrupt handler under our private spinlock.
1145 */
1146 static void smc_phy_interrupt(struct net_device *dev)
1147 {
1148 struct smc_local *lp = netdev_priv(dev);
1149 int phyaddr = lp->mii.phy_id;
1150 int phy18;
1151
1152 DBG(2, dev, "%s\n", __func__);
1153
1154 if (lp->phy_type == 0)
1155 return;
1156
1157 for(;;) {
1158 smc_phy_check_media(dev, 0);
1159
1160 /* Read PHY Register 18, Status Output */
1161 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1162 if ((phy18 & PHY_INT_INT) == 0)
1163 break;
1164 }
1165 }
1166
1167 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1168
1169 static void smc_10bt_check_media(struct net_device *dev, int init)
1170 {
1171 struct smc_local *lp = netdev_priv(dev);
1172 void __iomem *ioaddr = lp->base;
1173 unsigned int old_carrier, new_carrier;
1174
1175 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1176
1177 SMC_SELECT_BANK(lp, 0);
1178 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1179 SMC_SELECT_BANK(lp, 2);
1180
1181 if (init || (old_carrier != new_carrier)) {
1182 if (!new_carrier) {
1183 netif_carrier_off(dev);
1184 } else {
1185 netif_carrier_on(dev);
1186 }
1187 if (netif_msg_link(lp))
1188 netdev_info(dev, "link %s\n",
1189 new_carrier ? "up" : "down");
1190 }
1191 }
1192
1193 static void smc_eph_interrupt(struct net_device *dev)
1194 {
1195 struct smc_local *lp = netdev_priv(dev);
1196 void __iomem *ioaddr = lp->base;
1197 unsigned int ctl;
1198
1199 smc_10bt_check_media(dev, 0);
1200
1201 SMC_SELECT_BANK(lp, 1);
1202 ctl = SMC_GET_CTL(lp);
1203 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1204 SMC_SET_CTL(lp, ctl);
1205 SMC_SELECT_BANK(lp, 2);
1206 }
1207
1208 /*
1209 * This is the main routine of the driver, to handle the device when
1210 * it needs some attention.
1211 */
1212 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1213 {
1214 struct net_device *dev = dev_id;
1215 struct smc_local *lp = netdev_priv(dev);
1216 void __iomem *ioaddr = lp->base;
1217 int status, mask, timeout, card_stats;
1218 int saved_pointer;
1219
1220 DBG(3, dev, "%s\n", __func__);
1221
1222 spin_lock(&lp->lock);
1223
1224 /* A preamble may be used when there is a potential race
1225 * between the interruptible transmit functions and this
1226 * ISR. */
1227 SMC_INTERRUPT_PREAMBLE;
1228
1229 saved_pointer = SMC_GET_PTR(lp);
1230 mask = SMC_GET_INT_MASK(lp);
1231 SMC_SET_INT_MASK(lp, 0);
1232
1233 /* set a timeout value, so I don't stay here forever */
1234 timeout = MAX_IRQ_LOOPS;
1235
1236 do {
1237 status = SMC_GET_INT(lp);
1238
1239 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1240 status, mask,
1241 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1242 meminfo = SMC_GET_MIR(lp);
1243 SMC_SELECT_BANK(lp, 2); meminfo; }),
1244 SMC_GET_FIFO(lp));
1245
1246 status &= mask;
1247 if (!status)
1248 break;
1249
1250 if (status & IM_TX_INT) {
1251 /* do this before RX as it will free memory quickly */
1252 DBG(3, dev, "TX int\n");
1253 smc_tx(dev);
1254 SMC_ACK_INT(lp, IM_TX_INT);
1255 if (THROTTLE_TX_PKTS)
1256 netif_wake_queue(dev);
1257 } else if (status & IM_RCV_INT) {
1258 DBG(3, dev, "RX irq\n");
1259 smc_rcv(dev);
1260 } else if (status & IM_ALLOC_INT) {
1261 DBG(3, dev, "Allocation irq\n");
1262 tasklet_hi_schedule(&lp->tx_task);
1263 mask &= ~IM_ALLOC_INT;
1264 } else if (status & IM_TX_EMPTY_INT) {
1265 DBG(3, dev, "TX empty\n");
1266 mask &= ~IM_TX_EMPTY_INT;
1267
1268 /* update stats */
1269 SMC_SELECT_BANK(lp, 0);
1270 card_stats = SMC_GET_COUNTER(lp);
1271 SMC_SELECT_BANK(lp, 2);
1272
1273 /* single collisions */
1274 dev->stats.collisions += card_stats & 0xF;
1275 card_stats >>= 4;
1276
1277 /* multiple collisions */
1278 dev->stats.collisions += card_stats & 0xF;
1279 } else if (status & IM_RX_OVRN_INT) {
1280 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1281 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1282 eph_st = SMC_GET_EPH_STATUS(lp);
1283 SMC_SELECT_BANK(lp, 2); eph_st; }));
1284 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1285 dev->stats.rx_errors++;
1286 dev->stats.rx_fifo_errors++;
1287 } else if (status & IM_EPH_INT) {
1288 smc_eph_interrupt(dev);
1289 } else if (status & IM_MDINT) {
1290 SMC_ACK_INT(lp, IM_MDINT);
1291 smc_phy_interrupt(dev);
1292 } else if (status & IM_ERCV_INT) {
1293 SMC_ACK_INT(lp, IM_ERCV_INT);
1294 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1295 }
1296 } while (--timeout);
1297
1298 /* restore register states */
1299 SMC_SET_PTR(lp, saved_pointer);
1300 SMC_SET_INT_MASK(lp, mask);
1301 spin_unlock(&lp->lock);
1302
1303 #ifndef CONFIG_NET_POLL_CONTROLLER
1304 if (timeout == MAX_IRQ_LOOPS)
1305 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1306 mask);
1307 #endif
1308 DBG(3, dev, "Interrupt done (%d loops)\n",
1309 MAX_IRQ_LOOPS - timeout);
1310
1311 /*
1312 * We return IRQ_HANDLED unconditionally here even if there was
1313 * nothing to do. There is a possibility that a packet might
1314 * get enqueued into the chip right after TX_EMPTY_INT is raised
1315 * but just before the CPU acknowledges the IRQ.
1316 * Better take an unneeded IRQ in some occasions than complexifying
1317 * the code for all cases.
1318 */
1319 return IRQ_HANDLED;
1320 }
1321
1322 #ifdef CONFIG_NET_POLL_CONTROLLER
1323 /*
1324 * Polling receive - used by netconsole and other diagnostic tools
1325 * to allow network i/o with interrupts disabled.
1326 */
1327 static void smc_poll_controller(struct net_device *dev)
1328 {
1329 disable_irq(dev->irq);
1330 smc_interrupt(dev->irq, dev);
1331 enable_irq(dev->irq);
1332 }
1333 #endif
1334
1335 /* Our watchdog timed out. Called by the networking layer */
1336 static void smc_timeout(struct net_device *dev)
1337 {
1338 struct smc_local *lp = netdev_priv(dev);
1339 void __iomem *ioaddr = lp->base;
1340 int status, mask, eph_st, meminfo, fifo;
1341
1342 DBG(2, dev, "%s\n", __func__);
1343
1344 spin_lock_irq(&lp->lock);
1345 status = SMC_GET_INT(lp);
1346 mask = SMC_GET_INT_MASK(lp);
1347 fifo = SMC_GET_FIFO(lp);
1348 SMC_SELECT_BANK(lp, 0);
1349 eph_st = SMC_GET_EPH_STATUS(lp);
1350 meminfo = SMC_GET_MIR(lp);
1351 SMC_SELECT_BANK(lp, 2);
1352 spin_unlock_irq(&lp->lock);
1353 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1354 status, mask, meminfo, fifo, eph_st);
1355
1356 smc_reset(dev);
1357 smc_enable(dev);
1358
1359 /*
1360 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1361 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1362 * which calls schedule(). Hence we use a work queue.
1363 */
1364 if (lp->phy_type != 0)
1365 schedule_work(&lp->phy_configure);
1366
1367 /* We can accept TX packets again */
1368 netif_trans_update(dev); /* prevent tx timeout */
1369 netif_wake_queue(dev);
1370 }
1371
1372 /*
1373 * This routine will, depending on the values passed to it,
1374 * either make it accept multicast packets, go into
1375 * promiscuous mode (for TCPDUMP and cousins) or accept
1376 * a select set of multicast packets
1377 */
1378 static void smc_set_multicast_list(struct net_device *dev)
1379 {
1380 struct smc_local *lp = netdev_priv(dev);
1381 void __iomem *ioaddr = lp->base;
1382 unsigned char multicast_table[8];
1383 int update_multicast = 0;
1384
1385 DBG(2, dev, "%s\n", __func__);
1386
1387 if (dev->flags & IFF_PROMISC) {
1388 DBG(2, dev, "RCR_PRMS\n");
1389 lp->rcr_cur_mode |= RCR_PRMS;
1390 }
1391
1392 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1393 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1394 when promiscuous mode is turned on.
1395 */
1396
1397 /*
1398 * Here, I am setting this to accept all multicast packets.
1399 * I don't need to zero the multicast table, because the flag is
1400 * checked before the table is
1401 */
1402 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1403 DBG(2, dev, "RCR_ALMUL\n");
1404 lp->rcr_cur_mode |= RCR_ALMUL;
1405 }
1406
1407 /*
1408 * This sets the internal hardware table to filter out unwanted
1409 * multicast packets before they take up memory.
1410 *
1411 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1412 * address are the offset into the table. If that bit is 1, then the
1413 * multicast packet is accepted. Otherwise, it's dropped silently.
1414 *
1415 * To use the 6 bits as an offset into the table, the high 3 bits are
1416 * the number of the 8 bit register, while the low 3 bits are the bit
1417 * within that register.
1418 */
1419 else if (!netdev_mc_empty(dev)) {
1420 struct netdev_hw_addr *ha;
1421
1422 /* table for flipping the order of 3 bits */
1423 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1424
1425 /* start with a table of all zeros: reject all */
1426 memset(multicast_table, 0, sizeof(multicast_table));
1427
1428 netdev_for_each_mc_addr(ha, dev) {
1429 int position;
1430
1431 /* only use the low order bits */
1432 position = crc32_le(~0, ha->addr, 6) & 0x3f;
1433
1434 /* do some messy swapping to put the bit in the right spot */
1435 multicast_table[invert3[position&7]] |=
1436 (1<<invert3[(position>>3)&7]);
1437 }
1438
1439 /* be sure I get rid of flags I might have set */
1440 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1441
1442 /* now, the table can be loaded into the chipset */
1443 update_multicast = 1;
1444 } else {
1445 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1446 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1447
1448 /*
1449 * since I'm disabling all multicast entirely, I need to
1450 * clear the multicast list
1451 */
1452 memset(multicast_table, 0, sizeof(multicast_table));
1453 update_multicast = 1;
1454 }
1455
1456 spin_lock_irq(&lp->lock);
1457 SMC_SELECT_BANK(lp, 0);
1458 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1459 if (update_multicast) {
1460 SMC_SELECT_BANK(lp, 3);
1461 SMC_SET_MCAST(lp, multicast_table);
1462 }
1463 SMC_SELECT_BANK(lp, 2);
1464 spin_unlock_irq(&lp->lock);
1465 }
1466
1467
1468 /*
1469 * Open and Initialize the board
1470 *
1471 * Set up everything, reset the card, etc..
1472 */
1473 static int
1474 smc_open(struct net_device *dev)
1475 {
1476 struct smc_local *lp = netdev_priv(dev);
1477
1478 DBG(2, dev, "%s\n", __func__);
1479
1480 /* Setup the default Register Modes */
1481 lp->tcr_cur_mode = TCR_DEFAULT;
1482 lp->rcr_cur_mode = RCR_DEFAULT;
1483 lp->rpc_cur_mode = RPC_DEFAULT |
1484 lp->cfg.leda << RPC_LSXA_SHFT |
1485 lp->cfg.ledb << RPC_LSXB_SHFT;
1486
1487 /*
1488 * If we are not using a MII interface, we need to
1489 * monitor our own carrier signal to detect faults.
1490 */
1491 if (lp->phy_type == 0)
1492 lp->tcr_cur_mode |= TCR_MON_CSN;
1493
1494 /* reset the hardware */
1495 smc_reset(dev);
1496 smc_enable(dev);
1497
1498 /* Configure the PHY, initialize the link state */
1499 if (lp->phy_type != 0)
1500 smc_phy_configure(&lp->phy_configure);
1501 else {
1502 spin_lock_irq(&lp->lock);
1503 smc_10bt_check_media(dev, 1);
1504 spin_unlock_irq(&lp->lock);
1505 }
1506
1507 netif_start_queue(dev);
1508 return 0;
1509 }
1510
1511 /*
1512 * smc_close
1513 *
1514 * this makes the board clean up everything that it can
1515 * and not talk to the outside world. Caused by
1516 * an 'ifconfig ethX down'
1517 */
1518 static int smc_close(struct net_device *dev)
1519 {
1520 struct smc_local *lp = netdev_priv(dev);
1521
1522 DBG(2, dev, "%s\n", __func__);
1523
1524 netif_stop_queue(dev);
1525 netif_carrier_off(dev);
1526
1527 /* clear everything */
1528 smc_shutdown(dev);
1529 tasklet_kill(&lp->tx_task);
1530 smc_phy_powerdown(dev);
1531 return 0;
1532 }
1533
1534 /*
1535 * Ethtool support
1536 */
1537 static int
1538 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1539 {
1540 struct smc_local *lp = netdev_priv(dev);
1541 int ret;
1542
1543 cmd->maxtxpkt = 1;
1544 cmd->maxrxpkt = 1;
1545
1546 if (lp->phy_type != 0) {
1547 spin_lock_irq(&lp->lock);
1548 ret = mii_ethtool_gset(&lp->mii, cmd);
1549 spin_unlock_irq(&lp->lock);
1550 } else {
1551 cmd->supported = SUPPORTED_10baseT_Half |
1552 SUPPORTED_10baseT_Full |
1553 SUPPORTED_TP | SUPPORTED_AUI;
1554
1555 if (lp->ctl_rspeed == 10)
1556 ethtool_cmd_speed_set(cmd, SPEED_10);
1557 else if (lp->ctl_rspeed == 100)
1558 ethtool_cmd_speed_set(cmd, SPEED_100);
1559
1560 cmd->autoneg = AUTONEG_DISABLE;
1561 cmd->transceiver = XCVR_INTERNAL;
1562 cmd->port = 0;
1563 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1564
1565 ret = 0;
1566 }
1567
1568 return ret;
1569 }
1570
1571 static int
1572 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1573 {
1574 struct smc_local *lp = netdev_priv(dev);
1575 int ret;
1576
1577 if (lp->phy_type != 0) {
1578 spin_lock_irq(&lp->lock);
1579 ret = mii_ethtool_sset(&lp->mii, cmd);
1580 spin_unlock_irq(&lp->lock);
1581 } else {
1582 if (cmd->autoneg != AUTONEG_DISABLE ||
1583 cmd->speed != SPEED_10 ||
1584 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1585 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1586 return -EINVAL;
1587
1588 // lp->port = cmd->port;
1589 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1590
1591 // if (netif_running(dev))
1592 // smc_set_port(dev);
1593
1594 ret = 0;
1595 }
1596
1597 return ret;
1598 }
1599
1600 static void
1601 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1602 {
1603 strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1604 strlcpy(info->version, version, sizeof(info->version));
1605 strlcpy(info->bus_info, dev_name(dev->dev.parent),
1606 sizeof(info->bus_info));
1607 }
1608
1609 static int smc_ethtool_nwayreset(struct net_device *dev)
1610 {
1611 struct smc_local *lp = netdev_priv(dev);
1612 int ret = -EINVAL;
1613
1614 if (lp->phy_type != 0) {
1615 spin_lock_irq(&lp->lock);
1616 ret = mii_nway_restart(&lp->mii);
1617 spin_unlock_irq(&lp->lock);
1618 }
1619
1620 return ret;
1621 }
1622
1623 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1624 {
1625 struct smc_local *lp = netdev_priv(dev);
1626 return lp->msg_enable;
1627 }
1628
1629 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1630 {
1631 struct smc_local *lp = netdev_priv(dev);
1632 lp->msg_enable = level;
1633 }
1634
1635 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1636 {
1637 u16 ctl;
1638 struct smc_local *lp = netdev_priv(dev);
1639 void __iomem *ioaddr = lp->base;
1640
1641 spin_lock_irq(&lp->lock);
1642 /* load word into GP register */
1643 SMC_SELECT_BANK(lp, 1);
1644 SMC_SET_GP(lp, word);
1645 /* set the address to put the data in EEPROM */
1646 SMC_SELECT_BANK(lp, 2);
1647 SMC_SET_PTR(lp, addr);
1648 /* tell it to write */
1649 SMC_SELECT_BANK(lp, 1);
1650 ctl = SMC_GET_CTL(lp);
1651 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1652 /* wait for it to finish */
1653 do {
1654 udelay(1);
1655 } while (SMC_GET_CTL(lp) & CTL_STORE);
1656 /* clean up */
1657 SMC_SET_CTL(lp, ctl);
1658 SMC_SELECT_BANK(lp, 2);
1659 spin_unlock_irq(&lp->lock);
1660 return 0;
1661 }
1662
1663 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1664 {
1665 u16 ctl;
1666 struct smc_local *lp = netdev_priv(dev);
1667 void __iomem *ioaddr = lp->base;
1668
1669 spin_lock_irq(&lp->lock);
1670 /* set the EEPROM address to get the data from */
1671 SMC_SELECT_BANK(lp, 2);
1672 SMC_SET_PTR(lp, addr | PTR_READ);
1673 /* tell it to load */
1674 SMC_SELECT_BANK(lp, 1);
1675 SMC_SET_GP(lp, 0xffff); /* init to known */
1676 ctl = SMC_GET_CTL(lp);
1677 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1678 /* wait for it to finish */
1679 do {
1680 udelay(1);
1681 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1682 /* read word from GP register */
1683 *word = SMC_GET_GP(lp);
1684 /* clean up */
1685 SMC_SET_CTL(lp, ctl);
1686 SMC_SELECT_BANK(lp, 2);
1687 spin_unlock_irq(&lp->lock);
1688 return 0;
1689 }
1690
1691 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1692 {
1693 return 0x23 * 2;
1694 }
1695
1696 static int smc_ethtool_geteeprom(struct net_device *dev,
1697 struct ethtool_eeprom *eeprom, u8 *data)
1698 {
1699 int i;
1700 int imax;
1701
1702 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1703 eeprom->len, eeprom->offset, eeprom->offset);
1704 imax = smc_ethtool_geteeprom_len(dev);
1705 for (i = 0; i < eeprom->len; i += 2) {
1706 int ret;
1707 u16 wbuf;
1708 int offset = i + eeprom->offset;
1709 if (offset > imax)
1710 break;
1711 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1712 if (ret != 0)
1713 return ret;
1714 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1715 data[i] = (wbuf >> 8) & 0xff;
1716 data[i+1] = wbuf & 0xff;
1717 }
1718 return 0;
1719 }
1720
1721 static int smc_ethtool_seteeprom(struct net_device *dev,
1722 struct ethtool_eeprom *eeprom, u8 *data)
1723 {
1724 int i;
1725 int imax;
1726
1727 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1728 eeprom->len, eeprom->offset, eeprom->offset);
1729 imax = smc_ethtool_geteeprom_len(dev);
1730 for (i = 0; i < eeprom->len; i += 2) {
1731 int ret;
1732 u16 wbuf;
1733 int offset = i + eeprom->offset;
1734 if (offset > imax)
1735 break;
1736 wbuf = (data[i] << 8) | data[i + 1];
1737 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1738 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1739 if (ret != 0)
1740 return ret;
1741 }
1742 return 0;
1743 }
1744
1745
1746 static const struct ethtool_ops smc_ethtool_ops = {
1747 .get_settings = smc_ethtool_getsettings,
1748 .set_settings = smc_ethtool_setsettings,
1749 .get_drvinfo = smc_ethtool_getdrvinfo,
1750
1751 .get_msglevel = smc_ethtool_getmsglevel,
1752 .set_msglevel = smc_ethtool_setmsglevel,
1753 .nway_reset = smc_ethtool_nwayreset,
1754 .get_link = ethtool_op_get_link,
1755 .get_eeprom_len = smc_ethtool_geteeprom_len,
1756 .get_eeprom = smc_ethtool_geteeprom,
1757 .set_eeprom = smc_ethtool_seteeprom,
1758 };
1759
1760 static const struct net_device_ops smc_netdev_ops = {
1761 .ndo_open = smc_open,
1762 .ndo_stop = smc_close,
1763 .ndo_start_xmit = smc_hard_start_xmit,
1764 .ndo_tx_timeout = smc_timeout,
1765 .ndo_set_rx_mode = smc_set_multicast_list,
1766 .ndo_validate_addr = eth_validate_addr,
1767 .ndo_set_mac_address = eth_mac_addr,
1768 #ifdef CONFIG_NET_POLL_CONTROLLER
1769 .ndo_poll_controller = smc_poll_controller,
1770 #endif
1771 };
1772
1773 /*
1774 * smc_findirq
1775 *
1776 * This routine has a simple purpose -- make the SMC chip generate an
1777 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1778 */
1779 /*
1780 * does this still work?
1781 *
1782 * I just deleted auto_irq.c, since it was never built...
1783 * --jgarzik
1784 */
1785 static int smc_findirq(struct smc_local *lp)
1786 {
1787 void __iomem *ioaddr = lp->base;
1788 int timeout = 20;
1789 unsigned long cookie;
1790
1791 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1792
1793 cookie = probe_irq_on();
1794
1795 /*
1796 * What I try to do here is trigger an ALLOC_INT. This is done
1797 * by allocating a small chunk of memory, which will give an interrupt
1798 * when done.
1799 */
1800 /* enable ALLOCation interrupts ONLY */
1801 SMC_SELECT_BANK(lp, 2);
1802 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1803
1804 /*
1805 * Allocate 512 bytes of memory. Note that the chip was just
1806 * reset so all the memory is available
1807 */
1808 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1809
1810 /*
1811 * Wait until positive that the interrupt has been generated
1812 */
1813 do {
1814 int int_status;
1815 udelay(10);
1816 int_status = SMC_GET_INT(lp);
1817 if (int_status & IM_ALLOC_INT)
1818 break; /* got the interrupt */
1819 } while (--timeout);
1820
1821 /*
1822 * there is really nothing that I can do here if timeout fails,
1823 * as autoirq_report will return a 0 anyway, which is what I
1824 * want in this case. Plus, the clean up is needed in both
1825 * cases.
1826 */
1827
1828 /* and disable all interrupts again */
1829 SMC_SET_INT_MASK(lp, 0);
1830
1831 /* and return what I found */
1832 return probe_irq_off(cookie);
1833 }
1834
1835 /*
1836 * Function: smc_probe(unsigned long ioaddr)
1837 *
1838 * Purpose:
1839 * Tests to see if a given ioaddr points to an SMC91x chip.
1840 * Returns a 0 on success
1841 *
1842 * Algorithm:
1843 * (1) see if the high byte of BANK_SELECT is 0x33
1844 * (2) compare the ioaddr with the base register's address
1845 * (3) see if I recognize the chip ID in the appropriate register
1846 *
1847 * Here I do typical initialization tasks.
1848 *
1849 * o Initialize the structure if needed
1850 * o print out my vanity message if not done so already
1851 * o print out what type of hardware is detected
1852 * o print out the ethernet address
1853 * o find the IRQ
1854 * o set up my private data
1855 * o configure the dev structure with my subroutines
1856 * o actually GRAB the irq.
1857 * o GRAB the region
1858 */
1859 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1860 unsigned long irq_flags)
1861 {
1862 struct smc_local *lp = netdev_priv(dev);
1863 int retval;
1864 unsigned int val, revision_register;
1865 const char *version_string;
1866
1867 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1868
1869 /* First, see if the high byte is 0x33 */
1870 val = SMC_CURRENT_BANK(lp);
1871 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1872 CARDNAME, val);
1873 if ((val & 0xFF00) != 0x3300) {
1874 if ((val & 0xFF) == 0x33) {
1875 netdev_warn(dev,
1876 "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1877 CARDNAME, ioaddr);
1878 }
1879 retval = -ENODEV;
1880 goto err_out;
1881 }
1882
1883 /*
1884 * The above MIGHT indicate a device, but I need to write to
1885 * further test this.
1886 */
1887 SMC_SELECT_BANK(lp, 0);
1888 val = SMC_CURRENT_BANK(lp);
1889 if ((val & 0xFF00) != 0x3300) {
1890 retval = -ENODEV;
1891 goto err_out;
1892 }
1893
1894 /*
1895 * well, we've already written once, so hopefully another
1896 * time won't hurt. This time, I need to switch the bank
1897 * register to bank 1, so I can access the base address
1898 * register
1899 */
1900 SMC_SELECT_BANK(lp, 1);
1901 val = SMC_GET_BASE(lp);
1902 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1903 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1904 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1905 CARDNAME, ioaddr, val);
1906 }
1907
1908 /*
1909 * check if the revision register is something that I
1910 * recognize. These might need to be added to later,
1911 * as future revisions could be added.
1912 */
1913 SMC_SELECT_BANK(lp, 3);
1914 revision_register = SMC_GET_REV(lp);
1915 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1916 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1917 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1918 /* I don't recognize this chip, so... */
1919 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1920 CARDNAME, ioaddr, revision_register);
1921
1922 retval = -ENODEV;
1923 goto err_out;
1924 }
1925
1926 /* At this point I'll assume that the chip is an SMC91x. */
1927 pr_info_once("%s\n", version);
1928
1929 /* fill in some of the fields */
1930 dev->base_addr = (unsigned long)ioaddr;
1931 lp->base = ioaddr;
1932 lp->version = revision_register & 0xff;
1933 spin_lock_init(&lp->lock);
1934
1935 /* Get the MAC address */
1936 SMC_SELECT_BANK(lp, 1);
1937 SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1938
1939 /* now, reset the chip, and put it into a known state */
1940 smc_reset(dev);
1941
1942 /*
1943 * If dev->irq is 0, then the device has to be banged on to see
1944 * what the IRQ is.
1945 *
1946 * This banging doesn't always detect the IRQ, for unknown reasons.
1947 * a workaround is to reset the chip and try again.
1948 *
1949 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1950 * be what is requested on the command line. I don't do that, mostly
1951 * because the card that I have uses a non-standard method of accessing
1952 * the IRQs, and because this _should_ work in most configurations.
1953 *
1954 * Specifying an IRQ is done with the assumption that the user knows
1955 * what (s)he is doing. No checking is done!!!!
1956 */
1957 if (dev->irq < 1) {
1958 int trials;
1959
1960 trials = 3;
1961 while (trials--) {
1962 dev->irq = smc_findirq(lp);
1963 if (dev->irq)
1964 break;
1965 /* kick the card and try again */
1966 smc_reset(dev);
1967 }
1968 }
1969 if (dev->irq == 0) {
1970 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1971 retval = -ENODEV;
1972 goto err_out;
1973 }
1974 dev->irq = irq_canonicalize(dev->irq);
1975
1976 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1977 dev->netdev_ops = &smc_netdev_ops;
1978 dev->ethtool_ops = &smc_ethtool_ops;
1979
1980 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1981 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1982 lp->dev = dev;
1983 lp->mii.phy_id_mask = 0x1f;
1984 lp->mii.reg_num_mask = 0x1f;
1985 lp->mii.force_media = 0;
1986 lp->mii.full_duplex = 0;
1987 lp->mii.dev = dev;
1988 lp->mii.mdio_read = smc_phy_read;
1989 lp->mii.mdio_write = smc_phy_write;
1990
1991 /*
1992 * Locate the phy, if any.
1993 */
1994 if (lp->version >= (CHIP_91100 << 4))
1995 smc_phy_detect(dev);
1996
1997 /* then shut everything down to save power */
1998 smc_shutdown(dev);
1999 smc_phy_powerdown(dev);
2000
2001 /* Set default parameters */
2002 lp->msg_enable = NETIF_MSG_LINK;
2003 lp->ctl_rfduplx = 0;
2004 lp->ctl_rspeed = 10;
2005
2006 if (lp->version >= (CHIP_91100 << 4)) {
2007 lp->ctl_rfduplx = 1;
2008 lp->ctl_rspeed = 100;
2009 }
2010
2011 /* Grab the IRQ */
2012 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2013 if (retval)
2014 goto err_out;
2015
2016 #ifdef CONFIG_ARCH_PXA
2017 # ifdef SMC_USE_PXA_DMA
2018 lp->cfg.flags |= SMC91X_USE_DMA;
2019 # endif
2020 if (lp->cfg.flags & SMC91X_USE_DMA) {
2021 dma_cap_mask_t mask;
2022 struct pxad_param param;
2023
2024 dma_cap_zero(mask);
2025 dma_cap_set(DMA_SLAVE, mask);
2026 param.prio = PXAD_PRIO_LOWEST;
2027 param.drcmr = -1UL;
2028
2029 lp->dma_chan =
2030 dma_request_slave_channel_compat(mask, pxad_filter_fn,
2031 &param, &dev->dev,
2032 "data");
2033 }
2034 #endif
2035
2036 retval = register_netdev(dev);
2037 if (retval == 0) {
2038 /* now, print out the card info, in a short format.. */
2039 netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2040 version_string, revision_register & 0x0f,
2041 lp->base, dev->irq);
2042
2043 if (lp->dma_chan)
2044 pr_cont(" DMA %p", lp->dma_chan);
2045
2046 pr_cont("%s%s\n",
2047 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2048 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2049
2050 if (!is_valid_ether_addr(dev->dev_addr)) {
2051 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2052 } else {
2053 /* Print the Ethernet address */
2054 netdev_info(dev, "Ethernet addr: %pM\n",
2055 dev->dev_addr);
2056 }
2057
2058 if (lp->phy_type == 0) {
2059 PRINTK(dev, "No PHY found\n");
2060 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2061 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2062 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2063 PRINTK(dev, "PHY LAN83C180\n");
2064 }
2065 }
2066
2067 err_out:
2068 #ifdef CONFIG_ARCH_PXA
2069 if (retval && lp->dma_chan)
2070 dma_release_channel(lp->dma_chan);
2071 #endif
2072 return retval;
2073 }
2074
2075 static int smc_enable_device(struct platform_device *pdev)
2076 {
2077 struct net_device *ndev = platform_get_drvdata(pdev);
2078 struct smc_local *lp = netdev_priv(ndev);
2079 unsigned long flags;
2080 unsigned char ecor, ecsr;
2081 void __iomem *addr;
2082 struct resource * res;
2083
2084 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2085 if (!res)
2086 return 0;
2087
2088 /*
2089 * Map the attribute space. This is overkill, but clean.
2090 */
2091 addr = ioremap(res->start, ATTRIB_SIZE);
2092 if (!addr)
2093 return -ENOMEM;
2094
2095 /*
2096 * Reset the device. We must disable IRQs around this
2097 * since a reset causes the IRQ line become active.
2098 */
2099 local_irq_save(flags);
2100 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2101 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2102 readb(addr + (ECOR << SMC_IO_SHIFT));
2103
2104 /*
2105 * Wait 100us for the chip to reset.
2106 */
2107 udelay(100);
2108
2109 /*
2110 * The device will ignore all writes to the enable bit while
2111 * reset is asserted, even if the reset bit is cleared in the
2112 * same write. Must clear reset first, then enable the device.
2113 */
2114 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2115 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2116
2117 /*
2118 * Set the appropriate byte/word mode.
2119 */
2120 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2121 if (!SMC_16BIT(lp))
2122 ecsr |= ECSR_IOIS8;
2123 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2124 local_irq_restore(flags);
2125
2126 iounmap(addr);
2127
2128 /*
2129 * Wait for the chip to wake up. We could poll the control
2130 * register in the main register space, but that isn't mapped
2131 * yet. We know this is going to take 750us.
2132 */
2133 msleep(1);
2134
2135 return 0;
2136 }
2137
2138 static int smc_request_attrib(struct platform_device *pdev,
2139 struct net_device *ndev)
2140 {
2141 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2142 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2143
2144 if (!res)
2145 return 0;
2146
2147 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2148 return -EBUSY;
2149
2150 return 0;
2151 }
2152
2153 static void smc_release_attrib(struct platform_device *pdev,
2154 struct net_device *ndev)
2155 {
2156 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2157 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2158
2159 if (res)
2160 release_mem_region(res->start, ATTRIB_SIZE);
2161 }
2162
2163 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2164 {
2165 if (SMC_CAN_USE_DATACS) {
2166 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2167 struct smc_local *lp = netdev_priv(ndev);
2168
2169 if (!res)
2170 return;
2171
2172 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2173 netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2174 CARDNAME);
2175 return;
2176 }
2177
2178 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2179 }
2180 }
2181
2182 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2183 {
2184 if (SMC_CAN_USE_DATACS) {
2185 struct smc_local *lp = netdev_priv(ndev);
2186 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2187
2188 if (lp->datacs)
2189 iounmap(lp->datacs);
2190
2191 lp->datacs = NULL;
2192
2193 if (res)
2194 release_mem_region(res->start, SMC_DATA_EXTENT);
2195 }
2196 }
2197
2198 static const struct acpi_device_id smc91x_acpi_match[] = {
2199 { "LNRO0003", 0 },
2200 { }
2201 };
2202 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2203
2204 #if IS_BUILTIN(CONFIG_OF)
2205 static const struct of_device_id smc91x_match[] = {
2206 { .compatible = "smsc,lan91c94", },
2207 { .compatible = "smsc,lan91c111", },
2208 {},
2209 };
2210 MODULE_DEVICE_TABLE(of, smc91x_match);
2211
2212 /**
2213 * of_try_set_control_gpio - configure a gpio if it exists
2214 */
2215 static int try_toggle_control_gpio(struct device *dev,
2216 struct gpio_desc **desc,
2217 const char *name, int index,
2218 int value, unsigned int nsdelay)
2219 {
2220 struct gpio_desc *gpio = *desc;
2221 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2222
2223 gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2224 if (IS_ERR(gpio))
2225 return PTR_ERR(gpio);
2226
2227 if (gpio) {
2228 if (nsdelay)
2229 usleep_range(nsdelay, 2 * nsdelay);
2230 gpiod_set_value_cansleep(gpio, value);
2231 }
2232 *desc = gpio;
2233
2234 return 0;
2235 }
2236 #endif
2237
2238 /*
2239 * smc_init(void)
2240 * Input parameters:
2241 * dev->base_addr == 0, try to find all possible locations
2242 * dev->base_addr > 0x1ff, this is the address to check
2243 * dev->base_addr == <anything else>, return failure code
2244 *
2245 * Output:
2246 * 0 --> there is a device
2247 * anything else, error
2248 */
2249 static int smc_drv_probe(struct platform_device *pdev)
2250 {
2251 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2252 const struct of_device_id *match = NULL;
2253 struct smc_local *lp;
2254 struct net_device *ndev;
2255 struct resource *res;
2256 unsigned int __iomem *addr;
2257 unsigned long irq_flags = SMC_IRQ_FLAGS;
2258 unsigned long irq_resflags;
2259 int ret;
2260
2261 ndev = alloc_etherdev(sizeof(struct smc_local));
2262 if (!ndev) {
2263 ret = -ENOMEM;
2264 goto out;
2265 }
2266 SET_NETDEV_DEV(ndev, &pdev->dev);
2267
2268 /* get configuration from platform data, only allow use of
2269 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2270 */
2271
2272 lp = netdev_priv(ndev);
2273 lp->cfg.flags = 0;
2274
2275 if (pd) {
2276 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2277 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2278
2279 if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2280 dev_err(&pdev->dev,
2281 "at least one of 8-bit or 16-bit access support is required.\n");
2282 ret = -ENXIO;
2283 goto out_free_netdev;
2284 }
2285 }
2286
2287 #if IS_BUILTIN(CONFIG_OF)
2288 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2289 if (match) {
2290 u32 val;
2291
2292 /* Optional pwrdwn GPIO configured? */
2293 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2294 "power", 0, 0, 100);
2295 if (ret)
2296 return ret;
2297
2298 /*
2299 * Optional reset GPIO configured? Minimum 100 ns reset needed
2300 * according to LAN91C96 datasheet page 14.
2301 */
2302 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2303 "reset", 0, 0, 100);
2304 if (ret)
2305 return ret;
2306
2307 /*
2308 * Need to wait for optional EEPROM to load, max 750 us according
2309 * to LAN91C96 datasheet page 55.
2310 */
2311 if (lp->reset_gpio)
2312 usleep_range(750, 1000);
2313
2314 /* Combination of IO widths supported, default to 16-bit */
2315 if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2316 &val)) {
2317 if (val & 1)
2318 lp->cfg.flags |= SMC91X_USE_8BIT;
2319 if ((val == 0) || (val & 2))
2320 lp->cfg.flags |= SMC91X_USE_16BIT;
2321 if (val & 4)
2322 lp->cfg.flags |= SMC91X_USE_32BIT;
2323 } else {
2324 lp->cfg.flags |= SMC91X_USE_16BIT;
2325 }
2326 if (!device_property_read_u32(&pdev->dev, "reg-shift",
2327 &val))
2328 lp->io_shift = val;
2329 lp->cfg.pxa_u16_align4 =
2330 device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2331 }
2332 #endif
2333
2334 if (!pd && !match) {
2335 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2336 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2337 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2338 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2339 }
2340
2341 if (!lp->cfg.leda && !lp->cfg.ledb) {
2342 lp->cfg.leda = RPC_LSA_DEFAULT;
2343 lp->cfg.ledb = RPC_LSB_DEFAULT;
2344 }
2345
2346 ndev->dma = (unsigned char)-1;
2347
2348 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2349 if (!res)
2350 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2351 if (!res) {
2352 ret = -ENODEV;
2353 goto out_free_netdev;
2354 }
2355
2356
2357 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2358 ret = -EBUSY;
2359 goto out_free_netdev;
2360 }
2361
2362 ndev->irq = platform_get_irq(pdev, 0);
2363 if (ndev->irq < 0) {
2364 ret = ndev->irq;
2365 goto out_release_io;
2366 }
2367 /*
2368 * If this platform does not specify any special irqflags, or if
2369 * the resource supplies a trigger, override the irqflags with
2370 * the trigger flags from the resource.
2371 */
2372 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2373 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2374 irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2375
2376 ret = smc_request_attrib(pdev, ndev);
2377 if (ret)
2378 goto out_release_io;
2379 #if defined(CONFIG_ASSABET_NEPONSET)
2380 if (machine_is_assabet() && machine_has_neponset())
2381 neponset_ncr_set(NCR_ENET_OSC_EN);
2382 #endif
2383 platform_set_drvdata(pdev, ndev);
2384 ret = smc_enable_device(pdev);
2385 if (ret)
2386 goto out_release_attrib;
2387
2388 addr = ioremap(res->start, SMC_IO_EXTENT);
2389 if (!addr) {
2390 ret = -ENOMEM;
2391 goto out_release_attrib;
2392 }
2393
2394 #ifdef CONFIG_ARCH_PXA
2395 {
2396 struct smc_local *lp = netdev_priv(ndev);
2397 lp->device = &pdev->dev;
2398 lp->physaddr = res->start;
2399
2400 }
2401 #endif
2402
2403 ret = smc_probe(ndev, addr, irq_flags);
2404 if (ret != 0)
2405 goto out_iounmap;
2406
2407 smc_request_datacs(pdev, ndev);
2408
2409 return 0;
2410
2411 out_iounmap:
2412 iounmap(addr);
2413 out_release_attrib:
2414 smc_release_attrib(pdev, ndev);
2415 out_release_io:
2416 release_mem_region(res->start, SMC_IO_EXTENT);
2417 out_free_netdev:
2418 free_netdev(ndev);
2419 out:
2420 pr_info("%s: not found (%d).\n", CARDNAME, ret);
2421
2422 return ret;
2423 }
2424
2425 static int smc_drv_remove(struct platform_device *pdev)
2426 {
2427 struct net_device *ndev = platform_get_drvdata(pdev);
2428 struct smc_local *lp = netdev_priv(ndev);
2429 struct resource *res;
2430
2431 unregister_netdev(ndev);
2432
2433 free_irq(ndev->irq, ndev);
2434
2435 #ifdef CONFIG_ARCH_PXA
2436 if (lp->dma_chan)
2437 dma_release_channel(lp->dma_chan);
2438 #endif
2439 iounmap(lp->base);
2440
2441 smc_release_datacs(pdev,ndev);
2442 smc_release_attrib(pdev,ndev);
2443
2444 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2445 if (!res)
2446 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2447 release_mem_region(res->start, SMC_IO_EXTENT);
2448
2449 free_netdev(ndev);
2450
2451 return 0;
2452 }
2453
2454 static int smc_drv_suspend(struct device *dev)
2455 {
2456 struct platform_device *pdev = to_platform_device(dev);
2457 struct net_device *ndev = platform_get_drvdata(pdev);
2458
2459 if (ndev) {
2460 if (netif_running(ndev)) {
2461 netif_device_detach(ndev);
2462 smc_shutdown(ndev);
2463 smc_phy_powerdown(ndev);
2464 }
2465 }
2466 return 0;
2467 }
2468
2469 static int smc_drv_resume(struct device *dev)
2470 {
2471 struct platform_device *pdev = to_platform_device(dev);
2472 struct net_device *ndev = platform_get_drvdata(pdev);
2473
2474 if (ndev) {
2475 struct smc_local *lp = netdev_priv(ndev);
2476 smc_enable_device(pdev);
2477 if (netif_running(ndev)) {
2478 smc_reset(ndev);
2479 smc_enable(ndev);
2480 if (lp->phy_type != 0)
2481 smc_phy_configure(&lp->phy_configure);
2482 netif_device_attach(ndev);
2483 }
2484 }
2485 return 0;
2486 }
2487
2488 static struct dev_pm_ops smc_drv_pm_ops = {
2489 .suspend = smc_drv_suspend,
2490 .resume = smc_drv_resume,
2491 };
2492
2493 static struct platform_driver smc_driver = {
2494 .probe = smc_drv_probe,
2495 .remove = smc_drv_remove,
2496 .driver = {
2497 .name = CARDNAME,
2498 .pm = &smc_drv_pm_ops,
2499 .of_match_table = of_match_ptr(smc91x_match),
2500 .acpi_match_table = smc91x_acpi_match,
2501 },
2502 };
2503
2504 module_platform_driver(smc_driver);