]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
Revert "net: stmmac: add platform init/exit for Altera's ARM socfpga"
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_STMMAC_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_STMMAC_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55
56 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
57
58 /* Module parameters */
59 #define TX_TIMEO 5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94
95 #define DEFAULT_BUFSIZE 1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103
104 #define STMMAC_DEFAULT_LPI_TIMER 1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111 * but passing this value so user can force to use the chain instead of the ring
112 */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118
119 #ifdef CONFIG_STMMAC_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125
126 /**
127 * stmmac_verify_args - verify the driver parameters.
128 * Description: it verifies if some wrong parameter is passed to the driver.
129 * Note that wrong parameters are replaced with the default values.
130 */
131 static void stmmac_verify_args(void)
132 {
133 if (unlikely(watchdog < 0))
134 watchdog = TX_TIMEO;
135 if (unlikely(dma_rxsize < 0))
136 dma_rxsize = DMA_RX_SIZE;
137 if (unlikely(dma_txsize < 0))
138 dma_txsize = DMA_TX_SIZE;
139 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 buf_sz = DEFAULT_BUFSIZE;
141 if (unlikely(flow_ctrl > 1))
142 flow_ctrl = FLOW_AUTO;
143 else if (likely(flow_ctrl < 0))
144 flow_ctrl = FLOW_OFF;
145 if (unlikely((pause < 0) || (pause > 0xffff)))
146 pause = PAUSE_TIME;
147 if (eee_timer < 0)
148 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150
151 /**
152 * stmmac_clk_csr_set - dynamically set the MDC clock
153 * @priv: driver private structure
154 * Description: this is to dynamically set the MDC clock according to the csr
155 * clock input.
156 * Note:
157 * If a specific clk_csr value is passed from the platform
158 * this means that the CSR Clock Range selection cannot be
159 * changed at run-time and it is fixed (as reported in the driver
160 * documentation). Viceversa the driver will try to set the MDC
161 * clock dynamically according to the actual clock input.
162 */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 u32 clk_rate;
166
167 clk_rate = clk_get_rate(priv->stmmac_clk);
168
169 /* Platform provided default clk_csr would be assumed valid
170 * for all other cases except for the below mentioned ones.
171 * For values higher than the IEEE 802.3 specified frequency
172 * we can not estimate the proper divider as it is not known
173 * the frequency of clk_csr_i. So we do not change the default
174 * divider.
175 */
176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 if (clk_rate < CSR_F_35M)
178 priv->clk_csr = STMMAC_CSR_20_35M;
179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 priv->clk_csr = STMMAC_CSR_35_60M;
181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 priv->clk_csr = STMMAC_CSR_60_100M;
183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 priv->clk_csr = STMMAC_CSR_100_150M;
185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 priv->clk_csr = STMMAC_CSR_150_250M;
187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 priv->clk_csr = STMMAC_CSR_250_300M;
189 }
190 }
191
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 int j;
195 pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
196 for (j = 0; j < len; j++) {
197 if ((j % 16) == 0)
198 pr_debug("\n %03x:", j);
199 pr_debug(" %02x", buf[j]);
200 }
201 pr_debug("\n");
202 }
203
204 /* minimum number of free TX descriptors required to wake up TX process */
205 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
206
207 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
208 {
209 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
210 }
211
212 /**
213 * stmmac_hw_fix_mac_speed: callback for speed selection
214 * @priv: driver private structure
215 * Description: on some platforms (e.g. ST), some HW system configuraton
216 * registers have to be set according to the link speed negotiated.
217 */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220 struct phy_device *phydev = priv->phydev;
221
222 if (likely(priv->plat->fix_mac_speed))
223 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
224 }
225
226 /**
227 * stmmac_enable_eee_mode: Check and enter in LPI mode
228 * @priv: driver private structure
229 * Description: this function is to verify and enter in LPI mode for EEE.
230 */
231 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
232 {
233 /* Check and enter in LPI mode */
234 if ((priv->dirty_tx == priv->cur_tx) &&
235 (priv->tx_path_in_lpi_mode == false))
236 priv->hw->mac->set_eee_mode(priv->ioaddr);
237 }
238
239 /**
240 * stmmac_disable_eee_mode: disable/exit from EEE
241 * @priv: driver private structure
242 * Description: this function is to exit and disable EEE in case of
243 * LPI state is true. This is called by the xmit.
244 */
245 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
246 {
247 priv->hw->mac->reset_eee_mode(priv->ioaddr);
248 del_timer_sync(&priv->eee_ctrl_timer);
249 priv->tx_path_in_lpi_mode = false;
250 }
251
252 /**
253 * stmmac_eee_ctrl_timer: EEE TX SW timer.
254 * @arg : data hook
255 * Description:
256 * if there is no data transfer and if we are not in LPI state,
257 * then MAC Transmitter can be moved to LPI state.
258 */
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262
263 stmmac_enable_eee_mode(priv);
264 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
265 }
266
267 /**
268 * stmmac_eee_init: init EEE
269 * @priv: driver private structure
270 * Description:
271 * If the EEE support has been enabled while configuring the driver,
272 * if the GMAC actually supports the EEE (from the HW cap reg) and the
273 * phy can also manage EEE, so enable the LPI state and start the timer
274 * to verify if the tx path can enter in LPI state.
275 */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 bool ret = false;
279
280 /* Using PCS we cannot dial with the phy registers at this stage
281 * so we do not support extra feature like EEE.
282 */
283 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
284 (priv->pcs == STMMAC_PCS_RTBI))
285 goto out;
286
287 /* MAC core supports the EEE feature. */
288 if (priv->dma_cap.eee) {
289 int tx_lpi_timer = priv->tx_lpi_timer;
290
291 /* Check if the PHY supports EEE */
292 if (phy_init_eee(priv->phydev, 1)) {
293 /* To manage at run-time if the EEE cannot be supported
294 * anymore (for example because the lp caps have been
295 * changed).
296 * In that case the driver disable own timers.
297 */
298 if (priv->eee_active) {
299 pr_debug("stmmac: disable EEE\n");
300 del_timer_sync(&priv->eee_ctrl_timer);
301 priv->hw->mac->set_eee_timer(priv->ioaddr, 0,
302 tx_lpi_timer);
303 }
304 priv->eee_active = 0;
305 goto out;
306 }
307 /* Activate the EEE and start timers */
308 if (!priv->eee_active) {
309 priv->eee_active = 1;
310 init_timer(&priv->eee_ctrl_timer);
311 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
312 priv->eee_ctrl_timer.data = (unsigned long)priv;
313 priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
314 add_timer(&priv->eee_ctrl_timer);
315
316 priv->hw->mac->set_eee_timer(priv->ioaddr,
317 STMMAC_DEFAULT_LIT_LS,
318 tx_lpi_timer);
319 } else
320 /* Set HW EEE according to the speed */
321 priv->hw->mac->set_eee_pls(priv->ioaddr,
322 priv->phydev->link);
323
324 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
325
326 ret = true;
327 }
328 out:
329 return ret;
330 }
331
332 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
333 * @priv: driver private structure
334 * @entry : descriptor index to be used.
335 * @skb : the socket buffer
336 * Description :
337 * This function will read timestamp from the descriptor & pass it to stack.
338 * and also perform some sanity checks.
339 */
340 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
341 unsigned int entry, struct sk_buff *skb)
342 {
343 struct skb_shared_hwtstamps shhwtstamp;
344 u64 ns;
345 void *desc = NULL;
346
347 if (!priv->hwts_tx_en)
348 return;
349
350 /* exit if skb doesn't support hw tstamp */
351 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
352 return;
353
354 if (priv->adv_ts)
355 desc = (priv->dma_etx + entry);
356 else
357 desc = (priv->dma_tx + entry);
358
359 /* check tx tstamp status */
360 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
361 return;
362
363 /* get the valid tstamp */
364 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
365
366 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
367 shhwtstamp.hwtstamp = ns_to_ktime(ns);
368 /* pass tstamp to stack */
369 skb_tstamp_tx(skb, &shhwtstamp);
370
371 return;
372 }
373
374 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
375 * @priv: driver private structure
376 * @entry : descriptor index to be used.
377 * @skb : the socket buffer
378 * Description :
379 * This function will read received packet's timestamp from the descriptor
380 * and pass it to stack. It also perform some sanity checks.
381 */
382 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
383 unsigned int entry, struct sk_buff *skb)
384 {
385 struct skb_shared_hwtstamps *shhwtstamp = NULL;
386 u64 ns;
387 void *desc = NULL;
388
389 if (!priv->hwts_rx_en)
390 return;
391
392 if (priv->adv_ts)
393 desc = (priv->dma_erx + entry);
394 else
395 desc = (priv->dma_rx + entry);
396
397 /* exit if rx tstamp is not valid */
398 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
399 return;
400
401 /* get valid tstamp */
402 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
403 shhwtstamp = skb_hwtstamps(skb);
404 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
405 shhwtstamp->hwtstamp = ns_to_ktime(ns);
406 }
407
408 /**
409 * stmmac_hwtstamp_ioctl - control hardware timestamping.
410 * @dev: device pointer.
411 * @ifr: An IOCTL specefic structure, that can contain a pointer to
412 * a proprietary structure used to pass information to the driver.
413 * Description:
414 * This function configures the MAC to enable/disable both outgoing(TX)
415 * and incoming(RX) packets time stamping based on user input.
416 * Return Value:
417 * 0 on success and an appropriate -ve integer on failure.
418 */
419 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
420 {
421 struct stmmac_priv *priv = netdev_priv(dev);
422 struct hwtstamp_config config;
423 struct timespec now;
424 u64 temp = 0;
425 u32 ptp_v2 = 0;
426 u32 tstamp_all = 0;
427 u32 ptp_over_ipv4_udp = 0;
428 u32 ptp_over_ipv6_udp = 0;
429 u32 ptp_over_ethernet = 0;
430 u32 snap_type_sel = 0;
431 u32 ts_master_en = 0;
432 u32 ts_event_en = 0;
433 u32 value = 0;
434
435 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
436 netdev_alert(priv->dev, "No support for HW time stamping\n");
437 priv->hwts_tx_en = 0;
438 priv->hwts_rx_en = 0;
439
440 return -EOPNOTSUPP;
441 }
442
443 if (copy_from_user(&config, ifr->ifr_data,
444 sizeof(struct hwtstamp_config)))
445 return -EFAULT;
446
447 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
448 __func__, config.flags, config.tx_type, config.rx_filter);
449
450 /* reserved for future extensions */
451 if (config.flags)
452 return -EINVAL;
453
454 if (config.tx_type != HWTSTAMP_TX_OFF &&
455 config.tx_type != HWTSTAMP_TX_ON)
456 return -ERANGE;
457
458 if (priv->adv_ts) {
459 switch (config.rx_filter) {
460 case HWTSTAMP_FILTER_NONE:
461 /* time stamp no incoming packet at all */
462 config.rx_filter = HWTSTAMP_FILTER_NONE;
463 break;
464
465 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
466 /* PTP v1, UDP, any kind of event packet */
467 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
468 /* take time stamp for all event messages */
469 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
470
471 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
472 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
473 break;
474
475 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
476 /* PTP v1, UDP, Sync packet */
477 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
478 /* take time stamp for SYNC messages only */
479 ts_event_en = PTP_TCR_TSEVNTENA;
480
481 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483 break;
484
485 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
486 /* PTP v1, UDP, Delay_req packet */
487 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
488 /* take time stamp for Delay_Req messages only */
489 ts_master_en = PTP_TCR_TSMSTRENA;
490 ts_event_en = PTP_TCR_TSEVNTENA;
491
492 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
493 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
494 break;
495
496 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
497 /* PTP v2, UDP, any kind of event packet */
498 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
499 ptp_v2 = PTP_TCR_TSVER2ENA;
500 /* take time stamp for all event messages */
501 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
502
503 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
504 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
505 break;
506
507 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
508 /* PTP v2, UDP, Sync packet */
509 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
510 ptp_v2 = PTP_TCR_TSVER2ENA;
511 /* take time stamp for SYNC messages only */
512 ts_event_en = PTP_TCR_TSEVNTENA;
513
514 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
515 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
516 break;
517
518 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
519 /* PTP v2, UDP, Delay_req packet */
520 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
521 ptp_v2 = PTP_TCR_TSVER2ENA;
522 /* take time stamp for Delay_Req messages only */
523 ts_master_en = PTP_TCR_TSMSTRENA;
524 ts_event_en = PTP_TCR_TSEVNTENA;
525
526 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
527 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
528 break;
529
530 case HWTSTAMP_FILTER_PTP_V2_EVENT:
531 /* PTP v2/802.AS1 any layer, any kind of event packet */
532 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
533 ptp_v2 = PTP_TCR_TSVER2ENA;
534 /* take time stamp for all event messages */
535 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
536
537 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
538 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
539 ptp_over_ethernet = PTP_TCR_TSIPENA;
540 break;
541
542 case HWTSTAMP_FILTER_PTP_V2_SYNC:
543 /* PTP v2/802.AS1, any layer, Sync packet */
544 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
545 ptp_v2 = PTP_TCR_TSVER2ENA;
546 /* take time stamp for SYNC messages only */
547 ts_event_en = PTP_TCR_TSEVNTENA;
548
549 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
550 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
551 ptp_over_ethernet = PTP_TCR_TSIPENA;
552 break;
553
554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
555 /* PTP v2/802.AS1, any layer, Delay_req packet */
556 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
557 ptp_v2 = PTP_TCR_TSVER2ENA;
558 /* take time stamp for Delay_Req messages only */
559 ts_master_en = PTP_TCR_TSMSTRENA;
560 ts_event_en = PTP_TCR_TSEVNTENA;
561
562 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
563 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
564 ptp_over_ethernet = PTP_TCR_TSIPENA;
565 break;
566
567 case HWTSTAMP_FILTER_ALL:
568 /* time stamp any incoming packet */
569 config.rx_filter = HWTSTAMP_FILTER_ALL;
570 tstamp_all = PTP_TCR_TSENALL;
571 break;
572
573 default:
574 return -ERANGE;
575 }
576 } else {
577 switch (config.rx_filter) {
578 case HWTSTAMP_FILTER_NONE:
579 config.rx_filter = HWTSTAMP_FILTER_NONE;
580 break;
581 default:
582 /* PTP v1, UDP, any kind of event packet */
583 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
584 break;
585 }
586 }
587 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
588 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
589
590 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
591 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
592 else {
593 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
594 tstamp_all | ptp_v2 | ptp_over_ethernet |
595 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
596 ts_master_en | snap_type_sel);
597
598 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
599
600 /* program Sub Second Increment reg */
601 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
602
603 /* calculate default added value:
604 * formula is :
605 * addend = (2^32)/freq_div_ratio;
606 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
607 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
608 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
609 * achive 20ns accuracy.
610 *
611 * 2^x * y == (y << x), hence
612 * 2^32 * 50000000 ==> (50000000 << 32)
613 */
614 temp = (u64) (50000000ULL << 32);
615 priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
616 priv->hw->ptp->config_addend(priv->ioaddr,
617 priv->default_addend);
618
619 /* initialize system time */
620 getnstimeofday(&now);
621 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
622 now.tv_nsec);
623 }
624
625 return copy_to_user(ifr->ifr_data, &config,
626 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
627 }
628
629 /**
630 * stmmac_init_ptp: init PTP
631 * @priv: driver private structure
632 * Description: this is to verify if the HW supports the PTPv1 or v2.
633 * This is done by looking at the HW cap. register.
634 * Also it registers the ptp driver.
635 */
636 static int stmmac_init_ptp(struct stmmac_priv *priv)
637 {
638 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
639 return -EOPNOTSUPP;
640
641 priv->adv_ts = 0;
642 if (priv->dma_cap.atime_stamp && priv->extend_desc)
643 priv->adv_ts = 1;
644
645 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
646 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
647
648 if (netif_msg_hw(priv) && priv->adv_ts)
649 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
650
651 priv->hw->ptp = &stmmac_ptp;
652 priv->hwts_tx_en = 0;
653 priv->hwts_rx_en = 0;
654
655 return stmmac_ptp_register(priv);
656 }
657
658 static void stmmac_release_ptp(struct stmmac_priv *priv)
659 {
660 stmmac_ptp_unregister(priv);
661 }
662
663 /**
664 * stmmac_adjust_link
665 * @dev: net device structure
666 * Description: it adjusts the link parameters.
667 */
668 static void stmmac_adjust_link(struct net_device *dev)
669 {
670 struct stmmac_priv *priv = netdev_priv(dev);
671 struct phy_device *phydev = priv->phydev;
672 unsigned long flags;
673 int new_state = 0;
674 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
675
676 if (phydev == NULL)
677 return;
678
679 spin_lock_irqsave(&priv->lock, flags);
680
681 if (phydev->link) {
682 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
683
684 /* Now we make sure that we can be in full duplex mode.
685 * If not, we operate in half-duplex mode. */
686 if (phydev->duplex != priv->oldduplex) {
687 new_state = 1;
688 if (!(phydev->duplex))
689 ctrl &= ~priv->hw->link.duplex;
690 else
691 ctrl |= priv->hw->link.duplex;
692 priv->oldduplex = phydev->duplex;
693 }
694 /* Flow Control operation */
695 if (phydev->pause)
696 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
697 fc, pause_time);
698
699 if (phydev->speed != priv->speed) {
700 new_state = 1;
701 switch (phydev->speed) {
702 case 1000:
703 if (likely(priv->plat->has_gmac))
704 ctrl &= ~priv->hw->link.port;
705 stmmac_hw_fix_mac_speed(priv);
706 break;
707 case 100:
708 case 10:
709 if (priv->plat->has_gmac) {
710 ctrl |= priv->hw->link.port;
711 if (phydev->speed == SPEED_100) {
712 ctrl |= priv->hw->link.speed;
713 } else {
714 ctrl &= ~(priv->hw->link.speed);
715 }
716 } else {
717 ctrl &= ~priv->hw->link.port;
718 }
719 stmmac_hw_fix_mac_speed(priv);
720 break;
721 default:
722 if (netif_msg_link(priv))
723 pr_warn("%s: Speed (%d) not 10/100\n",
724 dev->name, phydev->speed);
725 break;
726 }
727
728 priv->speed = phydev->speed;
729 }
730
731 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
732
733 if (!priv->oldlink) {
734 new_state = 1;
735 priv->oldlink = 1;
736 }
737 } else if (priv->oldlink) {
738 new_state = 1;
739 priv->oldlink = 0;
740 priv->speed = 0;
741 priv->oldduplex = -1;
742 }
743
744 if (new_state && netif_msg_link(priv))
745 phy_print_status(phydev);
746
747 /* At this stage, it could be needed to setup the EEE or adjust some
748 * MAC related HW registers.
749 */
750 priv->eee_enabled = stmmac_eee_init(priv);
751
752 spin_unlock_irqrestore(&priv->lock, flags);
753 }
754
755 /**
756 * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
757 * @priv: driver private structure
758 * Description: this is to verify if the HW supports the PCS.
759 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
760 * configured for the TBI, RTBI, or SGMII PHY interface.
761 */
762 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
763 {
764 int interface = priv->plat->interface;
765
766 if (priv->dma_cap.pcs) {
767 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
768 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
769 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
770 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
771 pr_debug("STMMAC: PCS RGMII support enable\n");
772 priv->pcs = STMMAC_PCS_RGMII;
773 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
774 pr_debug("STMMAC: PCS SGMII support enable\n");
775 priv->pcs = STMMAC_PCS_SGMII;
776 }
777 }
778 }
779
780 /**
781 * stmmac_init_phy - PHY initialization
782 * @dev: net device structure
783 * Description: it initializes the driver's PHY state, and attaches the PHY
784 * to the mac driver.
785 * Return value:
786 * 0 on success
787 */
788 static int stmmac_init_phy(struct net_device *dev)
789 {
790 struct stmmac_priv *priv = netdev_priv(dev);
791 struct phy_device *phydev;
792 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
793 char bus_id[MII_BUS_ID_SIZE];
794 int interface = priv->plat->interface;
795 int max_speed = priv->plat->max_speed;
796 priv->oldlink = 0;
797 priv->speed = 0;
798 priv->oldduplex = -1;
799
800 if (priv->plat->phy_bus_name)
801 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
802 priv->plat->phy_bus_name, priv->plat->bus_id);
803 else
804 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
805 priv->plat->bus_id);
806
807 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
808 priv->plat->phy_addr);
809 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
810
811 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
812
813 if (IS_ERR(phydev)) {
814 pr_err("%s: Could not attach to PHY\n", dev->name);
815 return PTR_ERR(phydev);
816 }
817
818 /* Stop Advertising 1000BASE Capability if interface is not GMII */
819 if ((interface == PHY_INTERFACE_MODE_MII) ||
820 (interface == PHY_INTERFACE_MODE_RMII) ||
821 (max_speed < 1000 && max_speed > 0))
822 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
823 SUPPORTED_1000baseT_Full);
824
825 /*
826 * Broken HW is sometimes missing the pull-up resistor on the
827 * MDIO line, which results in reads to non-existent devices returning
828 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
829 * device as well.
830 * Note: phydev->phy_id is the result of reading the UID PHY registers.
831 */
832 if (phydev->phy_id == 0) {
833 phy_disconnect(phydev);
834 return -ENODEV;
835 }
836 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
837 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
838
839 priv->phydev = phydev;
840
841 return 0;
842 }
843
844 /**
845 * stmmac_display_ring: display ring
846 * @head: pointer to the head of the ring passed.
847 * @size: size of the ring.
848 * @extend_desc: to verify if extended descriptors are used.
849 * Description: display the control/status and buffer descriptors.
850 */
851 static void stmmac_display_ring(void *head, int size, int extend_desc)
852 {
853 int i;
854 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
855 struct dma_desc *p = (struct dma_desc *)head;
856
857 for (i = 0; i < size; i++) {
858 u64 x;
859 if (extend_desc) {
860 x = *(u64 *) ep;
861 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
862 i, (unsigned int)virt_to_phys(ep),
863 (unsigned int)x, (unsigned int)(x >> 32),
864 ep->basic.des2, ep->basic.des3);
865 ep++;
866 } else {
867 x = *(u64 *) p;
868 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
869 i, (unsigned int)virt_to_phys(p),
870 (unsigned int)x, (unsigned int)(x >> 32),
871 p->des2, p->des3);
872 p++;
873 }
874 pr_info("\n");
875 }
876 }
877
878 static void stmmac_display_rings(struct stmmac_priv *priv)
879 {
880 unsigned int txsize = priv->dma_tx_size;
881 unsigned int rxsize = priv->dma_rx_size;
882
883 if (priv->extend_desc) {
884 pr_info("Extended RX descriptor ring:\n");
885 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
886 pr_info("Extended TX descriptor ring:\n");
887 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
888 } else {
889 pr_info("RX descriptor ring:\n");
890 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
891 pr_info("TX descriptor ring:\n");
892 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
893 }
894 }
895
896 static int stmmac_set_bfsize(int mtu, int bufsize)
897 {
898 int ret = bufsize;
899
900 if (mtu >= BUF_SIZE_4KiB)
901 ret = BUF_SIZE_8KiB;
902 else if (mtu >= BUF_SIZE_2KiB)
903 ret = BUF_SIZE_4KiB;
904 else if (mtu > DEFAULT_BUFSIZE)
905 ret = BUF_SIZE_2KiB;
906 else
907 ret = DEFAULT_BUFSIZE;
908
909 return ret;
910 }
911
912 /**
913 * stmmac_clear_descriptors: clear descriptors
914 * @priv: driver private structure
915 * Description: this function is called to clear the tx and rx descriptors
916 * in case of both basic and extended descriptors are used.
917 */
918 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
919 {
920 int i;
921 unsigned int txsize = priv->dma_tx_size;
922 unsigned int rxsize = priv->dma_rx_size;
923
924 /* Clear the Rx/Tx descriptors */
925 for (i = 0; i < rxsize; i++)
926 if (priv->extend_desc)
927 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
928 priv->use_riwt, priv->mode,
929 (i == rxsize - 1));
930 else
931 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
932 priv->use_riwt, priv->mode,
933 (i == rxsize - 1));
934 for (i = 0; i < txsize; i++)
935 if (priv->extend_desc)
936 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
937 priv->mode,
938 (i == txsize - 1));
939 else
940 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
941 priv->mode,
942 (i == txsize - 1));
943 }
944
945 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
946 int i)
947 {
948 struct sk_buff *skb;
949
950 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
951 GFP_KERNEL);
952 if (!skb) {
953 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
954 return -ENOMEM;
955 }
956 skb_reserve(skb, NET_IP_ALIGN);
957 priv->rx_skbuff[i] = skb;
958 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
959 priv->dma_buf_sz,
960 DMA_FROM_DEVICE);
961 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
962 pr_err("%s: DMA mapping error\n", __func__);
963 dev_kfree_skb_any(skb);
964 return -EINVAL;
965 }
966
967 p->des2 = priv->rx_skbuff_dma[i];
968
969 if ((priv->hw->mode->init_desc3) &&
970 (priv->dma_buf_sz == BUF_SIZE_16KiB))
971 priv->hw->mode->init_desc3(p);
972
973 return 0;
974 }
975
976 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
977 {
978 if (priv->rx_skbuff[i]) {
979 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
980 priv->dma_buf_sz, DMA_FROM_DEVICE);
981 dev_kfree_skb_any(priv->rx_skbuff[i]);
982 }
983 priv->rx_skbuff[i] = NULL;
984 }
985
986 /**
987 * init_dma_desc_rings - init the RX/TX descriptor rings
988 * @dev: net device structure
989 * Description: this function initializes the DMA RX/TX descriptors
990 * and allocates the socket buffers. It suppors the chained and ring
991 * modes.
992 */
993 static int init_dma_desc_rings(struct net_device *dev)
994 {
995 int i;
996 struct stmmac_priv *priv = netdev_priv(dev);
997 unsigned int txsize = priv->dma_tx_size;
998 unsigned int rxsize = priv->dma_rx_size;
999 unsigned int bfsize = 0;
1000 int ret = -ENOMEM;
1001
1002 if (priv->hw->mode->set_16kib_bfsize)
1003 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1004
1005 if (bfsize < BUF_SIZE_16KiB)
1006 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1007
1008 priv->dma_buf_sz = bfsize;
1009
1010 if (netif_msg_probe(priv))
1011 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1012 txsize, rxsize, bfsize);
1013
1014 if (netif_msg_probe(priv)) {
1015 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1016 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1017
1018 /* RX INITIALIZATION */
1019 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1020 }
1021 for (i = 0; i < rxsize; i++) {
1022 struct dma_desc *p;
1023 if (priv->extend_desc)
1024 p = &((priv->dma_erx + i)->basic);
1025 else
1026 p = priv->dma_rx + i;
1027
1028 ret = stmmac_init_rx_buffers(priv, p, i);
1029 if (ret)
1030 goto err_init_rx_buffers;
1031
1032 if (netif_msg_probe(priv))
1033 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1034 priv->rx_skbuff[i]->data,
1035 (unsigned int)priv->rx_skbuff_dma[i]);
1036 }
1037 priv->cur_rx = 0;
1038 priv->dirty_rx = (unsigned int)(i - rxsize);
1039 buf_sz = bfsize;
1040
1041 /* Setup the chained descriptor addresses */
1042 if (priv->mode == STMMAC_CHAIN_MODE) {
1043 if (priv->extend_desc) {
1044 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1045 rxsize, 1);
1046 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1047 txsize, 1);
1048 } else {
1049 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1050 rxsize, 0);
1051 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1052 txsize, 0);
1053 }
1054 }
1055
1056 /* TX INITIALIZATION */
1057 for (i = 0; i < txsize; i++) {
1058 struct dma_desc *p;
1059 if (priv->extend_desc)
1060 p = &((priv->dma_etx + i)->basic);
1061 else
1062 p = priv->dma_tx + i;
1063 p->des2 = 0;
1064 priv->tx_skbuff_dma[i] = 0;
1065 priv->tx_skbuff[i] = NULL;
1066 }
1067
1068 priv->dirty_tx = 0;
1069 priv->cur_tx = 0;
1070
1071 stmmac_clear_descriptors(priv);
1072
1073 if (netif_msg_hw(priv))
1074 stmmac_display_rings(priv);
1075
1076 return 0;
1077 err_init_rx_buffers:
1078 while (--i >= 0)
1079 stmmac_free_rx_buffers(priv, i);
1080 return ret;
1081 }
1082
1083 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1084 {
1085 int i;
1086
1087 for (i = 0; i < priv->dma_rx_size; i++)
1088 stmmac_free_rx_buffers(priv, i);
1089 }
1090
1091 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1092 {
1093 int i;
1094
1095 for (i = 0; i < priv->dma_tx_size; i++) {
1096 struct dma_desc *p;
1097
1098 if (priv->extend_desc)
1099 p = &((priv->dma_etx + i)->basic);
1100 else
1101 p = priv->dma_tx + i;
1102
1103 if (priv->tx_skbuff_dma[i]) {
1104 dma_unmap_single(priv->device,
1105 priv->tx_skbuff_dma[i],
1106 priv->hw->desc->get_tx_len(p),
1107 DMA_TO_DEVICE);
1108 priv->tx_skbuff_dma[i] = 0;
1109 }
1110
1111 if (priv->tx_skbuff[i] != NULL) {
1112 dev_kfree_skb_any(priv->tx_skbuff[i]);
1113 priv->tx_skbuff[i] = NULL;
1114 }
1115 }
1116 }
1117
1118 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1119 {
1120 unsigned int txsize = priv->dma_tx_size;
1121 unsigned int rxsize = priv->dma_rx_size;
1122 int ret = -ENOMEM;
1123
1124 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1125 GFP_KERNEL);
1126 if (!priv->rx_skbuff_dma)
1127 return -ENOMEM;
1128
1129 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1130 GFP_KERNEL);
1131 if (!priv->rx_skbuff)
1132 goto err_rx_skbuff;
1133
1134 priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1135 GFP_KERNEL);
1136 if (!priv->tx_skbuff_dma)
1137 goto err_tx_skbuff_dma;
1138
1139 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1140 GFP_KERNEL);
1141 if (!priv->tx_skbuff)
1142 goto err_tx_skbuff;
1143
1144 if (priv->extend_desc) {
1145 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1146 sizeof(struct
1147 dma_extended_desc),
1148 &priv->dma_rx_phy,
1149 GFP_KERNEL);
1150 if (!priv->dma_erx)
1151 goto err_dma;
1152
1153 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1154 sizeof(struct
1155 dma_extended_desc),
1156 &priv->dma_tx_phy,
1157 GFP_KERNEL);
1158 if (!priv->dma_etx) {
1159 dma_free_coherent(priv->device, priv->dma_rx_size *
1160 sizeof(struct dma_extended_desc),
1161 priv->dma_erx, priv->dma_rx_phy);
1162 goto err_dma;
1163 }
1164 } else {
1165 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1166 sizeof(struct dma_desc),
1167 &priv->dma_rx_phy,
1168 GFP_KERNEL);
1169 if (!priv->dma_rx)
1170 goto err_dma;
1171
1172 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1173 sizeof(struct dma_desc),
1174 &priv->dma_tx_phy,
1175 GFP_KERNEL);
1176 if (!priv->dma_tx) {
1177 dma_free_coherent(priv->device, priv->dma_rx_size *
1178 sizeof(struct dma_desc),
1179 priv->dma_rx, priv->dma_rx_phy);
1180 goto err_dma;
1181 }
1182 }
1183
1184 return 0;
1185
1186 err_dma:
1187 kfree(priv->tx_skbuff);
1188 err_tx_skbuff:
1189 kfree(priv->tx_skbuff_dma);
1190 err_tx_skbuff_dma:
1191 kfree(priv->rx_skbuff);
1192 err_rx_skbuff:
1193 kfree(priv->rx_skbuff_dma);
1194 return ret;
1195 }
1196
1197 static void free_dma_desc_resources(struct stmmac_priv *priv)
1198 {
1199 /* Release the DMA TX/RX socket buffers */
1200 dma_free_rx_skbufs(priv);
1201 dma_free_tx_skbufs(priv);
1202
1203 /* Free DMA regions of consistent memory previously allocated */
1204 if (!priv->extend_desc) {
1205 dma_free_coherent(priv->device,
1206 priv->dma_tx_size * sizeof(struct dma_desc),
1207 priv->dma_tx, priv->dma_tx_phy);
1208 dma_free_coherent(priv->device,
1209 priv->dma_rx_size * sizeof(struct dma_desc),
1210 priv->dma_rx, priv->dma_rx_phy);
1211 } else {
1212 dma_free_coherent(priv->device, priv->dma_tx_size *
1213 sizeof(struct dma_extended_desc),
1214 priv->dma_etx, priv->dma_tx_phy);
1215 dma_free_coherent(priv->device, priv->dma_rx_size *
1216 sizeof(struct dma_extended_desc),
1217 priv->dma_erx, priv->dma_rx_phy);
1218 }
1219 kfree(priv->rx_skbuff_dma);
1220 kfree(priv->rx_skbuff);
1221 kfree(priv->tx_skbuff_dma);
1222 kfree(priv->tx_skbuff);
1223 }
1224
1225 /**
1226 * stmmac_dma_operation_mode - HW DMA operation mode
1227 * @priv: driver private structure
1228 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
1229 * or Store-And-Forward capability.
1230 */
1231 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1232 {
1233 if (priv->plat->force_thresh_dma_mode)
1234 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1235 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1236 /*
1237 * In case of GMAC, SF mode can be enabled
1238 * to perform the TX COE in HW. This depends on:
1239 * 1) TX COE if actually supported
1240 * 2) There is no bugged Jumbo frame support
1241 * that needs to not insert csum in the TDES.
1242 */
1243 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1244 tc = SF_DMA_MODE;
1245 } else
1246 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1247 }
1248
1249 /**
1250 * stmmac_tx_clean:
1251 * @priv: driver private structure
1252 * Description: it reclaims resources after transmission completes.
1253 */
1254 static void stmmac_tx_clean(struct stmmac_priv *priv)
1255 {
1256 unsigned int txsize = priv->dma_tx_size;
1257
1258 spin_lock(&priv->tx_lock);
1259
1260 priv->xstats.tx_clean++;
1261
1262 while (priv->dirty_tx != priv->cur_tx) {
1263 int last;
1264 unsigned int entry = priv->dirty_tx % txsize;
1265 struct sk_buff *skb = priv->tx_skbuff[entry];
1266 struct dma_desc *p;
1267
1268 if (priv->extend_desc)
1269 p = (struct dma_desc *)(priv->dma_etx + entry);
1270 else
1271 p = priv->dma_tx + entry;
1272
1273 /* Check if the descriptor is owned by the DMA. */
1274 if (priv->hw->desc->get_tx_owner(p))
1275 break;
1276
1277 /* Verify tx error by looking at the last segment. */
1278 last = priv->hw->desc->get_tx_ls(p);
1279 if (likely(last)) {
1280 int tx_error =
1281 priv->hw->desc->tx_status(&priv->dev->stats,
1282 &priv->xstats, p,
1283 priv->ioaddr);
1284 if (likely(tx_error == 0)) {
1285 priv->dev->stats.tx_packets++;
1286 priv->xstats.tx_pkt_n++;
1287 } else
1288 priv->dev->stats.tx_errors++;
1289
1290 stmmac_get_tx_hwtstamp(priv, entry, skb);
1291 }
1292 if (netif_msg_tx_done(priv))
1293 pr_debug("%s: curr %d, dirty %d\n", __func__,
1294 priv->cur_tx, priv->dirty_tx);
1295
1296 if (likely(priv->tx_skbuff_dma[entry])) {
1297 dma_unmap_single(priv->device,
1298 priv->tx_skbuff_dma[entry],
1299 priv->hw->desc->get_tx_len(p),
1300 DMA_TO_DEVICE);
1301 priv->tx_skbuff_dma[entry] = 0;
1302 }
1303 priv->hw->mode->clean_desc3(priv, p);
1304
1305 if (likely(skb != NULL)) {
1306 dev_consume_skb_any(skb);
1307 priv->tx_skbuff[entry] = NULL;
1308 }
1309
1310 priv->hw->desc->release_tx_desc(p, priv->mode);
1311
1312 priv->dirty_tx++;
1313 }
1314 if (unlikely(netif_queue_stopped(priv->dev) &&
1315 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1316 netif_tx_lock(priv->dev);
1317 if (netif_queue_stopped(priv->dev) &&
1318 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1319 if (netif_msg_tx_done(priv))
1320 pr_debug("%s: restart transmit\n", __func__);
1321 netif_wake_queue(priv->dev);
1322 }
1323 netif_tx_unlock(priv->dev);
1324 }
1325
1326 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1327 stmmac_enable_eee_mode(priv);
1328 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1329 }
1330 spin_unlock(&priv->tx_lock);
1331 }
1332
1333 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1334 {
1335 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1336 }
1337
1338 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1339 {
1340 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1341 }
1342
1343 /**
1344 * stmmac_tx_err: irq tx error mng function
1345 * @priv: driver private structure
1346 * Description: it cleans the descriptors and restarts the transmission
1347 * in case of errors.
1348 */
1349 static void stmmac_tx_err(struct stmmac_priv *priv)
1350 {
1351 int i;
1352 int txsize = priv->dma_tx_size;
1353 netif_stop_queue(priv->dev);
1354
1355 priv->hw->dma->stop_tx(priv->ioaddr);
1356 dma_free_tx_skbufs(priv);
1357 for (i = 0; i < txsize; i++)
1358 if (priv->extend_desc)
1359 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1360 priv->mode,
1361 (i == txsize - 1));
1362 else
1363 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1364 priv->mode,
1365 (i == txsize - 1));
1366 priv->dirty_tx = 0;
1367 priv->cur_tx = 0;
1368 priv->hw->dma->start_tx(priv->ioaddr);
1369
1370 priv->dev->stats.tx_errors++;
1371 netif_wake_queue(priv->dev);
1372 }
1373
1374 /**
1375 * stmmac_dma_interrupt: DMA ISR
1376 * @priv: driver private structure
1377 * Description: this is the DMA ISR. It is called by the main ISR.
1378 * It calls the dwmac dma routine to understand which type of interrupt
1379 * happened. In case of there is a Normal interrupt and either TX or RX
1380 * interrupt happened so the NAPI is scheduled.
1381 */
1382 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1383 {
1384 int status;
1385
1386 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1387 if (likely((status & handle_rx)) || (status & handle_tx)) {
1388 if (likely(napi_schedule_prep(&priv->napi))) {
1389 stmmac_disable_dma_irq(priv);
1390 __napi_schedule(&priv->napi);
1391 }
1392 }
1393 if (unlikely(status & tx_hard_error_bump_tc)) {
1394 /* Try to bump up the dma threshold on this failure */
1395 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1396 tc += 64;
1397 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1398 priv->xstats.threshold = tc;
1399 }
1400 } else if (unlikely(status == tx_hard_error))
1401 stmmac_tx_err(priv);
1402 }
1403
1404 /**
1405 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1406 * @priv: driver private structure
1407 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1408 */
1409 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1410 {
1411 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1412 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1413
1414 dwmac_mmc_intr_all_mask(priv->ioaddr);
1415
1416 if (priv->dma_cap.rmon) {
1417 dwmac_mmc_ctrl(priv->ioaddr, mode);
1418 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1419 } else
1420 pr_info(" No MAC Management Counters available\n");
1421 }
1422
1423 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1424 {
1425 u32 hwid = priv->hw->synopsys_uid;
1426
1427 /* Check Synopsys Id (not available on old chips) */
1428 if (likely(hwid)) {
1429 u32 uid = ((hwid & 0x0000ff00) >> 8);
1430 u32 synid = (hwid & 0x000000ff);
1431
1432 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1433 uid, synid);
1434
1435 return synid;
1436 }
1437 return 0;
1438 }
1439
1440 /**
1441 * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1442 * @priv: driver private structure
1443 * Description: select the Enhanced/Alternate or Normal descriptors.
1444 * In case of Enhanced/Alternate, it looks at the extended descriptors are
1445 * supported by the HW cap. register.
1446 */
1447 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1448 {
1449 if (priv->plat->enh_desc) {
1450 pr_info(" Enhanced/Alternate descriptors\n");
1451
1452 /* GMAC older than 3.50 has no extended descriptors */
1453 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1454 pr_info("\tEnabled extended descriptors\n");
1455 priv->extend_desc = 1;
1456 } else
1457 pr_warn("Extended descriptors not supported\n");
1458
1459 priv->hw->desc = &enh_desc_ops;
1460 } else {
1461 pr_info(" Normal descriptors\n");
1462 priv->hw->desc = &ndesc_ops;
1463 }
1464 }
1465
1466 /**
1467 * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1468 * @priv: driver private structure
1469 * Description:
1470 * new GMAC chip generations have a new register to indicate the
1471 * presence of the optional feature/functions.
1472 * This can be also used to override the value passed through the
1473 * platform and necessary for old MAC10/100 and GMAC chips.
1474 */
1475 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1476 {
1477 u32 hw_cap = 0;
1478
1479 if (priv->hw->dma->get_hw_feature) {
1480 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1481
1482 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1483 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1484 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1485 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1486 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1487 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1488 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1489 priv->dma_cap.pmt_remote_wake_up =
1490 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1491 priv->dma_cap.pmt_magic_frame =
1492 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1493 /* MMC */
1494 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1495 /* IEEE 1588-2002 */
1496 priv->dma_cap.time_stamp =
1497 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1498 /* IEEE 1588-2008 */
1499 priv->dma_cap.atime_stamp =
1500 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1501 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1502 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1503 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1504 /* TX and RX csum */
1505 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1506 priv->dma_cap.rx_coe_type1 =
1507 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1508 priv->dma_cap.rx_coe_type2 =
1509 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1510 priv->dma_cap.rxfifo_over_2048 =
1511 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1512 /* TX and RX number of channels */
1513 priv->dma_cap.number_rx_channel =
1514 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1515 priv->dma_cap.number_tx_channel =
1516 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1517 /* Alternate (enhanced) DESC mode */
1518 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1519 }
1520
1521 return hw_cap;
1522 }
1523
1524 /**
1525 * stmmac_check_ether_addr: check if the MAC addr is valid
1526 * @priv: driver private structure
1527 * Description:
1528 * it is to verify if the MAC address is valid, in case of failures it
1529 * generates a random MAC address
1530 */
1531 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1532 {
1533 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1534 priv->hw->mac->get_umac_addr((void __iomem *)
1535 priv->dev->base_addr,
1536 priv->dev->dev_addr, 0);
1537 if (!is_valid_ether_addr(priv->dev->dev_addr))
1538 eth_hw_addr_random(priv->dev);
1539 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1540 priv->dev->dev_addr);
1541 }
1542 }
1543
1544 /**
1545 * stmmac_init_dma_engine: DMA init.
1546 * @priv: driver private structure
1547 * Description:
1548 * It inits the DMA invoking the specific MAC/GMAC callback.
1549 * Some DMA parameters can be passed from the platform;
1550 * in case of these are not passed a default is kept for the MAC or GMAC.
1551 */
1552 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1553 {
1554 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1555 int mixed_burst = 0;
1556 int atds = 0;
1557
1558 if (priv->plat->dma_cfg) {
1559 pbl = priv->plat->dma_cfg->pbl;
1560 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1561 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1562 burst_len = priv->plat->dma_cfg->burst_len;
1563 }
1564
1565 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1566 atds = 1;
1567
1568 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1569 burst_len, priv->dma_tx_phy,
1570 priv->dma_rx_phy, atds);
1571 }
1572
1573 /**
1574 * stmmac_tx_timer: mitigation sw timer for tx.
1575 * @data: data pointer
1576 * Description:
1577 * This is the timer handler to directly invoke the stmmac_tx_clean.
1578 */
1579 static void stmmac_tx_timer(unsigned long data)
1580 {
1581 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1582
1583 stmmac_tx_clean(priv);
1584 }
1585
1586 /**
1587 * stmmac_init_tx_coalesce: init tx mitigation options.
1588 * @priv: driver private structure
1589 * Description:
1590 * This inits the transmit coalesce parameters: i.e. timer rate,
1591 * timer handler and default threshold used for enabling the
1592 * interrupt on completion bit.
1593 */
1594 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1595 {
1596 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1597 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1598 init_timer(&priv->txtimer);
1599 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1600 priv->txtimer.data = (unsigned long)priv;
1601 priv->txtimer.function = stmmac_tx_timer;
1602 add_timer(&priv->txtimer);
1603 }
1604
1605 /**
1606 * stmmac_hw_setup: setup mac in a usable state.
1607 * @dev : pointer to the device structure.
1608 * Description:
1609 * This function sets up the ip in a usable state.
1610 * Return value:
1611 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1612 * file on failure.
1613 */
1614 static int stmmac_hw_setup(struct net_device *dev)
1615 {
1616 struct stmmac_priv *priv = netdev_priv(dev);
1617 int ret;
1618
1619 ret = init_dma_desc_rings(dev);
1620 if (ret < 0) {
1621 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1622 return ret;
1623 }
1624 /* DMA initialization and SW reset */
1625 ret = stmmac_init_dma_engine(priv);
1626 if (ret < 0) {
1627 pr_err("%s: DMA engine initialization failed\n", __func__);
1628 return ret;
1629 }
1630
1631 /* Copy the MAC addr into the HW */
1632 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1633
1634 /* If required, perform hw setup of the bus. */
1635 if (priv->plat->bus_setup)
1636 priv->plat->bus_setup(priv->ioaddr);
1637
1638 /* Initialize the MAC Core */
1639 priv->hw->mac->core_init(priv->ioaddr, dev->mtu);
1640
1641 /* Enable the MAC Rx/Tx */
1642 stmmac_set_mac(priv->ioaddr, true);
1643
1644 /* Set the HW DMA mode and the COE */
1645 stmmac_dma_operation_mode(priv);
1646
1647 stmmac_mmc_setup(priv);
1648
1649 ret = stmmac_init_ptp(priv);
1650 if (ret && ret != -EOPNOTSUPP)
1651 pr_warn("%s: failed PTP initialisation\n", __func__);
1652
1653 #ifdef CONFIG_STMMAC_DEBUG_FS
1654 ret = stmmac_init_fs(dev);
1655 if (ret < 0)
1656 pr_warn("%s: failed debugFS registration\n", __func__);
1657 #endif
1658 /* Start the ball rolling... */
1659 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1660 priv->hw->dma->start_tx(priv->ioaddr);
1661 priv->hw->dma->start_rx(priv->ioaddr);
1662
1663 /* Dump DMA/MAC registers */
1664 if (netif_msg_hw(priv)) {
1665 priv->hw->mac->dump_regs(priv->ioaddr);
1666 priv->hw->dma->dump_regs(priv->ioaddr);
1667 }
1668 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1669
1670 priv->eee_enabled = stmmac_eee_init(priv);
1671
1672 stmmac_init_tx_coalesce(priv);
1673
1674 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1675 priv->rx_riwt = MAX_DMA_RIWT;
1676 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1677 }
1678
1679 if (priv->pcs && priv->hw->mac->ctrl_ane)
1680 priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1681
1682 return 0;
1683 }
1684
1685 /**
1686 * stmmac_open - open entry point of the driver
1687 * @dev : pointer to the device structure.
1688 * Description:
1689 * This function is the open entry point of the driver.
1690 * Return value:
1691 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1692 * file on failure.
1693 */
1694 static int stmmac_open(struct net_device *dev)
1695 {
1696 struct stmmac_priv *priv = netdev_priv(dev);
1697 int ret;
1698
1699 stmmac_check_ether_addr(priv);
1700
1701 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1702 priv->pcs != STMMAC_PCS_RTBI) {
1703 ret = stmmac_init_phy(dev);
1704 if (ret) {
1705 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1706 __func__, ret);
1707 return ret;
1708 }
1709 }
1710
1711 /* Extra statistics */
1712 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1713 priv->xstats.threshold = tc;
1714
1715 /* Create and initialize the TX/RX descriptors chains. */
1716 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1717 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1718 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1719
1720 ret = alloc_dma_desc_resources(priv);
1721 if (ret < 0) {
1722 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1723 goto dma_desc_error;
1724 }
1725
1726 ret = stmmac_hw_setup(dev);
1727 if (ret < 0) {
1728 pr_err("%s: Hw setup failed\n", __func__);
1729 goto init_error;
1730 }
1731
1732 if (priv->phydev)
1733 phy_start(priv->phydev);
1734
1735 /* Request the IRQ lines */
1736 ret = request_irq(dev->irq, stmmac_interrupt,
1737 IRQF_SHARED, dev->name, dev);
1738 if (unlikely(ret < 0)) {
1739 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1740 __func__, dev->irq, ret);
1741 goto init_error;
1742 }
1743
1744 /* Request the Wake IRQ in case of another line is used for WoL */
1745 if (priv->wol_irq != dev->irq) {
1746 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1747 IRQF_SHARED, dev->name, dev);
1748 if (unlikely(ret < 0)) {
1749 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1750 __func__, priv->wol_irq, ret);
1751 goto wolirq_error;
1752 }
1753 }
1754
1755 /* Request the IRQ lines */
1756 if (priv->lpi_irq > 0) {
1757 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1758 dev->name, dev);
1759 if (unlikely(ret < 0)) {
1760 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1761 __func__, priv->lpi_irq, ret);
1762 goto lpiirq_error;
1763 }
1764 }
1765
1766 napi_enable(&priv->napi);
1767 netif_start_queue(dev);
1768
1769 return 0;
1770
1771 lpiirq_error:
1772 if (priv->wol_irq != dev->irq)
1773 free_irq(priv->wol_irq, dev);
1774 wolirq_error:
1775 free_irq(dev->irq, dev);
1776
1777 init_error:
1778 free_dma_desc_resources(priv);
1779 dma_desc_error:
1780 if (priv->phydev)
1781 phy_disconnect(priv->phydev);
1782
1783 return ret;
1784 }
1785
1786 /**
1787 * stmmac_release - close entry point of the driver
1788 * @dev : device pointer.
1789 * Description:
1790 * This is the stop entry point of the driver.
1791 */
1792 static int stmmac_release(struct net_device *dev)
1793 {
1794 struct stmmac_priv *priv = netdev_priv(dev);
1795
1796 if (priv->eee_enabled)
1797 del_timer_sync(&priv->eee_ctrl_timer);
1798
1799 /* Stop and disconnect the PHY */
1800 if (priv->phydev) {
1801 phy_stop(priv->phydev);
1802 phy_disconnect(priv->phydev);
1803 priv->phydev = NULL;
1804 }
1805
1806 netif_stop_queue(dev);
1807
1808 napi_disable(&priv->napi);
1809
1810 del_timer_sync(&priv->txtimer);
1811
1812 /* Free the IRQ lines */
1813 free_irq(dev->irq, dev);
1814 if (priv->wol_irq != dev->irq)
1815 free_irq(priv->wol_irq, dev);
1816 if (priv->lpi_irq > 0)
1817 free_irq(priv->lpi_irq, dev);
1818
1819 /* Stop TX/RX DMA and clear the descriptors */
1820 priv->hw->dma->stop_tx(priv->ioaddr);
1821 priv->hw->dma->stop_rx(priv->ioaddr);
1822
1823 /* Release and free the Rx/Tx resources */
1824 free_dma_desc_resources(priv);
1825
1826 /* Disable the MAC Rx/Tx */
1827 stmmac_set_mac(priv->ioaddr, false);
1828
1829 netif_carrier_off(dev);
1830
1831 #ifdef CONFIG_STMMAC_DEBUG_FS
1832 stmmac_exit_fs();
1833 #endif
1834
1835 stmmac_release_ptp(priv);
1836
1837 return 0;
1838 }
1839
1840 /**
1841 * stmmac_xmit: Tx entry point of the driver
1842 * @skb : the socket buffer
1843 * @dev : device pointer
1844 * Description : this is the tx entry point of the driver.
1845 * It programs the chain or the ring and supports oversized frames
1846 * and SG feature.
1847 */
1848 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1849 {
1850 struct stmmac_priv *priv = netdev_priv(dev);
1851 unsigned int txsize = priv->dma_tx_size;
1852 unsigned int entry;
1853 int i, csum_insertion = 0, is_jumbo = 0;
1854 int nfrags = skb_shinfo(skb)->nr_frags;
1855 struct dma_desc *desc, *first;
1856 unsigned int nopaged_len = skb_headlen(skb);
1857 unsigned int enh_desc = priv->plat->enh_desc;
1858
1859 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1860 if (!netif_queue_stopped(dev)) {
1861 netif_stop_queue(dev);
1862 /* This is a hard error, log it. */
1863 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1864 }
1865 return NETDEV_TX_BUSY;
1866 }
1867
1868 spin_lock(&priv->tx_lock);
1869
1870 if (priv->tx_path_in_lpi_mode)
1871 stmmac_disable_eee_mode(priv);
1872
1873 entry = priv->cur_tx % txsize;
1874
1875 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1876
1877 if (priv->extend_desc)
1878 desc = (struct dma_desc *)(priv->dma_etx + entry);
1879 else
1880 desc = priv->dma_tx + entry;
1881
1882 first = desc;
1883
1884 /* To program the descriptors according to the size of the frame */
1885 if (enh_desc)
1886 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1887
1888 if (likely(!is_jumbo)) {
1889 desc->des2 = dma_map_single(priv->device, skb->data,
1890 nopaged_len, DMA_TO_DEVICE);
1891 priv->tx_skbuff_dma[entry] = desc->des2;
1892 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1893 csum_insertion, priv->mode);
1894 } else {
1895 desc = first;
1896 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1897 }
1898
1899 for (i = 0; i < nfrags; i++) {
1900 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1901 int len = skb_frag_size(frag);
1902
1903 priv->tx_skbuff[entry] = NULL;
1904 entry = (++priv->cur_tx) % txsize;
1905 if (priv->extend_desc)
1906 desc = (struct dma_desc *)(priv->dma_etx + entry);
1907 else
1908 desc = priv->dma_tx + entry;
1909
1910 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1911 DMA_TO_DEVICE);
1912 priv->tx_skbuff_dma[entry] = desc->des2;
1913 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1914 priv->mode);
1915 wmb();
1916 priv->hw->desc->set_tx_owner(desc);
1917 wmb();
1918 }
1919
1920 priv->tx_skbuff[entry] = skb;
1921
1922 /* Finalize the latest segment. */
1923 priv->hw->desc->close_tx_desc(desc);
1924
1925 wmb();
1926 /* According to the coalesce parameter the IC bit for the latest
1927 * segment could be reset and the timer re-started to invoke the
1928 * stmmac_tx function. This approach takes care about the fragments.
1929 */
1930 priv->tx_count_frames += nfrags + 1;
1931 if (priv->tx_coal_frames > priv->tx_count_frames) {
1932 priv->hw->desc->clear_tx_ic(desc);
1933 priv->xstats.tx_reset_ic_bit++;
1934 mod_timer(&priv->txtimer,
1935 STMMAC_COAL_TIMER(priv->tx_coal_timer));
1936 } else
1937 priv->tx_count_frames = 0;
1938
1939 /* To avoid raise condition */
1940 priv->hw->desc->set_tx_owner(first);
1941 wmb();
1942
1943 priv->cur_tx++;
1944
1945 if (netif_msg_pktdata(priv)) {
1946 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1947 __func__, (priv->cur_tx % txsize),
1948 (priv->dirty_tx % txsize), entry, first, nfrags);
1949
1950 if (priv->extend_desc)
1951 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1952 else
1953 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1954
1955 pr_debug(">>> frame to be transmitted: ");
1956 print_pkt(skb->data, skb->len);
1957 }
1958 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1959 if (netif_msg_hw(priv))
1960 pr_debug("%s: stop transmitted packets\n", __func__);
1961 netif_stop_queue(dev);
1962 }
1963
1964 dev->stats.tx_bytes += skb->len;
1965
1966 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1967 priv->hwts_tx_en)) {
1968 /* declare that device is doing timestamping */
1969 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1970 priv->hw->desc->enable_tx_timestamp(first);
1971 }
1972
1973 if (!priv->hwts_tx_en)
1974 skb_tx_timestamp(skb);
1975
1976 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1977
1978 spin_unlock(&priv->tx_lock);
1979
1980 return NETDEV_TX_OK;
1981 }
1982
1983 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
1984 {
1985 struct ethhdr *ehdr;
1986 u16 vlanid;
1987
1988 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
1989 NETIF_F_HW_VLAN_CTAG_RX &&
1990 !__vlan_get_tag(skb, &vlanid)) {
1991 /* pop the vlan tag */
1992 ehdr = (struct ethhdr *)skb->data;
1993 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
1994 skb_pull(skb, VLAN_HLEN);
1995 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
1996 }
1997 }
1998
1999
2000 /**
2001 * stmmac_rx_refill: refill used skb preallocated buffers
2002 * @priv: driver private structure
2003 * Description : this is to reallocate the skb for the reception process
2004 * that is based on zero-copy.
2005 */
2006 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2007 {
2008 unsigned int rxsize = priv->dma_rx_size;
2009 int bfsize = priv->dma_buf_sz;
2010
2011 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2012 unsigned int entry = priv->dirty_rx % rxsize;
2013 struct dma_desc *p;
2014
2015 if (priv->extend_desc)
2016 p = (struct dma_desc *)(priv->dma_erx + entry);
2017 else
2018 p = priv->dma_rx + entry;
2019
2020 if (likely(priv->rx_skbuff[entry] == NULL)) {
2021 struct sk_buff *skb;
2022
2023 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2024
2025 if (unlikely(skb == NULL))
2026 break;
2027
2028 priv->rx_skbuff[entry] = skb;
2029 priv->rx_skbuff_dma[entry] =
2030 dma_map_single(priv->device, skb->data, bfsize,
2031 DMA_FROM_DEVICE);
2032
2033 p->des2 = priv->rx_skbuff_dma[entry];
2034
2035 priv->hw->mode->refill_desc3(priv, p);
2036
2037 if (netif_msg_rx_status(priv))
2038 pr_debug("\trefill entry #%d\n", entry);
2039 }
2040 wmb();
2041 priv->hw->desc->set_rx_owner(p);
2042 wmb();
2043 }
2044 }
2045
2046 /**
2047 * stmmac_rx_refill: refill used skb preallocated buffers
2048 * @priv: driver private structure
2049 * @limit: napi bugget.
2050 * Description : this the function called by the napi poll method.
2051 * It gets all the frames inside the ring.
2052 */
2053 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2054 {
2055 unsigned int rxsize = priv->dma_rx_size;
2056 unsigned int entry = priv->cur_rx % rxsize;
2057 unsigned int next_entry;
2058 unsigned int count = 0;
2059 int coe = priv->plat->rx_coe;
2060
2061 if (netif_msg_rx_status(priv)) {
2062 pr_debug("%s: descriptor ring:\n", __func__);
2063 if (priv->extend_desc)
2064 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2065 else
2066 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2067 }
2068 while (count < limit) {
2069 int status;
2070 struct dma_desc *p;
2071
2072 if (priv->extend_desc)
2073 p = (struct dma_desc *)(priv->dma_erx + entry);
2074 else
2075 p = priv->dma_rx + entry;
2076
2077 if (priv->hw->desc->get_rx_owner(p))
2078 break;
2079
2080 count++;
2081
2082 next_entry = (++priv->cur_rx) % rxsize;
2083 if (priv->extend_desc)
2084 prefetch(priv->dma_erx + next_entry);
2085 else
2086 prefetch(priv->dma_rx + next_entry);
2087
2088 /* read the status of the incoming frame */
2089 status = priv->hw->desc->rx_status(&priv->dev->stats,
2090 &priv->xstats, p);
2091 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2092 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2093 &priv->xstats,
2094 priv->dma_erx +
2095 entry);
2096 if (unlikely(status == discard_frame)) {
2097 priv->dev->stats.rx_errors++;
2098 if (priv->hwts_rx_en && !priv->extend_desc) {
2099 /* DESC2 & DESC3 will be overwitten by device
2100 * with timestamp value, hence reinitialize
2101 * them in stmmac_rx_refill() function so that
2102 * device can reuse it.
2103 */
2104 priv->rx_skbuff[entry] = NULL;
2105 dma_unmap_single(priv->device,
2106 priv->rx_skbuff_dma[entry],
2107 priv->dma_buf_sz,
2108 DMA_FROM_DEVICE);
2109 }
2110 } else {
2111 struct sk_buff *skb;
2112 int frame_len;
2113
2114 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2115
2116 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2117 * Type frames (LLC/LLC-SNAP)
2118 */
2119 if (unlikely(status != llc_snap))
2120 frame_len -= ETH_FCS_LEN;
2121
2122 if (netif_msg_rx_status(priv)) {
2123 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2124 p, entry, p->des2);
2125 if (frame_len > ETH_FRAME_LEN)
2126 pr_debug("\tframe size %d, COE: %d\n",
2127 frame_len, status);
2128 }
2129 skb = priv->rx_skbuff[entry];
2130 if (unlikely(!skb)) {
2131 pr_err("%s: Inconsistent Rx descriptor chain\n",
2132 priv->dev->name);
2133 priv->dev->stats.rx_dropped++;
2134 break;
2135 }
2136 prefetch(skb->data - NET_IP_ALIGN);
2137 priv->rx_skbuff[entry] = NULL;
2138
2139 stmmac_get_rx_hwtstamp(priv, entry, skb);
2140
2141 skb_put(skb, frame_len);
2142 dma_unmap_single(priv->device,
2143 priv->rx_skbuff_dma[entry],
2144 priv->dma_buf_sz, DMA_FROM_DEVICE);
2145
2146 if (netif_msg_pktdata(priv)) {
2147 pr_debug("frame received (%dbytes)", frame_len);
2148 print_pkt(skb->data, frame_len);
2149 }
2150
2151 stmmac_rx_vlan(priv->dev, skb);
2152
2153 skb->protocol = eth_type_trans(skb, priv->dev);
2154
2155 if (unlikely(!coe))
2156 skb_checksum_none_assert(skb);
2157 else
2158 skb->ip_summed = CHECKSUM_UNNECESSARY;
2159
2160 napi_gro_receive(&priv->napi, skb);
2161
2162 priv->dev->stats.rx_packets++;
2163 priv->dev->stats.rx_bytes += frame_len;
2164 }
2165 entry = next_entry;
2166 }
2167
2168 stmmac_rx_refill(priv);
2169
2170 priv->xstats.rx_pkt_n += count;
2171
2172 return count;
2173 }
2174
2175 /**
2176 * stmmac_poll - stmmac poll method (NAPI)
2177 * @napi : pointer to the napi structure.
2178 * @budget : maximum number of packets that the current CPU can receive from
2179 * all interfaces.
2180 * Description :
2181 * To look at the incoming frames and clear the tx resources.
2182 */
2183 static int stmmac_poll(struct napi_struct *napi, int budget)
2184 {
2185 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2186 int work_done = 0;
2187
2188 priv->xstats.napi_poll++;
2189 stmmac_tx_clean(priv);
2190
2191 work_done = stmmac_rx(priv, budget);
2192 if (work_done < budget) {
2193 napi_complete(napi);
2194 stmmac_enable_dma_irq(priv);
2195 }
2196 return work_done;
2197 }
2198
2199 /**
2200 * stmmac_tx_timeout
2201 * @dev : Pointer to net device structure
2202 * Description: this function is called when a packet transmission fails to
2203 * complete within a reasonable time. The driver will mark the error in the
2204 * netdev structure and arrange for the device to be reset to a sane state
2205 * in order to transmit a new packet.
2206 */
2207 static void stmmac_tx_timeout(struct net_device *dev)
2208 {
2209 struct stmmac_priv *priv = netdev_priv(dev);
2210
2211 /* Clear Tx resources and restart transmitting again */
2212 stmmac_tx_err(priv);
2213 }
2214
2215 /**
2216 * stmmac_set_rx_mode - entry point for multicast addressing
2217 * @dev : pointer to the device structure
2218 * Description:
2219 * This function is a driver entry point which gets called by the kernel
2220 * whenever multicast addresses must be enabled/disabled.
2221 * Return value:
2222 * void.
2223 */
2224 static void stmmac_set_rx_mode(struct net_device *dev)
2225 {
2226 struct stmmac_priv *priv = netdev_priv(dev);
2227
2228 spin_lock(&priv->lock);
2229 priv->hw->mac->set_filter(dev, priv->synopsys_id);
2230 spin_unlock(&priv->lock);
2231 }
2232
2233 /**
2234 * stmmac_change_mtu - entry point to change MTU size for the device.
2235 * @dev : device pointer.
2236 * @new_mtu : the new MTU size for the device.
2237 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2238 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2239 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2240 * Return value:
2241 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2242 * file on failure.
2243 */
2244 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2245 {
2246 struct stmmac_priv *priv = netdev_priv(dev);
2247 int max_mtu;
2248
2249 if (netif_running(dev)) {
2250 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2251 return -EBUSY;
2252 }
2253
2254 if (priv->plat->enh_desc)
2255 max_mtu = JUMBO_LEN;
2256 else
2257 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2258
2259 if (priv->plat->maxmtu < max_mtu)
2260 max_mtu = priv->plat->maxmtu;
2261
2262 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2263 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2264 return -EINVAL;
2265 }
2266
2267 dev->mtu = new_mtu;
2268 netdev_update_features(dev);
2269
2270 return 0;
2271 }
2272
2273 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2274 netdev_features_t features)
2275 {
2276 struct stmmac_priv *priv = netdev_priv(dev);
2277
2278 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2279 features &= ~NETIF_F_RXCSUM;
2280 else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2281 features &= ~NETIF_F_IPV6_CSUM;
2282 if (!priv->plat->tx_coe)
2283 features &= ~NETIF_F_ALL_CSUM;
2284
2285 /* Some GMAC devices have a bugged Jumbo frame support that
2286 * needs to have the Tx COE disabled for oversized frames
2287 * (due to limited buffer sizes). In this case we disable
2288 * the TX csum insertionin the TDES and not use SF.
2289 */
2290 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2291 features &= ~NETIF_F_ALL_CSUM;
2292
2293 return features;
2294 }
2295
2296 /**
2297 * stmmac_interrupt - main ISR
2298 * @irq: interrupt number.
2299 * @dev_id: to pass the net device pointer.
2300 * Description: this is the main driver interrupt service routine.
2301 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2302 * interrupts.
2303 */
2304 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2305 {
2306 struct net_device *dev = (struct net_device *)dev_id;
2307 struct stmmac_priv *priv = netdev_priv(dev);
2308
2309 if (priv->irq_wake)
2310 pm_wakeup_event(priv->device, 0);
2311
2312 if (unlikely(!dev)) {
2313 pr_err("%s: invalid dev pointer\n", __func__);
2314 return IRQ_NONE;
2315 }
2316
2317 /* To handle GMAC own interrupts */
2318 if (priv->plat->has_gmac) {
2319 int status = priv->hw->mac->host_irq_status((void __iomem *)
2320 dev->base_addr,
2321 &priv->xstats);
2322 if (unlikely(status)) {
2323 /* For LPI we need to save the tx status */
2324 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2325 priv->tx_path_in_lpi_mode = true;
2326 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2327 priv->tx_path_in_lpi_mode = false;
2328 }
2329 }
2330
2331 /* To handle DMA interrupts */
2332 stmmac_dma_interrupt(priv);
2333
2334 return IRQ_HANDLED;
2335 }
2336
2337 #ifdef CONFIG_NET_POLL_CONTROLLER
2338 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2339 * to allow network I/O with interrupts disabled.
2340 */
2341 static void stmmac_poll_controller(struct net_device *dev)
2342 {
2343 disable_irq(dev->irq);
2344 stmmac_interrupt(dev->irq, dev);
2345 enable_irq(dev->irq);
2346 }
2347 #endif
2348
2349 /**
2350 * stmmac_ioctl - Entry point for the Ioctl
2351 * @dev: Device pointer.
2352 * @rq: An IOCTL specefic structure, that can contain a pointer to
2353 * a proprietary structure used to pass information to the driver.
2354 * @cmd: IOCTL command
2355 * Description:
2356 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2357 */
2358 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2359 {
2360 struct stmmac_priv *priv = netdev_priv(dev);
2361 int ret = -EOPNOTSUPP;
2362
2363 if (!netif_running(dev))
2364 return -EINVAL;
2365
2366 switch (cmd) {
2367 case SIOCGMIIPHY:
2368 case SIOCGMIIREG:
2369 case SIOCSMIIREG:
2370 if (!priv->phydev)
2371 return -EINVAL;
2372 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2373 break;
2374 case SIOCSHWTSTAMP:
2375 ret = stmmac_hwtstamp_ioctl(dev, rq);
2376 break;
2377 default:
2378 break;
2379 }
2380
2381 return ret;
2382 }
2383
2384 #ifdef CONFIG_STMMAC_DEBUG_FS
2385 static struct dentry *stmmac_fs_dir;
2386 static struct dentry *stmmac_rings_status;
2387 static struct dentry *stmmac_dma_cap;
2388
2389 static void sysfs_display_ring(void *head, int size, int extend_desc,
2390 struct seq_file *seq)
2391 {
2392 int i;
2393 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2394 struct dma_desc *p = (struct dma_desc *)head;
2395
2396 for (i = 0; i < size; i++) {
2397 u64 x;
2398 if (extend_desc) {
2399 x = *(u64 *) ep;
2400 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2401 i, (unsigned int)virt_to_phys(ep),
2402 (unsigned int)x, (unsigned int)(x >> 32),
2403 ep->basic.des2, ep->basic.des3);
2404 ep++;
2405 } else {
2406 x = *(u64 *) p;
2407 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2408 i, (unsigned int)virt_to_phys(ep),
2409 (unsigned int)x, (unsigned int)(x >> 32),
2410 p->des2, p->des3);
2411 p++;
2412 }
2413 seq_printf(seq, "\n");
2414 }
2415 }
2416
2417 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2418 {
2419 struct net_device *dev = seq->private;
2420 struct stmmac_priv *priv = netdev_priv(dev);
2421 unsigned int txsize = priv->dma_tx_size;
2422 unsigned int rxsize = priv->dma_rx_size;
2423
2424 if (priv->extend_desc) {
2425 seq_printf(seq, "Extended RX descriptor ring:\n");
2426 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2427 seq_printf(seq, "Extended TX descriptor ring:\n");
2428 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2429 } else {
2430 seq_printf(seq, "RX descriptor ring:\n");
2431 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2432 seq_printf(seq, "TX descriptor ring:\n");
2433 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2434 }
2435
2436 return 0;
2437 }
2438
2439 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2440 {
2441 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2442 }
2443
2444 static const struct file_operations stmmac_rings_status_fops = {
2445 .owner = THIS_MODULE,
2446 .open = stmmac_sysfs_ring_open,
2447 .read = seq_read,
2448 .llseek = seq_lseek,
2449 .release = single_release,
2450 };
2451
2452 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2453 {
2454 struct net_device *dev = seq->private;
2455 struct stmmac_priv *priv = netdev_priv(dev);
2456
2457 if (!priv->hw_cap_support) {
2458 seq_printf(seq, "DMA HW features not supported\n");
2459 return 0;
2460 }
2461
2462 seq_printf(seq, "==============================\n");
2463 seq_printf(seq, "\tDMA HW features\n");
2464 seq_printf(seq, "==============================\n");
2465
2466 seq_printf(seq, "\t10/100 Mbps %s\n",
2467 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2468 seq_printf(seq, "\t1000 Mbps %s\n",
2469 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2470 seq_printf(seq, "\tHalf duple %s\n",
2471 (priv->dma_cap.half_duplex) ? "Y" : "N");
2472 seq_printf(seq, "\tHash Filter: %s\n",
2473 (priv->dma_cap.hash_filter) ? "Y" : "N");
2474 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2475 (priv->dma_cap.multi_addr) ? "Y" : "N");
2476 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2477 (priv->dma_cap.pcs) ? "Y" : "N");
2478 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2479 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2480 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2481 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2482 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2483 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2484 seq_printf(seq, "\tRMON module: %s\n",
2485 (priv->dma_cap.rmon) ? "Y" : "N");
2486 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2487 (priv->dma_cap.time_stamp) ? "Y" : "N");
2488 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2489 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2490 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2491 (priv->dma_cap.eee) ? "Y" : "N");
2492 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2493 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2494 (priv->dma_cap.tx_coe) ? "Y" : "N");
2495 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2496 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2497 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2498 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2499 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2500 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2501 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2502 priv->dma_cap.number_rx_channel);
2503 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2504 priv->dma_cap.number_tx_channel);
2505 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2506 (priv->dma_cap.enh_desc) ? "Y" : "N");
2507
2508 return 0;
2509 }
2510
2511 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2512 {
2513 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2514 }
2515
2516 static const struct file_operations stmmac_dma_cap_fops = {
2517 .owner = THIS_MODULE,
2518 .open = stmmac_sysfs_dma_cap_open,
2519 .read = seq_read,
2520 .llseek = seq_lseek,
2521 .release = single_release,
2522 };
2523
2524 static int stmmac_init_fs(struct net_device *dev)
2525 {
2526 /* Create debugfs entries */
2527 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2528
2529 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2530 pr_err("ERROR %s, debugfs create directory failed\n",
2531 STMMAC_RESOURCE_NAME);
2532
2533 return -ENOMEM;
2534 }
2535
2536 /* Entry to report DMA RX/TX rings */
2537 stmmac_rings_status = debugfs_create_file("descriptors_status",
2538 S_IRUGO, stmmac_fs_dir, dev,
2539 &stmmac_rings_status_fops);
2540
2541 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2542 pr_info("ERROR creating stmmac ring debugfs file\n");
2543 debugfs_remove(stmmac_fs_dir);
2544
2545 return -ENOMEM;
2546 }
2547
2548 /* Entry to report the DMA HW features */
2549 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2550 dev, &stmmac_dma_cap_fops);
2551
2552 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2553 pr_info("ERROR creating stmmac MMC debugfs file\n");
2554 debugfs_remove(stmmac_rings_status);
2555 debugfs_remove(stmmac_fs_dir);
2556
2557 return -ENOMEM;
2558 }
2559
2560 return 0;
2561 }
2562
2563 static void stmmac_exit_fs(void)
2564 {
2565 debugfs_remove(stmmac_rings_status);
2566 debugfs_remove(stmmac_dma_cap);
2567 debugfs_remove(stmmac_fs_dir);
2568 }
2569 #endif /* CONFIG_STMMAC_DEBUG_FS */
2570
2571 static const struct net_device_ops stmmac_netdev_ops = {
2572 .ndo_open = stmmac_open,
2573 .ndo_start_xmit = stmmac_xmit,
2574 .ndo_stop = stmmac_release,
2575 .ndo_change_mtu = stmmac_change_mtu,
2576 .ndo_fix_features = stmmac_fix_features,
2577 .ndo_set_rx_mode = stmmac_set_rx_mode,
2578 .ndo_tx_timeout = stmmac_tx_timeout,
2579 .ndo_do_ioctl = stmmac_ioctl,
2580 #ifdef CONFIG_NET_POLL_CONTROLLER
2581 .ndo_poll_controller = stmmac_poll_controller,
2582 #endif
2583 .ndo_set_mac_address = eth_mac_addr,
2584 };
2585
2586 /**
2587 * stmmac_hw_init - Init the MAC device
2588 * @priv: driver private structure
2589 * Description: this function detects which MAC device
2590 * (GMAC/MAC10-100) has to attached, checks the HW capability
2591 * (if supported) and sets the driver's features (for example
2592 * to use the ring or chaine mode or support the normal/enh
2593 * descriptor structure).
2594 */
2595 static int stmmac_hw_init(struct stmmac_priv *priv)
2596 {
2597 int ret;
2598 struct mac_device_info *mac;
2599
2600 /* Identify the MAC HW device */
2601 if (priv->plat->has_gmac) {
2602 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2603 mac = dwmac1000_setup(priv->ioaddr);
2604 } else {
2605 mac = dwmac100_setup(priv->ioaddr);
2606 }
2607 if (!mac)
2608 return -ENOMEM;
2609
2610 priv->hw = mac;
2611
2612 /* Get and dump the chip ID */
2613 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2614
2615 /* To use the chained or ring mode */
2616 if (chain_mode) {
2617 priv->hw->mode = &chain_mode_ops;
2618 pr_info(" Chain mode enabled\n");
2619 priv->mode = STMMAC_CHAIN_MODE;
2620 } else {
2621 priv->hw->mode = &ring_mode_ops;
2622 pr_info(" Ring mode enabled\n");
2623 priv->mode = STMMAC_RING_MODE;
2624 }
2625
2626 /* Get the HW capability (new GMAC newer than 3.50a) */
2627 priv->hw_cap_support = stmmac_get_hw_features(priv);
2628 if (priv->hw_cap_support) {
2629 pr_info(" DMA HW capability register supported");
2630
2631 /* We can override some gmac/dma configuration fields: e.g.
2632 * enh_desc, tx_coe (e.g. that are passed through the
2633 * platform) with the values from the HW capability
2634 * register (if supported).
2635 */
2636 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2637 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2638
2639 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2640
2641 if (priv->dma_cap.rx_coe_type2)
2642 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2643 else if (priv->dma_cap.rx_coe_type1)
2644 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2645
2646 } else
2647 pr_info(" No HW DMA feature register supported");
2648
2649 /* To use alternate (extended) or normal descriptor structures */
2650 stmmac_selec_desc_mode(priv);
2651
2652 ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2653 if (!ret) {
2654 pr_warn(" RX IPC Checksum Offload not configured.\n");
2655 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2656 }
2657
2658 if (priv->plat->rx_coe)
2659 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2660 priv->plat->rx_coe);
2661 if (priv->plat->tx_coe)
2662 pr_info(" TX Checksum insertion supported\n");
2663
2664 if (priv->plat->pmt) {
2665 pr_info(" Wake-Up On Lan supported\n");
2666 device_set_wakeup_capable(priv->device, 1);
2667 }
2668
2669 return 0;
2670 }
2671
2672 /**
2673 * stmmac_dvr_probe
2674 * @device: device pointer
2675 * @plat_dat: platform data pointer
2676 * @addr: iobase memory address
2677 * Description: this is the main probe function used to
2678 * call the alloc_etherdev, allocate the priv structure.
2679 */
2680 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2681 struct plat_stmmacenet_data *plat_dat,
2682 void __iomem *addr)
2683 {
2684 int ret = 0;
2685 struct net_device *ndev = NULL;
2686 struct stmmac_priv *priv;
2687
2688 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2689 if (!ndev)
2690 return NULL;
2691
2692 SET_NETDEV_DEV(ndev, device);
2693
2694 priv = netdev_priv(ndev);
2695 priv->device = device;
2696 priv->dev = ndev;
2697
2698 ether_setup(ndev);
2699
2700 stmmac_set_ethtool_ops(ndev);
2701 priv->pause = pause;
2702 priv->plat = plat_dat;
2703 priv->ioaddr = addr;
2704 priv->dev->base_addr = (unsigned long)addr;
2705
2706 /* Verify driver arguments */
2707 stmmac_verify_args();
2708
2709 /* Override with kernel parameters if supplied XXX CRS XXX
2710 * this needs to have multiple instances
2711 */
2712 if ((phyaddr >= 0) && (phyaddr <= 31))
2713 priv->plat->phy_addr = phyaddr;
2714
2715 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2716 if (IS_ERR(priv->stmmac_clk)) {
2717 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2718 __func__);
2719 ret = PTR_ERR(priv->stmmac_clk);
2720 goto error_clk_get;
2721 }
2722 clk_prepare_enable(priv->stmmac_clk);
2723
2724 priv->stmmac_rst = devm_reset_control_get(priv->device,
2725 STMMAC_RESOURCE_NAME);
2726 if (IS_ERR(priv->stmmac_rst)) {
2727 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2728 ret = -EPROBE_DEFER;
2729 goto error_hw_init;
2730 }
2731 dev_info(priv->device, "no reset control found\n");
2732 priv->stmmac_rst = NULL;
2733 }
2734 if (priv->stmmac_rst)
2735 reset_control_deassert(priv->stmmac_rst);
2736
2737 /* Init MAC and get the capabilities */
2738 ret = stmmac_hw_init(priv);
2739 if (ret)
2740 goto error_hw_init;
2741
2742 ndev->netdev_ops = &stmmac_netdev_ops;
2743
2744 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2745 NETIF_F_RXCSUM;
2746 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2747 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2748 #ifdef STMMAC_VLAN_TAG_USED
2749 /* Both mac100 and gmac support receive VLAN tag detection */
2750 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2751 #endif
2752 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2753
2754 if (flow_ctrl)
2755 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2756
2757 /* Rx Watchdog is available in the COREs newer than the 3.40.
2758 * In some case, for example on bugged HW this feature
2759 * has to be disable and this can be done by passing the
2760 * riwt_off field from the platform.
2761 */
2762 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2763 priv->use_riwt = 1;
2764 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2765 }
2766
2767 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2768
2769 spin_lock_init(&priv->lock);
2770 spin_lock_init(&priv->tx_lock);
2771
2772 ret = register_netdev(ndev);
2773 if (ret) {
2774 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2775 goto error_netdev_register;
2776 }
2777
2778 /* If a specific clk_csr value is passed from the platform
2779 * this means that the CSR Clock Range selection cannot be
2780 * changed at run-time and it is fixed. Viceversa the driver'll try to
2781 * set the MDC clock dynamically according to the csr actual
2782 * clock input.
2783 */
2784 if (!priv->plat->clk_csr)
2785 stmmac_clk_csr_set(priv);
2786 else
2787 priv->clk_csr = priv->plat->clk_csr;
2788
2789 stmmac_check_pcs_mode(priv);
2790
2791 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2792 priv->pcs != STMMAC_PCS_RTBI) {
2793 /* MDIO bus Registration */
2794 ret = stmmac_mdio_register(ndev);
2795 if (ret < 0) {
2796 pr_debug("%s: MDIO bus (id: %d) registration failed",
2797 __func__, priv->plat->bus_id);
2798 goto error_mdio_register;
2799 }
2800 }
2801
2802 return priv;
2803
2804 error_mdio_register:
2805 unregister_netdev(ndev);
2806 error_netdev_register:
2807 netif_napi_del(&priv->napi);
2808 error_hw_init:
2809 clk_disable_unprepare(priv->stmmac_clk);
2810 error_clk_get:
2811 free_netdev(ndev);
2812
2813 return ERR_PTR(ret);
2814 }
2815
2816 /**
2817 * stmmac_dvr_remove
2818 * @ndev: net device pointer
2819 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2820 * changes the link status, releases the DMA descriptor rings.
2821 */
2822 int stmmac_dvr_remove(struct net_device *ndev)
2823 {
2824 struct stmmac_priv *priv = netdev_priv(ndev);
2825
2826 pr_info("%s:\n\tremoving driver", __func__);
2827
2828 priv->hw->dma->stop_rx(priv->ioaddr);
2829 priv->hw->dma->stop_tx(priv->ioaddr);
2830
2831 stmmac_set_mac(priv->ioaddr, false);
2832 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2833 priv->pcs != STMMAC_PCS_RTBI)
2834 stmmac_mdio_unregister(ndev);
2835 netif_carrier_off(ndev);
2836 unregister_netdev(ndev);
2837 if (priv->stmmac_rst)
2838 reset_control_assert(priv->stmmac_rst);
2839 clk_disable_unprepare(priv->stmmac_clk);
2840 free_netdev(ndev);
2841
2842 return 0;
2843 }
2844
2845 #ifdef CONFIG_PM
2846 int stmmac_suspend(struct net_device *ndev)
2847 {
2848 struct stmmac_priv *priv = netdev_priv(ndev);
2849 unsigned long flags;
2850
2851 if (!ndev || !netif_running(ndev))
2852 return 0;
2853
2854 if (priv->phydev)
2855 phy_stop(priv->phydev);
2856
2857 spin_lock_irqsave(&priv->lock, flags);
2858
2859 netif_device_detach(ndev);
2860 netif_stop_queue(ndev);
2861
2862 napi_disable(&priv->napi);
2863
2864 /* Stop TX/RX DMA */
2865 priv->hw->dma->stop_tx(priv->ioaddr);
2866 priv->hw->dma->stop_rx(priv->ioaddr);
2867
2868 stmmac_clear_descriptors(priv);
2869
2870 /* Enable Power down mode by programming the PMT regs */
2871 if (device_may_wakeup(priv->device)) {
2872 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2873 priv->irq_wake = 1;
2874 } else {
2875 stmmac_set_mac(priv->ioaddr, false);
2876 pinctrl_pm_select_sleep_state(priv->device);
2877 /* Disable clock in case of PWM is off */
2878 clk_disable_unprepare(priv->stmmac_clk);
2879 }
2880 spin_unlock_irqrestore(&priv->lock, flags);
2881 return 0;
2882 }
2883
2884 int stmmac_resume(struct net_device *ndev)
2885 {
2886 struct stmmac_priv *priv = netdev_priv(ndev);
2887 unsigned long flags;
2888
2889 if (!netif_running(ndev))
2890 return 0;
2891
2892 spin_lock_irqsave(&priv->lock, flags);
2893
2894 /* Power Down bit, into the PM register, is cleared
2895 * automatically as soon as a magic packet or a Wake-up frame
2896 * is received. Anyway, it's better to manually clear
2897 * this bit because it can generate problems while resuming
2898 * from another devices (e.g. serial console).
2899 */
2900 if (device_may_wakeup(priv->device)) {
2901 priv->hw->mac->pmt(priv->ioaddr, 0);
2902 priv->irq_wake = 0;
2903 } else {
2904 pinctrl_pm_select_default_state(priv->device);
2905 /* enable the clk prevously disabled */
2906 clk_prepare_enable(priv->stmmac_clk);
2907 /* reset the phy so that it's ready */
2908 if (priv->mii)
2909 stmmac_mdio_reset(priv->mii);
2910 }
2911
2912 netif_device_attach(ndev);
2913
2914 stmmac_hw_setup(ndev);
2915
2916 napi_enable(&priv->napi);
2917
2918 netif_start_queue(ndev);
2919
2920 spin_unlock_irqrestore(&priv->lock, flags);
2921
2922 if (priv->phydev)
2923 phy_start(priv->phydev);
2924
2925 return 0;
2926 }
2927 #endif /* CONFIG_PM */
2928
2929 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2930 * depending on the configuration selected.
2931 */
2932 static int __init stmmac_init(void)
2933 {
2934 int ret;
2935
2936 ret = stmmac_register_platform();
2937 if (ret)
2938 goto err;
2939 ret = stmmac_register_pci();
2940 if (ret)
2941 goto err_pci;
2942 return 0;
2943 err_pci:
2944 stmmac_unregister_platform();
2945 err:
2946 pr_err("stmmac: driver registration failed\n");
2947 return ret;
2948 }
2949
2950 static void __exit stmmac_exit(void)
2951 {
2952 stmmac_unregister_platform();
2953 stmmac_unregister_pci();
2954 }
2955
2956 module_init(stmmac_init);
2957 module_exit(stmmac_exit);
2958
2959 #ifndef MODULE
2960 static int __init stmmac_cmdline_opt(char *str)
2961 {
2962 char *opt;
2963
2964 if (!str || !*str)
2965 return -EINVAL;
2966 while ((opt = strsep(&str, ",")) != NULL) {
2967 if (!strncmp(opt, "debug:", 6)) {
2968 if (kstrtoint(opt + 6, 0, &debug))
2969 goto err;
2970 } else if (!strncmp(opt, "phyaddr:", 8)) {
2971 if (kstrtoint(opt + 8, 0, &phyaddr))
2972 goto err;
2973 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2974 if (kstrtoint(opt + 11, 0, &dma_txsize))
2975 goto err;
2976 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2977 if (kstrtoint(opt + 11, 0, &dma_rxsize))
2978 goto err;
2979 } else if (!strncmp(opt, "buf_sz:", 7)) {
2980 if (kstrtoint(opt + 7, 0, &buf_sz))
2981 goto err;
2982 } else if (!strncmp(opt, "tc:", 3)) {
2983 if (kstrtoint(opt + 3, 0, &tc))
2984 goto err;
2985 } else if (!strncmp(opt, "watchdog:", 9)) {
2986 if (kstrtoint(opt + 9, 0, &watchdog))
2987 goto err;
2988 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2989 if (kstrtoint(opt + 10, 0, &flow_ctrl))
2990 goto err;
2991 } else if (!strncmp(opt, "pause:", 6)) {
2992 if (kstrtoint(opt + 6, 0, &pause))
2993 goto err;
2994 } else if (!strncmp(opt, "eee_timer:", 10)) {
2995 if (kstrtoint(opt + 10, 0, &eee_timer))
2996 goto err;
2997 } else if (!strncmp(opt, "chain_mode:", 11)) {
2998 if (kstrtoint(opt + 11, 0, &chain_mode))
2999 goto err;
3000 }
3001 }
3002 return 0;
3003
3004 err:
3005 pr_err("%s: ERROR broken module parameter conversion", __func__);
3006 return -EINVAL;
3007 }
3008
3009 __setup("stmmaceth=", stmmac_cmdline_opt);
3010 #endif /* MODULE */
3011
3012 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3013 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3014 MODULE_LICENSE("GPL");