]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/smsc/smc91x.h
Merge branch 'spi-5.1' into spi-5.2
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / smsc / smc91x.h
1 /*------------------------------------------------------------------------
2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3 .
4 . Copyright (C) 1996 by Erik Stahlman
5 . Copyright (C) 2001 Standard Microsystems Corporation
6 . Developed by Simple Network Magic Corporation
7 . Copyright (C) 2003 Monta Vista Software, Inc.
8 . Unified SMC91x driver by Nicolas Pitre
9 .
10 . This program is free software; you can redistribute it and/or modify
11 . it under the terms of the GNU General Public License as published by
12 . the Free Software Foundation; either version 2 of the License, or
13 . (at your option) any later version.
14 .
15 . This program is distributed in the hope that it will be useful,
16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 . GNU General Public License for more details.
19 .
20 . You should have received a copy of the GNU General Public License
21 . along with this program; if not, see <http://www.gnu.org/licenses/>.
22 .
23 . Information contained in this file was obtained from the LAN91C111
24 . manual from SMC. To get a copy, if you really want one, you can find
25 . information under www.smsc.com.
26 .
27 . Authors
28 . Erik Stahlman <erik@vt.edu>
29 . Daris A Nevil <dnevil@snmc.com>
30 . Nicolas Pitre <nico@fluxnic.net>
31 .
32 ---------------------------------------------------------------------------*/
33 #ifndef _SMC91X_H_
34 #define _SMC91X_H_
35
36 #include <linux/dmaengine.h>
37 #include <linux/smc91x.h>
38
39 /*
40 * Any 16-bit access is performed with two 8-bit accesses if the hardware
41 * can't do it directly. Most registers are 16-bit so those are mandatory.
42 */
43 #define SMC_outw_b(x, a, r) \
44 do { \
45 unsigned int __val16 = (x); \
46 unsigned int __reg = (r); \
47 SMC_outb(__val16, a, __reg); \
48 SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT)); \
49 } while (0)
50
51 #define SMC_inw_b(a, r) \
52 ({ \
53 unsigned int __val16; \
54 unsigned int __reg = r; \
55 __val16 = SMC_inb(a, __reg); \
56 __val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
57 __val16; \
58 })
59
60 /*
61 * Define your architecture specific bus configuration parameters here.
62 */
63
64 #if defined(CONFIG_ARM)
65
66 #include <asm/mach-types.h>
67
68 /* Now the bus width is specified in the platform data
69 * pretend here to support all I/O access types
70 */
71 #define SMC_CAN_USE_8BIT 1
72 #define SMC_CAN_USE_16BIT 1
73 #define SMC_CAN_USE_32BIT 1
74 #define SMC_NOWAIT 1
75
76 #define SMC_IO_SHIFT (lp->io_shift)
77
78 #define SMC_inb(a, r) readb((a) + (r))
79 #define SMC_inw(a, r) \
80 ({ \
81 unsigned int __smc_r = r; \
82 SMC_16BIT(lp) ? readw((a) + __smc_r) : \
83 SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) : \
84 ({ BUG(); 0; }); \
85 })
86
87 #define SMC_inl(a, r) readl((a) + (r))
88 #define SMC_outb(v, a, r) writeb(v, (a) + (r))
89 #define SMC_outw(lp, v, a, r) \
90 do { \
91 unsigned int __v = v, __smc_r = r; \
92 if (SMC_16BIT(lp)) \
93 __SMC_outw(lp, __v, a, __smc_r); \
94 else if (SMC_8BIT(lp)) \
95 SMC_outw_b(__v, a, __smc_r); \
96 else \
97 BUG(); \
98 } while (0)
99
100 #define SMC_outl(v, a, r) writel(v, (a) + (r))
101 #define SMC_insb(a, r, p, l) readsb((a) + (r), p, l)
102 #define SMC_outsb(a, r, p, l) writesb((a) + (r), p, l)
103 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
104 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
105 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
106 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
107 #define SMC_IRQ_FLAGS (-1) /* from resource */
108
109 /* We actually can't write halfwords properly if not word aligned */
110 static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
111 bool use_align4_workaround)
112 {
113 if (use_align4_workaround) {
114 unsigned int v = val << 16;
115 v |= readl(ioaddr + (reg & ~2)) & 0xffff;
116 writel(v, ioaddr + (reg & ~2));
117 } else {
118 writew(val, ioaddr + reg);
119 }
120 }
121
122 #define __SMC_outw(lp, v, a, r) \
123 _SMC_outw_align4((v), (a), (r), \
124 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) && \
125 (lp)->cfg.pxa_u16_align4)
126
127
128 #elif defined(CONFIG_SH_SH4202_MICRODEV)
129
130 #define SMC_CAN_USE_8BIT 0
131 #define SMC_CAN_USE_16BIT 1
132 #define SMC_CAN_USE_32BIT 0
133
134 #define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
135 #define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
136 #define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
137 #define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
138 #define SMC_outw(lp, v, a, r) outw(v, (a) + (r) - 0xa0000000)
139 #define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
140 #define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
141 #define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
142 #define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
143 #define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
144
145 #define SMC_IRQ_FLAGS (0)
146
147 #elif defined(CONFIG_ATARI)
148
149 #define SMC_CAN_USE_8BIT 1
150 #define SMC_CAN_USE_16BIT 1
151 #define SMC_CAN_USE_32BIT 1
152 #define SMC_NOWAIT 1
153
154 #define SMC_inb(a, r) readb((a) + (r))
155 #define SMC_inw(a, r) readw((a) + (r))
156 #define SMC_inl(a, r) readl((a) + (r))
157 #define SMC_outb(v, a, r) writeb(v, (a) + (r))
158 #define SMC_outw(lp, v, a, r) writew(v, (a) + (r))
159 #define SMC_outl(v, a, r) writel(v, (a) + (r))
160 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
161 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
162 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
163 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
164
165 #define RPC_LSA_DEFAULT RPC_LED_100_10
166 #define RPC_LSB_DEFAULT RPC_LED_TX_RX
167
168 #elif defined(CONFIG_COLDFIRE)
169
170 #define SMC_CAN_USE_8BIT 0
171 #define SMC_CAN_USE_16BIT 1
172 #define SMC_CAN_USE_32BIT 0
173 #define SMC_NOWAIT 1
174
175 static inline void mcf_insw(void *a, unsigned char *p, int l)
176 {
177 u16 *wp = (u16 *) p;
178 while (l-- > 0)
179 *wp++ = readw(a);
180 }
181
182 static inline void mcf_outsw(void *a, unsigned char *p, int l)
183 {
184 u16 *wp = (u16 *) p;
185 while (l-- > 0)
186 writew(*wp++, a);
187 }
188
189 #define SMC_inw(a, r) _swapw(readw((a) + (r)))
190 #define SMC_outw(lp, v, a, r) writew(_swapw(v), (a) + (r))
191 #define SMC_insw(a, r, p, l) mcf_insw(a + r, p, l)
192 #define SMC_outsw(a, r, p, l) mcf_outsw(a + r, p, l)
193
194 #define SMC_IRQ_FLAGS 0
195
196 #elif defined(CONFIG_H8300)
197 #define SMC_CAN_USE_8BIT 1
198 #define SMC_CAN_USE_16BIT 0
199 #define SMC_CAN_USE_32BIT 0
200 #define SMC_NOWAIT 0
201
202 #define SMC_inb(a, r) ioread8((a) + (r))
203 #define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
204 #define SMC_insb(a, r, p, l) ioread8_rep((a) + (r), p, l)
205 #define SMC_outsb(a, r, p, l) iowrite8_rep((a) + (r), p, l)
206
207 #else
208
209 /*
210 * Default configuration
211 */
212
213 #define SMC_CAN_USE_8BIT 1
214 #define SMC_CAN_USE_16BIT 1
215 #define SMC_CAN_USE_32BIT 1
216 #define SMC_NOWAIT 1
217
218 #define SMC_IO_SHIFT (lp->io_shift)
219
220 #define SMC_inb(a, r) ioread8((a) + (r))
221 #define SMC_inw(a, r) ioread16((a) + (r))
222 #define SMC_inl(a, r) ioread32((a) + (r))
223 #define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
224 #define SMC_outw(lp, v, a, r) iowrite16(v, (a) + (r))
225 #define SMC_outl(v, a, r) iowrite32(v, (a) + (r))
226 #define SMC_insw(a, r, p, l) ioread16_rep((a) + (r), p, l)
227 #define SMC_outsw(a, r, p, l) iowrite16_rep((a) + (r), p, l)
228 #define SMC_insl(a, r, p, l) ioread32_rep((a) + (r), p, l)
229 #define SMC_outsl(a, r, p, l) iowrite32_rep((a) + (r), p, l)
230
231 #define RPC_LSA_DEFAULT RPC_LED_100_10
232 #define RPC_LSB_DEFAULT RPC_LED_TX_RX
233
234 #endif
235
236
237 /* store this information for the driver.. */
238 struct smc_local {
239 /*
240 * If I have to wait until memory is available to send a
241 * packet, I will store the skbuff here, until I get the
242 * desired memory. Then, I'll send it out and free it.
243 */
244 struct sk_buff *pending_tx_skb;
245 struct tasklet_struct tx_task;
246
247 struct gpio_desc *power_gpio;
248 struct gpio_desc *reset_gpio;
249
250 /* version/revision of the SMC91x chip */
251 int version;
252
253 /* Contains the current active transmission mode */
254 int tcr_cur_mode;
255
256 /* Contains the current active receive mode */
257 int rcr_cur_mode;
258
259 /* Contains the current active receive/phy mode */
260 int rpc_cur_mode;
261 int ctl_rfduplx;
262 int ctl_rspeed;
263
264 u32 msg_enable;
265 u32 phy_type;
266 struct mii_if_info mii;
267
268 /* work queue */
269 struct work_struct phy_configure;
270 struct net_device *dev;
271 int work_pending;
272
273 spinlock_t lock;
274
275 #ifdef CONFIG_ARCH_PXA
276 /* DMA needs the physical address of the chip */
277 u_long physaddr;
278 struct device *device;
279 #endif
280 struct dma_chan *dma_chan;
281 void __iomem *base;
282 void __iomem *datacs;
283
284 /* the low address lines on some platforms aren't connected... */
285 int io_shift;
286 /* on some platforms a u16 write must be 4-bytes aligned */
287 bool half_word_align4;
288
289 struct smc91x_platdata cfg;
290 };
291
292 #define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT)
293 #define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT)
294 #define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT)
295
296 #ifdef CONFIG_ARCH_PXA
297 /*
298 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
299 * always happening in irq context so no need to worry about races. TX is
300 * different and probably not worth it for that reason, and not as critical
301 * as RX which can overrun memory and lose packets.
302 */
303 #include <linux/dma-mapping.h>
304
305 #ifdef SMC_insl
306 #undef SMC_insl
307 #define SMC_insl(a, r, p, l) \
308 smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
309 static inline void
310 smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
311 {
312 dma_addr_t dmabuf;
313 struct dma_async_tx_descriptor *tx;
314 dma_cookie_t cookie;
315 enum dma_status status;
316 struct dma_tx_state state;
317
318 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
319 tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
320 DMA_DEV_TO_MEM, 0);
321 if (tx) {
322 cookie = dmaengine_submit(tx);
323 dma_async_issue_pending(lp->dma_chan);
324 do {
325 status = dmaengine_tx_status(lp->dma_chan, cookie,
326 &state);
327 cpu_relax();
328 } while (status != DMA_COMPLETE && status != DMA_ERROR &&
329 state.residue);
330 dmaengine_terminate_all(lp->dma_chan);
331 }
332 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
333 }
334
335 static inline void
336 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
337 u_char *buf, int len)
338 {
339 struct dma_slave_config config;
340 int ret;
341
342 /* fallback if no DMA available */
343 if (!lp->dma_chan) {
344 readsl(ioaddr + reg, buf, len);
345 return;
346 }
347
348 /* 64 bit alignment is required for memory to memory DMA */
349 if ((long)buf & 4) {
350 *((u32 *)buf) = SMC_inl(ioaddr, reg);
351 buf += 4;
352 len--;
353 }
354
355 memset(&config, 0, sizeof(config));
356 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
357 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
358 config.src_addr = lp->physaddr + reg;
359 config.dst_addr = lp->physaddr + reg;
360 config.src_maxburst = 32;
361 config.dst_maxburst = 32;
362 ret = dmaengine_slave_config(lp->dma_chan, &config);
363 if (ret) {
364 dev_err(lp->device, "dma channel configuration failed: %d\n",
365 ret);
366 return;
367 }
368
369 len *= 4;
370 smc_pxa_dma_inpump(lp, buf, len);
371 }
372 #endif
373
374 #ifdef SMC_insw
375 #undef SMC_insw
376 #define SMC_insw(a, r, p, l) \
377 smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
378 static inline void
379 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
380 u_char *buf, int len)
381 {
382 struct dma_slave_config config;
383 int ret;
384
385 /* fallback if no DMA available */
386 if (!lp->dma_chan) {
387 readsw(ioaddr + reg, buf, len);
388 return;
389 }
390
391 /* 64 bit alignment is required for memory to memory DMA */
392 while ((long)buf & 6) {
393 *((u16 *)buf) = SMC_inw(ioaddr, reg);
394 buf += 2;
395 len--;
396 }
397
398 memset(&config, 0, sizeof(config));
399 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
400 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
401 config.src_addr = lp->physaddr + reg;
402 config.dst_addr = lp->physaddr + reg;
403 config.src_maxburst = 32;
404 config.dst_maxburst = 32;
405 ret = dmaengine_slave_config(lp->dma_chan, &config);
406 if (ret) {
407 dev_err(lp->device, "dma channel configuration failed: %d\n",
408 ret);
409 return;
410 }
411
412 len *= 2;
413 smc_pxa_dma_inpump(lp, buf, len);
414 }
415 #endif
416
417 #endif /* CONFIG_ARCH_PXA */
418
419
420 /*
421 * Everything a particular hardware setup needs should have been defined
422 * at this point. Add stubs for the undefined cases, mainly to avoid
423 * compilation warnings since they'll be optimized away, or to prevent buggy
424 * use of them.
425 */
426
427 #if ! SMC_CAN_USE_32BIT
428 #define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
429 #define SMC_outl(x, ioaddr, reg) BUG()
430 #define SMC_insl(a, r, p, l) BUG()
431 #define SMC_outsl(a, r, p, l) BUG()
432 #endif
433
434 #if !defined(SMC_insl) || !defined(SMC_outsl)
435 #define SMC_insl(a, r, p, l) BUG()
436 #define SMC_outsl(a, r, p, l) BUG()
437 #endif
438
439 #if ! SMC_CAN_USE_16BIT
440
441 #define SMC_outw(lp, x, ioaddr, reg) SMC_outw_b(x, ioaddr, reg)
442 #define SMC_inw(ioaddr, reg) SMC_inw_b(ioaddr, reg)
443 #define SMC_insw(a, r, p, l) BUG()
444 #define SMC_outsw(a, r, p, l) BUG()
445
446 #endif
447
448 #if !defined(SMC_insw) || !defined(SMC_outsw)
449 #define SMC_insw(a, r, p, l) BUG()
450 #define SMC_outsw(a, r, p, l) BUG()
451 #endif
452
453 #if ! SMC_CAN_USE_8BIT
454 #undef SMC_inb
455 #define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
456 #undef SMC_outb
457 #define SMC_outb(x, ioaddr, reg) BUG()
458 #define SMC_insb(a, r, p, l) BUG()
459 #define SMC_outsb(a, r, p, l) BUG()
460 #endif
461
462 #if !defined(SMC_insb) || !defined(SMC_outsb)
463 #define SMC_insb(a, r, p, l) BUG()
464 #define SMC_outsb(a, r, p, l) BUG()
465 #endif
466
467 #ifndef SMC_CAN_USE_DATACS
468 #define SMC_CAN_USE_DATACS 0
469 #endif
470
471 #ifndef SMC_IO_SHIFT
472 #define SMC_IO_SHIFT 0
473 #endif
474
475 #ifndef SMC_IRQ_FLAGS
476 #define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
477 #endif
478
479 #ifndef SMC_INTERRUPT_PREAMBLE
480 #define SMC_INTERRUPT_PREAMBLE
481 #endif
482
483
484 /* Because of bank switching, the LAN91x uses only 16 I/O ports */
485 #define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
486 #define SMC_DATA_EXTENT (4)
487
488 /*
489 . Bank Select Register:
490 .
491 . yyyy yyyy 0000 00xx
492 . xx = bank number
493 . yyyy yyyy = 0x33, for identification purposes.
494 */
495 #define BANK_SELECT (14 << SMC_IO_SHIFT)
496
497
498 // Transmit Control Register
499 /* BANK 0 */
500 #define TCR_REG(lp) SMC_REG(lp, 0x0000, 0)
501 #define TCR_ENABLE 0x0001 // When 1 we can transmit
502 #define TCR_LOOP 0x0002 // Controls output pin LBK
503 #define TCR_FORCOL 0x0004 // When 1 will force a collision
504 #define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
505 #define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
506 #define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
507 #define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
508 #define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
509 #define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
510 #define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
511
512 #define TCR_CLEAR 0 /* do NOTHING */
513 /* the default settings for the TCR register : */
514 #define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
515
516
517 // EPH Status Register
518 /* BANK 0 */
519 #define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0)
520 #define ES_TX_SUC 0x0001 // Last TX was successful
521 #define ES_SNGL_COL 0x0002 // Single collision detected for last tx
522 #define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
523 #define ES_LTX_MULT 0x0008 // Last tx was a multicast
524 #define ES_16COL 0x0010 // 16 Collisions Reached
525 #define ES_SQET 0x0020 // Signal Quality Error Test
526 #define ES_LTXBRD 0x0040 // Last tx was a broadcast
527 #define ES_TXDEFR 0x0080 // Transmit Deferred
528 #define ES_LATCOL 0x0200 // Late collision detected on last tx
529 #define ES_LOSTCARR 0x0400 // Lost Carrier Sense
530 #define ES_EXC_DEF 0x0800 // Excessive Deferral
531 #define ES_CTR_ROL 0x1000 // Counter Roll Over indication
532 #define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
533 #define ES_TXUNRN 0x8000 // Tx Underrun
534
535
536 // Receive Control Register
537 /* BANK 0 */
538 #define RCR_REG(lp) SMC_REG(lp, 0x0004, 0)
539 #define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
540 #define RCR_PRMS 0x0002 // Enable promiscuous mode
541 #define RCR_ALMUL 0x0004 // When set accepts all multicast frames
542 #define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
543 #define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
544 #define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
545 #define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
546 #define RCR_SOFTRST 0x8000 // resets the chip
547
548 /* the normal settings for the RCR register : */
549 #define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
550 #define RCR_CLEAR 0x0 // set it to a base state
551
552
553 // Counter Register
554 /* BANK 0 */
555 #define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0)
556
557
558 // Memory Information Register
559 /* BANK 0 */
560 #define MIR_REG(lp) SMC_REG(lp, 0x0008, 0)
561
562
563 // Receive/Phy Control Register
564 /* BANK 0 */
565 #define RPC_REG(lp) SMC_REG(lp, 0x000A, 0)
566 #define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
567 #define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
568 #define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
569 #define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
570 #define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
571
572 #ifndef RPC_LSA_DEFAULT
573 #define RPC_LSA_DEFAULT RPC_LED_100
574 #endif
575 #ifndef RPC_LSB_DEFAULT
576 #define RPC_LSB_DEFAULT RPC_LED_FD
577 #endif
578
579 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
580
581
582 /* Bank 0 0x0C is reserved */
583
584 // Bank Select Register
585 /* All Banks */
586 #define BSR_REG 0x000E
587
588
589 // Configuration Reg
590 /* BANK 1 */
591 #define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1)
592 #define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
593 #define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
594 #define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
595 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
596
597 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
598 #define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
599
600
601 // Base Address Register
602 /* BANK 1 */
603 #define BASE_REG(lp) SMC_REG(lp, 0x0002, 1)
604
605
606 // Individual Address Registers
607 /* BANK 1 */
608 #define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1)
609 #define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1)
610 #define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1)
611
612
613 // General Purpose Register
614 /* BANK 1 */
615 #define GP_REG(lp) SMC_REG(lp, 0x000A, 1)
616
617
618 // Control Register
619 /* BANK 1 */
620 #define CTL_REG(lp) SMC_REG(lp, 0x000C, 1)
621 #define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
622 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
623 #define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
624 #define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
625 #define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
626 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
627 #define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
628 #define CTL_STORE 0x0001 // When set stores registers into EEPROM
629
630
631 // MMU Command Register
632 /* BANK 2 */
633 #define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2)
634 #define MC_BUSY 1 // When 1 the last release has not completed
635 #define MC_NOP (0<<5) // No Op
636 #define MC_ALLOC (1<<5) // OR with number of 256 byte packets
637 #define MC_RESET (2<<5) // Reset MMU to initial state
638 #define MC_REMOVE (3<<5) // Remove the current rx packet
639 #define MC_RELEASE (4<<5) // Remove and release the current rx packet
640 #define MC_FREEPKT (5<<5) // Release packet in PNR register
641 #define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
642 #define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
643
644
645 // Packet Number Register
646 /* BANK 2 */
647 #define PN_REG(lp) SMC_REG(lp, 0x0002, 2)
648
649
650 // Allocation Result Register
651 /* BANK 2 */
652 #define AR_REG(lp) SMC_REG(lp, 0x0003, 2)
653 #define AR_FAILED 0x80 // Alocation Failed
654
655
656 // TX FIFO Ports Register
657 /* BANK 2 */
658 #define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
659 #define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
660
661 // RX FIFO Ports Register
662 /* BANK 2 */
663 #define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2)
664 #define RXFIFO_REMPTY 0x80 // RX FIFO Empty
665
666 #define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
667
668 // Pointer Register
669 /* BANK 2 */
670 #define PTR_REG(lp) SMC_REG(lp, 0x0006, 2)
671 #define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
672 #define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
673 #define PTR_READ 0x2000 // When 1 the operation is a read
674
675
676 // Data Register
677 /* BANK 2 */
678 #define DATA_REG(lp) SMC_REG(lp, 0x0008, 2)
679
680
681 // Interrupt Status/Acknowledge Register
682 /* BANK 2 */
683 #define INT_REG(lp) SMC_REG(lp, 0x000C, 2)
684
685
686 // Interrupt Mask Register
687 /* BANK 2 */
688 #define IM_REG(lp) SMC_REG(lp, 0x000D, 2)
689 #define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
690 #define IM_ERCV_INT 0x40 // Early Receive Interrupt
691 #define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
692 #define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
693 #define IM_ALLOC_INT 0x08 // Set when allocation request is completed
694 #define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
695 #define IM_TX_INT 0x02 // Transmit Interrupt
696 #define IM_RCV_INT 0x01 // Receive Interrupt
697
698
699 // Multicast Table Registers
700 /* BANK 3 */
701 #define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3)
702 #define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3)
703 #define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3)
704 #define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3)
705
706
707 // Management Interface Register (MII)
708 /* BANK 3 */
709 #define MII_REG(lp) SMC_REG(lp, 0x0008, 3)
710 #define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
711 #define MII_MDOE 0x0008 // MII Output Enable
712 #define MII_MCLK 0x0004 // MII Clock, pin MDCLK
713 #define MII_MDI 0x0002 // MII Input, pin MDI
714 #define MII_MDO 0x0001 // MII Output, pin MDO
715
716
717 // Revision Register
718 /* BANK 3 */
719 /* ( hi: chip id low: rev # ) */
720 #define REV_REG(lp) SMC_REG(lp, 0x000A, 3)
721
722
723 // Early RCV Register
724 /* BANK 3 */
725 /* this is NOT on SMC9192 */
726 #define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3)
727 #define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
728 #define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
729
730
731 // External Register
732 /* BANK 7 */
733 #define EXT_REG(lp) SMC_REG(lp, 0x0000, 7)
734
735
736 #define CHIP_9192 3
737 #define CHIP_9194 4
738 #define CHIP_9195 5
739 #define CHIP_9196 6
740 #define CHIP_91100 7
741 #define CHIP_91100FD 8
742 #define CHIP_91111FD 9
743
744 static const char * chip_ids[ 16 ] = {
745 NULL, NULL, NULL,
746 /* 3 */ "SMC91C90/91C92",
747 /* 4 */ "SMC91C94",
748 /* 5 */ "SMC91C95",
749 /* 6 */ "SMC91C96",
750 /* 7 */ "SMC91C100",
751 /* 8 */ "SMC91C100FD",
752 /* 9 */ "SMC91C11xFD",
753 NULL, NULL, NULL,
754 NULL, NULL, NULL};
755
756
757 /*
758 . Receive status bits
759 */
760 #define RS_ALGNERR 0x8000
761 #define RS_BRODCAST 0x4000
762 #define RS_BADCRC 0x2000
763 #define RS_ODDFRAME 0x1000
764 #define RS_TOOLONG 0x0800
765 #define RS_TOOSHORT 0x0400
766 #define RS_MULTICAST 0x0001
767 #define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
768
769
770 /*
771 * PHY IDs
772 * LAN83C183 == LAN91C111 Internal PHY
773 */
774 #define PHY_LAN83C183 0x0016f840
775 #define PHY_LAN83C180 0x02821c50
776
777 /*
778 * PHY Register Addresses (LAN91C111 Internal PHY)
779 *
780 * Generic PHY registers can be found in <linux/mii.h>
781 *
782 * These phy registers are specific to our on-board phy.
783 */
784
785 // PHY Configuration Register 1
786 #define PHY_CFG1_REG 0x10
787 #define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
788 #define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
789 #define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
790 #define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
791 #define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
792 #define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
793 #define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
794 #define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
795 #define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
796 #define PHY_CFG1_TLVL_MASK 0x003C
797 #define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
798
799
800 // PHY Configuration Register 2
801 #define PHY_CFG2_REG 0x11
802 #define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
803 #define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
804 #define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
805 #define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
806
807 // PHY Status Output (and Interrupt status) Register
808 #define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
809 #define PHY_INT_INT 0x8000 // 1=bits have changed since last read
810 #define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
811 #define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
812 #define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
813 #define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
814 #define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
815 #define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
816 #define PHY_INT_JAB 0x0100 // 1=Jabber detected
817 #define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
818 #define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
819
820 // PHY Interrupt/Status Mask Register
821 #define PHY_MASK_REG 0x13 // Interrupt Mask
822 // Uses the same bit definitions as PHY_INT_REG
823
824
825 /*
826 * SMC91C96 ethernet config and status registers.
827 * These are in the "attribute" space.
828 */
829 #define ECOR 0x8000
830 #define ECOR_RESET 0x80
831 #define ECOR_LEVEL_IRQ 0x40
832 #define ECOR_WR_ATTRIB 0x04
833 #define ECOR_ENABLE 0x01
834
835 #define ECSR 0x8002
836 #define ECSR_IOIS8 0x20
837 #define ECSR_PWRDWN 0x04
838 #define ECSR_INT 0x02
839
840 #define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
841
842
843 /*
844 * Macros to abstract register access according to the data bus
845 * capabilities. Please use those and not the in/out primitives.
846 * Note: the following macros do *not* select the bank -- this must
847 * be done separately as needed in the main code. The SMC_REG() macro
848 * only uses the bank argument for debugging purposes (when enabled).
849 *
850 * Note: despite inline functions being safer, everything leading to this
851 * should preferably be macros to let BUG() display the line number in
852 * the core source code since we're interested in the top call site
853 * not in any inline function location.
854 */
855
856 #if SMC_DEBUG > 0
857 #define SMC_REG(lp, reg, bank) \
858 ({ \
859 int __b = SMC_CURRENT_BANK(lp); \
860 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
861 pr_err("%s: bank reg screwed (0x%04x)\n", \
862 CARDNAME, __b); \
863 BUG(); \
864 } \
865 reg<<SMC_IO_SHIFT; \
866 })
867 #else
868 #define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT)
869 #endif
870
871 /*
872 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
873 * aligned to a 32 bit boundary. I tell you that does exist!
874 * Fortunately the affected register accesses can be easily worked around
875 * since we can write zeroes to the preceding 16 bits without adverse
876 * effects and use a 32-bit access.
877 *
878 * Enforce it on any 32-bit capable setup for now.
879 */
880 #define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp)
881
882 #define SMC_GET_PN(lp) \
883 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \
884 : (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
885
886 #define SMC_SET_PN(lp, x) \
887 do { \
888 if (SMC_MUST_ALIGN_WRITE(lp)) \
889 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \
890 else if (SMC_8BIT(lp)) \
891 SMC_outb(x, ioaddr, PN_REG(lp)); \
892 else \
893 SMC_outw(lp, x, ioaddr, PN_REG(lp)); \
894 } while (0)
895
896 #define SMC_GET_AR(lp) \
897 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \
898 : (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
899
900 #define SMC_GET_TXFIFO(lp) \
901 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \
902 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
903
904 #define SMC_GET_RXFIFO(lp) \
905 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \
906 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
907
908 #define SMC_GET_INT(lp) \
909 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \
910 : (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
911
912 #define SMC_ACK_INT(lp, x) \
913 do { \
914 if (SMC_8BIT(lp)) \
915 SMC_outb(x, ioaddr, INT_REG(lp)); \
916 else { \
917 unsigned long __flags; \
918 int __mask; \
919 local_irq_save(__flags); \
920 __mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
921 SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
922 local_irq_restore(__flags); \
923 } \
924 } while (0)
925
926 #define SMC_GET_INT_MASK(lp) \
927 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \
928 : (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
929
930 #define SMC_SET_INT_MASK(lp, x) \
931 do { \
932 if (SMC_8BIT(lp)) \
933 SMC_outb(x, ioaddr, IM_REG(lp)); \
934 else \
935 SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp)); \
936 } while (0)
937
938 #define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT)
939
940 #define SMC_SELECT_BANK(lp, x) \
941 do { \
942 if (SMC_MUST_ALIGN_WRITE(lp)) \
943 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
944 else \
945 SMC_outw(lp, x, ioaddr, BANK_SELECT); \
946 } while (0)
947
948 #define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp))
949
950 #define SMC_SET_BASE(lp, x) SMC_outw(lp, x, ioaddr, BASE_REG(lp))
951
952 #define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp))
953
954 #define SMC_SET_CONFIG(lp, x) SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
955
956 #define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp))
957
958 #define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp))
959
960 #define SMC_SET_CTL(lp, x) SMC_outw(lp, x, ioaddr, CTL_REG(lp))
961
962 #define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp))
963
964 #define SMC_GET_GP(lp) SMC_inw(ioaddr, GP_REG(lp))
965
966 #define SMC_SET_GP(lp, x) \
967 do { \
968 if (SMC_MUST_ALIGN_WRITE(lp)) \
969 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1)); \
970 else \
971 SMC_outw(lp, x, ioaddr, GP_REG(lp)); \
972 } while (0)
973
974 #define SMC_SET_MII(lp, x) SMC_outw(lp, x, ioaddr, MII_REG(lp))
975
976 #define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp))
977
978 #define SMC_SET_MIR(lp, x) SMC_outw(lp, x, ioaddr, MIR_REG(lp))
979
980 #define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp))
981
982 #define SMC_SET_MMU_CMD(lp, x) SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
983
984 #define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp))
985
986 #define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp))
987
988 #define SMC_SET_PTR(lp, x) \
989 do { \
990 if (SMC_MUST_ALIGN_WRITE(lp)) \
991 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \
992 else \
993 SMC_outw(lp, x, ioaddr, PTR_REG(lp)); \
994 } while (0)
995
996 #define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp))
997
998 #define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp))
999
1000 #define SMC_SET_RCR(lp, x) SMC_outw(lp, x, ioaddr, RCR_REG(lp))
1001
1002 #define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp))
1003
1004 #define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp))
1005
1006 #define SMC_SET_RPC(lp, x) \
1007 do { \
1008 if (SMC_MUST_ALIGN_WRITE(lp)) \
1009 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \
1010 else \
1011 SMC_outw(lp, x, ioaddr, RPC_REG(lp)); \
1012 } while (0)
1013
1014 #define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp))
1015
1016 #define SMC_SET_TCR(lp, x) SMC_outw(lp, x, ioaddr, TCR_REG(lp))
1017
1018 #ifndef SMC_GET_MAC_ADDR
1019 #define SMC_GET_MAC_ADDR(lp, addr) \
1020 do { \
1021 unsigned int __v; \
1022 __v = SMC_inw(ioaddr, ADDR0_REG(lp)); \
1023 addr[0] = __v; addr[1] = __v >> 8; \
1024 __v = SMC_inw(ioaddr, ADDR1_REG(lp)); \
1025 addr[2] = __v; addr[3] = __v >> 8; \
1026 __v = SMC_inw(ioaddr, ADDR2_REG(lp)); \
1027 addr[4] = __v; addr[5] = __v >> 8; \
1028 } while (0)
1029 #endif
1030
1031 #define SMC_SET_MAC_ADDR(lp, addr) \
1032 do { \
1033 SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1034 SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1035 SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1036 } while (0)
1037
1038 #define SMC_SET_MCAST(lp, x) \
1039 do { \
1040 const unsigned char *mt = (x); \
1041 SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1042 SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1043 SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1044 SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1045 } while (0)
1046
1047 #define SMC_PUT_PKT_HDR(lp, status, length) \
1048 do { \
1049 if (SMC_32BIT(lp)) \
1050 SMC_outl((status) | (length)<<16, ioaddr, \
1051 DATA_REG(lp)); \
1052 else { \
1053 SMC_outw(lp, status, ioaddr, DATA_REG(lp)); \
1054 SMC_outw(lp, length, ioaddr, DATA_REG(lp)); \
1055 } \
1056 } while (0)
1057
1058 #define SMC_GET_PKT_HDR(lp, status, length) \
1059 do { \
1060 if (SMC_32BIT(lp)) { \
1061 unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1062 (status) = __val & 0xffff; \
1063 (length) = __val >> 16; \
1064 } else { \
1065 (status) = SMC_inw(ioaddr, DATA_REG(lp)); \
1066 (length) = SMC_inw(ioaddr, DATA_REG(lp)); \
1067 } \
1068 } while (0)
1069
1070 #define SMC_PUSH_DATA(lp, p, l) \
1071 do { \
1072 if (SMC_32BIT(lp)) { \
1073 void *__ptr = (p); \
1074 int __len = (l); \
1075 void __iomem *__ioaddr = ioaddr; \
1076 if (__len >= 2 && (unsigned long)__ptr & 2) { \
1077 __len -= 2; \
1078 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1079 __ptr += 2; \
1080 } \
1081 if (SMC_CAN_USE_DATACS && lp->datacs) \
1082 __ioaddr = lp->datacs; \
1083 SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1084 if (__len & 2) { \
1085 __ptr += (__len & ~3); \
1086 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1087 } \
1088 } else if (SMC_16BIT(lp)) \
1089 SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1090 else if (SMC_8BIT(lp)) \
1091 SMC_outsb(ioaddr, DATA_REG(lp), p, l); \
1092 } while (0)
1093
1094 #define SMC_PULL_DATA(lp, p, l) \
1095 do { \
1096 if (SMC_32BIT(lp)) { \
1097 void *__ptr = (p); \
1098 int __len = (l); \
1099 void __iomem *__ioaddr = ioaddr; \
1100 if ((unsigned long)__ptr & 2) { \
1101 /* \
1102 * We want 32bit alignment here. \
1103 * Since some buses perform a full \
1104 * 32bit fetch even for 16bit data \
1105 * we can't use SMC_inw() here. \
1106 * Back both source (on-chip) and \
1107 * destination pointers of 2 bytes. \
1108 * This is possible since the call to \
1109 * SMC_GET_PKT_HDR() already advanced \
1110 * the source pointer of 4 bytes, and \
1111 * the skb_reserve(skb, 2) advanced \
1112 * the destination pointer of 2 bytes. \
1113 */ \
1114 __ptr -= 2; \
1115 __len += 2; \
1116 SMC_SET_PTR(lp, \
1117 2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1118 } \
1119 if (SMC_CAN_USE_DATACS && lp->datacs) \
1120 __ioaddr = lp->datacs; \
1121 __len += 2; \
1122 SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1123 } else if (SMC_16BIT(lp)) \
1124 SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1125 else if (SMC_8BIT(lp)) \
1126 SMC_insb(ioaddr, DATA_REG(lp), p, l); \
1127 } while (0)
1128
1129 #endif /* _SMC91X_H_ */