]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
net: stmmac: use __napi_schedule() for PREEMPT_RT
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48
49 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
51
52 /* Module parameters */
53 #define TX_TIMEO 5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65
66 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4)
67 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4)
68
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81
82 #define DEFAULT_BUFSIZE 1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86
87 #define STMMAC_RX_COPYBREAK 256
88
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92
93 #define STMMAC_DEFAULT_LPI_TIMER 1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
98
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100 * but allow user to force to use the chain instead of the ring
101 */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113
114 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
115
116 /**
117 * stmmac_verify_args - verify the driver parameters.
118 * Description: it checks the driver parameters and set a default in case of
119 * errors.
120 */
121 static void stmmac_verify_args(void)
122 {
123 if (unlikely(watchdog < 0))
124 watchdog = TX_TIMEO;
125 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126 buf_sz = DEFAULT_BUFSIZE;
127 if (unlikely(flow_ctrl > 1))
128 flow_ctrl = FLOW_AUTO;
129 else if (likely(flow_ctrl < 0))
130 flow_ctrl = FLOW_OFF;
131 if (unlikely((pause < 0) || (pause > 0xffff)))
132 pause = PAUSE_TIME;
133 if (eee_timer < 0)
134 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136
137 /**
138 * stmmac_disable_all_queues - Disable all queues
139 * @priv: driver private structure
140 */
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146 u32 queue;
147
148 for (queue = 0; queue < maxq; queue++) {
149 struct stmmac_channel *ch = &priv->channel[queue];
150
151 if (queue < rx_queues_cnt)
152 napi_disable(&ch->rx_napi);
153 if (queue < tx_queues_cnt)
154 napi_disable(&ch->tx_napi);
155 }
156 }
157
158 /**
159 * stmmac_enable_all_queues - Enable all queues
160 * @priv: driver private structure
161 */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167 u32 queue;
168
169 for (queue = 0; queue < maxq; queue++) {
170 struct stmmac_channel *ch = &priv->channel[queue];
171
172 if (queue < rx_queues_cnt)
173 napi_enable(&ch->rx_napi);
174 if (queue < tx_queues_cnt)
175 napi_enable(&ch->tx_napi);
176 }
177 }
178
179 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
180 {
181 if (!test_bit(STMMAC_DOWN, &priv->state) &&
182 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
183 queue_work(priv->wq, &priv->service_task);
184 }
185
186 static void stmmac_global_err(struct stmmac_priv *priv)
187 {
188 netif_carrier_off(priv->dev);
189 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
190 stmmac_service_event_schedule(priv);
191 }
192
193 /**
194 * stmmac_clk_csr_set - dynamically set the MDC clock
195 * @priv: driver private structure
196 * Description: this is to dynamically set the MDC clock according to the csr
197 * clock input.
198 * Note:
199 * If a specific clk_csr value is passed from the platform
200 * this means that the CSR Clock Range selection cannot be
201 * changed at run-time and it is fixed (as reported in the driver
202 * documentation). Viceversa the driver will try to set the MDC
203 * clock dynamically according to the actual clock input.
204 */
205 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
206 {
207 u32 clk_rate;
208
209 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
210
211 /* Platform provided default clk_csr would be assumed valid
212 * for all other cases except for the below mentioned ones.
213 * For values higher than the IEEE 802.3 specified frequency
214 * we can not estimate the proper divider as it is not known
215 * the frequency of clk_csr_i. So we do not change the default
216 * divider.
217 */
218 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
219 if (clk_rate < CSR_F_35M)
220 priv->clk_csr = STMMAC_CSR_20_35M;
221 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
222 priv->clk_csr = STMMAC_CSR_35_60M;
223 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
224 priv->clk_csr = STMMAC_CSR_60_100M;
225 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
226 priv->clk_csr = STMMAC_CSR_100_150M;
227 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
228 priv->clk_csr = STMMAC_CSR_150_250M;
229 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
230 priv->clk_csr = STMMAC_CSR_250_300M;
231 }
232
233 if (priv->plat->has_sun8i) {
234 if (clk_rate > 160000000)
235 priv->clk_csr = 0x03;
236 else if (clk_rate > 80000000)
237 priv->clk_csr = 0x02;
238 else if (clk_rate > 40000000)
239 priv->clk_csr = 0x01;
240 else
241 priv->clk_csr = 0;
242 }
243
244 if (priv->plat->has_xgmac) {
245 if (clk_rate > 400000000)
246 priv->clk_csr = 0x5;
247 else if (clk_rate > 350000000)
248 priv->clk_csr = 0x4;
249 else if (clk_rate > 300000000)
250 priv->clk_csr = 0x3;
251 else if (clk_rate > 250000000)
252 priv->clk_csr = 0x2;
253 else if (clk_rate > 150000000)
254 priv->clk_csr = 0x1;
255 else
256 priv->clk_csr = 0x0;
257 }
258 }
259
260 static void print_pkt(unsigned char *buf, int len)
261 {
262 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
263 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
264 }
265
266 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
267 {
268 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
269 u32 avail;
270
271 if (tx_q->dirty_tx > tx_q->cur_tx)
272 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
273 else
274 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
275
276 return avail;
277 }
278
279 /**
280 * stmmac_rx_dirty - Get RX queue dirty
281 * @priv: driver private structure
282 * @queue: RX queue index
283 */
284 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
285 {
286 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
287 u32 dirty;
288
289 if (rx_q->dirty_rx <= rx_q->cur_rx)
290 dirty = rx_q->cur_rx - rx_q->dirty_rx;
291 else
292 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
293
294 return dirty;
295 }
296
297 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
298 {
299 int tx_lpi_timer;
300
301 /* Clear/set the SW EEE timer flag based on LPI ET enablement */
302 priv->eee_sw_timer_en = en ? 0 : 1;
303 tx_lpi_timer = en ? priv->tx_lpi_timer : 0;
304 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
305 }
306
307 /**
308 * stmmac_enable_eee_mode - check and enter in LPI mode
309 * @priv: driver private structure
310 * Description: this function is to verify and enter in LPI mode in case of
311 * EEE.
312 */
313 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
314 {
315 u32 tx_cnt = priv->plat->tx_queues_to_use;
316 u32 queue;
317
318 /* check if all TX queues have the work finished */
319 for (queue = 0; queue < tx_cnt; queue++) {
320 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
321
322 if (tx_q->dirty_tx != tx_q->cur_tx)
323 return; /* still unfinished work */
324 }
325
326 /* Check and enter in LPI mode */
327 if (!priv->tx_path_in_lpi_mode)
328 stmmac_set_eee_mode(priv, priv->hw,
329 priv->plat->en_tx_lpi_clockgating);
330 }
331
332 /**
333 * stmmac_disable_eee_mode - disable and exit from LPI mode
334 * @priv: driver private structure
335 * Description: this function is to exit and disable EEE in case of
336 * LPI state is true. This is called by the xmit.
337 */
338 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
339 {
340 if (!priv->eee_sw_timer_en) {
341 stmmac_lpi_entry_timer_config(priv, 0);
342 return;
343 }
344
345 stmmac_reset_eee_mode(priv, priv->hw);
346 del_timer_sync(&priv->eee_ctrl_timer);
347 priv->tx_path_in_lpi_mode = false;
348 }
349
350 /**
351 * stmmac_eee_ctrl_timer - EEE TX SW timer.
352 * @t: timer_list struct containing private info
353 * Description:
354 * if there is no data transfer and if we are not in LPI state,
355 * then MAC Transmitter can be moved to LPI state.
356 */
357 static void stmmac_eee_ctrl_timer(struct timer_list *t)
358 {
359 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
360
361 stmmac_enable_eee_mode(priv);
362 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
363 }
364
365 /**
366 * stmmac_eee_init - init EEE
367 * @priv: driver private structure
368 * Description:
369 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
370 * can also manage EEE, this function enable the LPI state and start related
371 * timer.
372 */
373 bool stmmac_eee_init(struct stmmac_priv *priv)
374 {
375 int eee_tw_timer = priv->eee_tw_timer;
376
377 /* Using PCS we cannot dial with the phy registers at this stage
378 * so we do not support extra feature like EEE.
379 */
380 if (priv->hw->pcs == STMMAC_PCS_TBI ||
381 priv->hw->pcs == STMMAC_PCS_RTBI)
382 return false;
383
384 /* Check if MAC core supports the EEE feature. */
385 if (!priv->dma_cap.eee)
386 return false;
387
388 mutex_lock(&priv->lock);
389
390 /* Check if it needs to be deactivated */
391 if (!priv->eee_active) {
392 if (priv->eee_enabled) {
393 netdev_dbg(priv->dev, "disable EEE\n");
394 stmmac_lpi_entry_timer_config(priv, 0);
395 del_timer_sync(&priv->eee_ctrl_timer);
396 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
397 }
398 mutex_unlock(&priv->lock);
399 return false;
400 }
401
402 if (priv->eee_active && !priv->eee_enabled) {
403 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
404 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
405 eee_tw_timer);
406 }
407
408 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
409 del_timer_sync(&priv->eee_ctrl_timer);
410 priv->tx_path_in_lpi_mode = false;
411 stmmac_lpi_entry_timer_config(priv, 1);
412 } else {
413 stmmac_lpi_entry_timer_config(priv, 0);
414 mod_timer(&priv->eee_ctrl_timer,
415 STMMAC_LPI_T(priv->tx_lpi_timer));
416 }
417
418 mutex_unlock(&priv->lock);
419 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420 return true;
421 }
422
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424 * @priv: driver private structure
425 * @p : descriptor pointer
426 * @skb : the socket buffer
427 * Description :
428 * This function will read timestamp from the descriptor & pass it to stack.
429 * and also perform some sanity checks.
430 */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432 struct dma_desc *p, struct sk_buff *skb)
433 {
434 struct skb_shared_hwtstamps shhwtstamp;
435 bool found = false;
436 u64 ns = 0;
437
438 if (!priv->hwts_tx_en)
439 return;
440
441 /* exit if skb doesn't support hw tstamp */
442 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
443 return;
444
445 /* check tx tstamp status */
446 if (stmmac_get_tx_timestamp_status(priv, p)) {
447 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448 found = true;
449 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
450 found = true;
451 }
452
453 if (found) {
454 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
455 shhwtstamp.hwtstamp = ns_to_ktime(ns);
456
457 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
458 /* pass tstamp to stack */
459 skb_tstamp_tx(skb, &shhwtstamp);
460 }
461 }
462
463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
464 * @priv: driver private structure
465 * @p : descriptor pointer
466 * @np : next descriptor pointer
467 * @skb : the socket buffer
468 * Description :
469 * This function will read received packet's timestamp from the descriptor
470 * and pass it to stack. It also perform some sanity checks.
471 */
472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
473 struct dma_desc *np, struct sk_buff *skb)
474 {
475 struct skb_shared_hwtstamps *shhwtstamp = NULL;
476 struct dma_desc *desc = p;
477 u64 ns = 0;
478
479 if (!priv->hwts_rx_en)
480 return;
481 /* For GMAC4, the valid timestamp is from CTX next desc. */
482 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
483 desc = np;
484
485 /* Check if timestamp is available */
486 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
487 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
488 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
489 shhwtstamp = skb_hwtstamps(skb);
490 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
491 shhwtstamp->hwtstamp = ns_to_ktime(ns);
492 } else {
493 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
494 }
495 }
496
497 /**
498 * stmmac_hwtstamp_set - control hardware timestamping.
499 * @dev: device pointer.
500 * @ifr: An IOCTL specific structure, that can contain a pointer to
501 * a proprietary structure used to pass information to the driver.
502 * Description:
503 * This function configures the MAC to enable/disable both outgoing(TX)
504 * and incoming(RX) packets time stamping based on user input.
505 * Return Value:
506 * 0 on success and an appropriate -ve integer on failure.
507 */
508 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
509 {
510 struct stmmac_priv *priv = netdev_priv(dev);
511 struct hwtstamp_config config;
512 struct timespec64 now;
513 u64 temp = 0;
514 u32 ptp_v2 = 0;
515 u32 tstamp_all = 0;
516 u32 ptp_over_ipv4_udp = 0;
517 u32 ptp_over_ipv6_udp = 0;
518 u32 ptp_over_ethernet = 0;
519 u32 snap_type_sel = 0;
520 u32 ts_master_en = 0;
521 u32 ts_event_en = 0;
522 u32 sec_inc = 0;
523 u32 value = 0;
524 bool xmac;
525
526 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
527
528 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
529 netdev_alert(priv->dev, "No support for HW time stamping\n");
530 priv->hwts_tx_en = 0;
531 priv->hwts_rx_en = 0;
532
533 return -EOPNOTSUPP;
534 }
535
536 if (copy_from_user(&config, ifr->ifr_data,
537 sizeof(config)))
538 return -EFAULT;
539
540 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
541 __func__, config.flags, config.tx_type, config.rx_filter);
542
543 /* reserved for future extensions */
544 if (config.flags)
545 return -EINVAL;
546
547 if (config.tx_type != HWTSTAMP_TX_OFF &&
548 config.tx_type != HWTSTAMP_TX_ON)
549 return -ERANGE;
550
551 if (priv->adv_ts) {
552 switch (config.rx_filter) {
553 case HWTSTAMP_FILTER_NONE:
554 /* time stamp no incoming packet at all */
555 config.rx_filter = HWTSTAMP_FILTER_NONE;
556 break;
557
558 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
559 /* PTP v1, UDP, any kind of event packet */
560 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
561 /* 'xmac' hardware can support Sync, Pdelay_Req and
562 * Pdelay_resp by setting bit14 and bits17/16 to 01
563 * This leaves Delay_Req timestamps out.
564 * Enable all events *and* general purpose message
565 * timestamping
566 */
567 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
568 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 break;
571
572 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
573 /* PTP v1, UDP, Sync packet */
574 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
575 /* take time stamp for SYNC messages only */
576 ts_event_en = PTP_TCR_TSEVNTENA;
577
578 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
579 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
580 break;
581
582 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
583 /* PTP v1, UDP, Delay_req packet */
584 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
585 /* take time stamp for Delay_Req messages only */
586 ts_master_en = PTP_TCR_TSMSTRENA;
587 ts_event_en = PTP_TCR_TSEVNTENA;
588
589 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
590 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
591 break;
592
593 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
594 /* PTP v2, UDP, any kind of event packet */
595 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
596 ptp_v2 = PTP_TCR_TSVER2ENA;
597 /* take time stamp for all event messages */
598 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
599
600 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
601 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
602 break;
603
604 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
605 /* PTP v2, UDP, Sync packet */
606 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
607 ptp_v2 = PTP_TCR_TSVER2ENA;
608 /* take time stamp for SYNC messages only */
609 ts_event_en = PTP_TCR_TSEVNTENA;
610
611 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
612 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
613 break;
614
615 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
616 /* PTP v2, UDP, Delay_req packet */
617 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
618 ptp_v2 = PTP_TCR_TSVER2ENA;
619 /* take time stamp for Delay_Req messages only */
620 ts_master_en = PTP_TCR_TSMSTRENA;
621 ts_event_en = PTP_TCR_TSEVNTENA;
622
623 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
624 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
625 break;
626
627 case HWTSTAMP_FILTER_PTP_V2_EVENT:
628 /* PTP v2/802.AS1 any layer, any kind of event packet */
629 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
630 ptp_v2 = PTP_TCR_TSVER2ENA;
631 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
632 if (priv->synopsys_id != DWMAC_CORE_5_10)
633 ts_event_en = PTP_TCR_TSEVNTENA;
634 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636 ptp_over_ethernet = PTP_TCR_TSIPENA;
637 break;
638
639 case HWTSTAMP_FILTER_PTP_V2_SYNC:
640 /* PTP v2/802.AS1, any layer, Sync packet */
641 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642 ptp_v2 = PTP_TCR_TSVER2ENA;
643 /* take time stamp for SYNC messages only */
644 ts_event_en = PTP_TCR_TSEVNTENA;
645
646 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648 ptp_over_ethernet = PTP_TCR_TSIPENA;
649 break;
650
651 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652 /* PTP v2/802.AS1, any layer, Delay_req packet */
653 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654 ptp_v2 = PTP_TCR_TSVER2ENA;
655 /* take time stamp for Delay_Req messages only */
656 ts_master_en = PTP_TCR_TSMSTRENA;
657 ts_event_en = PTP_TCR_TSEVNTENA;
658
659 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661 ptp_over_ethernet = PTP_TCR_TSIPENA;
662 break;
663
664 case HWTSTAMP_FILTER_NTP_ALL:
665 case HWTSTAMP_FILTER_ALL:
666 /* time stamp any incoming packet */
667 config.rx_filter = HWTSTAMP_FILTER_ALL;
668 tstamp_all = PTP_TCR_TSENALL;
669 break;
670
671 default:
672 return -ERANGE;
673 }
674 } else {
675 switch (config.rx_filter) {
676 case HWTSTAMP_FILTER_NONE:
677 config.rx_filter = HWTSTAMP_FILTER_NONE;
678 break;
679 default:
680 /* PTP v1, UDP, any kind of event packet */
681 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682 break;
683 }
684 }
685 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687
688 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690 else {
691 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692 tstamp_all | ptp_v2 | ptp_over_ethernet |
693 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694 ts_master_en | snap_type_sel);
695 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696
697 /* program Sub Second Increment reg */
698 stmmac_config_sub_second_increment(priv,
699 priv->ptpaddr, priv->plat->clk_ptp_rate,
700 xmac, &sec_inc);
701 temp = div_u64(1000000000ULL, sec_inc);
702
703 /* Store sub second increment and flags for later use */
704 priv->sub_second_inc = sec_inc;
705 priv->systime_flags = value;
706
707 /* calculate default added value:
708 * formula is :
709 * addend = (2^32)/freq_div_ratio;
710 * where, freq_div_ratio = 1e9ns/sec_inc
711 */
712 temp = (u64)(temp << 32);
713 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715
716 /* initialize system time */
717 ktime_get_real_ts64(&now);
718
719 /* lower 32 bits of tv_sec are safe until y2106 */
720 stmmac_init_systime(priv, priv->ptpaddr,
721 (u32)now.tv_sec, now.tv_nsec);
722 }
723
724 memcpy(&priv->tstamp_config, &config, sizeof(config));
725
726 return copy_to_user(ifr->ifr_data, &config,
727 sizeof(config)) ? -EFAULT : 0;
728 }
729
730 /**
731 * stmmac_hwtstamp_get - read hardware timestamping.
732 * @dev: device pointer.
733 * @ifr: An IOCTL specific structure, that can contain a pointer to
734 * a proprietary structure used to pass information to the driver.
735 * Description:
736 * This function obtain the current hardware timestamping settings
737 * as requested.
738 */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741 struct stmmac_priv *priv = netdev_priv(dev);
742 struct hwtstamp_config *config = &priv->tstamp_config;
743
744 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745 return -EOPNOTSUPP;
746
747 return copy_to_user(ifr->ifr_data, config,
748 sizeof(*config)) ? -EFAULT : 0;
749 }
750
751 /**
752 * stmmac_init_ptp - init PTP
753 * @priv: driver private structure
754 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755 * This is done by looking at the HW cap. register.
756 * This function also registers the ptp driver.
757 */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761
762 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763 return -EOPNOTSUPP;
764
765 priv->adv_ts = 0;
766 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767 if (xmac && priv->dma_cap.atime_stamp)
768 priv->adv_ts = 1;
769 /* Dwmac 3.x core with extend_desc can support adv_ts */
770 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771 priv->adv_ts = 1;
772
773 if (priv->dma_cap.time_stamp)
774 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775
776 if (priv->adv_ts)
777 netdev_info(priv->dev,
778 "IEEE 1588-2008 Advanced Timestamp supported\n");
779
780 priv->hwts_tx_en = 0;
781 priv->hwts_rx_en = 0;
782
783 stmmac_ptp_register(priv);
784
785 return 0;
786 }
787
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790 clk_disable_unprepare(priv->plat->clk_ptp_ref);
791 stmmac_ptp_unregister(priv);
792 }
793
794 /**
795 * stmmac_mac_flow_ctrl - Configure flow control in all queues
796 * @priv: driver private structure
797 * @duplex: duplex passed to the next function
798 * Description: It is used for configuring the flow control in all queues
799 */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802 u32 tx_cnt = priv->plat->tx_queues_to_use;
803
804 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805 priv->pause, tx_cnt);
806 }
807
808 static void stmmac_validate(struct phylink_config *config,
809 unsigned long *supported,
810 struct phylink_link_state *state)
811 {
812 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815 int tx_cnt = priv->plat->tx_queues_to_use;
816 int max_speed = priv->plat->max_speed;
817
818 phylink_set(mac_supported, 10baseT_Half);
819 phylink_set(mac_supported, 10baseT_Full);
820 phylink_set(mac_supported, 100baseT_Half);
821 phylink_set(mac_supported, 100baseT_Full);
822 phylink_set(mac_supported, 1000baseT_Half);
823 phylink_set(mac_supported, 1000baseT_Full);
824 phylink_set(mac_supported, 1000baseKX_Full);
825
826 phylink_set(mac_supported, Autoneg);
827 phylink_set(mac_supported, Pause);
828 phylink_set(mac_supported, Asym_Pause);
829 phylink_set_port_modes(mac_supported);
830
831 /* Cut down 1G if asked to */
832 if ((max_speed > 0) && (max_speed < 1000)) {
833 phylink_set(mask, 1000baseT_Full);
834 phylink_set(mask, 1000baseX_Full);
835 } else if (priv->plat->has_xgmac) {
836 if (!max_speed || (max_speed >= 2500)) {
837 phylink_set(mac_supported, 2500baseT_Full);
838 phylink_set(mac_supported, 2500baseX_Full);
839 }
840 if (!max_speed || (max_speed >= 5000)) {
841 phylink_set(mac_supported, 5000baseT_Full);
842 }
843 if (!max_speed || (max_speed >= 10000)) {
844 phylink_set(mac_supported, 10000baseSR_Full);
845 phylink_set(mac_supported, 10000baseLR_Full);
846 phylink_set(mac_supported, 10000baseER_Full);
847 phylink_set(mac_supported, 10000baseLRM_Full);
848 phylink_set(mac_supported, 10000baseT_Full);
849 phylink_set(mac_supported, 10000baseKX4_Full);
850 phylink_set(mac_supported, 10000baseKR_Full);
851 }
852 if (!max_speed || (max_speed >= 25000)) {
853 phylink_set(mac_supported, 25000baseCR_Full);
854 phylink_set(mac_supported, 25000baseKR_Full);
855 phylink_set(mac_supported, 25000baseSR_Full);
856 }
857 if (!max_speed || (max_speed >= 40000)) {
858 phylink_set(mac_supported, 40000baseKR4_Full);
859 phylink_set(mac_supported, 40000baseCR4_Full);
860 phylink_set(mac_supported, 40000baseSR4_Full);
861 phylink_set(mac_supported, 40000baseLR4_Full);
862 }
863 if (!max_speed || (max_speed >= 50000)) {
864 phylink_set(mac_supported, 50000baseCR2_Full);
865 phylink_set(mac_supported, 50000baseKR2_Full);
866 phylink_set(mac_supported, 50000baseSR2_Full);
867 phylink_set(mac_supported, 50000baseKR_Full);
868 phylink_set(mac_supported, 50000baseSR_Full);
869 phylink_set(mac_supported, 50000baseCR_Full);
870 phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
871 phylink_set(mac_supported, 50000baseDR_Full);
872 }
873 if (!max_speed || (max_speed >= 100000)) {
874 phylink_set(mac_supported, 100000baseKR4_Full);
875 phylink_set(mac_supported, 100000baseSR4_Full);
876 phylink_set(mac_supported, 100000baseCR4_Full);
877 phylink_set(mac_supported, 100000baseLR4_ER4_Full);
878 phylink_set(mac_supported, 100000baseKR2_Full);
879 phylink_set(mac_supported, 100000baseSR2_Full);
880 phylink_set(mac_supported, 100000baseCR2_Full);
881 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
882 phylink_set(mac_supported, 100000baseDR2_Full);
883 }
884 }
885
886 /* Half-Duplex can only work with single queue */
887 if (tx_cnt > 1) {
888 phylink_set(mask, 10baseT_Half);
889 phylink_set(mask, 100baseT_Half);
890 phylink_set(mask, 1000baseT_Half);
891 }
892
893 linkmode_and(supported, supported, mac_supported);
894 linkmode_andnot(supported, supported, mask);
895
896 linkmode_and(state->advertising, state->advertising, mac_supported);
897 linkmode_andnot(state->advertising, state->advertising, mask);
898
899 /* If PCS is supported, check which modes it supports. */
900 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
901 }
902
903 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
904 struct phylink_link_state *state)
905 {
906 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
907
908 state->link = 0;
909 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
910 }
911
912 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
913 const struct phylink_link_state *state)
914 {
915 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
916
917 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
918 }
919
920 static void stmmac_mac_an_restart(struct phylink_config *config)
921 {
922 /* Not Supported */
923 }
924
925 static void stmmac_mac_link_down(struct phylink_config *config,
926 unsigned int mode, phy_interface_t interface)
927 {
928 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
929
930 stmmac_mac_set(priv, priv->ioaddr, false);
931 priv->eee_active = false;
932 priv->tx_lpi_enabled = false;
933 stmmac_eee_init(priv);
934 stmmac_set_eee_pls(priv, priv->hw, false);
935 }
936
937 static void stmmac_mac_link_up(struct phylink_config *config,
938 struct phy_device *phy,
939 unsigned int mode, phy_interface_t interface,
940 int speed, int duplex,
941 bool tx_pause, bool rx_pause)
942 {
943 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
944 u32 ctrl;
945
946 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
947
948 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
949 ctrl &= ~priv->hw->link.speed_mask;
950
951 if (interface == PHY_INTERFACE_MODE_USXGMII) {
952 switch (speed) {
953 case SPEED_10000:
954 ctrl |= priv->hw->link.xgmii.speed10000;
955 break;
956 case SPEED_5000:
957 ctrl |= priv->hw->link.xgmii.speed5000;
958 break;
959 case SPEED_2500:
960 ctrl |= priv->hw->link.xgmii.speed2500;
961 break;
962 default:
963 return;
964 }
965 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
966 switch (speed) {
967 case SPEED_100000:
968 ctrl |= priv->hw->link.xlgmii.speed100000;
969 break;
970 case SPEED_50000:
971 ctrl |= priv->hw->link.xlgmii.speed50000;
972 break;
973 case SPEED_40000:
974 ctrl |= priv->hw->link.xlgmii.speed40000;
975 break;
976 case SPEED_25000:
977 ctrl |= priv->hw->link.xlgmii.speed25000;
978 break;
979 case SPEED_10000:
980 ctrl |= priv->hw->link.xgmii.speed10000;
981 break;
982 case SPEED_2500:
983 ctrl |= priv->hw->link.speed2500;
984 break;
985 case SPEED_1000:
986 ctrl |= priv->hw->link.speed1000;
987 break;
988 default:
989 return;
990 }
991 } else {
992 switch (speed) {
993 case SPEED_2500:
994 ctrl |= priv->hw->link.speed2500;
995 break;
996 case SPEED_1000:
997 ctrl |= priv->hw->link.speed1000;
998 break;
999 case SPEED_100:
1000 ctrl |= priv->hw->link.speed100;
1001 break;
1002 case SPEED_10:
1003 ctrl |= priv->hw->link.speed10;
1004 break;
1005 default:
1006 return;
1007 }
1008 }
1009
1010 priv->speed = speed;
1011
1012 if (priv->plat->fix_mac_speed)
1013 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1014
1015 if (!duplex)
1016 ctrl &= ~priv->hw->link.duplex;
1017 else
1018 ctrl |= priv->hw->link.duplex;
1019
1020 /* Flow Control operation */
1021 if (tx_pause && rx_pause)
1022 stmmac_mac_flow_ctrl(priv, duplex);
1023
1024 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1025
1026 stmmac_mac_set(priv, priv->ioaddr, true);
1027 if (phy && priv->dma_cap.eee) {
1028 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1029 priv->eee_enabled = stmmac_eee_init(priv);
1030 priv->tx_lpi_enabled = priv->eee_enabled;
1031 stmmac_set_eee_pls(priv, priv->hw, true);
1032 }
1033 }
1034
1035 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1036 .validate = stmmac_validate,
1037 .mac_pcs_get_state = stmmac_mac_pcs_get_state,
1038 .mac_config = stmmac_mac_config,
1039 .mac_an_restart = stmmac_mac_an_restart,
1040 .mac_link_down = stmmac_mac_link_down,
1041 .mac_link_up = stmmac_mac_link_up,
1042 };
1043
1044 /**
1045 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1046 * @priv: driver private structure
1047 * Description: this is to verify if the HW supports the PCS.
1048 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1049 * configured for the TBI, RTBI, or SGMII PHY interface.
1050 */
1051 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1052 {
1053 int interface = priv->plat->interface;
1054
1055 if (priv->dma_cap.pcs) {
1056 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1057 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1058 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1059 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1060 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1061 priv->hw->pcs = STMMAC_PCS_RGMII;
1062 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1063 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1064 priv->hw->pcs = STMMAC_PCS_SGMII;
1065 }
1066 }
1067 }
1068
1069 /**
1070 * stmmac_init_phy - PHY initialization
1071 * @dev: net device structure
1072 * Description: it initializes the driver's PHY state, and attaches the PHY
1073 * to the mac driver.
1074 * Return value:
1075 * 0 on success
1076 */
1077 static int stmmac_init_phy(struct net_device *dev)
1078 {
1079 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1080 struct stmmac_priv *priv = netdev_priv(dev);
1081 struct device_node *node;
1082 int ret;
1083
1084 node = priv->plat->phylink_node;
1085
1086 if (node)
1087 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1088
1089 /* Some DT bindings do not set-up the PHY handle. Let's try to
1090 * manually parse it
1091 */
1092 if (!node || ret) {
1093 int addr = priv->plat->phy_addr;
1094 struct phy_device *phydev;
1095
1096 phydev = mdiobus_get_phy(priv->mii, addr);
1097 if (!phydev) {
1098 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1099 return -ENODEV;
1100 }
1101
1102 ret = phylink_connect_phy(priv->phylink, phydev);
1103 }
1104
1105 phylink_ethtool_get_wol(priv->phylink, &wol);
1106 device_set_wakeup_capable(priv->device, !!wol.supported);
1107
1108 return ret;
1109 }
1110
1111 static int stmmac_phy_setup(struct stmmac_priv *priv)
1112 {
1113 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1114 int mode = priv->plat->phy_interface;
1115 struct phylink *phylink;
1116
1117 priv->phylink_config.dev = &priv->dev->dev;
1118 priv->phylink_config.type = PHYLINK_NETDEV;
1119 priv->phylink_config.pcs_poll = true;
1120
1121 if (!fwnode)
1122 fwnode = dev_fwnode(priv->device);
1123
1124 phylink = phylink_create(&priv->phylink_config, fwnode,
1125 mode, &stmmac_phylink_mac_ops);
1126 if (IS_ERR(phylink))
1127 return PTR_ERR(phylink);
1128
1129 priv->phylink = phylink;
1130 return 0;
1131 }
1132
1133 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1134 {
1135 u32 rx_cnt = priv->plat->rx_queues_to_use;
1136 void *head_rx;
1137 u32 queue;
1138
1139 /* Display RX rings */
1140 for (queue = 0; queue < rx_cnt; queue++) {
1141 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1142
1143 pr_info("\tRX Queue %u rings\n", queue);
1144
1145 if (priv->extend_desc)
1146 head_rx = (void *)rx_q->dma_erx;
1147 else
1148 head_rx = (void *)rx_q->dma_rx;
1149
1150 /* Display RX ring */
1151 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true);
1152 }
1153 }
1154
1155 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1156 {
1157 u32 tx_cnt = priv->plat->tx_queues_to_use;
1158 void *head_tx;
1159 u32 queue;
1160
1161 /* Display TX rings */
1162 for (queue = 0; queue < tx_cnt; queue++) {
1163 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1164
1165 pr_info("\tTX Queue %d rings\n", queue);
1166
1167 if (priv->extend_desc)
1168 head_tx = (void *)tx_q->dma_etx;
1169 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1170 head_tx = (void *)tx_q->dma_entx;
1171 else
1172 head_tx = (void *)tx_q->dma_tx;
1173
1174 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false);
1175 }
1176 }
1177
1178 static void stmmac_display_rings(struct stmmac_priv *priv)
1179 {
1180 /* Display RX ring */
1181 stmmac_display_rx_rings(priv);
1182
1183 /* Display TX ring */
1184 stmmac_display_tx_rings(priv);
1185 }
1186
1187 static int stmmac_set_bfsize(int mtu, int bufsize)
1188 {
1189 int ret = bufsize;
1190
1191 if (mtu >= BUF_SIZE_8KiB)
1192 ret = BUF_SIZE_16KiB;
1193 else if (mtu >= BUF_SIZE_4KiB)
1194 ret = BUF_SIZE_8KiB;
1195 else if (mtu >= BUF_SIZE_2KiB)
1196 ret = BUF_SIZE_4KiB;
1197 else if (mtu > DEFAULT_BUFSIZE)
1198 ret = BUF_SIZE_2KiB;
1199 else
1200 ret = DEFAULT_BUFSIZE;
1201
1202 return ret;
1203 }
1204
1205 /**
1206 * stmmac_clear_rx_descriptors - clear RX descriptors
1207 * @priv: driver private structure
1208 * @queue: RX queue index
1209 * Description: this function is called to clear the RX descriptors
1210 * in case of both basic and extended descriptors are used.
1211 */
1212 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1213 {
1214 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1215 int i;
1216
1217 /* Clear the RX descriptors */
1218 for (i = 0; i < priv->dma_rx_size; i++)
1219 if (priv->extend_desc)
1220 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1221 priv->use_riwt, priv->mode,
1222 (i == priv->dma_rx_size - 1),
1223 priv->dma_buf_sz);
1224 else
1225 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1226 priv->use_riwt, priv->mode,
1227 (i == priv->dma_rx_size - 1),
1228 priv->dma_buf_sz);
1229 }
1230
1231 /**
1232 * stmmac_clear_tx_descriptors - clear tx descriptors
1233 * @priv: driver private structure
1234 * @queue: TX queue index.
1235 * Description: this function is called to clear the TX descriptors
1236 * in case of both basic and extended descriptors are used.
1237 */
1238 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1239 {
1240 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1241 int i;
1242
1243 /* Clear the TX descriptors */
1244 for (i = 0; i < priv->dma_tx_size; i++) {
1245 int last = (i == (priv->dma_tx_size - 1));
1246 struct dma_desc *p;
1247
1248 if (priv->extend_desc)
1249 p = &tx_q->dma_etx[i].basic;
1250 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1251 p = &tx_q->dma_entx[i].basic;
1252 else
1253 p = &tx_q->dma_tx[i];
1254
1255 stmmac_init_tx_desc(priv, p, priv->mode, last);
1256 }
1257 }
1258
1259 /**
1260 * stmmac_clear_descriptors - clear descriptors
1261 * @priv: driver private structure
1262 * Description: this function is called to clear the TX and RX descriptors
1263 * in case of both basic and extended descriptors are used.
1264 */
1265 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1266 {
1267 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1268 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1269 u32 queue;
1270
1271 /* Clear the RX descriptors */
1272 for (queue = 0; queue < rx_queue_cnt; queue++)
1273 stmmac_clear_rx_descriptors(priv, queue);
1274
1275 /* Clear the TX descriptors */
1276 for (queue = 0; queue < tx_queue_cnt; queue++)
1277 stmmac_clear_tx_descriptors(priv, queue);
1278 }
1279
1280 /**
1281 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1282 * @priv: driver private structure
1283 * @p: descriptor pointer
1284 * @i: descriptor index
1285 * @flags: gfp flag
1286 * @queue: RX queue index
1287 * Description: this function is called to allocate a receive buffer, perform
1288 * the DMA mapping and init the descriptor.
1289 */
1290 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1291 int i, gfp_t flags, u32 queue)
1292 {
1293 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1294 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1295
1296 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1297 if (!buf->page)
1298 return -ENOMEM;
1299
1300 if (priv->sph) {
1301 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1302 if (!buf->sec_page)
1303 return -ENOMEM;
1304
1305 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1306 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1307 } else {
1308 buf->sec_page = NULL;
1309 }
1310
1311 buf->addr = page_pool_get_dma_addr(buf->page);
1312 stmmac_set_desc_addr(priv, p, buf->addr);
1313 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1314 stmmac_init_desc3(priv, p);
1315
1316 return 0;
1317 }
1318
1319 /**
1320 * stmmac_free_rx_buffer - free RX dma buffers
1321 * @priv: private structure
1322 * @queue: RX queue index
1323 * @i: buffer index.
1324 */
1325 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1326 {
1327 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1328 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1329
1330 if (buf->page)
1331 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1332 buf->page = NULL;
1333
1334 if (buf->sec_page)
1335 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1336 buf->sec_page = NULL;
1337 }
1338
1339 /**
1340 * stmmac_free_tx_buffer - free RX dma buffers
1341 * @priv: private structure
1342 * @queue: RX queue index
1343 * @i: buffer index.
1344 */
1345 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1346 {
1347 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1348
1349 if (tx_q->tx_skbuff_dma[i].buf) {
1350 if (tx_q->tx_skbuff_dma[i].map_as_page)
1351 dma_unmap_page(priv->device,
1352 tx_q->tx_skbuff_dma[i].buf,
1353 tx_q->tx_skbuff_dma[i].len,
1354 DMA_TO_DEVICE);
1355 else
1356 dma_unmap_single(priv->device,
1357 tx_q->tx_skbuff_dma[i].buf,
1358 tx_q->tx_skbuff_dma[i].len,
1359 DMA_TO_DEVICE);
1360 }
1361
1362 if (tx_q->tx_skbuff[i]) {
1363 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1364 tx_q->tx_skbuff[i] = NULL;
1365 tx_q->tx_skbuff_dma[i].buf = 0;
1366 tx_q->tx_skbuff_dma[i].map_as_page = false;
1367 }
1368 }
1369
1370 /**
1371 * init_dma_rx_desc_rings - init the RX descriptor rings
1372 * @dev: net device structure
1373 * @flags: gfp flag.
1374 * Description: this function initializes the DMA RX descriptors
1375 * and allocates the socket buffers. It supports the chained and ring
1376 * modes.
1377 */
1378 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1379 {
1380 struct stmmac_priv *priv = netdev_priv(dev);
1381 u32 rx_count = priv->plat->rx_queues_to_use;
1382 int ret = -ENOMEM;
1383 int queue;
1384 int i;
1385
1386 /* RX INITIALIZATION */
1387 netif_dbg(priv, probe, priv->dev,
1388 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1389
1390 for (queue = 0; queue < rx_count; queue++) {
1391 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1392
1393 netif_dbg(priv, probe, priv->dev,
1394 "(%s) dma_rx_phy=0x%08x\n", __func__,
1395 (u32)rx_q->dma_rx_phy);
1396
1397 stmmac_clear_rx_descriptors(priv, queue);
1398
1399 for (i = 0; i < priv->dma_rx_size; i++) {
1400 struct dma_desc *p;
1401
1402 if (priv->extend_desc)
1403 p = &((rx_q->dma_erx + i)->basic);
1404 else
1405 p = rx_q->dma_rx + i;
1406
1407 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1408 queue);
1409 if (ret)
1410 goto err_init_rx_buffers;
1411 }
1412
1413 rx_q->cur_rx = 0;
1414 rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1415
1416 /* Setup the chained descriptor addresses */
1417 if (priv->mode == STMMAC_CHAIN_MODE) {
1418 if (priv->extend_desc)
1419 stmmac_mode_init(priv, rx_q->dma_erx,
1420 rx_q->dma_rx_phy,
1421 priv->dma_rx_size, 1);
1422 else
1423 stmmac_mode_init(priv, rx_q->dma_rx,
1424 rx_q->dma_rx_phy,
1425 priv->dma_rx_size, 0);
1426 }
1427 }
1428
1429 return 0;
1430
1431 err_init_rx_buffers:
1432 while (queue >= 0) {
1433 while (--i >= 0)
1434 stmmac_free_rx_buffer(priv, queue, i);
1435
1436 if (queue == 0)
1437 break;
1438
1439 i = priv->dma_rx_size;
1440 queue--;
1441 }
1442
1443 return ret;
1444 }
1445
1446 /**
1447 * init_dma_tx_desc_rings - init the TX descriptor rings
1448 * @dev: net device structure.
1449 * Description: this function initializes the DMA TX descriptors
1450 * and allocates the socket buffers. It supports the chained and ring
1451 * modes.
1452 */
1453 static int init_dma_tx_desc_rings(struct net_device *dev)
1454 {
1455 struct stmmac_priv *priv = netdev_priv(dev);
1456 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1457 u32 queue;
1458 int i;
1459
1460 for (queue = 0; queue < tx_queue_cnt; queue++) {
1461 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1462
1463 netif_dbg(priv, probe, priv->dev,
1464 "(%s) dma_tx_phy=0x%08x\n", __func__,
1465 (u32)tx_q->dma_tx_phy);
1466
1467 /* Setup the chained descriptor addresses */
1468 if (priv->mode == STMMAC_CHAIN_MODE) {
1469 if (priv->extend_desc)
1470 stmmac_mode_init(priv, tx_q->dma_etx,
1471 tx_q->dma_tx_phy,
1472 priv->dma_tx_size, 1);
1473 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1474 stmmac_mode_init(priv, tx_q->dma_tx,
1475 tx_q->dma_tx_phy,
1476 priv->dma_tx_size, 0);
1477 }
1478
1479 for (i = 0; i < priv->dma_tx_size; i++) {
1480 struct dma_desc *p;
1481 if (priv->extend_desc)
1482 p = &((tx_q->dma_etx + i)->basic);
1483 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1484 p = &((tx_q->dma_entx + i)->basic);
1485 else
1486 p = tx_q->dma_tx + i;
1487
1488 stmmac_clear_desc(priv, p);
1489
1490 tx_q->tx_skbuff_dma[i].buf = 0;
1491 tx_q->tx_skbuff_dma[i].map_as_page = false;
1492 tx_q->tx_skbuff_dma[i].len = 0;
1493 tx_q->tx_skbuff_dma[i].last_segment = false;
1494 tx_q->tx_skbuff[i] = NULL;
1495 }
1496
1497 tx_q->dirty_tx = 0;
1498 tx_q->cur_tx = 0;
1499 tx_q->mss = 0;
1500
1501 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1502 }
1503
1504 return 0;
1505 }
1506
1507 /**
1508 * init_dma_desc_rings - init the RX/TX descriptor rings
1509 * @dev: net device structure
1510 * @flags: gfp flag.
1511 * Description: this function initializes the DMA RX/TX descriptors
1512 * and allocates the socket buffers. It supports the chained and ring
1513 * modes.
1514 */
1515 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1516 {
1517 struct stmmac_priv *priv = netdev_priv(dev);
1518 int ret;
1519
1520 ret = init_dma_rx_desc_rings(dev, flags);
1521 if (ret)
1522 return ret;
1523
1524 ret = init_dma_tx_desc_rings(dev);
1525
1526 stmmac_clear_descriptors(priv);
1527
1528 if (netif_msg_hw(priv))
1529 stmmac_display_rings(priv);
1530
1531 return ret;
1532 }
1533
1534 /**
1535 * dma_free_rx_skbufs - free RX dma buffers
1536 * @priv: private structure
1537 * @queue: RX queue index
1538 */
1539 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1540 {
1541 int i;
1542
1543 for (i = 0; i < priv->dma_rx_size; i++)
1544 stmmac_free_rx_buffer(priv, queue, i);
1545 }
1546
1547 /**
1548 * dma_free_tx_skbufs - free TX dma buffers
1549 * @priv: private structure
1550 * @queue: TX queue index
1551 */
1552 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1553 {
1554 int i;
1555
1556 for (i = 0; i < priv->dma_tx_size; i++)
1557 stmmac_free_tx_buffer(priv, queue, i);
1558 }
1559
1560 /**
1561 * stmmac_free_tx_skbufs - free TX skb buffers
1562 * @priv: private structure
1563 */
1564 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1565 {
1566 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1567 u32 queue;
1568
1569 for (queue = 0; queue < tx_queue_cnt; queue++)
1570 dma_free_tx_skbufs(priv, queue);
1571 }
1572
1573 /**
1574 * free_dma_rx_desc_resources - free RX dma desc resources
1575 * @priv: private structure
1576 */
1577 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1578 {
1579 u32 rx_count = priv->plat->rx_queues_to_use;
1580 u32 queue;
1581
1582 /* Free RX queue resources */
1583 for (queue = 0; queue < rx_count; queue++) {
1584 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1585
1586 /* Release the DMA RX socket buffers */
1587 dma_free_rx_skbufs(priv, queue);
1588
1589 /* Free DMA regions of consistent memory previously allocated */
1590 if (!priv->extend_desc)
1591 dma_free_coherent(priv->device, priv->dma_rx_size *
1592 sizeof(struct dma_desc),
1593 rx_q->dma_rx, rx_q->dma_rx_phy);
1594 else
1595 dma_free_coherent(priv->device, priv->dma_rx_size *
1596 sizeof(struct dma_extended_desc),
1597 rx_q->dma_erx, rx_q->dma_rx_phy);
1598
1599 kfree(rx_q->buf_pool);
1600 if (rx_q->page_pool)
1601 page_pool_destroy(rx_q->page_pool);
1602 }
1603 }
1604
1605 /**
1606 * free_dma_tx_desc_resources - free TX dma desc resources
1607 * @priv: private structure
1608 */
1609 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1610 {
1611 u32 tx_count = priv->plat->tx_queues_to_use;
1612 u32 queue;
1613
1614 /* Free TX queue resources */
1615 for (queue = 0; queue < tx_count; queue++) {
1616 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1617 size_t size;
1618 void *addr;
1619
1620 /* Release the DMA TX socket buffers */
1621 dma_free_tx_skbufs(priv, queue);
1622
1623 if (priv->extend_desc) {
1624 size = sizeof(struct dma_extended_desc);
1625 addr = tx_q->dma_etx;
1626 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1627 size = sizeof(struct dma_edesc);
1628 addr = tx_q->dma_entx;
1629 } else {
1630 size = sizeof(struct dma_desc);
1631 addr = tx_q->dma_tx;
1632 }
1633
1634 size *= priv->dma_tx_size;
1635
1636 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1637
1638 kfree(tx_q->tx_skbuff_dma);
1639 kfree(tx_q->tx_skbuff);
1640 }
1641 }
1642
1643 /**
1644 * alloc_dma_rx_desc_resources - alloc RX resources.
1645 * @priv: private structure
1646 * Description: according to which descriptor can be used (extend or basic)
1647 * this function allocates the resources for TX and RX paths. In case of
1648 * reception, for example, it pre-allocated the RX socket buffer in order to
1649 * allow zero-copy mechanism.
1650 */
1651 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1652 {
1653 u32 rx_count = priv->plat->rx_queues_to_use;
1654 int ret = -ENOMEM;
1655 u32 queue;
1656
1657 /* RX queues buffers and DMA */
1658 for (queue = 0; queue < rx_count; queue++) {
1659 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1660 struct page_pool_params pp_params = { 0 };
1661 unsigned int num_pages;
1662
1663 rx_q->queue_index = queue;
1664 rx_q->priv_data = priv;
1665
1666 pp_params.flags = PP_FLAG_DMA_MAP;
1667 pp_params.pool_size = priv->dma_rx_size;
1668 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1669 pp_params.order = ilog2(num_pages);
1670 pp_params.nid = dev_to_node(priv->device);
1671 pp_params.dev = priv->device;
1672 pp_params.dma_dir = DMA_FROM_DEVICE;
1673
1674 rx_q->page_pool = page_pool_create(&pp_params);
1675 if (IS_ERR(rx_q->page_pool)) {
1676 ret = PTR_ERR(rx_q->page_pool);
1677 rx_q->page_pool = NULL;
1678 goto err_dma;
1679 }
1680
1681 rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1682 sizeof(*rx_q->buf_pool),
1683 GFP_KERNEL);
1684 if (!rx_q->buf_pool)
1685 goto err_dma;
1686
1687 if (priv->extend_desc) {
1688 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1689 priv->dma_rx_size *
1690 sizeof(struct dma_extended_desc),
1691 &rx_q->dma_rx_phy,
1692 GFP_KERNEL);
1693 if (!rx_q->dma_erx)
1694 goto err_dma;
1695
1696 } else {
1697 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1698 priv->dma_rx_size *
1699 sizeof(struct dma_desc),
1700 &rx_q->dma_rx_phy,
1701 GFP_KERNEL);
1702 if (!rx_q->dma_rx)
1703 goto err_dma;
1704 }
1705 }
1706
1707 return 0;
1708
1709 err_dma:
1710 free_dma_rx_desc_resources(priv);
1711
1712 return ret;
1713 }
1714
1715 /**
1716 * alloc_dma_tx_desc_resources - alloc TX resources.
1717 * @priv: private structure
1718 * Description: according to which descriptor can be used (extend or basic)
1719 * this function allocates the resources for TX and RX paths. In case of
1720 * reception, for example, it pre-allocated the RX socket buffer in order to
1721 * allow zero-copy mechanism.
1722 */
1723 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1724 {
1725 u32 tx_count = priv->plat->tx_queues_to_use;
1726 int ret = -ENOMEM;
1727 u32 queue;
1728
1729 /* TX queues buffers and DMA */
1730 for (queue = 0; queue < tx_count; queue++) {
1731 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1732 size_t size;
1733 void *addr;
1734
1735 tx_q->queue_index = queue;
1736 tx_q->priv_data = priv;
1737
1738 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1739 sizeof(*tx_q->tx_skbuff_dma),
1740 GFP_KERNEL);
1741 if (!tx_q->tx_skbuff_dma)
1742 goto err_dma;
1743
1744 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1745 sizeof(struct sk_buff *),
1746 GFP_KERNEL);
1747 if (!tx_q->tx_skbuff)
1748 goto err_dma;
1749
1750 if (priv->extend_desc)
1751 size = sizeof(struct dma_extended_desc);
1752 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1753 size = sizeof(struct dma_edesc);
1754 else
1755 size = sizeof(struct dma_desc);
1756
1757 size *= priv->dma_tx_size;
1758
1759 addr = dma_alloc_coherent(priv->device, size,
1760 &tx_q->dma_tx_phy, GFP_KERNEL);
1761 if (!addr)
1762 goto err_dma;
1763
1764 if (priv->extend_desc)
1765 tx_q->dma_etx = addr;
1766 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1767 tx_q->dma_entx = addr;
1768 else
1769 tx_q->dma_tx = addr;
1770 }
1771
1772 return 0;
1773
1774 err_dma:
1775 free_dma_tx_desc_resources(priv);
1776 return ret;
1777 }
1778
1779 /**
1780 * alloc_dma_desc_resources - alloc TX/RX resources.
1781 * @priv: private structure
1782 * Description: according to which descriptor can be used (extend or basic)
1783 * this function allocates the resources for TX and RX paths. In case of
1784 * reception, for example, it pre-allocated the RX socket buffer in order to
1785 * allow zero-copy mechanism.
1786 */
1787 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1788 {
1789 /* RX Allocation */
1790 int ret = alloc_dma_rx_desc_resources(priv);
1791
1792 if (ret)
1793 return ret;
1794
1795 ret = alloc_dma_tx_desc_resources(priv);
1796
1797 return ret;
1798 }
1799
1800 /**
1801 * free_dma_desc_resources - free dma desc resources
1802 * @priv: private structure
1803 */
1804 static void free_dma_desc_resources(struct stmmac_priv *priv)
1805 {
1806 /* Release the DMA RX socket buffers */
1807 free_dma_rx_desc_resources(priv);
1808
1809 /* Release the DMA TX socket buffers */
1810 free_dma_tx_desc_resources(priv);
1811 }
1812
1813 /**
1814 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1815 * @priv: driver private structure
1816 * Description: It is used for enabling the rx queues in the MAC
1817 */
1818 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1819 {
1820 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1821 int queue;
1822 u8 mode;
1823
1824 for (queue = 0; queue < rx_queues_count; queue++) {
1825 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1826 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1827 }
1828 }
1829
1830 /**
1831 * stmmac_start_rx_dma - start RX DMA channel
1832 * @priv: driver private structure
1833 * @chan: RX channel index
1834 * Description:
1835 * This starts a RX DMA channel
1836 */
1837 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1838 {
1839 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1840 stmmac_start_rx(priv, priv->ioaddr, chan);
1841 }
1842
1843 /**
1844 * stmmac_start_tx_dma - start TX DMA channel
1845 * @priv: driver private structure
1846 * @chan: TX channel index
1847 * Description:
1848 * This starts a TX DMA channel
1849 */
1850 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1851 {
1852 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1853 stmmac_start_tx(priv, priv->ioaddr, chan);
1854 }
1855
1856 /**
1857 * stmmac_stop_rx_dma - stop RX DMA channel
1858 * @priv: driver private structure
1859 * @chan: RX channel index
1860 * Description:
1861 * This stops a RX DMA channel
1862 */
1863 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1864 {
1865 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1866 stmmac_stop_rx(priv, priv->ioaddr, chan);
1867 }
1868
1869 /**
1870 * stmmac_stop_tx_dma - stop TX DMA channel
1871 * @priv: driver private structure
1872 * @chan: TX channel index
1873 * Description:
1874 * This stops a TX DMA channel
1875 */
1876 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1877 {
1878 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1879 stmmac_stop_tx(priv, priv->ioaddr, chan);
1880 }
1881
1882 /**
1883 * stmmac_start_all_dma - start all RX and TX DMA channels
1884 * @priv: driver private structure
1885 * Description:
1886 * This starts all the RX and TX DMA channels
1887 */
1888 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1889 {
1890 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1891 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1892 u32 chan = 0;
1893
1894 for (chan = 0; chan < rx_channels_count; chan++)
1895 stmmac_start_rx_dma(priv, chan);
1896
1897 for (chan = 0; chan < tx_channels_count; chan++)
1898 stmmac_start_tx_dma(priv, chan);
1899 }
1900
1901 /**
1902 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1903 * @priv: driver private structure
1904 * Description:
1905 * This stops the RX and TX DMA channels
1906 */
1907 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1908 {
1909 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1910 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1911 u32 chan = 0;
1912
1913 for (chan = 0; chan < rx_channels_count; chan++)
1914 stmmac_stop_rx_dma(priv, chan);
1915
1916 for (chan = 0; chan < tx_channels_count; chan++)
1917 stmmac_stop_tx_dma(priv, chan);
1918 }
1919
1920 /**
1921 * stmmac_dma_operation_mode - HW DMA operation mode
1922 * @priv: driver private structure
1923 * Description: it is used for configuring the DMA operation mode register in
1924 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1925 */
1926 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1927 {
1928 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1929 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1930 int rxfifosz = priv->plat->rx_fifo_size;
1931 int txfifosz = priv->plat->tx_fifo_size;
1932 u32 txmode = 0;
1933 u32 rxmode = 0;
1934 u32 chan = 0;
1935 u8 qmode = 0;
1936
1937 if (rxfifosz == 0)
1938 rxfifosz = priv->dma_cap.rx_fifo_size;
1939 if (txfifosz == 0)
1940 txfifosz = priv->dma_cap.tx_fifo_size;
1941
1942 /* Adjust for real per queue fifo size */
1943 rxfifosz /= rx_channels_count;
1944 txfifosz /= tx_channels_count;
1945
1946 if (priv->plat->force_thresh_dma_mode) {
1947 txmode = tc;
1948 rxmode = tc;
1949 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1950 /*
1951 * In case of GMAC, SF mode can be enabled
1952 * to perform the TX COE in HW. This depends on:
1953 * 1) TX COE if actually supported
1954 * 2) There is no bugged Jumbo frame support
1955 * that needs to not insert csum in the TDES.
1956 */
1957 txmode = SF_DMA_MODE;
1958 rxmode = SF_DMA_MODE;
1959 priv->xstats.threshold = SF_DMA_MODE;
1960 } else {
1961 txmode = tc;
1962 rxmode = SF_DMA_MODE;
1963 }
1964
1965 /* configure all channels */
1966 for (chan = 0; chan < rx_channels_count; chan++) {
1967 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1968
1969 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1970 rxfifosz, qmode);
1971 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1972 chan);
1973 }
1974
1975 for (chan = 0; chan < tx_channels_count; chan++) {
1976 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1977
1978 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1979 txfifosz, qmode);
1980 }
1981 }
1982
1983 /**
1984 * stmmac_tx_clean - to manage the transmission completion
1985 * @priv: driver private structure
1986 * @budget: napi budget limiting this functions packet handling
1987 * @queue: TX queue index
1988 * Description: it reclaims the transmit resources after transmission completes.
1989 */
1990 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1991 {
1992 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1993 unsigned int bytes_compl = 0, pkts_compl = 0;
1994 unsigned int entry, count = 0;
1995
1996 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1997
1998 priv->xstats.tx_clean++;
1999
2000 entry = tx_q->dirty_tx;
2001 while ((entry != tx_q->cur_tx) && (count < budget)) {
2002 struct sk_buff *skb = tx_q->tx_skbuff[entry];
2003 struct dma_desc *p;
2004 int status;
2005
2006 if (priv->extend_desc)
2007 p = (struct dma_desc *)(tx_q->dma_etx + entry);
2008 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2009 p = &tx_q->dma_entx[entry].basic;
2010 else
2011 p = tx_q->dma_tx + entry;
2012
2013 status = stmmac_tx_status(priv, &priv->dev->stats,
2014 &priv->xstats, p, priv->ioaddr);
2015 /* Check if the descriptor is owned by the DMA */
2016 if (unlikely(status & tx_dma_own))
2017 break;
2018
2019 count++;
2020
2021 /* Make sure descriptor fields are read after reading
2022 * the own bit.
2023 */
2024 dma_rmb();
2025
2026 /* Just consider the last segment and ...*/
2027 if (likely(!(status & tx_not_ls))) {
2028 /* ... verify the status error condition */
2029 if (unlikely(status & tx_err)) {
2030 priv->dev->stats.tx_errors++;
2031 } else {
2032 priv->dev->stats.tx_packets++;
2033 priv->xstats.tx_pkt_n++;
2034 }
2035 stmmac_get_tx_hwtstamp(priv, p, skb);
2036 }
2037
2038 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2039 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2040 dma_unmap_page(priv->device,
2041 tx_q->tx_skbuff_dma[entry].buf,
2042 tx_q->tx_skbuff_dma[entry].len,
2043 DMA_TO_DEVICE);
2044 else
2045 dma_unmap_single(priv->device,
2046 tx_q->tx_skbuff_dma[entry].buf,
2047 tx_q->tx_skbuff_dma[entry].len,
2048 DMA_TO_DEVICE);
2049 tx_q->tx_skbuff_dma[entry].buf = 0;
2050 tx_q->tx_skbuff_dma[entry].len = 0;
2051 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2052 }
2053
2054 stmmac_clean_desc3(priv, tx_q, p);
2055
2056 tx_q->tx_skbuff_dma[entry].last_segment = false;
2057 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2058
2059 if (likely(skb != NULL)) {
2060 pkts_compl++;
2061 bytes_compl += skb->len;
2062 dev_consume_skb_any(skb);
2063 tx_q->tx_skbuff[entry] = NULL;
2064 }
2065
2066 stmmac_release_tx_desc(priv, p, priv->mode);
2067
2068 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2069 }
2070 tx_q->dirty_tx = entry;
2071
2072 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2073 pkts_compl, bytes_compl);
2074
2075 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2076 queue))) &&
2077 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2078
2079 netif_dbg(priv, tx_done, priv->dev,
2080 "%s: restart transmit\n", __func__);
2081 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2082 }
2083
2084 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2085 priv->eee_sw_timer_en) {
2086 stmmac_enable_eee_mode(priv);
2087 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2088 }
2089
2090 /* We still have pending packets, let's call for a new scheduling */
2091 if (tx_q->dirty_tx != tx_q->cur_tx)
2092 hrtimer_start(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer),
2093 HRTIMER_MODE_REL);
2094
2095 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2096
2097 return count;
2098 }
2099
2100 /**
2101 * stmmac_tx_err - to manage the tx error
2102 * @priv: driver private structure
2103 * @chan: channel index
2104 * Description: it cleans the descriptors and restarts the transmission
2105 * in case of transmission errors.
2106 */
2107 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2108 {
2109 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2110
2111 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2112
2113 stmmac_stop_tx_dma(priv, chan);
2114 dma_free_tx_skbufs(priv, chan);
2115 stmmac_clear_tx_descriptors(priv, chan);
2116 tx_q->dirty_tx = 0;
2117 tx_q->cur_tx = 0;
2118 tx_q->mss = 0;
2119 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2120 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2121 tx_q->dma_tx_phy, chan);
2122 stmmac_start_tx_dma(priv, chan);
2123
2124 priv->dev->stats.tx_errors++;
2125 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2126 }
2127
2128 /**
2129 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2130 * @priv: driver private structure
2131 * @txmode: TX operating mode
2132 * @rxmode: RX operating mode
2133 * @chan: channel index
2134 * Description: it is used for configuring of the DMA operation mode in
2135 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2136 * mode.
2137 */
2138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2139 u32 rxmode, u32 chan)
2140 {
2141 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2142 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2143 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2144 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2145 int rxfifosz = priv->plat->rx_fifo_size;
2146 int txfifosz = priv->plat->tx_fifo_size;
2147
2148 if (rxfifosz == 0)
2149 rxfifosz = priv->dma_cap.rx_fifo_size;
2150 if (txfifosz == 0)
2151 txfifosz = priv->dma_cap.tx_fifo_size;
2152
2153 /* Adjust for real per queue fifo size */
2154 rxfifosz /= rx_channels_count;
2155 txfifosz /= tx_channels_count;
2156
2157 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2158 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2159 }
2160
2161 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2162 {
2163 int ret;
2164
2165 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2166 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2167 if (ret && (ret != -EINVAL)) {
2168 stmmac_global_err(priv);
2169 return true;
2170 }
2171
2172 return false;
2173 }
2174
2175 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2176 {
2177 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2178 &priv->xstats, chan);
2179 struct stmmac_channel *ch = &priv->channel[chan];
2180 unsigned long flags;
2181
2182 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2183 if (napi_schedule_prep(&ch->rx_napi)) {
2184 spin_lock_irqsave(&ch->lock, flags);
2185 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2186 spin_unlock_irqrestore(&ch->lock, flags);
2187 __napi_schedule(&ch->rx_napi);
2188 }
2189 }
2190
2191 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2192 if (napi_schedule_prep(&ch->tx_napi)) {
2193 spin_lock_irqsave(&ch->lock, flags);
2194 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2195 spin_unlock_irqrestore(&ch->lock, flags);
2196 __napi_schedule(&ch->tx_napi);
2197 }
2198 }
2199
2200 return status;
2201 }
2202
2203 /**
2204 * stmmac_dma_interrupt - DMA ISR
2205 * @priv: driver private structure
2206 * Description: this is the DMA ISR. It is called by the main ISR.
2207 * It calls the dwmac dma routine and schedule poll method in case of some
2208 * work can be done.
2209 */
2210 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2211 {
2212 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2213 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2214 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2215 tx_channel_count : rx_channel_count;
2216 u32 chan;
2217 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2218
2219 /* Make sure we never check beyond our status buffer. */
2220 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2221 channels_to_check = ARRAY_SIZE(status);
2222
2223 for (chan = 0; chan < channels_to_check; chan++)
2224 status[chan] = stmmac_napi_check(priv, chan);
2225
2226 for (chan = 0; chan < tx_channel_count; chan++) {
2227 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2228 /* Try to bump up the dma threshold on this failure */
2229 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2230 (tc <= 256)) {
2231 tc += 64;
2232 if (priv->plat->force_thresh_dma_mode)
2233 stmmac_set_dma_operation_mode(priv,
2234 tc,
2235 tc,
2236 chan);
2237 else
2238 stmmac_set_dma_operation_mode(priv,
2239 tc,
2240 SF_DMA_MODE,
2241 chan);
2242 priv->xstats.threshold = tc;
2243 }
2244 } else if (unlikely(status[chan] == tx_hard_error)) {
2245 stmmac_tx_err(priv, chan);
2246 }
2247 }
2248 }
2249
2250 /**
2251 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2252 * @priv: driver private structure
2253 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2254 */
2255 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2256 {
2257 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2258 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2259
2260 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2261
2262 if (priv->dma_cap.rmon) {
2263 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2264 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2265 } else
2266 netdev_info(priv->dev, "No MAC Management Counters available\n");
2267 }
2268
2269 /**
2270 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2271 * @priv: driver private structure
2272 * Description:
2273 * new GMAC chip generations have a new register to indicate the
2274 * presence of the optional feature/functions.
2275 * This can be also used to override the value passed through the
2276 * platform and necessary for old MAC10/100 and GMAC chips.
2277 */
2278 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2279 {
2280 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2281 }
2282
2283 /**
2284 * stmmac_check_ether_addr - check if the MAC addr is valid
2285 * @priv: driver private structure
2286 * Description:
2287 * it is to verify if the MAC address is valid, in case of failures it
2288 * generates a random MAC address
2289 */
2290 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2291 {
2292 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2293 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2294 if (!is_valid_ether_addr(priv->dev->dev_addr))
2295 eth_hw_addr_random(priv->dev);
2296 dev_info(priv->device, "device MAC address %pM\n",
2297 priv->dev->dev_addr);
2298 }
2299 }
2300
2301 /**
2302 * stmmac_init_dma_engine - DMA init.
2303 * @priv: driver private structure
2304 * Description:
2305 * It inits the DMA invoking the specific MAC/GMAC callback.
2306 * Some DMA parameters can be passed from the platform;
2307 * in case of these are not passed a default is kept for the MAC or GMAC.
2308 */
2309 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2310 {
2311 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2312 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2313 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2314 struct stmmac_rx_queue *rx_q;
2315 struct stmmac_tx_queue *tx_q;
2316 u32 chan = 0;
2317 int atds = 0;
2318 int ret = 0;
2319
2320 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2321 dev_err(priv->device, "Invalid DMA configuration\n");
2322 return -EINVAL;
2323 }
2324
2325 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2326 atds = 1;
2327
2328 ret = stmmac_reset(priv, priv->ioaddr);
2329 if (ret) {
2330 dev_err(priv->device, "Failed to reset the dma\n");
2331 return ret;
2332 }
2333
2334 /* DMA Configuration */
2335 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2336
2337 if (priv->plat->axi)
2338 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2339
2340 /* DMA CSR Channel configuration */
2341 for (chan = 0; chan < dma_csr_ch; chan++)
2342 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2343
2344 /* DMA RX Channel Configuration */
2345 for (chan = 0; chan < rx_channels_count; chan++) {
2346 rx_q = &priv->rx_queue[chan];
2347
2348 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2349 rx_q->dma_rx_phy, chan);
2350
2351 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2352 (priv->dma_rx_size *
2353 sizeof(struct dma_desc));
2354 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2355 rx_q->rx_tail_addr, chan);
2356 }
2357
2358 /* DMA TX Channel Configuration */
2359 for (chan = 0; chan < tx_channels_count; chan++) {
2360 tx_q = &priv->tx_queue[chan];
2361
2362 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2363 tx_q->dma_tx_phy, chan);
2364
2365 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2366 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2367 tx_q->tx_tail_addr, chan);
2368 }
2369
2370 return ret;
2371 }
2372
2373 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2374 {
2375 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2376
2377 hrtimer_start(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer),
2378 HRTIMER_MODE_REL);
2379 }
2380
2381 /**
2382 * stmmac_tx_timer - mitigation sw timer for tx.
2383 * @t: data pointer
2384 * Description:
2385 * This is the timer handler to directly invoke the stmmac_tx_clean.
2386 */
2387 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2388 {
2389 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2390 struct stmmac_priv *priv = tx_q->priv_data;
2391 struct stmmac_channel *ch;
2392
2393 ch = &priv->channel[tx_q->queue_index];
2394
2395 if (likely(napi_schedule_prep(&ch->tx_napi))) {
2396 unsigned long flags;
2397
2398 spin_lock_irqsave(&ch->lock, flags);
2399 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2400 spin_unlock_irqrestore(&ch->lock, flags);
2401 __napi_schedule(&ch->tx_napi);
2402 }
2403
2404 return HRTIMER_NORESTART;
2405 }
2406
2407 /**
2408 * stmmac_init_coalesce - init mitigation options.
2409 * @priv: driver private structure
2410 * Description:
2411 * This inits the coalesce parameters: i.e. timer rate,
2412 * timer handler and default threshold used for enabling the
2413 * interrupt on completion bit.
2414 */
2415 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2416 {
2417 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2418 u32 chan;
2419
2420 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2421 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2422 priv->rx_coal_frames = STMMAC_RX_FRAMES;
2423
2424 for (chan = 0; chan < tx_channel_count; chan++) {
2425 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2426
2427 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2428 tx_q->txtimer.function = stmmac_tx_timer;
2429 }
2430 }
2431
2432 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2433 {
2434 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2435 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2436 u32 chan;
2437
2438 /* set TX ring length */
2439 for (chan = 0; chan < tx_channels_count; chan++)
2440 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2441 (priv->dma_tx_size - 1), chan);
2442
2443 /* set RX ring length */
2444 for (chan = 0; chan < rx_channels_count; chan++)
2445 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2446 (priv->dma_rx_size - 1), chan);
2447 }
2448
2449 /**
2450 * stmmac_set_tx_queue_weight - Set TX queue weight
2451 * @priv: driver private structure
2452 * Description: It is used for setting TX queues weight
2453 */
2454 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2455 {
2456 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2457 u32 weight;
2458 u32 queue;
2459
2460 for (queue = 0; queue < tx_queues_count; queue++) {
2461 weight = priv->plat->tx_queues_cfg[queue].weight;
2462 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2463 }
2464 }
2465
2466 /**
2467 * stmmac_configure_cbs - Configure CBS in TX queue
2468 * @priv: driver private structure
2469 * Description: It is used for configuring CBS in AVB TX queues
2470 */
2471 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2472 {
2473 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2474 u32 mode_to_use;
2475 u32 queue;
2476
2477 /* queue 0 is reserved for legacy traffic */
2478 for (queue = 1; queue < tx_queues_count; queue++) {
2479 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2480 if (mode_to_use == MTL_QUEUE_DCB)
2481 continue;
2482
2483 stmmac_config_cbs(priv, priv->hw,
2484 priv->plat->tx_queues_cfg[queue].send_slope,
2485 priv->plat->tx_queues_cfg[queue].idle_slope,
2486 priv->plat->tx_queues_cfg[queue].high_credit,
2487 priv->plat->tx_queues_cfg[queue].low_credit,
2488 queue);
2489 }
2490 }
2491
2492 /**
2493 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2494 * @priv: driver private structure
2495 * Description: It is used for mapping RX queues to RX dma channels
2496 */
2497 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2498 {
2499 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2500 u32 queue;
2501 u32 chan;
2502
2503 for (queue = 0; queue < rx_queues_count; queue++) {
2504 chan = priv->plat->rx_queues_cfg[queue].chan;
2505 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2506 }
2507 }
2508
2509 /**
2510 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2511 * @priv: driver private structure
2512 * Description: It is used for configuring the RX Queue Priority
2513 */
2514 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2515 {
2516 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2517 u32 queue;
2518 u32 prio;
2519
2520 for (queue = 0; queue < rx_queues_count; queue++) {
2521 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2522 continue;
2523
2524 prio = priv->plat->rx_queues_cfg[queue].prio;
2525 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2526 }
2527 }
2528
2529 /**
2530 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2531 * @priv: driver private structure
2532 * Description: It is used for configuring the TX Queue Priority
2533 */
2534 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2535 {
2536 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2537 u32 queue;
2538 u32 prio;
2539
2540 for (queue = 0; queue < tx_queues_count; queue++) {
2541 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2542 continue;
2543
2544 prio = priv->plat->tx_queues_cfg[queue].prio;
2545 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2546 }
2547 }
2548
2549 /**
2550 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2551 * @priv: driver private structure
2552 * Description: It is used for configuring the RX queue routing
2553 */
2554 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2555 {
2556 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2557 u32 queue;
2558 u8 packet;
2559
2560 for (queue = 0; queue < rx_queues_count; queue++) {
2561 /* no specific packet type routing specified for the queue */
2562 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2563 continue;
2564
2565 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2566 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2567 }
2568 }
2569
2570 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2571 {
2572 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2573 priv->rss.enable = false;
2574 return;
2575 }
2576
2577 if (priv->dev->features & NETIF_F_RXHASH)
2578 priv->rss.enable = true;
2579 else
2580 priv->rss.enable = false;
2581
2582 stmmac_rss_configure(priv, priv->hw, &priv->rss,
2583 priv->plat->rx_queues_to_use);
2584 }
2585
2586 /**
2587 * stmmac_mtl_configuration - Configure MTL
2588 * @priv: driver private structure
2589 * Description: It is used for configurring MTL
2590 */
2591 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2592 {
2593 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2594 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2595
2596 if (tx_queues_count > 1)
2597 stmmac_set_tx_queue_weight(priv);
2598
2599 /* Configure MTL RX algorithms */
2600 if (rx_queues_count > 1)
2601 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2602 priv->plat->rx_sched_algorithm);
2603
2604 /* Configure MTL TX algorithms */
2605 if (tx_queues_count > 1)
2606 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2607 priv->plat->tx_sched_algorithm);
2608
2609 /* Configure CBS in AVB TX queues */
2610 if (tx_queues_count > 1)
2611 stmmac_configure_cbs(priv);
2612
2613 /* Map RX MTL to DMA channels */
2614 stmmac_rx_queue_dma_chan_map(priv);
2615
2616 /* Enable MAC RX Queues */
2617 stmmac_mac_enable_rx_queues(priv);
2618
2619 /* Set RX priorities */
2620 if (rx_queues_count > 1)
2621 stmmac_mac_config_rx_queues_prio(priv);
2622
2623 /* Set TX priorities */
2624 if (tx_queues_count > 1)
2625 stmmac_mac_config_tx_queues_prio(priv);
2626
2627 /* Set RX routing */
2628 if (rx_queues_count > 1)
2629 stmmac_mac_config_rx_queues_routing(priv);
2630
2631 /* Receive Side Scaling */
2632 if (rx_queues_count > 1)
2633 stmmac_mac_config_rss(priv);
2634 }
2635
2636 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2637 {
2638 if (priv->dma_cap.asp) {
2639 netdev_info(priv->dev, "Enabling Safety Features\n");
2640 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2641 } else {
2642 netdev_info(priv->dev, "No Safety Features support found\n");
2643 }
2644 }
2645
2646 /**
2647 * stmmac_hw_setup - setup mac in a usable state.
2648 * @dev : pointer to the device structure.
2649 * @init_ptp: initialize PTP if set
2650 * Description:
2651 * this is the main function to setup the HW in a usable state because the
2652 * dma engine is reset, the core registers are configured (e.g. AXI,
2653 * Checksum features, timers). The DMA is ready to start receiving and
2654 * transmitting.
2655 * Return value:
2656 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2657 * file on failure.
2658 */
2659 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2660 {
2661 struct stmmac_priv *priv = netdev_priv(dev);
2662 u32 rx_cnt = priv->plat->rx_queues_to_use;
2663 u32 tx_cnt = priv->plat->tx_queues_to_use;
2664 u32 chan;
2665 int ret;
2666
2667 /* DMA initialization and SW reset */
2668 ret = stmmac_init_dma_engine(priv);
2669 if (ret < 0) {
2670 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2671 __func__);
2672 return ret;
2673 }
2674
2675 /* Copy the MAC addr into the HW */
2676 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2677
2678 /* PS and related bits will be programmed according to the speed */
2679 if (priv->hw->pcs) {
2680 int speed = priv->plat->mac_port_sel_speed;
2681
2682 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2683 (speed == SPEED_1000)) {
2684 priv->hw->ps = speed;
2685 } else {
2686 dev_warn(priv->device, "invalid port speed\n");
2687 priv->hw->ps = 0;
2688 }
2689 }
2690
2691 /* Initialize the MAC Core */
2692 stmmac_core_init(priv, priv->hw, dev);
2693
2694 /* Initialize MTL*/
2695 stmmac_mtl_configuration(priv);
2696
2697 /* Initialize Safety Features */
2698 stmmac_safety_feat_configuration(priv);
2699
2700 ret = stmmac_rx_ipc(priv, priv->hw);
2701 if (!ret) {
2702 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2703 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2704 priv->hw->rx_csum = 0;
2705 }
2706
2707 /* Enable the MAC Rx/Tx */
2708 stmmac_mac_set(priv, priv->ioaddr, true);
2709
2710 /* Set the HW DMA mode and the COE */
2711 stmmac_dma_operation_mode(priv);
2712
2713 stmmac_mmc_setup(priv);
2714
2715 if (init_ptp) {
2716 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2717 if (ret < 0)
2718 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2719
2720 ret = stmmac_init_ptp(priv);
2721 if (ret == -EOPNOTSUPP)
2722 netdev_warn(priv->dev, "PTP not supported by HW\n");
2723 else if (ret)
2724 netdev_warn(priv->dev, "PTP init failed\n");
2725 }
2726
2727 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2728
2729 /* Convert the timer from msec to usec */
2730 if (!priv->tx_lpi_timer)
2731 priv->tx_lpi_timer = eee_timer * 1000;
2732
2733 if (priv->use_riwt) {
2734 if (!priv->rx_riwt)
2735 priv->rx_riwt = DEF_DMA_RIWT;
2736
2737 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2738 }
2739
2740 if (priv->hw->pcs)
2741 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2742
2743 /* set TX and RX rings length */
2744 stmmac_set_rings_length(priv);
2745
2746 /* Enable TSO */
2747 if (priv->tso) {
2748 for (chan = 0; chan < tx_cnt; chan++)
2749 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2750 }
2751
2752 /* Enable Split Header */
2753 if (priv->sph && priv->hw->rx_csum) {
2754 for (chan = 0; chan < rx_cnt; chan++)
2755 stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2756 }
2757
2758 /* VLAN Tag Insertion */
2759 if (priv->dma_cap.vlins)
2760 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2761
2762 /* TBS */
2763 for (chan = 0; chan < tx_cnt; chan++) {
2764 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2765 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2766
2767 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2768 }
2769
2770 /* Configure real RX and TX queues */
2771 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2772 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2773
2774 /* Start the ball rolling... */
2775 stmmac_start_all_dma(priv);
2776
2777 return 0;
2778 }
2779
2780 static void stmmac_hw_teardown(struct net_device *dev)
2781 {
2782 struct stmmac_priv *priv = netdev_priv(dev);
2783
2784 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2785 }
2786
2787 /**
2788 * stmmac_open - open entry point of the driver
2789 * @dev : pointer to the device structure.
2790 * Description:
2791 * This function is the open entry point of the driver.
2792 * Return value:
2793 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2794 * file on failure.
2795 */
2796 static int stmmac_open(struct net_device *dev)
2797 {
2798 struct stmmac_priv *priv = netdev_priv(dev);
2799 int bfsize = 0;
2800 u32 chan;
2801 int ret;
2802
2803 if (priv->hw->pcs != STMMAC_PCS_TBI &&
2804 priv->hw->pcs != STMMAC_PCS_RTBI &&
2805 priv->hw->xpcs == NULL) {
2806 ret = stmmac_init_phy(dev);
2807 if (ret) {
2808 netdev_err(priv->dev,
2809 "%s: Cannot attach to PHY (error: %d)\n",
2810 __func__, ret);
2811 return ret;
2812 }
2813 }
2814
2815 /* Extra statistics */
2816 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2817 priv->xstats.threshold = tc;
2818
2819 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2820 if (bfsize < 0)
2821 bfsize = 0;
2822
2823 if (bfsize < BUF_SIZE_16KiB)
2824 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2825
2826 priv->dma_buf_sz = bfsize;
2827 buf_sz = bfsize;
2828
2829 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2830
2831 if (!priv->dma_tx_size)
2832 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2833 if (!priv->dma_rx_size)
2834 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2835
2836 /* Earlier check for TBS */
2837 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2838 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2839 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2840
2841 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2842 if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2843 tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2844 }
2845
2846 ret = alloc_dma_desc_resources(priv);
2847 if (ret < 0) {
2848 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2849 __func__);
2850 goto dma_desc_error;
2851 }
2852
2853 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2854 if (ret < 0) {
2855 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2856 __func__);
2857 goto init_error;
2858 }
2859
2860 ret = stmmac_hw_setup(dev, true);
2861 if (ret < 0) {
2862 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2863 goto init_error;
2864 }
2865
2866 stmmac_init_coalesce(priv);
2867
2868 phylink_start(priv->phylink);
2869 /* We may have called phylink_speed_down before */
2870 phylink_speed_up(priv->phylink);
2871
2872 /* Request the IRQ lines */
2873 ret = request_irq(dev->irq, stmmac_interrupt,
2874 IRQF_SHARED, dev->name, dev);
2875 if (unlikely(ret < 0)) {
2876 netdev_err(priv->dev,
2877 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2878 __func__, dev->irq, ret);
2879 goto irq_error;
2880 }
2881
2882 /* Request the Wake IRQ in case of another line is used for WoL */
2883 if (priv->wol_irq != dev->irq) {
2884 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2885 IRQF_SHARED, dev->name, dev);
2886 if (unlikely(ret < 0)) {
2887 netdev_err(priv->dev,
2888 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2889 __func__, priv->wol_irq, ret);
2890 goto wolirq_error;
2891 }
2892 }
2893
2894 /* Request the IRQ lines */
2895 if (priv->lpi_irq > 0) {
2896 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2897 dev->name, dev);
2898 if (unlikely(ret < 0)) {
2899 netdev_err(priv->dev,
2900 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2901 __func__, priv->lpi_irq, ret);
2902 goto lpiirq_error;
2903 }
2904 }
2905
2906 stmmac_enable_all_queues(priv);
2907 netif_tx_start_all_queues(priv->dev);
2908
2909 return 0;
2910
2911 lpiirq_error:
2912 if (priv->wol_irq != dev->irq)
2913 free_irq(priv->wol_irq, dev);
2914 wolirq_error:
2915 free_irq(dev->irq, dev);
2916 irq_error:
2917 phylink_stop(priv->phylink);
2918
2919 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2920 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
2921
2922 stmmac_hw_teardown(dev);
2923 init_error:
2924 free_dma_desc_resources(priv);
2925 dma_desc_error:
2926 phylink_disconnect_phy(priv->phylink);
2927 return ret;
2928 }
2929
2930 /**
2931 * stmmac_release - close entry point of the driver
2932 * @dev : device pointer.
2933 * Description:
2934 * This is the stop entry point of the driver.
2935 */
2936 static int stmmac_release(struct net_device *dev)
2937 {
2938 struct stmmac_priv *priv = netdev_priv(dev);
2939 u32 chan;
2940
2941 if (device_may_wakeup(priv->device))
2942 phylink_speed_down(priv->phylink, false);
2943 /* Stop and disconnect the PHY */
2944 phylink_stop(priv->phylink);
2945 phylink_disconnect_phy(priv->phylink);
2946
2947 stmmac_disable_all_queues(priv);
2948
2949 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2950 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
2951
2952 /* Free the IRQ lines */
2953 free_irq(dev->irq, dev);
2954 if (priv->wol_irq != dev->irq)
2955 free_irq(priv->wol_irq, dev);
2956 if (priv->lpi_irq > 0)
2957 free_irq(priv->lpi_irq, dev);
2958
2959 if (priv->eee_enabled) {
2960 priv->tx_path_in_lpi_mode = false;
2961 del_timer_sync(&priv->eee_ctrl_timer);
2962 }
2963
2964 /* Stop TX/RX DMA and clear the descriptors */
2965 stmmac_stop_all_dma(priv);
2966
2967 /* Release and free the Rx/Tx resources */
2968 free_dma_desc_resources(priv);
2969
2970 /* Disable the MAC Rx/Tx */
2971 stmmac_mac_set(priv, priv->ioaddr, false);
2972
2973 netif_carrier_off(dev);
2974
2975 stmmac_release_ptp(priv);
2976
2977 return 0;
2978 }
2979
2980 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2981 struct stmmac_tx_queue *tx_q)
2982 {
2983 u16 tag = 0x0, inner_tag = 0x0;
2984 u32 inner_type = 0x0;
2985 struct dma_desc *p;
2986
2987 if (!priv->dma_cap.vlins)
2988 return false;
2989 if (!skb_vlan_tag_present(skb))
2990 return false;
2991 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2992 inner_tag = skb_vlan_tag_get(skb);
2993 inner_type = STMMAC_VLAN_INSERT;
2994 }
2995
2996 tag = skb_vlan_tag_get(skb);
2997
2998 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2999 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3000 else
3001 p = &tx_q->dma_tx[tx_q->cur_tx];
3002
3003 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3004 return false;
3005
3006 stmmac_set_tx_owner(priv, p);
3007 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3008 return true;
3009 }
3010
3011 /**
3012 * stmmac_tso_allocator - close entry point of the driver
3013 * @priv: driver private structure
3014 * @des: buffer start address
3015 * @total_len: total length to fill in descriptors
3016 * @last_segment: condition for the last descriptor
3017 * @queue: TX queue index
3018 * Description:
3019 * This function fills descriptor and request new descriptors according to
3020 * buffer length to fill
3021 */
3022 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3023 int total_len, bool last_segment, u32 queue)
3024 {
3025 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3026 struct dma_desc *desc;
3027 u32 buff_size;
3028 int tmp_len;
3029
3030 tmp_len = total_len;
3031
3032 while (tmp_len > 0) {
3033 dma_addr_t curr_addr;
3034
3035 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3036 priv->dma_tx_size);
3037 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3038
3039 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3040 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3041 else
3042 desc = &tx_q->dma_tx[tx_q->cur_tx];
3043
3044 curr_addr = des + (total_len - tmp_len);
3045 if (priv->dma_cap.addr64 <= 32)
3046 desc->des0 = cpu_to_le32(curr_addr);
3047 else
3048 stmmac_set_desc_addr(priv, desc, curr_addr);
3049
3050 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3051 TSO_MAX_BUFF_SIZE : tmp_len;
3052
3053 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3054 0, 1,
3055 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3056 0, 0);
3057
3058 tmp_len -= TSO_MAX_BUFF_SIZE;
3059 }
3060 }
3061
3062 /**
3063 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3064 * @skb : the socket buffer
3065 * @dev : device pointer
3066 * Description: this is the transmit function that is called on TSO frames
3067 * (support available on GMAC4 and newer chips).
3068 * Diagram below show the ring programming in case of TSO frames:
3069 *
3070 * First Descriptor
3071 * --------
3072 * | DES0 |---> buffer1 = L2/L3/L4 header
3073 * | DES1 |---> TCP Payload (can continue on next descr...)
3074 * | DES2 |---> buffer 1 and 2 len
3075 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3076 * --------
3077 * |
3078 * ...
3079 * |
3080 * --------
3081 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
3082 * | DES1 | --|
3083 * | DES2 | --> buffer 1 and 2 len
3084 * | DES3 |
3085 * --------
3086 *
3087 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3088 */
3089 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3090 {
3091 struct dma_desc *desc, *first, *mss_desc = NULL;
3092 struct stmmac_priv *priv = netdev_priv(dev);
3093 int desc_size, tmp_pay_len = 0, first_tx;
3094 int nfrags = skb_shinfo(skb)->nr_frags;
3095 u32 queue = skb_get_queue_mapping(skb);
3096 unsigned int first_entry, tx_packets;
3097 struct stmmac_tx_queue *tx_q;
3098 bool has_vlan, set_ic;
3099 u8 proto_hdr_len, hdr;
3100 u32 pay_len, mss;
3101 dma_addr_t des;
3102 int i;
3103
3104 tx_q = &priv->tx_queue[queue];
3105 first_tx = tx_q->cur_tx;
3106
3107 /* Compute header lengths */
3108 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3109 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3110 hdr = sizeof(struct udphdr);
3111 } else {
3112 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3113 hdr = tcp_hdrlen(skb);
3114 }
3115
3116 /* Desc availability based on threshold should be enough safe */
3117 if (unlikely(stmmac_tx_avail(priv, queue) <
3118 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3119 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3120 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3121 queue));
3122 /* This is a hard error, log it. */
3123 netdev_err(priv->dev,
3124 "%s: Tx Ring full when queue awake\n",
3125 __func__);
3126 }
3127 return NETDEV_TX_BUSY;
3128 }
3129
3130 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3131
3132 mss = skb_shinfo(skb)->gso_size;
3133
3134 /* set new MSS value if needed */
3135 if (mss != tx_q->mss) {
3136 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3137 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3138 else
3139 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3140
3141 stmmac_set_mss(priv, mss_desc, mss);
3142 tx_q->mss = mss;
3143 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3144 priv->dma_tx_size);
3145 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3146 }
3147
3148 if (netif_msg_tx_queued(priv)) {
3149 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3150 __func__, hdr, proto_hdr_len, pay_len, mss);
3151 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3152 skb->data_len);
3153 }
3154
3155 /* Check if VLAN can be inserted by HW */
3156 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3157
3158 first_entry = tx_q->cur_tx;
3159 WARN_ON(tx_q->tx_skbuff[first_entry]);
3160
3161 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3162 desc = &tx_q->dma_entx[first_entry].basic;
3163 else
3164 desc = &tx_q->dma_tx[first_entry];
3165 first = desc;
3166
3167 if (has_vlan)
3168 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3169
3170 /* first descriptor: fill Headers on Buf1 */
3171 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3172 DMA_TO_DEVICE);
3173 if (dma_mapping_error(priv->device, des))
3174 goto dma_map_err;
3175
3176 tx_q->tx_skbuff_dma[first_entry].buf = des;
3177 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3178
3179 if (priv->dma_cap.addr64 <= 32) {
3180 first->des0 = cpu_to_le32(des);
3181
3182 /* Fill start of payload in buff2 of first descriptor */
3183 if (pay_len)
3184 first->des1 = cpu_to_le32(des + proto_hdr_len);
3185
3186 /* If needed take extra descriptors to fill the remaining payload */
3187 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3188 } else {
3189 stmmac_set_desc_addr(priv, first, des);
3190 tmp_pay_len = pay_len;
3191 des += proto_hdr_len;
3192 pay_len = 0;
3193 }
3194
3195 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3196
3197 /* Prepare fragments */
3198 for (i = 0; i < nfrags; i++) {
3199 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3200
3201 des = skb_frag_dma_map(priv->device, frag, 0,
3202 skb_frag_size(frag),
3203 DMA_TO_DEVICE);
3204 if (dma_mapping_error(priv->device, des))
3205 goto dma_map_err;
3206
3207 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3208 (i == nfrags - 1), queue);
3209
3210 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3211 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3212 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3213 }
3214
3215 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3216
3217 /* Only the last descriptor gets to point to the skb. */
3218 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3219
3220 /* Manage tx mitigation */
3221 tx_packets = (tx_q->cur_tx + 1) - first_tx;
3222 tx_q->tx_count_frames += tx_packets;
3223
3224 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3225 set_ic = true;
3226 else if (!priv->tx_coal_frames)
3227 set_ic = false;
3228 else if (tx_packets > priv->tx_coal_frames)
3229 set_ic = true;
3230 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3231 set_ic = true;
3232 else
3233 set_ic = false;
3234
3235 if (set_ic) {
3236 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3237 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3238 else
3239 desc = &tx_q->dma_tx[tx_q->cur_tx];
3240
3241 tx_q->tx_count_frames = 0;
3242 stmmac_set_tx_ic(priv, desc);
3243 priv->xstats.tx_set_ic_bit++;
3244 }
3245
3246 /* We've used all descriptors we need for this skb, however,
3247 * advance cur_tx so that it references a fresh descriptor.
3248 * ndo_start_xmit will fill this descriptor the next time it's
3249 * called and stmmac_tx_clean may clean up to this descriptor.
3250 */
3251 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3252
3253 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3254 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3255 __func__);
3256 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3257 }
3258
3259 dev->stats.tx_bytes += skb->len;
3260 priv->xstats.tx_tso_frames++;
3261 priv->xstats.tx_tso_nfrags += nfrags;
3262
3263 if (priv->sarc_type)
3264 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3265
3266 skb_tx_timestamp(skb);
3267
3268 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3269 priv->hwts_tx_en)) {
3270 /* declare that device is doing timestamping */
3271 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3272 stmmac_enable_tx_timestamp(priv, first);
3273 }
3274
3275 /* Complete the first descriptor before granting the DMA */
3276 stmmac_prepare_tso_tx_desc(priv, first, 1,
3277 proto_hdr_len,
3278 pay_len,
3279 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3280 hdr / 4, (skb->len - proto_hdr_len));
3281
3282 /* If context desc is used to change MSS */
3283 if (mss_desc) {
3284 /* Make sure that first descriptor has been completely
3285 * written, including its own bit. This is because MSS is
3286 * actually before first descriptor, so we need to make
3287 * sure that MSS's own bit is the last thing written.
3288 */
3289 dma_wmb();
3290 stmmac_set_tx_owner(priv, mss_desc);
3291 }
3292
3293 /* The own bit must be the latest setting done when prepare the
3294 * descriptor and then barrier is needed to make sure that
3295 * all is coherent before granting the DMA engine.
3296 */
3297 wmb();
3298
3299 if (netif_msg_pktdata(priv)) {
3300 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3301 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3302 tx_q->cur_tx, first, nfrags);
3303 pr_info(">>> frame to be transmitted: ");
3304 print_pkt(skb->data, skb_headlen(skb));
3305 }
3306
3307 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3308
3309 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3310 desc_size = sizeof(struct dma_edesc);
3311 else
3312 desc_size = sizeof(struct dma_desc);
3313
3314 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3315 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3316 stmmac_tx_timer_arm(priv, queue);
3317
3318 return NETDEV_TX_OK;
3319
3320 dma_map_err:
3321 dev_err(priv->device, "Tx dma map failed\n");
3322 dev_kfree_skb(skb);
3323 priv->dev->stats.tx_dropped++;
3324 return NETDEV_TX_OK;
3325 }
3326
3327 /**
3328 * stmmac_xmit - Tx entry point of the driver
3329 * @skb : the socket buffer
3330 * @dev : device pointer
3331 * Description : this is the tx entry point of the driver.
3332 * It programs the chain or the ring and supports oversized frames
3333 * and SG feature.
3334 */
3335 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3336 {
3337 unsigned int first_entry, tx_packets, enh_desc;
3338 struct stmmac_priv *priv = netdev_priv(dev);
3339 unsigned int nopaged_len = skb_headlen(skb);
3340 int i, csum_insertion = 0, is_jumbo = 0;
3341 u32 queue = skb_get_queue_mapping(skb);
3342 int nfrags = skb_shinfo(skb)->nr_frags;
3343 int gso = skb_shinfo(skb)->gso_type;
3344 struct dma_edesc *tbs_desc = NULL;
3345 int entry, desc_size, first_tx;
3346 struct dma_desc *desc, *first;
3347 struct stmmac_tx_queue *tx_q;
3348 bool has_vlan, set_ic;
3349 dma_addr_t des;
3350
3351 tx_q = &priv->tx_queue[queue];
3352 first_tx = tx_q->cur_tx;
3353
3354 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
3355 stmmac_disable_eee_mode(priv);
3356
3357 /* Manage oversized TCP frames for GMAC4 device */
3358 if (skb_is_gso(skb) && priv->tso) {
3359 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3360 return stmmac_tso_xmit(skb, dev);
3361 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3362 return stmmac_tso_xmit(skb, dev);
3363 }
3364
3365 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3366 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3367 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3368 queue));
3369 /* This is a hard error, log it. */
3370 netdev_err(priv->dev,
3371 "%s: Tx Ring full when queue awake\n",
3372 __func__);
3373 }
3374 return NETDEV_TX_BUSY;
3375 }
3376
3377 /* Check if VLAN can be inserted by HW */
3378 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3379
3380 entry = tx_q->cur_tx;
3381 first_entry = entry;
3382 WARN_ON(tx_q->tx_skbuff[first_entry]);
3383
3384 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3385
3386 if (likely(priv->extend_desc))
3387 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3388 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3389 desc = &tx_q->dma_entx[entry].basic;
3390 else
3391 desc = tx_q->dma_tx + entry;
3392
3393 first = desc;
3394
3395 if (has_vlan)
3396 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3397
3398 enh_desc = priv->plat->enh_desc;
3399 /* To program the descriptors according to the size of the frame */
3400 if (enh_desc)
3401 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3402
3403 if (unlikely(is_jumbo)) {
3404 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3405 if (unlikely(entry < 0) && (entry != -EINVAL))
3406 goto dma_map_err;
3407 }
3408
3409 for (i = 0; i < nfrags; i++) {
3410 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3411 int len = skb_frag_size(frag);
3412 bool last_segment = (i == (nfrags - 1));
3413
3414 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3415 WARN_ON(tx_q->tx_skbuff[entry]);
3416
3417 if (likely(priv->extend_desc))
3418 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3419 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3420 desc = &tx_q->dma_entx[entry].basic;
3421 else
3422 desc = tx_q->dma_tx + entry;
3423
3424 des = skb_frag_dma_map(priv->device, frag, 0, len,
3425 DMA_TO_DEVICE);
3426 if (dma_mapping_error(priv->device, des))
3427 goto dma_map_err; /* should reuse desc w/o issues */
3428
3429 tx_q->tx_skbuff_dma[entry].buf = des;
3430
3431 stmmac_set_desc_addr(priv, desc, des);
3432
3433 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3434 tx_q->tx_skbuff_dma[entry].len = len;
3435 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3436
3437 /* Prepare the descriptor and set the own bit too */
3438 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3439 priv->mode, 1, last_segment, skb->len);
3440 }
3441
3442 /* Only the last descriptor gets to point to the skb. */
3443 tx_q->tx_skbuff[entry] = skb;
3444
3445 /* According to the coalesce parameter the IC bit for the latest
3446 * segment is reset and the timer re-started to clean the tx status.
3447 * This approach takes care about the fragments: desc is the first
3448 * element in case of no SG.
3449 */
3450 tx_packets = (entry + 1) - first_tx;
3451 tx_q->tx_count_frames += tx_packets;
3452
3453 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3454 set_ic = true;
3455 else if (!priv->tx_coal_frames)
3456 set_ic = false;
3457 else if (tx_packets > priv->tx_coal_frames)
3458 set_ic = true;
3459 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3460 set_ic = true;
3461 else
3462 set_ic = false;
3463
3464 if (set_ic) {
3465 if (likely(priv->extend_desc))
3466 desc = &tx_q->dma_etx[entry].basic;
3467 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3468 desc = &tx_q->dma_entx[entry].basic;
3469 else
3470 desc = &tx_q->dma_tx[entry];
3471
3472 tx_q->tx_count_frames = 0;
3473 stmmac_set_tx_ic(priv, desc);
3474 priv->xstats.tx_set_ic_bit++;
3475 }
3476
3477 /* We've used all descriptors we need for this skb, however,
3478 * advance cur_tx so that it references a fresh descriptor.
3479 * ndo_start_xmit will fill this descriptor the next time it's
3480 * called and stmmac_tx_clean may clean up to this descriptor.
3481 */
3482 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3483 tx_q->cur_tx = entry;
3484
3485 if (netif_msg_pktdata(priv)) {
3486 netdev_dbg(priv->dev,
3487 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3488 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3489 entry, first, nfrags);
3490
3491 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3492 print_pkt(skb->data, skb->len);
3493 }
3494
3495 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3496 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3497 __func__);
3498 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3499 }
3500
3501 dev->stats.tx_bytes += skb->len;
3502
3503 if (priv->sarc_type)
3504 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3505
3506 skb_tx_timestamp(skb);
3507
3508 /* Ready to fill the first descriptor and set the OWN bit w/o any
3509 * problems because all the descriptors are actually ready to be
3510 * passed to the DMA engine.
3511 */
3512 if (likely(!is_jumbo)) {
3513 bool last_segment = (nfrags == 0);
3514
3515 des = dma_map_single(priv->device, skb->data,
3516 nopaged_len, DMA_TO_DEVICE);
3517 if (dma_mapping_error(priv->device, des))
3518 goto dma_map_err;
3519
3520 tx_q->tx_skbuff_dma[first_entry].buf = des;
3521
3522 stmmac_set_desc_addr(priv, first, des);
3523
3524 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3525 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3526
3527 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3528 priv->hwts_tx_en)) {
3529 /* declare that device is doing timestamping */
3530 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3531 stmmac_enable_tx_timestamp(priv, first);
3532 }
3533
3534 /* Prepare the first descriptor setting the OWN bit too */
3535 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3536 csum_insertion, priv->mode, 0, last_segment,
3537 skb->len);
3538 }
3539
3540 if (tx_q->tbs & STMMAC_TBS_EN) {
3541 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3542
3543 tbs_desc = &tx_q->dma_entx[first_entry];
3544 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3545 }
3546
3547 stmmac_set_tx_owner(priv, first);
3548
3549 /* The own bit must be the latest setting done when prepare the
3550 * descriptor and then barrier is needed to make sure that
3551 * all is coherent before granting the DMA engine.
3552 */
3553 wmb();
3554
3555 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3556
3557 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3558
3559 if (likely(priv->extend_desc))
3560 desc_size = sizeof(struct dma_extended_desc);
3561 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3562 desc_size = sizeof(struct dma_edesc);
3563 else
3564 desc_size = sizeof(struct dma_desc);
3565
3566 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3567 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3568 stmmac_tx_timer_arm(priv, queue);
3569
3570 return NETDEV_TX_OK;
3571
3572 dma_map_err:
3573 netdev_err(priv->dev, "Tx DMA map failed\n");
3574 dev_kfree_skb(skb);
3575 priv->dev->stats.tx_dropped++;
3576 return NETDEV_TX_OK;
3577 }
3578
3579 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3580 {
3581 struct vlan_ethhdr *veth;
3582 __be16 vlan_proto;
3583 u16 vlanid;
3584
3585 veth = (struct vlan_ethhdr *)skb->data;
3586 vlan_proto = veth->h_vlan_proto;
3587
3588 if ((vlan_proto == htons(ETH_P_8021Q) &&
3589 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3590 (vlan_proto == htons(ETH_P_8021AD) &&
3591 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3592 /* pop the vlan tag */
3593 vlanid = ntohs(veth->h_vlan_TCI);
3594 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3595 skb_pull(skb, VLAN_HLEN);
3596 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3597 }
3598 }
3599
3600 /**
3601 * stmmac_rx_refill - refill used skb preallocated buffers
3602 * @priv: driver private structure
3603 * @queue: RX queue index
3604 * Description : this is to reallocate the skb for the reception process
3605 * that is based on zero-copy.
3606 */
3607 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3608 {
3609 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3610 int len, dirty = stmmac_rx_dirty(priv, queue);
3611 unsigned int entry = rx_q->dirty_rx;
3612
3613 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3614
3615 while (dirty-- > 0) {
3616 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3617 struct dma_desc *p;
3618 bool use_rx_wd;
3619
3620 if (priv->extend_desc)
3621 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3622 else
3623 p = rx_q->dma_rx + entry;
3624
3625 if (!buf->page) {
3626 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3627 if (!buf->page)
3628 break;
3629 }
3630
3631 if (priv->sph && !buf->sec_page) {
3632 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3633 if (!buf->sec_page)
3634 break;
3635
3636 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3637
3638 dma_sync_single_for_device(priv->device, buf->sec_addr,
3639 len, DMA_FROM_DEVICE);
3640 }
3641
3642 buf->addr = page_pool_get_dma_addr(buf->page);
3643
3644 /* Sync whole allocation to device. This will invalidate old
3645 * data.
3646 */
3647 dma_sync_single_for_device(priv->device, buf->addr, len,
3648 DMA_FROM_DEVICE);
3649
3650 stmmac_set_desc_addr(priv, p, buf->addr);
3651 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3652 stmmac_refill_desc3(priv, rx_q, p);
3653
3654 rx_q->rx_count_frames++;
3655 rx_q->rx_count_frames += priv->rx_coal_frames;
3656 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3657 rx_q->rx_count_frames = 0;
3658
3659 use_rx_wd = !priv->rx_coal_frames;
3660 use_rx_wd |= rx_q->rx_count_frames > 0;
3661 if (!priv->use_riwt)
3662 use_rx_wd = false;
3663
3664 dma_wmb();
3665 stmmac_set_rx_owner(priv, p, use_rx_wd);
3666
3667 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3668 }
3669 rx_q->dirty_rx = entry;
3670 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3671 (rx_q->dirty_rx * sizeof(struct dma_desc));
3672 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3673 }
3674
3675 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3676 struct dma_desc *p,
3677 int status, unsigned int len)
3678 {
3679 unsigned int plen = 0, hlen = 0;
3680 int coe = priv->hw->rx_csum;
3681
3682 /* Not first descriptor, buffer is always zero */
3683 if (priv->sph && len)
3684 return 0;
3685
3686 /* First descriptor, get split header length */
3687 stmmac_get_rx_header_len(priv, p, &hlen);
3688 if (priv->sph && hlen) {
3689 priv->xstats.rx_split_hdr_pkt_n++;
3690 return hlen;
3691 }
3692
3693 /* First descriptor, not last descriptor and not split header */
3694 if (status & rx_not_ls)
3695 return priv->dma_buf_sz;
3696
3697 plen = stmmac_get_rx_frame_len(priv, p, coe);
3698
3699 /* First descriptor and last descriptor and not split header */
3700 return min_t(unsigned int, priv->dma_buf_sz, plen);
3701 }
3702
3703 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3704 struct dma_desc *p,
3705 int status, unsigned int len)
3706 {
3707 int coe = priv->hw->rx_csum;
3708 unsigned int plen = 0;
3709
3710 /* Not split header, buffer is not available */
3711 if (!priv->sph)
3712 return 0;
3713
3714 /* Not last descriptor */
3715 if (status & rx_not_ls)
3716 return priv->dma_buf_sz;
3717
3718 plen = stmmac_get_rx_frame_len(priv, p, coe);
3719
3720 /* Last descriptor */
3721 return plen - len;
3722 }
3723
3724 /**
3725 * stmmac_rx - manage the receive process
3726 * @priv: driver private structure
3727 * @limit: napi bugget
3728 * @queue: RX queue index.
3729 * Description : this the function called by the napi poll method.
3730 * It gets all the frames inside the ring.
3731 */
3732 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3733 {
3734 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3735 struct stmmac_channel *ch = &priv->channel[queue];
3736 unsigned int count = 0, error = 0, len = 0;
3737 int status = 0, coe = priv->hw->rx_csum;
3738 unsigned int next_entry = rx_q->cur_rx;
3739 struct sk_buff *skb = NULL;
3740
3741 if (netif_msg_rx_status(priv)) {
3742 void *rx_head;
3743
3744 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3745 if (priv->extend_desc)
3746 rx_head = (void *)rx_q->dma_erx;
3747 else
3748 rx_head = (void *)rx_q->dma_rx;
3749
3750 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true);
3751 }
3752 while (count < limit) {
3753 unsigned int buf1_len = 0, buf2_len = 0;
3754 enum pkt_hash_types hash_type;
3755 struct stmmac_rx_buffer *buf;
3756 struct dma_desc *np, *p;
3757 int entry;
3758 u32 hash;
3759
3760 if (!count && rx_q->state_saved) {
3761 skb = rx_q->state.skb;
3762 error = rx_q->state.error;
3763 len = rx_q->state.len;
3764 } else {
3765 rx_q->state_saved = false;
3766 skb = NULL;
3767 error = 0;
3768 len = 0;
3769 }
3770
3771 if (count >= limit)
3772 break;
3773
3774 read_again:
3775 buf1_len = 0;
3776 buf2_len = 0;
3777 entry = next_entry;
3778 buf = &rx_q->buf_pool[entry];
3779
3780 if (priv->extend_desc)
3781 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3782 else
3783 p = rx_q->dma_rx + entry;
3784
3785 /* read the status of the incoming frame */
3786 status = stmmac_rx_status(priv, &priv->dev->stats,
3787 &priv->xstats, p);
3788 /* check if managed by the DMA otherwise go ahead */
3789 if (unlikely(status & dma_own))
3790 break;
3791
3792 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3793 priv->dma_rx_size);
3794 next_entry = rx_q->cur_rx;
3795
3796 if (priv->extend_desc)
3797 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3798 else
3799 np = rx_q->dma_rx + next_entry;
3800
3801 prefetch(np);
3802
3803 if (priv->extend_desc)
3804 stmmac_rx_extended_status(priv, &priv->dev->stats,
3805 &priv->xstats, rx_q->dma_erx + entry);
3806 if (unlikely(status == discard_frame)) {
3807 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3808 buf->page = NULL;
3809 error = 1;
3810 if (!priv->hwts_rx_en)
3811 priv->dev->stats.rx_errors++;
3812 }
3813
3814 if (unlikely(error && (status & rx_not_ls)))
3815 goto read_again;
3816 if (unlikely(error)) {
3817 dev_kfree_skb(skb);
3818 skb = NULL;
3819 count++;
3820 continue;
3821 }
3822
3823 /* Buffer is good. Go on. */
3824
3825 prefetch(page_address(buf->page));
3826 if (buf->sec_page)
3827 prefetch(page_address(buf->sec_page));
3828
3829 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3830 len += buf1_len;
3831 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3832 len += buf2_len;
3833
3834 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3835 * Type frames (LLC/LLC-SNAP)
3836 *
3837 * llc_snap is never checked in GMAC >= 4, so this ACS
3838 * feature is always disabled and packets need to be
3839 * stripped manually.
3840 */
3841 if (likely(!(status & rx_not_ls)) &&
3842 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3843 unlikely(status != llc_snap))) {
3844 if (buf2_len)
3845 buf2_len -= ETH_FCS_LEN;
3846 else
3847 buf1_len -= ETH_FCS_LEN;
3848
3849 len -= ETH_FCS_LEN;
3850 }
3851
3852 if (!skb) {
3853 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3854 if (!skb) {
3855 priv->dev->stats.rx_dropped++;
3856 count++;
3857 goto drain_data;
3858 }
3859
3860 dma_sync_single_for_cpu(priv->device, buf->addr,
3861 buf1_len, DMA_FROM_DEVICE);
3862 skb_copy_to_linear_data(skb, page_address(buf->page),
3863 buf1_len);
3864 skb_put(skb, buf1_len);
3865
3866 /* Data payload copied into SKB, page ready for recycle */
3867 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3868 buf->page = NULL;
3869 } else if (buf1_len) {
3870 dma_sync_single_for_cpu(priv->device, buf->addr,
3871 buf1_len, DMA_FROM_DEVICE);
3872 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3873 buf->page, 0, buf1_len,
3874 priv->dma_buf_sz);
3875
3876 /* Data payload appended into SKB */
3877 page_pool_release_page(rx_q->page_pool, buf->page);
3878 buf->page = NULL;
3879 }
3880
3881 if (buf2_len) {
3882 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3883 buf2_len, DMA_FROM_DEVICE);
3884 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3885 buf->sec_page, 0, buf2_len,
3886 priv->dma_buf_sz);
3887
3888 /* Data payload appended into SKB */
3889 page_pool_release_page(rx_q->page_pool, buf->sec_page);
3890 buf->sec_page = NULL;
3891 }
3892
3893 drain_data:
3894 if (likely(status & rx_not_ls))
3895 goto read_again;
3896 if (!skb)
3897 continue;
3898
3899 /* Got entire packet into SKB. Finish it. */
3900
3901 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3902 stmmac_rx_vlan(priv->dev, skb);
3903 skb->protocol = eth_type_trans(skb, priv->dev);
3904
3905 if (unlikely(!coe))
3906 skb_checksum_none_assert(skb);
3907 else
3908 skb->ip_summed = CHECKSUM_UNNECESSARY;
3909
3910 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3911 skb_set_hash(skb, hash, hash_type);
3912
3913 skb_record_rx_queue(skb, queue);
3914 napi_gro_receive(&ch->rx_napi, skb);
3915 skb = NULL;
3916
3917 priv->dev->stats.rx_packets++;
3918 priv->dev->stats.rx_bytes += len;
3919 count++;
3920 }
3921
3922 if (status & rx_not_ls || skb) {
3923 rx_q->state_saved = true;
3924 rx_q->state.skb = skb;
3925 rx_q->state.error = error;
3926 rx_q->state.len = len;
3927 }
3928
3929 stmmac_rx_refill(priv, queue);
3930
3931 priv->xstats.rx_pkt_n += count;
3932
3933 return count;
3934 }
3935
3936 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3937 {
3938 struct stmmac_channel *ch =
3939 container_of(napi, struct stmmac_channel, rx_napi);
3940 struct stmmac_priv *priv = ch->priv_data;
3941 u32 chan = ch->index;
3942 int work_done;
3943
3944 priv->xstats.napi_poll++;
3945
3946 work_done = stmmac_rx(priv, budget, chan);
3947 if (work_done < budget && napi_complete_done(napi, work_done)) {
3948 unsigned long flags;
3949
3950 spin_lock_irqsave(&ch->lock, flags);
3951 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3952 spin_unlock_irqrestore(&ch->lock, flags);
3953 }
3954
3955 return work_done;
3956 }
3957
3958 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3959 {
3960 struct stmmac_channel *ch =
3961 container_of(napi, struct stmmac_channel, tx_napi);
3962 struct stmmac_priv *priv = ch->priv_data;
3963 u32 chan = ch->index;
3964 int work_done;
3965
3966 priv->xstats.napi_poll++;
3967
3968 work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
3969 work_done = min(work_done, budget);
3970
3971 if (work_done < budget && napi_complete_done(napi, work_done)) {
3972 unsigned long flags;
3973
3974 spin_lock_irqsave(&ch->lock, flags);
3975 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3976 spin_unlock_irqrestore(&ch->lock, flags);
3977 }
3978
3979 return work_done;
3980 }
3981
3982 /**
3983 * stmmac_tx_timeout
3984 * @dev : Pointer to net device structure
3985 * @txqueue: the index of the hanging transmit queue
3986 * Description: this function is called when a packet transmission fails to
3987 * complete within a reasonable time. The driver will mark the error in the
3988 * netdev structure and arrange for the device to be reset to a sane state
3989 * in order to transmit a new packet.
3990 */
3991 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3992 {
3993 struct stmmac_priv *priv = netdev_priv(dev);
3994
3995 stmmac_global_err(priv);
3996 }
3997
3998 /**
3999 * stmmac_set_rx_mode - entry point for multicast addressing
4000 * @dev : pointer to the device structure
4001 * Description:
4002 * This function is a driver entry point which gets called by the kernel
4003 * whenever multicast addresses must be enabled/disabled.
4004 * Return value:
4005 * void.
4006 */
4007 static void stmmac_set_rx_mode(struct net_device *dev)
4008 {
4009 struct stmmac_priv *priv = netdev_priv(dev);
4010
4011 stmmac_set_filter(priv, priv->hw, dev);
4012 }
4013
4014 /**
4015 * stmmac_change_mtu - entry point to change MTU size for the device.
4016 * @dev : device pointer.
4017 * @new_mtu : the new MTU size for the device.
4018 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
4019 * to drive packet transmission. Ethernet has an MTU of 1500 octets
4020 * (ETH_DATA_LEN). This value can be changed with ifconfig.
4021 * Return value:
4022 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4023 * file on failure.
4024 */
4025 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
4026 {
4027 struct stmmac_priv *priv = netdev_priv(dev);
4028 int txfifosz = priv->plat->tx_fifo_size;
4029
4030 if (txfifosz == 0)
4031 txfifosz = priv->dma_cap.tx_fifo_size;
4032
4033 txfifosz /= priv->plat->tx_queues_to_use;
4034
4035 if (netif_running(dev)) {
4036 netdev_err(priv->dev, "must be stopped to change its MTU\n");
4037 return -EBUSY;
4038 }
4039
4040 new_mtu = STMMAC_ALIGN(new_mtu);
4041
4042 /* If condition true, FIFO is too small or MTU too large */
4043 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4044 return -EINVAL;
4045
4046 dev->mtu = new_mtu;
4047
4048 netdev_update_features(dev);
4049
4050 return 0;
4051 }
4052
4053 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4054 netdev_features_t features)
4055 {
4056 struct stmmac_priv *priv = netdev_priv(dev);
4057
4058 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4059 features &= ~NETIF_F_RXCSUM;
4060
4061 if (!priv->plat->tx_coe)
4062 features &= ~NETIF_F_CSUM_MASK;
4063
4064 /* Some GMAC devices have a bugged Jumbo frame support that
4065 * needs to have the Tx COE disabled for oversized frames
4066 * (due to limited buffer sizes). In this case we disable
4067 * the TX csum insertion in the TDES and not use SF.
4068 */
4069 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4070 features &= ~NETIF_F_CSUM_MASK;
4071
4072 /* Disable tso if asked by ethtool */
4073 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4074 if (features & NETIF_F_TSO)
4075 priv->tso = true;
4076 else
4077 priv->tso = false;
4078 }
4079
4080 return features;
4081 }
4082
4083 static int stmmac_set_features(struct net_device *netdev,
4084 netdev_features_t features)
4085 {
4086 struct stmmac_priv *priv = netdev_priv(netdev);
4087 bool sph_en;
4088 u32 chan;
4089
4090 /* Keep the COE Type in case of csum is supporting */
4091 if (features & NETIF_F_RXCSUM)
4092 priv->hw->rx_csum = priv->plat->rx_coe;
4093 else
4094 priv->hw->rx_csum = 0;
4095 /* No check needed because rx_coe has been set before and it will be
4096 * fixed in case of issue.
4097 */
4098 stmmac_rx_ipc(priv, priv->hw);
4099
4100 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4101 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4102 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4103
4104 return 0;
4105 }
4106
4107 /**
4108 * stmmac_interrupt - main ISR
4109 * @irq: interrupt number.
4110 * @dev_id: to pass the net device pointer (must be valid).
4111 * Description: this is the main driver interrupt service routine.
4112 * It can call:
4113 * o DMA service routine (to manage incoming frame reception and transmission
4114 * status)
4115 * o Core interrupts to manage: remote wake-up, management counter, LPI
4116 * interrupts.
4117 */
4118 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4119 {
4120 struct net_device *dev = (struct net_device *)dev_id;
4121 struct stmmac_priv *priv = netdev_priv(dev);
4122 u32 rx_cnt = priv->plat->rx_queues_to_use;
4123 u32 tx_cnt = priv->plat->tx_queues_to_use;
4124 u32 queues_count;
4125 u32 queue;
4126 bool xmac;
4127
4128 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4129 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4130
4131 if (priv->irq_wake)
4132 pm_wakeup_event(priv->device, 0);
4133
4134 /* Check if adapter is up */
4135 if (test_bit(STMMAC_DOWN, &priv->state))
4136 return IRQ_HANDLED;
4137 /* Check if a fatal error happened */
4138 if (stmmac_safety_feat_interrupt(priv))
4139 return IRQ_HANDLED;
4140
4141 /* To handle GMAC own interrupts */
4142 if ((priv->plat->has_gmac) || xmac) {
4143 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4144 int mtl_status;
4145
4146 if (unlikely(status)) {
4147 /* For LPI we need to save the tx status */
4148 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4149 priv->tx_path_in_lpi_mode = true;
4150 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4151 priv->tx_path_in_lpi_mode = false;
4152 }
4153
4154 for (queue = 0; queue < queues_count; queue++) {
4155 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4156
4157 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4158 queue);
4159 if (mtl_status != -EINVAL)
4160 status |= mtl_status;
4161
4162 if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4163 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4164 rx_q->rx_tail_addr,
4165 queue);
4166 }
4167
4168 /* PCS link status */
4169 if (priv->hw->pcs) {
4170 if (priv->xstats.pcs_link)
4171 netif_carrier_on(dev);
4172 else
4173 netif_carrier_off(dev);
4174 }
4175 }
4176
4177 /* To handle DMA interrupts */
4178 stmmac_dma_interrupt(priv);
4179
4180 return IRQ_HANDLED;
4181 }
4182
4183 #ifdef CONFIG_NET_POLL_CONTROLLER
4184 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4185 * to allow network I/O with interrupts disabled.
4186 */
4187 static void stmmac_poll_controller(struct net_device *dev)
4188 {
4189 disable_irq(dev->irq);
4190 stmmac_interrupt(dev->irq, dev);
4191 enable_irq(dev->irq);
4192 }
4193 #endif
4194
4195 /**
4196 * stmmac_ioctl - Entry point for the Ioctl
4197 * @dev: Device pointer.
4198 * @rq: An IOCTL specefic structure, that can contain a pointer to
4199 * a proprietary structure used to pass information to the driver.
4200 * @cmd: IOCTL command
4201 * Description:
4202 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4203 */
4204 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4205 {
4206 struct stmmac_priv *priv = netdev_priv (dev);
4207 int ret = -EOPNOTSUPP;
4208
4209 if (!netif_running(dev))
4210 return -EINVAL;
4211
4212 switch (cmd) {
4213 case SIOCGMIIPHY:
4214 case SIOCGMIIREG:
4215 case SIOCSMIIREG:
4216 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4217 break;
4218 case SIOCSHWTSTAMP:
4219 ret = stmmac_hwtstamp_set(dev, rq);
4220 break;
4221 case SIOCGHWTSTAMP:
4222 ret = stmmac_hwtstamp_get(dev, rq);
4223 break;
4224 default:
4225 break;
4226 }
4227
4228 return ret;
4229 }
4230
4231 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4232 void *cb_priv)
4233 {
4234 struct stmmac_priv *priv = cb_priv;
4235 int ret = -EOPNOTSUPP;
4236
4237 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4238 return ret;
4239
4240 stmmac_disable_all_queues(priv);
4241
4242 switch (type) {
4243 case TC_SETUP_CLSU32:
4244 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4245 break;
4246 case TC_SETUP_CLSFLOWER:
4247 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4248 break;
4249 default:
4250 break;
4251 }
4252
4253 stmmac_enable_all_queues(priv);
4254 return ret;
4255 }
4256
4257 static LIST_HEAD(stmmac_block_cb_list);
4258
4259 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4260 void *type_data)
4261 {
4262 struct stmmac_priv *priv = netdev_priv(ndev);
4263
4264 switch (type) {
4265 case TC_SETUP_BLOCK:
4266 return flow_block_cb_setup_simple(type_data,
4267 &stmmac_block_cb_list,
4268 stmmac_setup_tc_block_cb,
4269 priv, priv, true);
4270 case TC_SETUP_QDISC_CBS:
4271 return stmmac_tc_setup_cbs(priv, priv, type_data);
4272 case TC_SETUP_QDISC_TAPRIO:
4273 return stmmac_tc_setup_taprio(priv, priv, type_data);
4274 case TC_SETUP_QDISC_ETF:
4275 return stmmac_tc_setup_etf(priv, priv, type_data);
4276 default:
4277 return -EOPNOTSUPP;
4278 }
4279 }
4280
4281 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4282 struct net_device *sb_dev)
4283 {
4284 int gso = skb_shinfo(skb)->gso_type;
4285
4286 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4287 /*
4288 * There is no way to determine the number of TSO/USO
4289 * capable Queues. Let's use always the Queue 0
4290 * because if TSO/USO is supported then at least this
4291 * one will be capable.
4292 */
4293 return 0;
4294 }
4295
4296 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4297 }
4298
4299 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4300 {
4301 struct stmmac_priv *priv = netdev_priv(ndev);
4302 int ret = 0;
4303
4304 ret = eth_mac_addr(ndev, addr);
4305 if (ret)
4306 return ret;
4307
4308 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4309
4310 return ret;
4311 }
4312
4313 #ifdef CONFIG_DEBUG_FS
4314 static struct dentry *stmmac_fs_dir;
4315
4316 static void sysfs_display_ring(void *head, int size, int extend_desc,
4317 struct seq_file *seq)
4318 {
4319 int i;
4320 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4321 struct dma_desc *p = (struct dma_desc *)head;
4322
4323 for (i = 0; i < size; i++) {
4324 if (extend_desc) {
4325 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4326 i, (unsigned int)virt_to_phys(ep),
4327 le32_to_cpu(ep->basic.des0),
4328 le32_to_cpu(ep->basic.des1),
4329 le32_to_cpu(ep->basic.des2),
4330 le32_to_cpu(ep->basic.des3));
4331 ep++;
4332 } else {
4333 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4334 i, (unsigned int)virt_to_phys(p),
4335 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4336 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4337 p++;
4338 }
4339 seq_printf(seq, "\n");
4340 }
4341 }
4342
4343 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4344 {
4345 struct net_device *dev = seq->private;
4346 struct stmmac_priv *priv = netdev_priv(dev);
4347 u32 rx_count = priv->plat->rx_queues_to_use;
4348 u32 tx_count = priv->plat->tx_queues_to_use;
4349 u32 queue;
4350
4351 if ((dev->flags & IFF_UP) == 0)
4352 return 0;
4353
4354 for (queue = 0; queue < rx_count; queue++) {
4355 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4356
4357 seq_printf(seq, "RX Queue %d:\n", queue);
4358
4359 if (priv->extend_desc) {
4360 seq_printf(seq, "Extended descriptor ring:\n");
4361 sysfs_display_ring((void *)rx_q->dma_erx,
4362 priv->dma_rx_size, 1, seq);
4363 } else {
4364 seq_printf(seq, "Descriptor ring:\n");
4365 sysfs_display_ring((void *)rx_q->dma_rx,
4366 priv->dma_rx_size, 0, seq);
4367 }
4368 }
4369
4370 for (queue = 0; queue < tx_count; queue++) {
4371 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4372
4373 seq_printf(seq, "TX Queue %d:\n", queue);
4374
4375 if (priv->extend_desc) {
4376 seq_printf(seq, "Extended descriptor ring:\n");
4377 sysfs_display_ring((void *)tx_q->dma_etx,
4378 priv->dma_tx_size, 1, seq);
4379 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4380 seq_printf(seq, "Descriptor ring:\n");
4381 sysfs_display_ring((void *)tx_q->dma_tx,
4382 priv->dma_tx_size, 0, seq);
4383 }
4384 }
4385
4386 return 0;
4387 }
4388 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4389
4390 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4391 {
4392 struct net_device *dev = seq->private;
4393 struct stmmac_priv *priv = netdev_priv(dev);
4394
4395 if (!priv->hw_cap_support) {
4396 seq_printf(seq, "DMA HW features not supported\n");
4397 return 0;
4398 }
4399
4400 seq_printf(seq, "==============================\n");
4401 seq_printf(seq, "\tDMA HW features\n");
4402 seq_printf(seq, "==============================\n");
4403
4404 seq_printf(seq, "\t10/100 Mbps: %s\n",
4405 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4406 seq_printf(seq, "\t1000 Mbps: %s\n",
4407 (priv->dma_cap.mbps_1000) ? "Y" : "N");
4408 seq_printf(seq, "\tHalf duplex: %s\n",
4409 (priv->dma_cap.half_duplex) ? "Y" : "N");
4410 seq_printf(seq, "\tHash Filter: %s\n",
4411 (priv->dma_cap.hash_filter) ? "Y" : "N");
4412 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4413 (priv->dma_cap.multi_addr) ? "Y" : "N");
4414 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4415 (priv->dma_cap.pcs) ? "Y" : "N");
4416 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4417 (priv->dma_cap.sma_mdio) ? "Y" : "N");
4418 seq_printf(seq, "\tPMT Remote wake up: %s\n",
4419 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4420 seq_printf(seq, "\tPMT Magic Frame: %s\n",
4421 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4422 seq_printf(seq, "\tRMON module: %s\n",
4423 (priv->dma_cap.rmon) ? "Y" : "N");
4424 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4425 (priv->dma_cap.time_stamp) ? "Y" : "N");
4426 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4427 (priv->dma_cap.atime_stamp) ? "Y" : "N");
4428 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4429 (priv->dma_cap.eee) ? "Y" : "N");
4430 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4431 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4432 (priv->dma_cap.tx_coe) ? "Y" : "N");
4433 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4434 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4435 (priv->dma_cap.rx_coe) ? "Y" : "N");
4436 } else {
4437 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4438 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4439 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4440 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4441 }
4442 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4443 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4444 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4445 priv->dma_cap.number_rx_channel);
4446 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4447 priv->dma_cap.number_tx_channel);
4448 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4449 priv->dma_cap.number_rx_queues);
4450 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4451 priv->dma_cap.number_tx_queues);
4452 seq_printf(seq, "\tEnhanced descriptors: %s\n",
4453 (priv->dma_cap.enh_desc) ? "Y" : "N");
4454 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4455 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4456 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4457 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4458 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4459 priv->dma_cap.pps_out_num);
4460 seq_printf(seq, "\tSafety Features: %s\n",
4461 priv->dma_cap.asp ? "Y" : "N");
4462 seq_printf(seq, "\tFlexible RX Parser: %s\n",
4463 priv->dma_cap.frpsel ? "Y" : "N");
4464 seq_printf(seq, "\tEnhanced Addressing: %d\n",
4465 priv->dma_cap.addr64);
4466 seq_printf(seq, "\tReceive Side Scaling: %s\n",
4467 priv->dma_cap.rssen ? "Y" : "N");
4468 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4469 priv->dma_cap.vlhash ? "Y" : "N");
4470 seq_printf(seq, "\tSplit Header: %s\n",
4471 priv->dma_cap.sphen ? "Y" : "N");
4472 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4473 priv->dma_cap.vlins ? "Y" : "N");
4474 seq_printf(seq, "\tDouble VLAN: %s\n",
4475 priv->dma_cap.dvlan ? "Y" : "N");
4476 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4477 priv->dma_cap.l3l4fnum);
4478 seq_printf(seq, "\tARP Offloading: %s\n",
4479 priv->dma_cap.arpoffsel ? "Y" : "N");
4480 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4481 priv->dma_cap.estsel ? "Y" : "N");
4482 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4483 priv->dma_cap.fpesel ? "Y" : "N");
4484 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4485 priv->dma_cap.tbssel ? "Y" : "N");
4486 return 0;
4487 }
4488 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4489
4490 /* Use network device events to rename debugfs file entries.
4491 */
4492 static int stmmac_device_event(struct notifier_block *unused,
4493 unsigned long event, void *ptr)
4494 {
4495 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4496 struct stmmac_priv *priv = netdev_priv(dev);
4497
4498 if (dev->netdev_ops != &stmmac_netdev_ops)
4499 goto done;
4500
4501 switch (event) {
4502 case NETDEV_CHANGENAME:
4503 if (priv->dbgfs_dir)
4504 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4505 priv->dbgfs_dir,
4506 stmmac_fs_dir,
4507 dev->name);
4508 break;
4509 }
4510 done:
4511 return NOTIFY_DONE;
4512 }
4513
4514 static struct notifier_block stmmac_notifier = {
4515 .notifier_call = stmmac_device_event,
4516 };
4517
4518 static void stmmac_init_fs(struct net_device *dev)
4519 {
4520 struct stmmac_priv *priv = netdev_priv(dev);
4521
4522 rtnl_lock();
4523
4524 /* Create per netdev entries */
4525 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4526
4527 /* Entry to report DMA RX/TX rings */
4528 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4529 &stmmac_rings_status_fops);
4530
4531 /* Entry to report the DMA HW features */
4532 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4533 &stmmac_dma_cap_fops);
4534
4535 rtnl_unlock();
4536 }
4537
4538 static void stmmac_exit_fs(struct net_device *dev)
4539 {
4540 struct stmmac_priv *priv = netdev_priv(dev);
4541
4542 debugfs_remove_recursive(priv->dbgfs_dir);
4543 }
4544 #endif /* CONFIG_DEBUG_FS */
4545
4546 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4547 {
4548 unsigned char *data = (unsigned char *)&vid_le;
4549 unsigned char data_byte = 0;
4550 u32 crc = ~0x0;
4551 u32 temp = 0;
4552 int i, bits;
4553
4554 bits = get_bitmask_order(VLAN_VID_MASK);
4555 for (i = 0; i < bits; i++) {
4556 if ((i % 8) == 0)
4557 data_byte = data[i / 8];
4558
4559 temp = ((crc & 1) ^ data_byte) & 1;
4560 crc >>= 1;
4561 data_byte >>= 1;
4562
4563 if (temp)
4564 crc ^= 0xedb88320;
4565 }
4566
4567 return crc;
4568 }
4569
4570 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4571 {
4572 u32 crc, hash = 0;
4573 __le16 pmatch = 0;
4574 int count = 0;
4575 u16 vid = 0;
4576
4577 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4578 __le16 vid_le = cpu_to_le16(vid);
4579 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4580 hash |= (1 << crc);
4581 count++;
4582 }
4583
4584 if (!priv->dma_cap.vlhash) {
4585 if (count > 2) /* VID = 0 always passes filter */
4586 return -EOPNOTSUPP;
4587
4588 pmatch = cpu_to_le16(vid);
4589 hash = 0;
4590 }
4591
4592 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4593 }
4594
4595 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4596 {
4597 struct stmmac_priv *priv = netdev_priv(ndev);
4598 bool is_double = false;
4599 int ret;
4600
4601 if (be16_to_cpu(proto) == ETH_P_8021AD)
4602 is_double = true;
4603
4604 set_bit(vid, priv->active_vlans);
4605 ret = stmmac_vlan_update(priv, is_double);
4606 if (ret) {
4607 clear_bit(vid, priv->active_vlans);
4608 return ret;
4609 }
4610
4611 if (priv->hw->num_vlan) {
4612 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4613 if (ret)
4614 return ret;
4615 }
4616
4617 return 0;
4618 }
4619
4620 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4621 {
4622 struct stmmac_priv *priv = netdev_priv(ndev);
4623 bool is_double = false;
4624 int ret;
4625
4626 if (be16_to_cpu(proto) == ETH_P_8021AD)
4627 is_double = true;
4628
4629 clear_bit(vid, priv->active_vlans);
4630
4631 if (priv->hw->num_vlan) {
4632 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4633 if (ret)
4634 return ret;
4635 }
4636
4637 return stmmac_vlan_update(priv, is_double);
4638 }
4639
4640 static const struct net_device_ops stmmac_netdev_ops = {
4641 .ndo_open = stmmac_open,
4642 .ndo_start_xmit = stmmac_xmit,
4643 .ndo_stop = stmmac_release,
4644 .ndo_change_mtu = stmmac_change_mtu,
4645 .ndo_fix_features = stmmac_fix_features,
4646 .ndo_set_features = stmmac_set_features,
4647 .ndo_set_rx_mode = stmmac_set_rx_mode,
4648 .ndo_tx_timeout = stmmac_tx_timeout,
4649 .ndo_do_ioctl = stmmac_ioctl,
4650 .ndo_setup_tc = stmmac_setup_tc,
4651 .ndo_select_queue = stmmac_select_queue,
4652 #ifdef CONFIG_NET_POLL_CONTROLLER
4653 .ndo_poll_controller = stmmac_poll_controller,
4654 #endif
4655 .ndo_set_mac_address = stmmac_set_mac_address,
4656 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4657 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4658 };
4659
4660 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4661 {
4662 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4663 return;
4664 if (test_bit(STMMAC_DOWN, &priv->state))
4665 return;
4666
4667 netdev_err(priv->dev, "Reset adapter.\n");
4668
4669 rtnl_lock();
4670 netif_trans_update(priv->dev);
4671 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4672 usleep_range(1000, 2000);
4673
4674 set_bit(STMMAC_DOWN, &priv->state);
4675 dev_close(priv->dev);
4676 dev_open(priv->dev, NULL);
4677 clear_bit(STMMAC_DOWN, &priv->state);
4678 clear_bit(STMMAC_RESETING, &priv->state);
4679 rtnl_unlock();
4680 }
4681
4682 static void stmmac_service_task(struct work_struct *work)
4683 {
4684 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4685 service_task);
4686
4687 stmmac_reset_subtask(priv);
4688 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4689 }
4690
4691 /**
4692 * stmmac_hw_init - Init the MAC device
4693 * @priv: driver private structure
4694 * Description: this function is to configure the MAC device according to
4695 * some platform parameters or the HW capability register. It prepares the
4696 * driver to use either ring or chain modes and to setup either enhanced or
4697 * normal descriptors.
4698 */
4699 static int stmmac_hw_init(struct stmmac_priv *priv)
4700 {
4701 int ret;
4702
4703 /* dwmac-sun8i only work in chain mode */
4704 if (priv->plat->has_sun8i)
4705 chain_mode = 1;
4706 priv->chain_mode = chain_mode;
4707
4708 /* Initialize HW Interface */
4709 ret = stmmac_hwif_init(priv);
4710 if (ret)
4711 return ret;
4712
4713 /* Get the HW capability (new GMAC newer than 3.50a) */
4714 priv->hw_cap_support = stmmac_get_hw_features(priv);
4715 if (priv->hw_cap_support) {
4716 dev_info(priv->device, "DMA HW capability register supported\n");
4717
4718 /* We can override some gmac/dma configuration fields: e.g.
4719 * enh_desc, tx_coe (e.g. that are passed through the
4720 * platform) with the values from the HW capability
4721 * register (if supported).
4722 */
4723 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4724 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4725 priv->hw->pmt = priv->plat->pmt;
4726 if (priv->dma_cap.hash_tb_sz) {
4727 priv->hw->multicast_filter_bins =
4728 (BIT(priv->dma_cap.hash_tb_sz) << 5);
4729 priv->hw->mcast_bits_log2 =
4730 ilog2(priv->hw->multicast_filter_bins);
4731 }
4732
4733 /* TXCOE doesn't work in thresh DMA mode */
4734 if (priv->plat->force_thresh_dma_mode)
4735 priv->plat->tx_coe = 0;
4736 else
4737 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4738
4739 /* In case of GMAC4 rx_coe is from HW cap register. */
4740 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4741
4742 if (priv->dma_cap.rx_coe_type2)
4743 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4744 else if (priv->dma_cap.rx_coe_type1)
4745 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4746
4747 } else {
4748 dev_info(priv->device, "No HW DMA feature register supported\n");
4749 }
4750
4751 if (priv->plat->rx_coe) {
4752 priv->hw->rx_csum = priv->plat->rx_coe;
4753 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4754 if (priv->synopsys_id < DWMAC_CORE_4_00)
4755 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4756 }
4757 if (priv->plat->tx_coe)
4758 dev_info(priv->device, "TX Checksum insertion supported\n");
4759
4760 if (priv->plat->pmt) {
4761 dev_info(priv->device, "Wake-Up On Lan supported\n");
4762 device_set_wakeup_capable(priv->device, 1);
4763 }
4764
4765 if (priv->dma_cap.tsoen)
4766 dev_info(priv->device, "TSO supported\n");
4767
4768 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4769 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4770
4771 /* Run HW quirks, if any */
4772 if (priv->hwif_quirks) {
4773 ret = priv->hwif_quirks(priv);
4774 if (ret)
4775 return ret;
4776 }
4777
4778 /* Rx Watchdog is available in the COREs newer than the 3.40.
4779 * In some case, for example on bugged HW this feature
4780 * has to be disable and this can be done by passing the
4781 * riwt_off field from the platform.
4782 */
4783 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4784 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4785 priv->use_riwt = 1;
4786 dev_info(priv->device,
4787 "Enable RX Mitigation via HW Watchdog Timer\n");
4788 }
4789
4790 return 0;
4791 }
4792
4793 static void stmmac_napi_add(struct net_device *dev)
4794 {
4795 struct stmmac_priv *priv = netdev_priv(dev);
4796 u32 queue, maxq;
4797
4798 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4799
4800 for (queue = 0; queue < maxq; queue++) {
4801 struct stmmac_channel *ch = &priv->channel[queue];
4802
4803 ch->priv_data = priv;
4804 ch->index = queue;
4805 spin_lock_init(&ch->lock);
4806
4807 if (queue < priv->plat->rx_queues_to_use) {
4808 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4809 NAPI_POLL_WEIGHT);
4810 }
4811 if (queue < priv->plat->tx_queues_to_use) {
4812 netif_tx_napi_add(dev, &ch->tx_napi,
4813 stmmac_napi_poll_tx,
4814 NAPI_POLL_WEIGHT);
4815 }
4816 }
4817 }
4818
4819 static void stmmac_napi_del(struct net_device *dev)
4820 {
4821 struct stmmac_priv *priv = netdev_priv(dev);
4822 u32 queue, maxq;
4823
4824 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4825
4826 for (queue = 0; queue < maxq; queue++) {
4827 struct stmmac_channel *ch = &priv->channel[queue];
4828
4829 if (queue < priv->plat->rx_queues_to_use)
4830 netif_napi_del(&ch->rx_napi);
4831 if (queue < priv->plat->tx_queues_to_use)
4832 netif_napi_del(&ch->tx_napi);
4833 }
4834 }
4835
4836 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4837 {
4838 struct stmmac_priv *priv = netdev_priv(dev);
4839 int ret = 0;
4840
4841 if (netif_running(dev))
4842 stmmac_release(dev);
4843
4844 stmmac_napi_del(dev);
4845
4846 priv->plat->rx_queues_to_use = rx_cnt;
4847 priv->plat->tx_queues_to_use = tx_cnt;
4848
4849 stmmac_napi_add(dev);
4850
4851 if (netif_running(dev))
4852 ret = stmmac_open(dev);
4853
4854 return ret;
4855 }
4856
4857 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4858 {
4859 struct stmmac_priv *priv = netdev_priv(dev);
4860 int ret = 0;
4861
4862 if (netif_running(dev))
4863 stmmac_release(dev);
4864
4865 priv->dma_rx_size = rx_size;
4866 priv->dma_tx_size = tx_size;
4867
4868 if (netif_running(dev))
4869 ret = stmmac_open(dev);
4870
4871 return ret;
4872 }
4873
4874 /**
4875 * stmmac_dvr_probe
4876 * @device: device pointer
4877 * @plat_dat: platform data pointer
4878 * @res: stmmac resource pointer
4879 * Description: this is the main probe function used to
4880 * call the alloc_etherdev, allocate the priv structure.
4881 * Return:
4882 * returns 0 on success, otherwise errno.
4883 */
4884 int stmmac_dvr_probe(struct device *device,
4885 struct plat_stmmacenet_data *plat_dat,
4886 struct stmmac_resources *res)
4887 {
4888 struct net_device *ndev = NULL;
4889 struct stmmac_priv *priv;
4890 u32 rxq;
4891 int i, ret = 0;
4892
4893 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4894 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4895 if (!ndev)
4896 return -ENOMEM;
4897
4898 SET_NETDEV_DEV(ndev, device);
4899
4900 priv = netdev_priv(ndev);
4901 priv->device = device;
4902 priv->dev = ndev;
4903
4904 stmmac_set_ethtool_ops(ndev);
4905 priv->pause = pause;
4906 priv->plat = plat_dat;
4907 priv->ioaddr = res->addr;
4908 priv->dev->base_addr = (unsigned long)res->addr;
4909
4910 priv->dev->irq = res->irq;
4911 priv->wol_irq = res->wol_irq;
4912 priv->lpi_irq = res->lpi_irq;
4913
4914 if (!IS_ERR_OR_NULL(res->mac))
4915 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4916
4917 dev_set_drvdata(device, priv->dev);
4918
4919 /* Verify driver arguments */
4920 stmmac_verify_args();
4921
4922 /* Allocate workqueue */
4923 priv->wq = create_singlethread_workqueue("stmmac_wq");
4924 if (!priv->wq) {
4925 dev_err(priv->device, "failed to create workqueue\n");
4926 return -ENOMEM;
4927 }
4928
4929 INIT_WORK(&priv->service_task, stmmac_service_task);
4930
4931 /* Override with kernel parameters if supplied XXX CRS XXX
4932 * this needs to have multiple instances
4933 */
4934 if ((phyaddr >= 0) && (phyaddr <= 31))
4935 priv->plat->phy_addr = phyaddr;
4936
4937 if (priv->plat->stmmac_rst) {
4938 ret = reset_control_assert(priv->plat->stmmac_rst);
4939 reset_control_deassert(priv->plat->stmmac_rst);
4940 /* Some reset controllers have only reset callback instead of
4941 * assert + deassert callbacks pair.
4942 */
4943 if (ret == -ENOTSUPP)
4944 reset_control_reset(priv->plat->stmmac_rst);
4945 }
4946
4947 /* Init MAC and get the capabilities */
4948 ret = stmmac_hw_init(priv);
4949 if (ret)
4950 goto error_hw_init;
4951
4952 stmmac_check_ether_addr(priv);
4953
4954 ndev->netdev_ops = &stmmac_netdev_ops;
4955
4956 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4957 NETIF_F_RXCSUM;
4958
4959 ret = stmmac_tc_init(priv, priv);
4960 if (!ret) {
4961 ndev->hw_features |= NETIF_F_HW_TC;
4962 }
4963
4964 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4965 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4966 if (priv->plat->has_gmac4)
4967 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4968 priv->tso = true;
4969 dev_info(priv->device, "TSO feature enabled\n");
4970 }
4971
4972 if (priv->dma_cap.sphen) {
4973 ndev->hw_features |= NETIF_F_GRO;
4974 priv->sph = true;
4975 dev_info(priv->device, "SPH feature enabled\n");
4976 }
4977
4978 /* The current IP register MAC_HW_Feature1[ADDR64] only define
4979 * 32/40/64 bit width, but some SOC support others like i.MX8MP
4980 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
4981 * So overwrite dma_cap.addr64 according to HW real design.
4982 */
4983 if (priv->plat->addr64)
4984 priv->dma_cap.addr64 = priv->plat->addr64;
4985
4986 if (priv->dma_cap.addr64) {
4987 ret = dma_set_mask_and_coherent(device,
4988 DMA_BIT_MASK(priv->dma_cap.addr64));
4989 if (!ret) {
4990 dev_info(priv->device, "Using %d bits DMA width\n",
4991 priv->dma_cap.addr64);
4992
4993 /*
4994 * If more than 32 bits can be addressed, make sure to
4995 * enable enhanced addressing mode.
4996 */
4997 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4998 priv->plat->dma_cfg->eame = true;
4999 } else {
5000 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
5001 if (ret) {
5002 dev_err(priv->device, "Failed to set DMA Mask\n");
5003 goto error_hw_init;
5004 }
5005
5006 priv->dma_cap.addr64 = 32;
5007 }
5008 }
5009
5010 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
5011 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
5012 #ifdef STMMAC_VLAN_TAG_USED
5013 /* Both mac100 and gmac support receive VLAN tag detection */
5014 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
5015 if (priv->dma_cap.vlhash) {
5016 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5017 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
5018 }
5019 if (priv->dma_cap.vlins) {
5020 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
5021 if (priv->dma_cap.dvlan)
5022 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
5023 }
5024 #endif
5025 priv->msg_enable = netif_msg_init(debug, default_msg_level);
5026
5027 /* Initialize RSS */
5028 rxq = priv->plat->rx_queues_to_use;
5029 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5030 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5031 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5032
5033 if (priv->dma_cap.rssen && priv->plat->rss_en)
5034 ndev->features |= NETIF_F_RXHASH;
5035
5036 /* MTU range: 46 - hw-specific max */
5037 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5038 if (priv->plat->has_xgmac)
5039 ndev->max_mtu = XGMAC_JUMBO_LEN;
5040 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5041 ndev->max_mtu = JUMBO_LEN;
5042 else
5043 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5044 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5045 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5046 */
5047 if ((priv->plat->maxmtu < ndev->max_mtu) &&
5048 (priv->plat->maxmtu >= ndev->min_mtu))
5049 ndev->max_mtu = priv->plat->maxmtu;
5050 else if (priv->plat->maxmtu < ndev->min_mtu)
5051 dev_warn(priv->device,
5052 "%s: warning: maxmtu having invalid value (%d)\n",
5053 __func__, priv->plat->maxmtu);
5054
5055 if (flow_ctrl)
5056 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
5057
5058 /* Setup channels NAPI */
5059 stmmac_napi_add(ndev);
5060
5061 mutex_init(&priv->lock);
5062
5063 /* If a specific clk_csr value is passed from the platform
5064 * this means that the CSR Clock Range selection cannot be
5065 * changed at run-time and it is fixed. Viceversa the driver'll try to
5066 * set the MDC clock dynamically according to the csr actual
5067 * clock input.
5068 */
5069 if (priv->plat->clk_csr >= 0)
5070 priv->clk_csr = priv->plat->clk_csr;
5071 else
5072 stmmac_clk_csr_set(priv);
5073
5074 stmmac_check_pcs_mode(priv);
5075
5076 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5077 priv->hw->pcs != STMMAC_PCS_RTBI) {
5078 /* MDIO bus Registration */
5079 ret = stmmac_mdio_register(ndev);
5080 if (ret < 0) {
5081 dev_err(priv->device,
5082 "%s: MDIO bus (id: %d) registration failed",
5083 __func__, priv->plat->bus_id);
5084 goto error_mdio_register;
5085 }
5086 }
5087
5088 ret = stmmac_phy_setup(priv);
5089 if (ret) {
5090 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5091 goto error_phy_setup;
5092 }
5093
5094 ret = register_netdev(ndev);
5095 if (ret) {
5096 dev_err(priv->device, "%s: ERROR %i registering the device\n",
5097 __func__, ret);
5098 goto error_netdev_register;
5099 }
5100
5101 if (priv->plat->serdes_powerup) {
5102 ret = priv->plat->serdes_powerup(ndev,
5103 priv->plat->bsp_priv);
5104
5105 if (ret < 0)
5106 goto error_serdes_powerup;
5107 }
5108
5109 #ifdef CONFIG_DEBUG_FS
5110 stmmac_init_fs(ndev);
5111 #endif
5112
5113 return ret;
5114
5115 error_serdes_powerup:
5116 unregister_netdev(ndev);
5117 error_netdev_register:
5118 phylink_destroy(priv->phylink);
5119 error_phy_setup:
5120 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5121 priv->hw->pcs != STMMAC_PCS_RTBI)
5122 stmmac_mdio_unregister(ndev);
5123 error_mdio_register:
5124 stmmac_napi_del(ndev);
5125 error_hw_init:
5126 destroy_workqueue(priv->wq);
5127
5128 return ret;
5129 }
5130 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5131
5132 /**
5133 * stmmac_dvr_remove
5134 * @dev: device pointer
5135 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5136 * changes the link status, releases the DMA descriptor rings.
5137 */
5138 int stmmac_dvr_remove(struct device *dev)
5139 {
5140 struct net_device *ndev = dev_get_drvdata(dev);
5141 struct stmmac_priv *priv = netdev_priv(ndev);
5142
5143 netdev_info(priv->dev, "%s: removing driver", __func__);
5144
5145 stmmac_stop_all_dma(priv);
5146
5147 if (priv->plat->serdes_powerdown)
5148 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5149
5150 stmmac_mac_set(priv, priv->ioaddr, false);
5151 netif_carrier_off(ndev);
5152 unregister_netdev(ndev);
5153 #ifdef CONFIG_DEBUG_FS
5154 stmmac_exit_fs(ndev);
5155 #endif
5156 phylink_destroy(priv->phylink);
5157 if (priv->plat->stmmac_rst)
5158 reset_control_assert(priv->plat->stmmac_rst);
5159 clk_disable_unprepare(priv->plat->pclk);
5160 clk_disable_unprepare(priv->plat->stmmac_clk);
5161 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5162 priv->hw->pcs != STMMAC_PCS_RTBI)
5163 stmmac_mdio_unregister(ndev);
5164 destroy_workqueue(priv->wq);
5165 mutex_destroy(&priv->lock);
5166
5167 return 0;
5168 }
5169 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5170
5171 /**
5172 * stmmac_suspend - suspend callback
5173 * @dev: device pointer
5174 * Description: this is the function to suspend the device and it is called
5175 * by the platform driver to stop the network queue, release the resources,
5176 * program the PMT register (for WoL), clean and release driver resources.
5177 */
5178 int stmmac_suspend(struct device *dev)
5179 {
5180 struct net_device *ndev = dev_get_drvdata(dev);
5181 struct stmmac_priv *priv = netdev_priv(ndev);
5182 u32 chan;
5183
5184 if (!ndev || !netif_running(ndev))
5185 return 0;
5186
5187 phylink_mac_change(priv->phylink, false);
5188
5189 mutex_lock(&priv->lock);
5190
5191 netif_device_detach(ndev);
5192
5193 stmmac_disable_all_queues(priv);
5194
5195 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5196 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
5197
5198 if (priv->eee_enabled) {
5199 priv->tx_path_in_lpi_mode = false;
5200 del_timer_sync(&priv->eee_ctrl_timer);
5201 }
5202
5203 /* Stop TX/RX DMA */
5204 stmmac_stop_all_dma(priv);
5205
5206 if (priv->plat->serdes_powerdown)
5207 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5208
5209 /* Enable Power down mode by programming the PMT regs */
5210 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5211 stmmac_pmt(priv, priv->hw, priv->wolopts);
5212 priv->irq_wake = 1;
5213 } else {
5214 mutex_unlock(&priv->lock);
5215 rtnl_lock();
5216 if (device_may_wakeup(priv->device))
5217 phylink_speed_down(priv->phylink, false);
5218 phylink_stop(priv->phylink);
5219 rtnl_unlock();
5220 mutex_lock(&priv->lock);
5221
5222 stmmac_mac_set(priv, priv->ioaddr, false);
5223 pinctrl_pm_select_sleep_state(priv->device);
5224 /* Disable clock in case of PWM is off */
5225 clk_disable_unprepare(priv->plat->clk_ptp_ref);
5226 clk_disable_unprepare(priv->plat->pclk);
5227 clk_disable_unprepare(priv->plat->stmmac_clk);
5228 }
5229 mutex_unlock(&priv->lock);
5230
5231 priv->speed = SPEED_UNKNOWN;
5232 return 0;
5233 }
5234 EXPORT_SYMBOL_GPL(stmmac_suspend);
5235
5236 /**
5237 * stmmac_reset_queues_param - reset queue parameters
5238 * @priv: device pointer
5239 */
5240 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5241 {
5242 u32 rx_cnt = priv->plat->rx_queues_to_use;
5243 u32 tx_cnt = priv->plat->tx_queues_to_use;
5244 u32 queue;
5245
5246 for (queue = 0; queue < rx_cnt; queue++) {
5247 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5248
5249 rx_q->cur_rx = 0;
5250 rx_q->dirty_rx = 0;
5251 }
5252
5253 for (queue = 0; queue < tx_cnt; queue++) {
5254 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5255
5256 tx_q->cur_tx = 0;
5257 tx_q->dirty_tx = 0;
5258 tx_q->mss = 0;
5259 }
5260 }
5261
5262 /**
5263 * stmmac_resume - resume callback
5264 * @dev: device pointer
5265 * Description: when resume this function is invoked to setup the DMA and CORE
5266 * in a usable state.
5267 */
5268 int stmmac_resume(struct device *dev)
5269 {
5270 struct net_device *ndev = dev_get_drvdata(dev);
5271 struct stmmac_priv *priv = netdev_priv(ndev);
5272 int ret;
5273
5274 if (!netif_running(ndev))
5275 return 0;
5276
5277 /* Power Down bit, into the PM register, is cleared
5278 * automatically as soon as a magic packet or a Wake-up frame
5279 * is received. Anyway, it's better to manually clear
5280 * this bit because it can generate problems while resuming
5281 * from another devices (e.g. serial console).
5282 */
5283 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5284 mutex_lock(&priv->lock);
5285 stmmac_pmt(priv, priv->hw, 0);
5286 mutex_unlock(&priv->lock);
5287 priv->irq_wake = 0;
5288 } else {
5289 pinctrl_pm_select_default_state(priv->device);
5290 /* enable the clk previously disabled */
5291 clk_prepare_enable(priv->plat->stmmac_clk);
5292 clk_prepare_enable(priv->plat->pclk);
5293 if (priv->plat->clk_ptp_ref)
5294 clk_prepare_enable(priv->plat->clk_ptp_ref);
5295 /* reset the phy so that it's ready */
5296 if (priv->mii)
5297 stmmac_mdio_reset(priv->mii);
5298 }
5299
5300 if (priv->plat->serdes_powerup) {
5301 ret = priv->plat->serdes_powerup(ndev,
5302 priv->plat->bsp_priv);
5303
5304 if (ret < 0)
5305 return ret;
5306 }
5307
5308 if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5309 rtnl_lock();
5310 phylink_start(priv->phylink);
5311 /* We may have called phylink_speed_down before */
5312 phylink_speed_up(priv->phylink);
5313 rtnl_unlock();
5314 }
5315
5316 rtnl_lock();
5317 mutex_lock(&priv->lock);
5318
5319 stmmac_reset_queues_param(priv);
5320
5321 stmmac_free_tx_skbufs(priv);
5322 stmmac_clear_descriptors(priv);
5323
5324 stmmac_hw_setup(ndev, false);
5325 stmmac_init_coalesce(priv);
5326 stmmac_set_rx_mode(ndev);
5327
5328 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5329
5330 stmmac_enable_all_queues(priv);
5331
5332 mutex_unlock(&priv->lock);
5333 rtnl_unlock();
5334
5335 phylink_mac_change(priv->phylink, true);
5336
5337 netif_device_attach(ndev);
5338
5339 return 0;
5340 }
5341 EXPORT_SYMBOL_GPL(stmmac_resume);
5342
5343 #ifndef MODULE
5344 static int __init stmmac_cmdline_opt(char *str)
5345 {
5346 char *opt;
5347
5348 if (!str || !*str)
5349 return -EINVAL;
5350 while ((opt = strsep(&str, ",")) != NULL) {
5351 if (!strncmp(opt, "debug:", 6)) {
5352 if (kstrtoint(opt + 6, 0, &debug))
5353 goto err;
5354 } else if (!strncmp(opt, "phyaddr:", 8)) {
5355 if (kstrtoint(opt + 8, 0, &phyaddr))
5356 goto err;
5357 } else if (!strncmp(opt, "buf_sz:", 7)) {
5358 if (kstrtoint(opt + 7, 0, &buf_sz))
5359 goto err;
5360 } else if (!strncmp(opt, "tc:", 3)) {
5361 if (kstrtoint(opt + 3, 0, &tc))
5362 goto err;
5363 } else if (!strncmp(opt, "watchdog:", 9)) {
5364 if (kstrtoint(opt + 9, 0, &watchdog))
5365 goto err;
5366 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5367 if (kstrtoint(opt + 10, 0, &flow_ctrl))
5368 goto err;
5369 } else if (!strncmp(opt, "pause:", 6)) {
5370 if (kstrtoint(opt + 6, 0, &pause))
5371 goto err;
5372 } else if (!strncmp(opt, "eee_timer:", 10)) {
5373 if (kstrtoint(opt + 10, 0, &eee_timer))
5374 goto err;
5375 } else if (!strncmp(opt, "chain_mode:", 11)) {
5376 if (kstrtoint(opt + 11, 0, &chain_mode))
5377 goto err;
5378 }
5379 }
5380 return 0;
5381
5382 err:
5383 pr_err("%s: ERROR broken module parameter conversion", __func__);
5384 return -EINVAL;
5385 }
5386
5387 __setup("stmmaceth=", stmmac_cmdline_opt);
5388 #endif /* MODULE */
5389
5390 static int __init stmmac_init(void)
5391 {
5392 #ifdef CONFIG_DEBUG_FS
5393 /* Create debugfs main directory if it doesn't exist yet */
5394 if (!stmmac_fs_dir)
5395 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5396 register_netdevice_notifier(&stmmac_notifier);
5397 #endif
5398
5399 return 0;
5400 }
5401
5402 static void __exit stmmac_exit(void)
5403 {
5404 #ifdef CONFIG_DEBUG_FS
5405 unregister_netdevice_notifier(&stmmac_notifier);
5406 debugfs_remove_recursive(stmmac_fs_dir);
5407 #endif
5408 }
5409
5410 module_init(stmmac_init)
5411 module_exit(stmmac_exit)
5412
5413 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5414 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5415 MODULE_LICENSE("GPL");