]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/smsc/smc91x.h
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / smsc / smc91x.h
1 /*------------------------------------------------------------------------
2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3 .
4 . Copyright (C) 1996 by Erik Stahlman
5 . Copyright (C) 2001 Standard Microsystems Corporation
6 . Developed by Simple Network Magic Corporation
7 . Copyright (C) 2003 Monta Vista Software, Inc.
8 . Unified SMC91x driver by Nicolas Pitre
9 .
10 . This program is free software; you can redistribute it and/or modify
11 . it under the terms of the GNU General Public License as published by
12 . the Free Software Foundation; either version 2 of the License, or
13 . (at your option) any later version.
14 .
15 . This program is distributed in the hope that it will be useful,
16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 . GNU General Public License for more details.
19 .
20 . You should have received a copy of the GNU General Public License
21 . along with this program; if not, see <http://www.gnu.org/licenses/>.
22 .
23 . Information contained in this file was obtained from the LAN91C111
24 . manual from SMC. To get a copy, if you really want one, you can find
25 . information under www.smsc.com.
26 .
27 . Authors
28 . Erik Stahlman <erik@vt.edu>
29 . Daris A Nevil <dnevil@snmc.com>
30 . Nicolas Pitre <nico@fluxnic.net>
31 .
32 ---------------------------------------------------------------------------*/
33 #ifndef _SMC91X_H_
34 #define _SMC91X_H_
35
36 #include <linux/dmaengine.h>
37 #include <linux/smc91x.h>
38
39 /*
40 * Define your architecture specific bus configuration parameters here.
41 */
42
43 #if defined(CONFIG_ARM)
44
45 #include <asm/mach-types.h>
46
47 /* Now the bus width is specified in the platform data
48 * pretend here to support all I/O access types
49 */
50 #define SMC_CAN_USE_8BIT 1
51 #define SMC_CAN_USE_16BIT 1
52 #define SMC_CAN_USE_32BIT 1
53 #define SMC_NOWAIT 1
54
55 #define SMC_IO_SHIFT (lp->io_shift)
56
57 #define SMC_inb(a, r) readb((a) + (r))
58 #define SMC_inw(a, r) readw((a) + (r))
59 #define SMC_inl(a, r) readl((a) + (r))
60 #define SMC_outb(v, a, r) writeb(v, (a) + (r))
61 #define SMC_outl(v, a, r) writel(v, (a) + (r))
62 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
63 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
64 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
65 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
66 #define SMC_IRQ_FLAGS (-1) /* from resource */
67
68 /* We actually can't write halfwords properly if not word aligned */
69 static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg)
70 {
71 if ((machine_is_mainstone() || machine_is_stargate2() ||
72 machine_is_pxa_idp()) && reg & 2) {
73 unsigned int v = val << 16;
74 v |= readl(ioaddr + (reg & ~2)) & 0xffff;
75 writel(v, ioaddr + (reg & ~2));
76 } else {
77 writew(val, ioaddr + reg);
78 }
79 }
80
81 #elif defined(CONFIG_SH_SH4202_MICRODEV)
82
83 #define SMC_CAN_USE_8BIT 0
84 #define SMC_CAN_USE_16BIT 1
85 #define SMC_CAN_USE_32BIT 0
86
87 #define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
88 #define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
89 #define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
90 #define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
91 #define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000)
92 #define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
93 #define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
94 #define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
95 #define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
96 #define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
97
98 #define SMC_IRQ_FLAGS (0)
99
100 #elif defined(CONFIG_M32R)
101
102 #define SMC_CAN_USE_8BIT 0
103 #define SMC_CAN_USE_16BIT 1
104 #define SMC_CAN_USE_32BIT 0
105
106 #define SMC_inb(a, r) inb(((u32)a) + (r))
107 #define SMC_inw(a, r) inw(((u32)a) + (r))
108 #define SMC_outb(v, a, r) outb(v, ((u32)a) + (r))
109 #define SMC_outw(v, a, r) outw(v, ((u32)a) + (r))
110 #define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l)
111 #define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l)
112
113 #define SMC_IRQ_FLAGS (0)
114
115 #define RPC_LSA_DEFAULT RPC_LED_TX_RX
116 #define RPC_LSB_DEFAULT RPC_LED_100_10
117
118 #elif defined(CONFIG_MN10300)
119
120 /*
121 * MN10300/AM33 configuration
122 */
123
124 #include <unit/smc91111.h>
125
126 #elif defined(CONFIG_ATARI)
127
128 #define SMC_CAN_USE_8BIT 1
129 #define SMC_CAN_USE_16BIT 1
130 #define SMC_CAN_USE_32BIT 1
131 #define SMC_NOWAIT 1
132
133 #define SMC_inb(a, r) readb((a) + (r))
134 #define SMC_inw(a, r) readw((a) + (r))
135 #define SMC_inl(a, r) readl((a) + (r))
136 #define SMC_outb(v, a, r) writeb(v, (a) + (r))
137 #define SMC_outw(v, a, r) writew(v, (a) + (r))
138 #define SMC_outl(v, a, r) writel(v, (a) + (r))
139 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
140 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
141 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
142 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
143
144 #define RPC_LSA_DEFAULT RPC_LED_100_10
145 #define RPC_LSB_DEFAULT RPC_LED_TX_RX
146
147 #elif defined(CONFIG_COLDFIRE)
148
149 #define SMC_CAN_USE_8BIT 0
150 #define SMC_CAN_USE_16BIT 1
151 #define SMC_CAN_USE_32BIT 0
152 #define SMC_NOWAIT 1
153
154 static inline void mcf_insw(void *a, unsigned char *p, int l)
155 {
156 u16 *wp = (u16 *) p;
157 while (l-- > 0)
158 *wp++ = readw(a);
159 }
160
161 static inline void mcf_outsw(void *a, unsigned char *p, int l)
162 {
163 u16 *wp = (u16 *) p;
164 while (l-- > 0)
165 writew(*wp++, a);
166 }
167
168 #define SMC_inw(a, r) _swapw(readw((a) + (r)))
169 #define SMC_outw(v, a, r) writew(_swapw(v), (a) + (r))
170 #define SMC_insw(a, r, p, l) mcf_insw(a + r, p, l)
171 #define SMC_outsw(a, r, p, l) mcf_outsw(a + r, p, l)
172
173 #define SMC_IRQ_FLAGS 0
174
175 #elif defined(CONFIG_H8300)
176 #define SMC_CAN_USE_8BIT 1
177 #define SMC_CAN_USE_16BIT 0
178 #define SMC_CAN_USE_32BIT 0
179 #define SMC_NOWAIT 0
180
181 #define SMC_inb(a, r) ioread8((a) + (r))
182 #define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
183 #define SMC_insb(a, r, p, l) ioread8_rep((a) + (r), p, l)
184 #define SMC_outsb(a, r, p, l) iowrite8_rep((a) + (r), p, l)
185
186 #else
187
188 /*
189 * Default configuration
190 */
191
192 #define SMC_CAN_USE_8BIT 1
193 #define SMC_CAN_USE_16BIT 1
194 #define SMC_CAN_USE_32BIT 1
195 #define SMC_NOWAIT 1
196
197 #define SMC_IO_SHIFT (lp->io_shift)
198
199 #define SMC_inb(a, r) ioread8((a) + (r))
200 #define SMC_inw(a, r) ioread16((a) + (r))
201 #define SMC_inl(a, r) ioread32((a) + (r))
202 #define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
203 #define SMC_outw(v, a, r) iowrite16(v, (a) + (r))
204 #define SMC_outl(v, a, r) iowrite32(v, (a) + (r))
205 #define SMC_insw(a, r, p, l) ioread16_rep((a) + (r), p, l)
206 #define SMC_outsw(a, r, p, l) iowrite16_rep((a) + (r), p, l)
207 #define SMC_insl(a, r, p, l) ioread32_rep((a) + (r), p, l)
208 #define SMC_outsl(a, r, p, l) iowrite32_rep((a) + (r), p, l)
209
210 #define RPC_LSA_DEFAULT RPC_LED_100_10
211 #define RPC_LSB_DEFAULT RPC_LED_TX_RX
212
213 #endif
214
215
216 /* store this information for the driver.. */
217 struct smc_local {
218 /*
219 * If I have to wait until memory is available to send a
220 * packet, I will store the skbuff here, until I get the
221 * desired memory. Then, I'll send it out and free it.
222 */
223 struct sk_buff *pending_tx_skb;
224 struct tasklet_struct tx_task;
225
226 struct gpio_desc *power_gpio;
227 struct gpio_desc *reset_gpio;
228
229 /* version/revision of the SMC91x chip */
230 int version;
231
232 /* Contains the current active transmission mode */
233 int tcr_cur_mode;
234
235 /* Contains the current active receive mode */
236 int rcr_cur_mode;
237
238 /* Contains the current active receive/phy mode */
239 int rpc_cur_mode;
240 int ctl_rfduplx;
241 int ctl_rspeed;
242
243 u32 msg_enable;
244 u32 phy_type;
245 struct mii_if_info mii;
246
247 /* work queue */
248 struct work_struct phy_configure;
249 struct net_device *dev;
250 int work_pending;
251
252 spinlock_t lock;
253
254 #ifdef CONFIG_ARCH_PXA
255 /* DMA needs the physical address of the chip */
256 u_long physaddr;
257 struct device *device;
258 #endif
259 struct dma_chan *dma_chan;
260 void __iomem *base;
261 void __iomem *datacs;
262
263 /* the low address lines on some platforms aren't connected... */
264 int io_shift;
265
266 struct smc91x_platdata cfg;
267 };
268
269 #define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT)
270 #define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT)
271 #define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT)
272
273 #ifdef CONFIG_ARCH_PXA
274 /*
275 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
276 * always happening in irq context so no need to worry about races. TX is
277 * different and probably not worth it for that reason, and not as critical
278 * as RX which can overrun memory and lose packets.
279 */
280 #include <linux/dma-mapping.h>
281 #include <linux/dma/pxa-dma.h>
282
283 #ifdef SMC_insl
284 #undef SMC_insl
285 #define SMC_insl(a, r, p, l) \
286 smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
287 static inline void
288 smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
289 {
290 dma_addr_t dmabuf;
291 struct dma_async_tx_descriptor *tx;
292 dma_cookie_t cookie;
293 enum dma_status status;
294 struct dma_tx_state state;
295
296 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
297 tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
298 DMA_DEV_TO_MEM, 0);
299 if (tx) {
300 cookie = dmaengine_submit(tx);
301 dma_async_issue_pending(lp->dma_chan);
302 do {
303 status = dmaengine_tx_status(lp->dma_chan, cookie,
304 &state);
305 cpu_relax();
306 } while (status != DMA_COMPLETE && status != DMA_ERROR &&
307 state.residue);
308 dmaengine_terminate_all(lp->dma_chan);
309 }
310 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
311 }
312
313 static inline void
314 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
315 u_char *buf, int len)
316 {
317 struct dma_slave_config config;
318 int ret;
319
320 /* fallback if no DMA available */
321 if (!lp->dma_chan) {
322 readsl(ioaddr + reg, buf, len);
323 return;
324 }
325
326 /* 64 bit alignment is required for memory to memory DMA */
327 if ((long)buf & 4) {
328 *((u32 *)buf) = SMC_inl(ioaddr, reg);
329 buf += 4;
330 len--;
331 }
332
333 memset(&config, 0, sizeof(config));
334 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
335 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
336 config.src_addr = lp->physaddr + reg;
337 config.dst_addr = lp->physaddr + reg;
338 config.src_maxburst = 32;
339 config.dst_maxburst = 32;
340 ret = dmaengine_slave_config(lp->dma_chan, &config);
341 if (ret) {
342 dev_err(lp->device, "dma channel configuration failed: %d\n",
343 ret);
344 return;
345 }
346
347 len *= 4;
348 smc_pxa_dma_inpump(lp, buf, len);
349 }
350 #endif
351
352 #ifdef SMC_insw
353 #undef SMC_insw
354 #define SMC_insw(a, r, p, l) \
355 smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
356 static inline void
357 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
358 u_char *buf, int len)
359 {
360 struct dma_slave_config config;
361 int ret;
362
363 /* fallback if no DMA available */
364 if (!lp->dma_chan) {
365 readsw(ioaddr + reg, buf, len);
366 return;
367 }
368
369 /* 64 bit alignment is required for memory to memory DMA */
370 while ((long)buf & 6) {
371 *((u16 *)buf) = SMC_inw(ioaddr, reg);
372 buf += 2;
373 len--;
374 }
375
376 memset(&config, 0, sizeof(config));
377 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
378 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
379 config.src_addr = lp->physaddr + reg;
380 config.dst_addr = lp->physaddr + reg;
381 config.src_maxburst = 32;
382 config.dst_maxburst = 32;
383 ret = dmaengine_slave_config(lp->dma_chan, &config);
384 if (ret) {
385 dev_err(lp->device, "dma channel configuration failed: %d\n",
386 ret);
387 return;
388 }
389
390 len *= 2;
391 smc_pxa_dma_inpump(lp, buf, len);
392 }
393 #endif
394
395 #endif /* CONFIG_ARCH_PXA */
396
397
398 /*
399 * Everything a particular hardware setup needs should have been defined
400 * at this point. Add stubs for the undefined cases, mainly to avoid
401 * compilation warnings since they'll be optimized away, or to prevent buggy
402 * use of them.
403 */
404
405 #if ! SMC_CAN_USE_32BIT
406 #define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
407 #define SMC_outl(x, ioaddr, reg) BUG()
408 #define SMC_insl(a, r, p, l) BUG()
409 #define SMC_outsl(a, r, p, l) BUG()
410 #endif
411
412 #if !defined(SMC_insl) || !defined(SMC_outsl)
413 #define SMC_insl(a, r, p, l) BUG()
414 #define SMC_outsl(a, r, p, l) BUG()
415 #endif
416
417 #if ! SMC_CAN_USE_16BIT
418
419 /*
420 * Any 16-bit access is performed with two 8-bit accesses if the hardware
421 * can't do it directly. Most registers are 16-bit so those are mandatory.
422 */
423 #define SMC_outw(x, ioaddr, reg) \
424 do { \
425 unsigned int __val16 = (x); \
426 SMC_outb( __val16, ioaddr, reg ); \
427 SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
428 } while (0)
429 #define SMC_inw(ioaddr, reg) \
430 ({ \
431 unsigned int __val16; \
432 __val16 = SMC_inb( ioaddr, reg ); \
433 __val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
434 __val16; \
435 })
436
437 #define SMC_insw(a, r, p, l) BUG()
438 #define SMC_outsw(a, r, p, l) BUG()
439
440 #endif
441
442 #if !defined(SMC_insw) || !defined(SMC_outsw)
443 #define SMC_insw(a, r, p, l) BUG()
444 #define SMC_outsw(a, r, p, l) BUG()
445 #endif
446
447 #if ! SMC_CAN_USE_8BIT
448 #define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
449 #define SMC_outb(x, ioaddr, reg) BUG()
450 #define SMC_insb(a, r, p, l) BUG()
451 #define SMC_outsb(a, r, p, l) BUG()
452 #endif
453
454 #if !defined(SMC_insb) || !defined(SMC_outsb)
455 #define SMC_insb(a, r, p, l) BUG()
456 #define SMC_outsb(a, r, p, l) BUG()
457 #endif
458
459 #ifndef SMC_CAN_USE_DATACS
460 #define SMC_CAN_USE_DATACS 0
461 #endif
462
463 #ifndef SMC_IO_SHIFT
464 #define SMC_IO_SHIFT 0
465 #endif
466
467 #ifndef SMC_IRQ_FLAGS
468 #define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
469 #endif
470
471 #ifndef SMC_INTERRUPT_PREAMBLE
472 #define SMC_INTERRUPT_PREAMBLE
473 #endif
474
475
476 /* Because of bank switching, the LAN91x uses only 16 I/O ports */
477 #define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
478 #define SMC_DATA_EXTENT (4)
479
480 /*
481 . Bank Select Register:
482 .
483 . yyyy yyyy 0000 00xx
484 . xx = bank number
485 . yyyy yyyy = 0x33, for identification purposes.
486 */
487 #define BANK_SELECT (14 << SMC_IO_SHIFT)
488
489
490 // Transmit Control Register
491 /* BANK 0 */
492 #define TCR_REG(lp) SMC_REG(lp, 0x0000, 0)
493 #define TCR_ENABLE 0x0001 // When 1 we can transmit
494 #define TCR_LOOP 0x0002 // Controls output pin LBK
495 #define TCR_FORCOL 0x0004 // When 1 will force a collision
496 #define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
497 #define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
498 #define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
499 #define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
500 #define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
501 #define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
502 #define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
503
504 #define TCR_CLEAR 0 /* do NOTHING */
505 /* the default settings for the TCR register : */
506 #define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
507
508
509 // EPH Status Register
510 /* BANK 0 */
511 #define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0)
512 #define ES_TX_SUC 0x0001 // Last TX was successful
513 #define ES_SNGL_COL 0x0002 // Single collision detected for last tx
514 #define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
515 #define ES_LTX_MULT 0x0008 // Last tx was a multicast
516 #define ES_16COL 0x0010 // 16 Collisions Reached
517 #define ES_SQET 0x0020 // Signal Quality Error Test
518 #define ES_LTXBRD 0x0040 // Last tx was a broadcast
519 #define ES_TXDEFR 0x0080 // Transmit Deferred
520 #define ES_LATCOL 0x0200 // Late collision detected on last tx
521 #define ES_LOSTCARR 0x0400 // Lost Carrier Sense
522 #define ES_EXC_DEF 0x0800 // Excessive Deferral
523 #define ES_CTR_ROL 0x1000 // Counter Roll Over indication
524 #define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
525 #define ES_TXUNRN 0x8000 // Tx Underrun
526
527
528 // Receive Control Register
529 /* BANK 0 */
530 #define RCR_REG(lp) SMC_REG(lp, 0x0004, 0)
531 #define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
532 #define RCR_PRMS 0x0002 // Enable promiscuous mode
533 #define RCR_ALMUL 0x0004 // When set accepts all multicast frames
534 #define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
535 #define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
536 #define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
537 #define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
538 #define RCR_SOFTRST 0x8000 // resets the chip
539
540 /* the normal settings for the RCR register : */
541 #define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
542 #define RCR_CLEAR 0x0 // set it to a base state
543
544
545 // Counter Register
546 /* BANK 0 */
547 #define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0)
548
549
550 // Memory Information Register
551 /* BANK 0 */
552 #define MIR_REG(lp) SMC_REG(lp, 0x0008, 0)
553
554
555 // Receive/Phy Control Register
556 /* BANK 0 */
557 #define RPC_REG(lp) SMC_REG(lp, 0x000A, 0)
558 #define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
559 #define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
560 #define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
561 #define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
562 #define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
563
564 #ifndef RPC_LSA_DEFAULT
565 #define RPC_LSA_DEFAULT RPC_LED_100
566 #endif
567 #ifndef RPC_LSB_DEFAULT
568 #define RPC_LSB_DEFAULT RPC_LED_FD
569 #endif
570
571 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
572
573
574 /* Bank 0 0x0C is reserved */
575
576 // Bank Select Register
577 /* All Banks */
578 #define BSR_REG 0x000E
579
580
581 // Configuration Reg
582 /* BANK 1 */
583 #define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1)
584 #define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
585 #define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
586 #define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
587 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
588
589 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
590 #define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
591
592
593 // Base Address Register
594 /* BANK 1 */
595 #define BASE_REG(lp) SMC_REG(lp, 0x0002, 1)
596
597
598 // Individual Address Registers
599 /* BANK 1 */
600 #define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1)
601 #define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1)
602 #define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1)
603
604
605 // General Purpose Register
606 /* BANK 1 */
607 #define GP_REG(lp) SMC_REG(lp, 0x000A, 1)
608
609
610 // Control Register
611 /* BANK 1 */
612 #define CTL_REG(lp) SMC_REG(lp, 0x000C, 1)
613 #define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
614 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
615 #define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
616 #define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
617 #define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
618 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
619 #define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
620 #define CTL_STORE 0x0001 // When set stores registers into EEPROM
621
622
623 // MMU Command Register
624 /* BANK 2 */
625 #define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2)
626 #define MC_BUSY 1 // When 1 the last release has not completed
627 #define MC_NOP (0<<5) // No Op
628 #define MC_ALLOC (1<<5) // OR with number of 256 byte packets
629 #define MC_RESET (2<<5) // Reset MMU to initial state
630 #define MC_REMOVE (3<<5) // Remove the current rx packet
631 #define MC_RELEASE (4<<5) // Remove and release the current rx packet
632 #define MC_FREEPKT (5<<5) // Release packet in PNR register
633 #define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
634 #define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
635
636
637 // Packet Number Register
638 /* BANK 2 */
639 #define PN_REG(lp) SMC_REG(lp, 0x0002, 2)
640
641
642 // Allocation Result Register
643 /* BANK 2 */
644 #define AR_REG(lp) SMC_REG(lp, 0x0003, 2)
645 #define AR_FAILED 0x80 // Alocation Failed
646
647
648 // TX FIFO Ports Register
649 /* BANK 2 */
650 #define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
651 #define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
652
653 // RX FIFO Ports Register
654 /* BANK 2 */
655 #define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2)
656 #define RXFIFO_REMPTY 0x80 // RX FIFO Empty
657
658 #define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
659
660 // Pointer Register
661 /* BANK 2 */
662 #define PTR_REG(lp) SMC_REG(lp, 0x0006, 2)
663 #define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
664 #define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
665 #define PTR_READ 0x2000 // When 1 the operation is a read
666
667
668 // Data Register
669 /* BANK 2 */
670 #define DATA_REG(lp) SMC_REG(lp, 0x0008, 2)
671
672
673 // Interrupt Status/Acknowledge Register
674 /* BANK 2 */
675 #define INT_REG(lp) SMC_REG(lp, 0x000C, 2)
676
677
678 // Interrupt Mask Register
679 /* BANK 2 */
680 #define IM_REG(lp) SMC_REG(lp, 0x000D, 2)
681 #define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
682 #define IM_ERCV_INT 0x40 // Early Receive Interrupt
683 #define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
684 #define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
685 #define IM_ALLOC_INT 0x08 // Set when allocation request is completed
686 #define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
687 #define IM_TX_INT 0x02 // Transmit Interrupt
688 #define IM_RCV_INT 0x01 // Receive Interrupt
689
690
691 // Multicast Table Registers
692 /* BANK 3 */
693 #define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3)
694 #define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3)
695 #define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3)
696 #define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3)
697
698
699 // Management Interface Register (MII)
700 /* BANK 3 */
701 #define MII_REG(lp) SMC_REG(lp, 0x0008, 3)
702 #define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
703 #define MII_MDOE 0x0008 // MII Output Enable
704 #define MII_MCLK 0x0004 // MII Clock, pin MDCLK
705 #define MII_MDI 0x0002 // MII Input, pin MDI
706 #define MII_MDO 0x0001 // MII Output, pin MDO
707
708
709 // Revision Register
710 /* BANK 3 */
711 /* ( hi: chip id low: rev # ) */
712 #define REV_REG(lp) SMC_REG(lp, 0x000A, 3)
713
714
715 // Early RCV Register
716 /* BANK 3 */
717 /* this is NOT on SMC9192 */
718 #define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3)
719 #define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
720 #define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
721
722
723 // External Register
724 /* BANK 7 */
725 #define EXT_REG(lp) SMC_REG(lp, 0x0000, 7)
726
727
728 #define CHIP_9192 3
729 #define CHIP_9194 4
730 #define CHIP_9195 5
731 #define CHIP_9196 6
732 #define CHIP_91100 7
733 #define CHIP_91100FD 8
734 #define CHIP_91111FD 9
735
736 static const char * chip_ids[ 16 ] = {
737 NULL, NULL, NULL,
738 /* 3 */ "SMC91C90/91C92",
739 /* 4 */ "SMC91C94",
740 /* 5 */ "SMC91C95",
741 /* 6 */ "SMC91C96",
742 /* 7 */ "SMC91C100",
743 /* 8 */ "SMC91C100FD",
744 /* 9 */ "SMC91C11xFD",
745 NULL, NULL, NULL,
746 NULL, NULL, NULL};
747
748
749 /*
750 . Receive status bits
751 */
752 #define RS_ALGNERR 0x8000
753 #define RS_BRODCAST 0x4000
754 #define RS_BADCRC 0x2000
755 #define RS_ODDFRAME 0x1000
756 #define RS_TOOLONG 0x0800
757 #define RS_TOOSHORT 0x0400
758 #define RS_MULTICAST 0x0001
759 #define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
760
761
762 /*
763 * PHY IDs
764 * LAN83C183 == LAN91C111 Internal PHY
765 */
766 #define PHY_LAN83C183 0x0016f840
767 #define PHY_LAN83C180 0x02821c50
768
769 /*
770 * PHY Register Addresses (LAN91C111 Internal PHY)
771 *
772 * Generic PHY registers can be found in <linux/mii.h>
773 *
774 * These phy registers are specific to our on-board phy.
775 */
776
777 // PHY Configuration Register 1
778 #define PHY_CFG1_REG 0x10
779 #define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
780 #define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
781 #define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
782 #define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
783 #define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
784 #define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
785 #define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
786 #define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
787 #define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
788 #define PHY_CFG1_TLVL_MASK 0x003C
789 #define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
790
791
792 // PHY Configuration Register 2
793 #define PHY_CFG2_REG 0x11
794 #define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
795 #define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
796 #define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
797 #define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
798
799 // PHY Status Output (and Interrupt status) Register
800 #define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
801 #define PHY_INT_INT 0x8000 // 1=bits have changed since last read
802 #define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
803 #define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
804 #define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
805 #define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
806 #define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
807 #define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
808 #define PHY_INT_JAB 0x0100 // 1=Jabber detected
809 #define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
810 #define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
811
812 // PHY Interrupt/Status Mask Register
813 #define PHY_MASK_REG 0x13 // Interrupt Mask
814 // Uses the same bit definitions as PHY_INT_REG
815
816
817 /*
818 * SMC91C96 ethernet config and status registers.
819 * These are in the "attribute" space.
820 */
821 #define ECOR 0x8000
822 #define ECOR_RESET 0x80
823 #define ECOR_LEVEL_IRQ 0x40
824 #define ECOR_WR_ATTRIB 0x04
825 #define ECOR_ENABLE 0x01
826
827 #define ECSR 0x8002
828 #define ECSR_IOIS8 0x20
829 #define ECSR_PWRDWN 0x04
830 #define ECSR_INT 0x02
831
832 #define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
833
834
835 /*
836 * Macros to abstract register access according to the data bus
837 * capabilities. Please use those and not the in/out primitives.
838 * Note: the following macros do *not* select the bank -- this must
839 * be done separately as needed in the main code. The SMC_REG() macro
840 * only uses the bank argument for debugging purposes (when enabled).
841 *
842 * Note: despite inline functions being safer, everything leading to this
843 * should preferably be macros to let BUG() display the line number in
844 * the core source code since we're interested in the top call site
845 * not in any inline function location.
846 */
847
848 #if SMC_DEBUG > 0
849 #define SMC_REG(lp, reg, bank) \
850 ({ \
851 int __b = SMC_CURRENT_BANK(lp); \
852 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
853 pr_err("%s: bank reg screwed (0x%04x)\n", \
854 CARDNAME, __b); \
855 BUG(); \
856 } \
857 reg<<SMC_IO_SHIFT; \
858 })
859 #else
860 #define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT)
861 #endif
862
863 /*
864 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
865 * aligned to a 32 bit boundary. I tell you that does exist!
866 * Fortunately the affected register accesses can be easily worked around
867 * since we can write zeroes to the preceding 16 bits without adverse
868 * effects and use a 32-bit access.
869 *
870 * Enforce it on any 32-bit capable setup for now.
871 */
872 #define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp)
873
874 #define SMC_GET_PN(lp) \
875 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \
876 : (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
877
878 #define SMC_SET_PN(lp, x) \
879 do { \
880 if (SMC_MUST_ALIGN_WRITE(lp)) \
881 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \
882 else if (SMC_8BIT(lp)) \
883 SMC_outb(x, ioaddr, PN_REG(lp)); \
884 else \
885 SMC_outw(x, ioaddr, PN_REG(lp)); \
886 } while (0)
887
888 #define SMC_GET_AR(lp) \
889 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \
890 : (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
891
892 #define SMC_GET_TXFIFO(lp) \
893 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \
894 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
895
896 #define SMC_GET_RXFIFO(lp) \
897 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \
898 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
899
900 #define SMC_GET_INT(lp) \
901 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \
902 : (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
903
904 #define SMC_ACK_INT(lp, x) \
905 do { \
906 if (SMC_8BIT(lp)) \
907 SMC_outb(x, ioaddr, INT_REG(lp)); \
908 else { \
909 unsigned long __flags; \
910 int __mask; \
911 local_irq_save(__flags); \
912 __mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
913 SMC_outw(__mask | (x), ioaddr, INT_REG(lp)); \
914 local_irq_restore(__flags); \
915 } \
916 } while (0)
917
918 #define SMC_GET_INT_MASK(lp) \
919 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \
920 : (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
921
922 #define SMC_SET_INT_MASK(lp, x) \
923 do { \
924 if (SMC_8BIT(lp)) \
925 SMC_outb(x, ioaddr, IM_REG(lp)); \
926 else \
927 SMC_outw((x) << 8, ioaddr, INT_REG(lp)); \
928 } while (0)
929
930 #define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT)
931
932 #define SMC_SELECT_BANK(lp, x) \
933 do { \
934 if (SMC_MUST_ALIGN_WRITE(lp)) \
935 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
936 else \
937 SMC_outw(x, ioaddr, BANK_SELECT); \
938 } while (0)
939
940 #define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp))
941
942 #define SMC_SET_BASE(lp, x) SMC_outw(x, ioaddr, BASE_REG(lp))
943
944 #define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp))
945
946 #define SMC_SET_CONFIG(lp, x) SMC_outw(x, ioaddr, CONFIG_REG(lp))
947
948 #define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp))
949
950 #define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp))
951
952 #define SMC_SET_CTL(lp, x) SMC_outw(x, ioaddr, CTL_REG(lp))
953
954 #define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp))
955
956 #define SMC_GET_GP(lp) SMC_inw(ioaddr, GP_REG(lp))
957
958 #define SMC_SET_GP(lp, x) \
959 do { \
960 if (SMC_MUST_ALIGN_WRITE(lp)) \
961 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1)); \
962 else \
963 SMC_outw(x, ioaddr, GP_REG(lp)); \
964 } while (0)
965
966 #define SMC_SET_MII(lp, x) SMC_outw(x, ioaddr, MII_REG(lp))
967
968 #define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp))
969
970 #define SMC_SET_MIR(lp, x) SMC_outw(x, ioaddr, MIR_REG(lp))
971
972 #define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp))
973
974 #define SMC_SET_MMU_CMD(lp, x) SMC_outw(x, ioaddr, MMU_CMD_REG(lp))
975
976 #define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp))
977
978 #define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp))
979
980 #define SMC_SET_PTR(lp, x) \
981 do { \
982 if (SMC_MUST_ALIGN_WRITE(lp)) \
983 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \
984 else \
985 SMC_outw(x, ioaddr, PTR_REG(lp)); \
986 } while (0)
987
988 #define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp))
989
990 #define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp))
991
992 #define SMC_SET_RCR(lp, x) SMC_outw(x, ioaddr, RCR_REG(lp))
993
994 #define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp))
995
996 #define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp))
997
998 #define SMC_SET_RPC(lp, x) \
999 do { \
1000 if (SMC_MUST_ALIGN_WRITE(lp)) \
1001 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \
1002 else \
1003 SMC_outw(x, ioaddr, RPC_REG(lp)); \
1004 } while (0)
1005
1006 #define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp))
1007
1008 #define SMC_SET_TCR(lp, x) SMC_outw(x, ioaddr, TCR_REG(lp))
1009
1010 #ifndef SMC_GET_MAC_ADDR
1011 #define SMC_GET_MAC_ADDR(lp, addr) \
1012 do { \
1013 unsigned int __v; \
1014 __v = SMC_inw(ioaddr, ADDR0_REG(lp)); \
1015 addr[0] = __v; addr[1] = __v >> 8; \
1016 __v = SMC_inw(ioaddr, ADDR1_REG(lp)); \
1017 addr[2] = __v; addr[3] = __v >> 8; \
1018 __v = SMC_inw(ioaddr, ADDR2_REG(lp)); \
1019 addr[4] = __v; addr[5] = __v >> 8; \
1020 } while (0)
1021 #endif
1022
1023 #define SMC_SET_MAC_ADDR(lp, addr) \
1024 do { \
1025 SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1026 SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1027 SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1028 } while (0)
1029
1030 #define SMC_SET_MCAST(lp, x) \
1031 do { \
1032 const unsigned char *mt = (x); \
1033 SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1034 SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1035 SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1036 SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1037 } while (0)
1038
1039 #define SMC_PUT_PKT_HDR(lp, status, length) \
1040 do { \
1041 if (SMC_32BIT(lp)) \
1042 SMC_outl((status) | (length)<<16, ioaddr, \
1043 DATA_REG(lp)); \
1044 else { \
1045 SMC_outw(status, ioaddr, DATA_REG(lp)); \
1046 SMC_outw(length, ioaddr, DATA_REG(lp)); \
1047 } \
1048 } while (0)
1049
1050 #define SMC_GET_PKT_HDR(lp, status, length) \
1051 do { \
1052 if (SMC_32BIT(lp)) { \
1053 unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1054 (status) = __val & 0xffff; \
1055 (length) = __val >> 16; \
1056 } else { \
1057 (status) = SMC_inw(ioaddr, DATA_REG(lp)); \
1058 (length) = SMC_inw(ioaddr, DATA_REG(lp)); \
1059 } \
1060 } while (0)
1061
1062 #define SMC_PUSH_DATA(lp, p, l) \
1063 do { \
1064 if (SMC_32BIT(lp)) { \
1065 void *__ptr = (p); \
1066 int __len = (l); \
1067 void __iomem *__ioaddr = ioaddr; \
1068 if (__len >= 2 && (unsigned long)__ptr & 2) { \
1069 __len -= 2; \
1070 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1071 __ptr += 2; \
1072 } \
1073 if (SMC_CAN_USE_DATACS && lp->datacs) \
1074 __ioaddr = lp->datacs; \
1075 SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1076 if (__len & 2) { \
1077 __ptr += (__len & ~3); \
1078 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1079 } \
1080 } else if (SMC_16BIT(lp)) \
1081 SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1082 else if (SMC_8BIT(lp)) \
1083 SMC_outsb(ioaddr, DATA_REG(lp), p, l); \
1084 } while (0)
1085
1086 #define SMC_PULL_DATA(lp, p, l) \
1087 do { \
1088 if (SMC_32BIT(lp)) { \
1089 void *__ptr = (p); \
1090 int __len = (l); \
1091 void __iomem *__ioaddr = ioaddr; \
1092 if ((unsigned long)__ptr & 2) { \
1093 /* \
1094 * We want 32bit alignment here. \
1095 * Since some buses perform a full \
1096 * 32bit fetch even for 16bit data \
1097 * we can't use SMC_inw() here. \
1098 * Back both source (on-chip) and \
1099 * destination pointers of 2 bytes. \
1100 * This is possible since the call to \
1101 * SMC_GET_PKT_HDR() already advanced \
1102 * the source pointer of 4 bytes, and \
1103 * the skb_reserve(skb, 2) advanced \
1104 * the destination pointer of 2 bytes. \
1105 */ \
1106 __ptr -= 2; \
1107 __len += 2; \
1108 SMC_SET_PTR(lp, \
1109 2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1110 } \
1111 if (SMC_CAN_USE_DATACS && lp->datacs) \
1112 __ioaddr = lp->datacs; \
1113 __len += 2; \
1114 SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1115 } else if (SMC_16BIT(lp)) \
1116 SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1117 else if (SMC_8BIT(lp)) \
1118 SMC_insb(ioaddr, DATA_REG(lp), p, l); \
1119 } while (0)
1120
1121 #endif /* _SMC91X_H_ */