]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
Merge tag 'tegra-for-4.3-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56
57 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
58
59 /* Module parameters */
60 #define TX_TIMEO 5000
61 static int watchdog = TX_TIMEO;
62 module_param(watchdog, int, S_IRUGO | S_IWUSR);
63 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
64
65 static int debug = -1;
66 module_param(debug, int, S_IRUGO | S_IWUSR);
67 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
68
69 static int phyaddr = -1;
70 module_param(phyaddr, int, S_IRUGO);
71 MODULE_PARM_DESC(phyaddr, "Physical device address");
72
73 #define DMA_TX_SIZE 256
74 static int dma_txsize = DMA_TX_SIZE;
75 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
76 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
77
78 #define DMA_RX_SIZE 256
79 static int dma_rxsize = DMA_RX_SIZE;
80 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
81 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
82
83 static int flow_ctrl = FLOW_OFF;
84 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95
96 #define DEFAULT_BUFSIZE 1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100
101 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
102 NETIF_MSG_LINK | NETIF_MSG_IFUP |
103 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
104
105 #define STMMAC_DEFAULT_LPI_TIMER 1000
106 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
107 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
109 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
110
111 /* By default the driver will use the ring mode to manage tx and rx descriptors
112 * but passing this value so user can force to use the chain instead of the ring
113 */
114 static unsigned int chain_mode;
115 module_param(chain_mode, int, S_IRUGO);
116 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
117
118 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
119
120 #ifdef CONFIG_DEBUG_FS
121 static int stmmac_init_fs(struct net_device *dev);
122 static void stmmac_exit_fs(struct net_device *dev);
123 #endif
124
125 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
126
127 /**
128 * stmmac_verify_args - verify the driver parameters.
129 * Description: it checks the driver parameters and set a default in case of
130 * errors.
131 */
132 static void stmmac_verify_args(void)
133 {
134 if (unlikely(watchdog < 0))
135 watchdog = TX_TIMEO;
136 if (unlikely(dma_rxsize < 0))
137 dma_rxsize = DMA_RX_SIZE;
138 if (unlikely(dma_txsize < 0))
139 dma_txsize = DMA_TX_SIZE;
140 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
141 buf_sz = DEFAULT_BUFSIZE;
142 if (unlikely(flow_ctrl > 1))
143 flow_ctrl = FLOW_AUTO;
144 else if (likely(flow_ctrl < 0))
145 flow_ctrl = FLOW_OFF;
146 if (unlikely((pause < 0) || (pause > 0xffff)))
147 pause = PAUSE_TIME;
148 if (eee_timer < 0)
149 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
150 }
151
152 /**
153 * stmmac_clk_csr_set - dynamically set the MDC clock
154 * @priv: driver private structure
155 * Description: this is to dynamically set the MDC clock according to the csr
156 * clock input.
157 * Note:
158 * If a specific clk_csr value is passed from the platform
159 * this means that the CSR Clock Range selection cannot be
160 * changed at run-time and it is fixed (as reported in the driver
161 * documentation). Viceversa the driver will try to set the MDC
162 * clock dynamically according to the actual clock input.
163 */
164 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
165 {
166 u32 clk_rate;
167
168 clk_rate = clk_get_rate(priv->stmmac_clk);
169
170 /* Platform provided default clk_csr would be assumed valid
171 * for all other cases except for the below mentioned ones.
172 * For values higher than the IEEE 802.3 specified frequency
173 * we can not estimate the proper divider as it is not known
174 * the frequency of clk_csr_i. So we do not change the default
175 * divider.
176 */
177 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
178 if (clk_rate < CSR_F_35M)
179 priv->clk_csr = STMMAC_CSR_20_35M;
180 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
181 priv->clk_csr = STMMAC_CSR_35_60M;
182 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
183 priv->clk_csr = STMMAC_CSR_60_100M;
184 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
185 priv->clk_csr = STMMAC_CSR_100_150M;
186 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
187 priv->clk_csr = STMMAC_CSR_150_250M;
188 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
189 priv->clk_csr = STMMAC_CSR_250_300M;
190 }
191 }
192
193 static void print_pkt(unsigned char *buf, int len)
194 {
195 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
196 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
197 }
198
199 /* minimum number of free TX descriptors required to wake up TX process */
200 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
201
202 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
203 {
204 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
205 }
206
207 /**
208 * stmmac_hw_fix_mac_speed - callback for speed selection
209 * @priv: driver private structure
210 * Description: on some platforms (e.g. ST), some HW system configuraton
211 * registers have to be set according to the link speed negotiated.
212 */
213 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
214 {
215 struct phy_device *phydev = priv->phydev;
216
217 if (likely(priv->plat->fix_mac_speed))
218 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
219 }
220
221 /**
222 * stmmac_enable_eee_mode - check and enter in LPI mode
223 * @priv: driver private structure
224 * Description: this function is to verify and enter in LPI mode in case of
225 * EEE.
226 */
227 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
228 {
229 /* Check and enter in LPI mode */
230 if ((priv->dirty_tx == priv->cur_tx) &&
231 (priv->tx_path_in_lpi_mode == false))
232 priv->hw->mac->set_eee_mode(priv->hw);
233 }
234
235 /**
236 * stmmac_disable_eee_mode - disable and exit from LPI mode
237 * @priv: driver private structure
238 * Description: this function is to exit and disable EEE in case of
239 * LPI state is true. This is called by the xmit.
240 */
241 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
242 {
243 priv->hw->mac->reset_eee_mode(priv->hw);
244 del_timer_sync(&priv->eee_ctrl_timer);
245 priv->tx_path_in_lpi_mode = false;
246 }
247
248 /**
249 * stmmac_eee_ctrl_timer - EEE TX SW timer.
250 * @arg : data hook
251 * Description:
252 * if there is no data transfer and if we are not in LPI state,
253 * then MAC Transmitter can be moved to LPI state.
254 */
255 static void stmmac_eee_ctrl_timer(unsigned long arg)
256 {
257 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
258
259 stmmac_enable_eee_mode(priv);
260 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
261 }
262
263 /**
264 * stmmac_eee_init - init EEE
265 * @priv: driver private structure
266 * Description:
267 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
268 * can also manage EEE, this function enable the LPI state and start related
269 * timer.
270 */
271 bool stmmac_eee_init(struct stmmac_priv *priv)
272 {
273 char *phy_bus_name = priv->plat->phy_bus_name;
274 unsigned long flags;
275 bool ret = false;
276
277 /* Using PCS we cannot dial with the phy registers at this stage
278 * so we do not support extra feature like EEE.
279 */
280 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
281 (priv->pcs == STMMAC_PCS_RTBI))
282 goto out;
283
284 /* Never init EEE in case of a switch is attached */
285 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
286 goto out;
287
288 /* MAC core supports the EEE feature. */
289 if (priv->dma_cap.eee) {
290 int tx_lpi_timer = priv->tx_lpi_timer;
291
292 /* Check if the PHY supports EEE */
293 if (phy_init_eee(priv->phydev, 1)) {
294 /* To manage at run-time if the EEE cannot be supported
295 * anymore (for example because the lp caps have been
296 * changed).
297 * In that case the driver disable own timers.
298 */
299 spin_lock_irqsave(&priv->lock, flags);
300 if (priv->eee_active) {
301 pr_debug("stmmac: disable EEE\n");
302 del_timer_sync(&priv->eee_ctrl_timer);
303 priv->hw->mac->set_eee_timer(priv->hw, 0,
304 tx_lpi_timer);
305 }
306 priv->eee_active = 0;
307 spin_unlock_irqrestore(&priv->lock, flags);
308 goto out;
309 }
310 /* Activate the EEE and start timers */
311 spin_lock_irqsave(&priv->lock, flags);
312 if (!priv->eee_active) {
313 priv->eee_active = 1;
314 setup_timer(&priv->eee_ctrl_timer,
315 stmmac_eee_ctrl_timer,
316 (unsigned long)priv);
317 mod_timer(&priv->eee_ctrl_timer,
318 STMMAC_LPI_T(eee_timer));
319
320 priv->hw->mac->set_eee_timer(priv->hw,
321 STMMAC_DEFAULT_LIT_LS,
322 tx_lpi_timer);
323 }
324 /* Set HW EEE according to the speed */
325 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
326
327 ret = true;
328 spin_unlock_irqrestore(&priv->lock, flags);
329
330 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
331 }
332 out:
333 return ret;
334 }
335
336 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
337 * @priv: driver private structure
338 * @entry : descriptor index to be used.
339 * @skb : the socket buffer
340 * Description :
341 * This function will read timestamp from the descriptor & pass it to stack.
342 * and also perform some sanity checks.
343 */
344 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
345 unsigned int entry, struct sk_buff *skb)
346 {
347 struct skb_shared_hwtstamps shhwtstamp;
348 u64 ns;
349 void *desc = NULL;
350
351 if (!priv->hwts_tx_en)
352 return;
353
354 /* exit if skb doesn't support hw tstamp */
355 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
356 return;
357
358 if (priv->adv_ts)
359 desc = (priv->dma_etx + entry);
360 else
361 desc = (priv->dma_tx + entry);
362
363 /* check tx tstamp status */
364 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
365 return;
366
367 /* get the valid tstamp */
368 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
369
370 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
371 shhwtstamp.hwtstamp = ns_to_ktime(ns);
372 /* pass tstamp to stack */
373 skb_tstamp_tx(skb, &shhwtstamp);
374
375 return;
376 }
377
378 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
379 * @priv: driver private structure
380 * @entry : descriptor index to be used.
381 * @skb : the socket buffer
382 * Description :
383 * This function will read received packet's timestamp from the descriptor
384 * and pass it to stack. It also perform some sanity checks.
385 */
386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
387 unsigned int entry, struct sk_buff *skb)
388 {
389 struct skb_shared_hwtstamps *shhwtstamp = NULL;
390 u64 ns;
391 void *desc = NULL;
392
393 if (!priv->hwts_rx_en)
394 return;
395
396 if (priv->adv_ts)
397 desc = (priv->dma_erx + entry);
398 else
399 desc = (priv->dma_rx + entry);
400
401 /* exit if rx tstamp is not valid */
402 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
403 return;
404
405 /* get valid tstamp */
406 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
407 shhwtstamp = skb_hwtstamps(skb);
408 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
409 shhwtstamp->hwtstamp = ns_to_ktime(ns);
410 }
411
412 /**
413 * stmmac_hwtstamp_ioctl - control hardware timestamping.
414 * @dev: device pointer.
415 * @ifr: An IOCTL specefic structure, that can contain a pointer to
416 * a proprietary structure used to pass information to the driver.
417 * Description:
418 * This function configures the MAC to enable/disable both outgoing(TX)
419 * and incoming(RX) packets time stamping based on user input.
420 * Return Value:
421 * 0 on success and an appropriate -ve integer on failure.
422 */
423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
424 {
425 struct stmmac_priv *priv = netdev_priv(dev);
426 struct hwtstamp_config config;
427 struct timespec now;
428 u64 temp = 0;
429 u32 ptp_v2 = 0;
430 u32 tstamp_all = 0;
431 u32 ptp_over_ipv4_udp = 0;
432 u32 ptp_over_ipv6_udp = 0;
433 u32 ptp_over_ethernet = 0;
434 u32 snap_type_sel = 0;
435 u32 ts_master_en = 0;
436 u32 ts_event_en = 0;
437 u32 value = 0;
438
439 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
440 netdev_alert(priv->dev, "No support for HW time stamping\n");
441 priv->hwts_tx_en = 0;
442 priv->hwts_rx_en = 0;
443
444 return -EOPNOTSUPP;
445 }
446
447 if (copy_from_user(&config, ifr->ifr_data,
448 sizeof(struct hwtstamp_config)))
449 return -EFAULT;
450
451 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
452 __func__, config.flags, config.tx_type, config.rx_filter);
453
454 /* reserved for future extensions */
455 if (config.flags)
456 return -EINVAL;
457
458 if (config.tx_type != HWTSTAMP_TX_OFF &&
459 config.tx_type != HWTSTAMP_TX_ON)
460 return -ERANGE;
461
462 if (priv->adv_ts) {
463 switch (config.rx_filter) {
464 case HWTSTAMP_FILTER_NONE:
465 /* time stamp no incoming packet at all */
466 config.rx_filter = HWTSTAMP_FILTER_NONE;
467 break;
468
469 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
470 /* PTP v1, UDP, any kind of event packet */
471 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
472 /* take time stamp for all event messages */
473 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
474
475 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
476 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
477 break;
478
479 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
480 /* PTP v1, UDP, Sync packet */
481 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
482 /* take time stamp for SYNC messages only */
483 ts_event_en = PTP_TCR_TSEVNTENA;
484
485 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
486 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
487 break;
488
489 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
490 /* PTP v1, UDP, Delay_req packet */
491 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
492 /* take time stamp for Delay_Req messages only */
493 ts_master_en = PTP_TCR_TSMSTRENA;
494 ts_event_en = PTP_TCR_TSEVNTENA;
495
496 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
497 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
498 break;
499
500 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
501 /* PTP v2, UDP, any kind of event packet */
502 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
503 ptp_v2 = PTP_TCR_TSVER2ENA;
504 /* take time stamp for all event messages */
505 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
506
507 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
508 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
509 break;
510
511 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
512 /* PTP v2, UDP, Sync packet */
513 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
514 ptp_v2 = PTP_TCR_TSVER2ENA;
515 /* take time stamp for SYNC messages only */
516 ts_event_en = PTP_TCR_TSEVNTENA;
517
518 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
519 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
520 break;
521
522 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
523 /* PTP v2, UDP, Delay_req packet */
524 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
525 ptp_v2 = PTP_TCR_TSVER2ENA;
526 /* take time stamp for Delay_Req messages only */
527 ts_master_en = PTP_TCR_TSMSTRENA;
528 ts_event_en = PTP_TCR_TSEVNTENA;
529
530 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
531 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
532 break;
533
534 case HWTSTAMP_FILTER_PTP_V2_EVENT:
535 /* PTP v2/802.AS1 any layer, any kind of event packet */
536 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
537 ptp_v2 = PTP_TCR_TSVER2ENA;
538 /* take time stamp for all event messages */
539 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
540
541 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
542 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
543 ptp_over_ethernet = PTP_TCR_TSIPENA;
544 break;
545
546 case HWTSTAMP_FILTER_PTP_V2_SYNC:
547 /* PTP v2/802.AS1, any layer, Sync packet */
548 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
549 ptp_v2 = PTP_TCR_TSVER2ENA;
550 /* take time stamp for SYNC messages only */
551 ts_event_en = PTP_TCR_TSEVNTENA;
552
553 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555 ptp_over_ethernet = PTP_TCR_TSIPENA;
556 break;
557
558 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
559 /* PTP v2/802.AS1, any layer, Delay_req packet */
560 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
561 ptp_v2 = PTP_TCR_TSVER2ENA;
562 /* take time stamp for Delay_Req messages only */
563 ts_master_en = PTP_TCR_TSMSTRENA;
564 ts_event_en = PTP_TCR_TSEVNTENA;
565
566 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
567 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
568 ptp_over_ethernet = PTP_TCR_TSIPENA;
569 break;
570
571 case HWTSTAMP_FILTER_ALL:
572 /* time stamp any incoming packet */
573 config.rx_filter = HWTSTAMP_FILTER_ALL;
574 tstamp_all = PTP_TCR_TSENALL;
575 break;
576
577 default:
578 return -ERANGE;
579 }
580 } else {
581 switch (config.rx_filter) {
582 case HWTSTAMP_FILTER_NONE:
583 config.rx_filter = HWTSTAMP_FILTER_NONE;
584 break;
585 default:
586 /* PTP v1, UDP, any kind of event packet */
587 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
588 break;
589 }
590 }
591 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
592 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
593
594 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
595 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
596 else {
597 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
598 tstamp_all | ptp_v2 | ptp_over_ethernet |
599 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
600 ts_master_en | snap_type_sel);
601
602 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
603
604 /* program Sub Second Increment reg */
605 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
606
607 /* calculate default added value:
608 * formula is :
609 * addend = (2^32)/freq_div_ratio;
610 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
611 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
612 * NOTE: clk_ptp_ref_i should be >= 50MHz to
613 * achieve 20ns accuracy.
614 *
615 * 2^x * y == (y << x), hence
616 * 2^32 * 50000000 ==> (50000000 << 32)
617 */
618 temp = (u64) (50000000ULL << 32);
619 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620 priv->hw->ptp->config_addend(priv->ioaddr,
621 priv->default_addend);
622
623 /* initialize system time */
624 getnstimeofday(&now);
625 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
626 now.tv_nsec);
627 }
628
629 return copy_to_user(ifr->ifr_data, &config,
630 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
631 }
632
633 /**
634 * stmmac_init_ptp - init PTP
635 * @priv: driver private structure
636 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
637 * This is done by looking at the HW cap. register.
638 * This function also registers the ptp driver.
639 */
640 static int stmmac_init_ptp(struct stmmac_priv *priv)
641 {
642 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
643 return -EOPNOTSUPP;
644
645 /* Fall-back to main clock in case of no PTP ref is passed */
646 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
647 if (IS_ERR(priv->clk_ptp_ref)) {
648 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
649 priv->clk_ptp_ref = NULL;
650 } else {
651 clk_prepare_enable(priv->clk_ptp_ref);
652 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
653 }
654
655 priv->adv_ts = 0;
656 if (priv->dma_cap.atime_stamp && priv->extend_desc)
657 priv->adv_ts = 1;
658
659 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
660 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
661
662 if (netif_msg_hw(priv) && priv->adv_ts)
663 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
664
665 priv->hw->ptp = &stmmac_ptp;
666 priv->hwts_tx_en = 0;
667 priv->hwts_rx_en = 0;
668
669 return stmmac_ptp_register(priv);
670 }
671
672 static void stmmac_release_ptp(struct stmmac_priv *priv)
673 {
674 if (priv->clk_ptp_ref)
675 clk_disable_unprepare(priv->clk_ptp_ref);
676 stmmac_ptp_unregister(priv);
677 }
678
679 /**
680 * stmmac_adjust_link - adjusts the link parameters
681 * @dev: net device structure
682 * Description: this is the helper called by the physical abstraction layer
683 * drivers to communicate the phy link status. According the speed and duplex
684 * this driver can invoke registered glue-logic as well.
685 * It also invoke the eee initialization because it could happen when switch
686 * on different networks (that are eee capable).
687 */
688 static void stmmac_adjust_link(struct net_device *dev)
689 {
690 struct stmmac_priv *priv = netdev_priv(dev);
691 struct phy_device *phydev = priv->phydev;
692 unsigned long flags;
693 int new_state = 0;
694 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
695
696 if (phydev == NULL)
697 return;
698
699 spin_lock_irqsave(&priv->lock, flags);
700
701 if (phydev->link) {
702 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
703
704 /* Now we make sure that we can be in full duplex mode.
705 * If not, we operate in half-duplex mode. */
706 if (phydev->duplex != priv->oldduplex) {
707 new_state = 1;
708 if (!(phydev->duplex))
709 ctrl &= ~priv->hw->link.duplex;
710 else
711 ctrl |= priv->hw->link.duplex;
712 priv->oldduplex = phydev->duplex;
713 }
714 /* Flow Control operation */
715 if (phydev->pause)
716 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
717 fc, pause_time);
718
719 if (phydev->speed != priv->speed) {
720 new_state = 1;
721 switch (phydev->speed) {
722 case 1000:
723 if (likely(priv->plat->has_gmac))
724 ctrl &= ~priv->hw->link.port;
725 stmmac_hw_fix_mac_speed(priv);
726 break;
727 case 100:
728 case 10:
729 if (priv->plat->has_gmac) {
730 ctrl |= priv->hw->link.port;
731 if (phydev->speed == SPEED_100) {
732 ctrl |= priv->hw->link.speed;
733 } else {
734 ctrl &= ~(priv->hw->link.speed);
735 }
736 } else {
737 ctrl &= ~priv->hw->link.port;
738 }
739 stmmac_hw_fix_mac_speed(priv);
740 break;
741 default:
742 if (netif_msg_link(priv))
743 pr_warn("%s: Speed (%d) not 10/100\n",
744 dev->name, phydev->speed);
745 break;
746 }
747
748 priv->speed = phydev->speed;
749 }
750
751 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
752
753 if (!priv->oldlink) {
754 new_state = 1;
755 priv->oldlink = 1;
756 }
757 } else if (priv->oldlink) {
758 new_state = 1;
759 priv->oldlink = 0;
760 priv->speed = 0;
761 priv->oldduplex = -1;
762 }
763
764 if (new_state && netif_msg_link(priv))
765 phy_print_status(phydev);
766
767 spin_unlock_irqrestore(&priv->lock, flags);
768
769 /* At this stage, it could be needed to setup the EEE or adjust some
770 * MAC related HW registers.
771 */
772 priv->eee_enabled = stmmac_eee_init(priv);
773 }
774
775 /**
776 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
777 * @priv: driver private structure
778 * Description: this is to verify if the HW supports the PCS.
779 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
780 * configured for the TBI, RTBI, or SGMII PHY interface.
781 */
782 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
783 {
784 int interface = priv->plat->interface;
785
786 if (priv->dma_cap.pcs) {
787 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
788 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
789 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
790 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
791 pr_debug("STMMAC: PCS RGMII support enable\n");
792 priv->pcs = STMMAC_PCS_RGMII;
793 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
794 pr_debug("STMMAC: PCS SGMII support enable\n");
795 priv->pcs = STMMAC_PCS_SGMII;
796 }
797 }
798 }
799
800 /**
801 * stmmac_init_phy - PHY initialization
802 * @dev: net device structure
803 * Description: it initializes the driver's PHY state, and attaches the PHY
804 * to the mac driver.
805 * Return value:
806 * 0 on success
807 */
808 static int stmmac_init_phy(struct net_device *dev)
809 {
810 struct stmmac_priv *priv = netdev_priv(dev);
811 struct phy_device *phydev;
812 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
813 char bus_id[MII_BUS_ID_SIZE];
814 int interface = priv->plat->interface;
815 int max_speed = priv->plat->max_speed;
816 priv->oldlink = 0;
817 priv->speed = 0;
818 priv->oldduplex = -1;
819
820 if (priv->plat->phy_node) {
821 phydev = of_phy_connect(dev, priv->plat->phy_node,
822 &stmmac_adjust_link, 0, interface);
823 } else {
824 if (priv->plat->phy_bus_name)
825 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
826 priv->plat->phy_bus_name, priv->plat->bus_id);
827 else
828 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
829 priv->plat->bus_id);
830
831 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
832 priv->plat->phy_addr);
833 pr_debug("stmmac_init_phy: trying to attach to %s\n",
834 phy_id_fmt);
835
836 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
837 interface);
838 }
839
840 if (IS_ERR(phydev)) {
841 pr_err("%s: Could not attach to PHY\n", dev->name);
842 return PTR_ERR(phydev);
843 }
844
845 /* Stop Advertising 1000BASE Capability if interface is not GMII */
846 if ((interface == PHY_INTERFACE_MODE_MII) ||
847 (interface == PHY_INTERFACE_MODE_RMII) ||
848 (max_speed < 1000 && max_speed > 0))
849 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
850 SUPPORTED_1000baseT_Full);
851
852 /*
853 * Broken HW is sometimes missing the pull-up resistor on the
854 * MDIO line, which results in reads to non-existent devices returning
855 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
856 * device as well.
857 * Note: phydev->phy_id is the result of reading the UID PHY registers.
858 */
859 if (!priv->plat->phy_node && phydev->phy_id == 0) {
860 phy_disconnect(phydev);
861 return -ENODEV;
862 }
863 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
864 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
865
866 priv->phydev = phydev;
867
868 return 0;
869 }
870
871 /**
872 * stmmac_display_ring - display ring
873 * @head: pointer to the head of the ring passed.
874 * @size: size of the ring.
875 * @extend_desc: to verify if extended descriptors are used.
876 * Description: display the control/status and buffer descriptors.
877 */
878 static void stmmac_display_ring(void *head, int size, int extend_desc)
879 {
880 int i;
881 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
882 struct dma_desc *p = (struct dma_desc *)head;
883
884 for (i = 0; i < size; i++) {
885 u64 x;
886 if (extend_desc) {
887 x = *(u64 *) ep;
888 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
889 i, (unsigned int)virt_to_phys(ep),
890 (unsigned int)x, (unsigned int)(x >> 32),
891 ep->basic.des2, ep->basic.des3);
892 ep++;
893 } else {
894 x = *(u64 *) p;
895 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
896 i, (unsigned int)virt_to_phys(p),
897 (unsigned int)x, (unsigned int)(x >> 32),
898 p->des2, p->des3);
899 p++;
900 }
901 pr_info("\n");
902 }
903 }
904
905 static void stmmac_display_rings(struct stmmac_priv *priv)
906 {
907 unsigned int txsize = priv->dma_tx_size;
908 unsigned int rxsize = priv->dma_rx_size;
909
910 if (priv->extend_desc) {
911 pr_info("Extended RX descriptor ring:\n");
912 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
913 pr_info("Extended TX descriptor ring:\n");
914 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
915 } else {
916 pr_info("RX descriptor ring:\n");
917 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
918 pr_info("TX descriptor ring:\n");
919 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
920 }
921 }
922
923 static int stmmac_set_bfsize(int mtu, int bufsize)
924 {
925 int ret = bufsize;
926
927 if (mtu >= BUF_SIZE_4KiB)
928 ret = BUF_SIZE_8KiB;
929 else if (mtu >= BUF_SIZE_2KiB)
930 ret = BUF_SIZE_4KiB;
931 else if (mtu > DEFAULT_BUFSIZE)
932 ret = BUF_SIZE_2KiB;
933 else
934 ret = DEFAULT_BUFSIZE;
935
936 return ret;
937 }
938
939 /**
940 * stmmac_clear_descriptors - clear descriptors
941 * @priv: driver private structure
942 * Description: this function is called to clear the tx and rx descriptors
943 * in case of both basic and extended descriptors are used.
944 */
945 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
946 {
947 int i;
948 unsigned int txsize = priv->dma_tx_size;
949 unsigned int rxsize = priv->dma_rx_size;
950
951 /* Clear the Rx/Tx descriptors */
952 for (i = 0; i < rxsize; i++)
953 if (priv->extend_desc)
954 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
955 priv->use_riwt, priv->mode,
956 (i == rxsize - 1));
957 else
958 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
959 priv->use_riwt, priv->mode,
960 (i == rxsize - 1));
961 for (i = 0; i < txsize; i++)
962 if (priv->extend_desc)
963 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
964 priv->mode,
965 (i == txsize - 1));
966 else
967 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
968 priv->mode,
969 (i == txsize - 1));
970 }
971
972 /**
973 * stmmac_init_rx_buffers - init the RX descriptor buffer.
974 * @priv: driver private structure
975 * @p: descriptor pointer
976 * @i: descriptor index
977 * @flags: gfp flag.
978 * Description: this function is called to allocate a receive buffer, perform
979 * the DMA mapping and init the descriptor.
980 */
981 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
982 int i, gfp_t flags)
983 {
984 struct sk_buff *skb;
985
986 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
987 if (!skb) {
988 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
989 return -ENOMEM;
990 }
991 priv->rx_skbuff[i] = skb;
992 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
993 priv->dma_buf_sz,
994 DMA_FROM_DEVICE);
995 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
996 pr_err("%s: DMA mapping error\n", __func__);
997 dev_kfree_skb_any(skb);
998 return -EINVAL;
999 }
1000
1001 p->des2 = priv->rx_skbuff_dma[i];
1002
1003 if ((priv->hw->mode->init_desc3) &&
1004 (priv->dma_buf_sz == BUF_SIZE_16KiB))
1005 priv->hw->mode->init_desc3(p);
1006
1007 return 0;
1008 }
1009
1010 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1011 {
1012 if (priv->rx_skbuff[i]) {
1013 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1014 priv->dma_buf_sz, DMA_FROM_DEVICE);
1015 dev_kfree_skb_any(priv->rx_skbuff[i]);
1016 }
1017 priv->rx_skbuff[i] = NULL;
1018 }
1019
1020 /**
1021 * init_dma_desc_rings - init the RX/TX descriptor rings
1022 * @dev: net device structure
1023 * @flags: gfp flag.
1024 * Description: this function initializes the DMA RX/TX descriptors
1025 * and allocates the socket buffers. It suppors the chained and ring
1026 * modes.
1027 */
1028 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1029 {
1030 int i;
1031 struct stmmac_priv *priv = netdev_priv(dev);
1032 unsigned int txsize = priv->dma_tx_size;
1033 unsigned int rxsize = priv->dma_rx_size;
1034 unsigned int bfsize = 0;
1035 int ret = -ENOMEM;
1036
1037 if (priv->hw->mode->set_16kib_bfsize)
1038 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1039
1040 if (bfsize < BUF_SIZE_16KiB)
1041 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1042
1043 priv->dma_buf_sz = bfsize;
1044
1045 if (netif_msg_probe(priv))
1046 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1047 txsize, rxsize, bfsize);
1048
1049 if (netif_msg_probe(priv)) {
1050 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1051 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1052
1053 /* RX INITIALIZATION */
1054 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1055 }
1056 for (i = 0; i < rxsize; i++) {
1057 struct dma_desc *p;
1058 if (priv->extend_desc)
1059 p = &((priv->dma_erx + i)->basic);
1060 else
1061 p = priv->dma_rx + i;
1062
1063 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1064 if (ret)
1065 goto err_init_rx_buffers;
1066
1067 if (netif_msg_probe(priv))
1068 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1069 priv->rx_skbuff[i]->data,
1070 (unsigned int)priv->rx_skbuff_dma[i]);
1071 }
1072 priv->cur_rx = 0;
1073 priv->dirty_rx = (unsigned int)(i - rxsize);
1074 buf_sz = bfsize;
1075
1076 /* Setup the chained descriptor addresses */
1077 if (priv->mode == STMMAC_CHAIN_MODE) {
1078 if (priv->extend_desc) {
1079 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1080 rxsize, 1);
1081 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1082 txsize, 1);
1083 } else {
1084 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1085 rxsize, 0);
1086 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1087 txsize, 0);
1088 }
1089 }
1090
1091 /* TX INITIALIZATION */
1092 for (i = 0; i < txsize; i++) {
1093 struct dma_desc *p;
1094 if (priv->extend_desc)
1095 p = &((priv->dma_etx + i)->basic);
1096 else
1097 p = priv->dma_tx + i;
1098 p->des2 = 0;
1099 priv->tx_skbuff_dma[i].buf = 0;
1100 priv->tx_skbuff_dma[i].map_as_page = false;
1101 priv->tx_skbuff[i] = NULL;
1102 }
1103
1104 priv->dirty_tx = 0;
1105 priv->cur_tx = 0;
1106 netdev_reset_queue(priv->dev);
1107
1108 stmmac_clear_descriptors(priv);
1109
1110 if (netif_msg_hw(priv))
1111 stmmac_display_rings(priv);
1112
1113 return 0;
1114 err_init_rx_buffers:
1115 while (--i >= 0)
1116 stmmac_free_rx_buffers(priv, i);
1117 return ret;
1118 }
1119
1120 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1121 {
1122 int i;
1123
1124 for (i = 0; i < priv->dma_rx_size; i++)
1125 stmmac_free_rx_buffers(priv, i);
1126 }
1127
1128 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1129 {
1130 int i;
1131
1132 for (i = 0; i < priv->dma_tx_size; i++) {
1133 struct dma_desc *p;
1134
1135 if (priv->extend_desc)
1136 p = &((priv->dma_etx + i)->basic);
1137 else
1138 p = priv->dma_tx + i;
1139
1140 if (priv->tx_skbuff_dma[i].buf) {
1141 if (priv->tx_skbuff_dma[i].map_as_page)
1142 dma_unmap_page(priv->device,
1143 priv->tx_skbuff_dma[i].buf,
1144 priv->hw->desc->get_tx_len(p),
1145 DMA_TO_DEVICE);
1146 else
1147 dma_unmap_single(priv->device,
1148 priv->tx_skbuff_dma[i].buf,
1149 priv->hw->desc->get_tx_len(p),
1150 DMA_TO_DEVICE);
1151 }
1152
1153 if (priv->tx_skbuff[i] != NULL) {
1154 dev_kfree_skb_any(priv->tx_skbuff[i]);
1155 priv->tx_skbuff[i] = NULL;
1156 priv->tx_skbuff_dma[i].buf = 0;
1157 priv->tx_skbuff_dma[i].map_as_page = false;
1158 }
1159 }
1160 }
1161
1162 /**
1163 * alloc_dma_desc_resources - alloc TX/RX resources.
1164 * @priv: private structure
1165 * Description: according to which descriptor can be used (extend or basic)
1166 * this function allocates the resources for TX and RX paths. In case of
1167 * reception, for example, it pre-allocated the RX socket buffer in order to
1168 * allow zero-copy mechanism.
1169 */
1170 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1171 {
1172 unsigned int txsize = priv->dma_tx_size;
1173 unsigned int rxsize = priv->dma_rx_size;
1174 int ret = -ENOMEM;
1175
1176 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1177 GFP_KERNEL);
1178 if (!priv->rx_skbuff_dma)
1179 return -ENOMEM;
1180
1181 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1182 GFP_KERNEL);
1183 if (!priv->rx_skbuff)
1184 goto err_rx_skbuff;
1185
1186 priv->tx_skbuff_dma = kmalloc_array(txsize,
1187 sizeof(*priv->tx_skbuff_dma),
1188 GFP_KERNEL);
1189 if (!priv->tx_skbuff_dma)
1190 goto err_tx_skbuff_dma;
1191
1192 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1193 GFP_KERNEL);
1194 if (!priv->tx_skbuff)
1195 goto err_tx_skbuff;
1196
1197 if (priv->extend_desc) {
1198 priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1199 sizeof(struct
1200 dma_extended_desc),
1201 &priv->dma_rx_phy,
1202 GFP_KERNEL);
1203 if (!priv->dma_erx)
1204 goto err_dma;
1205
1206 priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1207 sizeof(struct
1208 dma_extended_desc),
1209 &priv->dma_tx_phy,
1210 GFP_KERNEL);
1211 if (!priv->dma_etx) {
1212 dma_free_coherent(priv->device, priv->dma_rx_size *
1213 sizeof(struct dma_extended_desc),
1214 priv->dma_erx, priv->dma_rx_phy);
1215 goto err_dma;
1216 }
1217 } else {
1218 priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1219 sizeof(struct dma_desc),
1220 &priv->dma_rx_phy,
1221 GFP_KERNEL);
1222 if (!priv->dma_rx)
1223 goto err_dma;
1224
1225 priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1226 sizeof(struct dma_desc),
1227 &priv->dma_tx_phy,
1228 GFP_KERNEL);
1229 if (!priv->dma_tx) {
1230 dma_free_coherent(priv->device, priv->dma_rx_size *
1231 sizeof(struct dma_desc),
1232 priv->dma_rx, priv->dma_rx_phy);
1233 goto err_dma;
1234 }
1235 }
1236
1237 return 0;
1238
1239 err_dma:
1240 kfree(priv->tx_skbuff);
1241 err_tx_skbuff:
1242 kfree(priv->tx_skbuff_dma);
1243 err_tx_skbuff_dma:
1244 kfree(priv->rx_skbuff);
1245 err_rx_skbuff:
1246 kfree(priv->rx_skbuff_dma);
1247 return ret;
1248 }
1249
1250 static void free_dma_desc_resources(struct stmmac_priv *priv)
1251 {
1252 /* Release the DMA TX/RX socket buffers */
1253 dma_free_rx_skbufs(priv);
1254 dma_free_tx_skbufs(priv);
1255
1256 /* Free DMA regions of consistent memory previously allocated */
1257 if (!priv->extend_desc) {
1258 dma_free_coherent(priv->device,
1259 priv->dma_tx_size * sizeof(struct dma_desc),
1260 priv->dma_tx, priv->dma_tx_phy);
1261 dma_free_coherent(priv->device,
1262 priv->dma_rx_size * sizeof(struct dma_desc),
1263 priv->dma_rx, priv->dma_rx_phy);
1264 } else {
1265 dma_free_coherent(priv->device, priv->dma_tx_size *
1266 sizeof(struct dma_extended_desc),
1267 priv->dma_etx, priv->dma_tx_phy);
1268 dma_free_coherent(priv->device, priv->dma_rx_size *
1269 sizeof(struct dma_extended_desc),
1270 priv->dma_erx, priv->dma_rx_phy);
1271 }
1272 kfree(priv->rx_skbuff_dma);
1273 kfree(priv->rx_skbuff);
1274 kfree(priv->tx_skbuff_dma);
1275 kfree(priv->tx_skbuff);
1276 }
1277
1278 /**
1279 * stmmac_dma_operation_mode - HW DMA operation mode
1280 * @priv: driver private structure
1281 * Description: it is used for configuring the DMA operation mode register in
1282 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1283 */
1284 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1285 {
1286 int rxfifosz = priv->plat->rx_fifo_size;
1287
1288 if (priv->plat->force_thresh_dma_mode)
1289 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1290 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1291 /*
1292 * In case of GMAC, SF mode can be enabled
1293 * to perform the TX COE in HW. This depends on:
1294 * 1) TX COE if actually supported
1295 * 2) There is no bugged Jumbo frame support
1296 * that needs to not insert csum in the TDES.
1297 */
1298 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1299 rxfifosz);
1300 priv->xstats.threshold = SF_DMA_MODE;
1301 } else
1302 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1303 rxfifosz);
1304 }
1305
1306 /**
1307 * stmmac_tx_clean - to manage the transmission completion
1308 * @priv: driver private structure
1309 * Description: it reclaims the transmit resources after transmission completes.
1310 */
1311 static void stmmac_tx_clean(struct stmmac_priv *priv)
1312 {
1313 unsigned int txsize = priv->dma_tx_size;
1314 unsigned int bytes_compl = 0, pkts_compl = 0;
1315
1316 spin_lock(&priv->tx_lock);
1317
1318 priv->xstats.tx_clean++;
1319
1320 while (priv->dirty_tx != priv->cur_tx) {
1321 int last;
1322 unsigned int entry = priv->dirty_tx % txsize;
1323 struct sk_buff *skb = priv->tx_skbuff[entry];
1324 struct dma_desc *p;
1325
1326 if (priv->extend_desc)
1327 p = (struct dma_desc *)(priv->dma_etx + entry);
1328 else
1329 p = priv->dma_tx + entry;
1330
1331 /* Check if the descriptor is owned by the DMA. */
1332 if (priv->hw->desc->get_tx_owner(p))
1333 break;
1334
1335 /* Verify tx error by looking at the last segment. */
1336 last = priv->hw->desc->get_tx_ls(p);
1337 if (likely(last)) {
1338 int tx_error =
1339 priv->hw->desc->tx_status(&priv->dev->stats,
1340 &priv->xstats, p,
1341 priv->ioaddr);
1342 if (likely(tx_error == 0)) {
1343 priv->dev->stats.tx_packets++;
1344 priv->xstats.tx_pkt_n++;
1345 } else
1346 priv->dev->stats.tx_errors++;
1347
1348 stmmac_get_tx_hwtstamp(priv, entry, skb);
1349 }
1350 if (netif_msg_tx_done(priv))
1351 pr_debug("%s: curr %d, dirty %d\n", __func__,
1352 priv->cur_tx, priv->dirty_tx);
1353
1354 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1355 if (priv->tx_skbuff_dma[entry].map_as_page)
1356 dma_unmap_page(priv->device,
1357 priv->tx_skbuff_dma[entry].buf,
1358 priv->hw->desc->get_tx_len(p),
1359 DMA_TO_DEVICE);
1360 else
1361 dma_unmap_single(priv->device,
1362 priv->tx_skbuff_dma[entry].buf,
1363 priv->hw->desc->get_tx_len(p),
1364 DMA_TO_DEVICE);
1365 priv->tx_skbuff_dma[entry].buf = 0;
1366 priv->tx_skbuff_dma[entry].map_as_page = false;
1367 }
1368 priv->hw->mode->clean_desc3(priv, p);
1369
1370 if (likely(skb != NULL)) {
1371 pkts_compl++;
1372 bytes_compl += skb->len;
1373 dev_consume_skb_any(skb);
1374 priv->tx_skbuff[entry] = NULL;
1375 }
1376
1377 priv->hw->desc->release_tx_desc(p, priv->mode);
1378
1379 priv->dirty_tx++;
1380 }
1381
1382 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1383
1384 if (unlikely(netif_queue_stopped(priv->dev) &&
1385 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1386 netif_tx_lock(priv->dev);
1387 if (netif_queue_stopped(priv->dev) &&
1388 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1389 if (netif_msg_tx_done(priv))
1390 pr_debug("%s: restart transmit\n", __func__);
1391 netif_wake_queue(priv->dev);
1392 }
1393 netif_tx_unlock(priv->dev);
1394 }
1395
1396 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1397 stmmac_enable_eee_mode(priv);
1398 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1399 }
1400 spin_unlock(&priv->tx_lock);
1401 }
1402
1403 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1404 {
1405 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1406 }
1407
1408 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1409 {
1410 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1411 }
1412
1413 /**
1414 * stmmac_tx_err - to manage the tx error
1415 * @priv: driver private structure
1416 * Description: it cleans the descriptors and restarts the transmission
1417 * in case of transmission errors.
1418 */
1419 static void stmmac_tx_err(struct stmmac_priv *priv)
1420 {
1421 int i;
1422 int txsize = priv->dma_tx_size;
1423 netif_stop_queue(priv->dev);
1424
1425 priv->hw->dma->stop_tx(priv->ioaddr);
1426 dma_free_tx_skbufs(priv);
1427 for (i = 0; i < txsize; i++)
1428 if (priv->extend_desc)
1429 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1430 priv->mode,
1431 (i == txsize - 1));
1432 else
1433 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1434 priv->mode,
1435 (i == txsize - 1));
1436 priv->dirty_tx = 0;
1437 priv->cur_tx = 0;
1438 netdev_reset_queue(priv->dev);
1439 priv->hw->dma->start_tx(priv->ioaddr);
1440
1441 priv->dev->stats.tx_errors++;
1442 netif_wake_queue(priv->dev);
1443 }
1444
1445 /**
1446 * stmmac_dma_interrupt - DMA ISR
1447 * @priv: driver private structure
1448 * Description: this is the DMA ISR. It is called by the main ISR.
1449 * It calls the dwmac dma routine and schedule poll method in case of some
1450 * work can be done.
1451 */
1452 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1453 {
1454 int status;
1455 int rxfifosz = priv->plat->rx_fifo_size;
1456
1457 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1458 if (likely((status & handle_rx)) || (status & handle_tx)) {
1459 if (likely(napi_schedule_prep(&priv->napi))) {
1460 stmmac_disable_dma_irq(priv);
1461 __napi_schedule(&priv->napi);
1462 }
1463 }
1464 if (unlikely(status & tx_hard_error_bump_tc)) {
1465 /* Try to bump up the dma threshold on this failure */
1466 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1467 (tc <= 256)) {
1468 tc += 64;
1469 if (priv->plat->force_thresh_dma_mode)
1470 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1471 rxfifosz);
1472 else
1473 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1474 SF_DMA_MODE, rxfifosz);
1475 priv->xstats.threshold = tc;
1476 }
1477 } else if (unlikely(status == tx_hard_error))
1478 stmmac_tx_err(priv);
1479 }
1480
1481 /**
1482 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1483 * @priv: driver private structure
1484 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1485 */
1486 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1487 {
1488 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1489 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1490
1491 dwmac_mmc_intr_all_mask(priv->ioaddr);
1492
1493 if (priv->dma_cap.rmon) {
1494 dwmac_mmc_ctrl(priv->ioaddr, mode);
1495 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1496 } else
1497 pr_info(" No MAC Management Counters available\n");
1498 }
1499
1500 /**
1501 * stmmac_get_synopsys_id - return the SYINID.
1502 * @priv: driver private structure
1503 * Description: this simple function is to decode and return the SYINID
1504 * starting from the HW core register.
1505 */
1506 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1507 {
1508 u32 hwid = priv->hw->synopsys_uid;
1509
1510 /* Check Synopsys Id (not available on old chips) */
1511 if (likely(hwid)) {
1512 u32 uid = ((hwid & 0x0000ff00) >> 8);
1513 u32 synid = (hwid & 0x000000ff);
1514
1515 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1516 uid, synid);
1517
1518 return synid;
1519 }
1520 return 0;
1521 }
1522
1523 /**
1524 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1525 * @priv: driver private structure
1526 * Description: select the Enhanced/Alternate or Normal descriptors.
1527 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1528 * supported by the HW capability register.
1529 */
1530 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1531 {
1532 if (priv->plat->enh_desc) {
1533 pr_info(" Enhanced/Alternate descriptors\n");
1534
1535 /* GMAC older than 3.50 has no extended descriptors */
1536 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1537 pr_info("\tEnabled extended descriptors\n");
1538 priv->extend_desc = 1;
1539 } else
1540 pr_warn("Extended descriptors not supported\n");
1541
1542 priv->hw->desc = &enh_desc_ops;
1543 } else {
1544 pr_info(" Normal descriptors\n");
1545 priv->hw->desc = &ndesc_ops;
1546 }
1547 }
1548
1549 /**
1550 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1551 * @priv: driver private structure
1552 * Description:
1553 * new GMAC chip generations have a new register to indicate the
1554 * presence of the optional feature/functions.
1555 * This can be also used to override the value passed through the
1556 * platform and necessary for old MAC10/100 and GMAC chips.
1557 */
1558 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1559 {
1560 u32 hw_cap = 0;
1561
1562 if (priv->hw->dma->get_hw_feature) {
1563 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1564
1565 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1566 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1567 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1568 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1569 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1570 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1571 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1572 priv->dma_cap.pmt_remote_wake_up =
1573 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1574 priv->dma_cap.pmt_magic_frame =
1575 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1576 /* MMC */
1577 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1578 /* IEEE 1588-2002 */
1579 priv->dma_cap.time_stamp =
1580 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1581 /* IEEE 1588-2008 */
1582 priv->dma_cap.atime_stamp =
1583 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1584 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1585 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1586 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1587 /* TX and RX csum */
1588 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1589 priv->dma_cap.rx_coe_type1 =
1590 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1591 priv->dma_cap.rx_coe_type2 =
1592 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1593 priv->dma_cap.rxfifo_over_2048 =
1594 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1595 /* TX and RX number of channels */
1596 priv->dma_cap.number_rx_channel =
1597 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1598 priv->dma_cap.number_tx_channel =
1599 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1600 /* Alternate (enhanced) DESC mode */
1601 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1602 }
1603
1604 return hw_cap;
1605 }
1606
1607 /**
1608 * stmmac_check_ether_addr - check if the MAC addr is valid
1609 * @priv: driver private structure
1610 * Description:
1611 * it is to verify if the MAC address is valid, in case of failures it
1612 * generates a random MAC address
1613 */
1614 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1615 {
1616 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1617 priv->hw->mac->get_umac_addr(priv->hw,
1618 priv->dev->dev_addr, 0);
1619 if (!is_valid_ether_addr(priv->dev->dev_addr))
1620 eth_hw_addr_random(priv->dev);
1621 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1622 priv->dev->dev_addr);
1623 }
1624 }
1625
1626 /**
1627 * stmmac_init_dma_engine - DMA init.
1628 * @priv: driver private structure
1629 * Description:
1630 * It inits the DMA invoking the specific MAC/GMAC callback.
1631 * Some DMA parameters can be passed from the platform;
1632 * in case of these are not passed a default is kept for the MAC or GMAC.
1633 */
1634 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1635 {
1636 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1637 int mixed_burst = 0;
1638 int atds = 0;
1639
1640 if (priv->plat->dma_cfg) {
1641 pbl = priv->plat->dma_cfg->pbl;
1642 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1643 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1644 burst_len = priv->plat->dma_cfg->burst_len;
1645 }
1646
1647 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1648 atds = 1;
1649
1650 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1651 burst_len, priv->dma_tx_phy,
1652 priv->dma_rx_phy, atds);
1653 }
1654
1655 /**
1656 * stmmac_tx_timer - mitigation sw timer for tx.
1657 * @data: data pointer
1658 * Description:
1659 * This is the timer handler to directly invoke the stmmac_tx_clean.
1660 */
1661 static void stmmac_tx_timer(unsigned long data)
1662 {
1663 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1664
1665 stmmac_tx_clean(priv);
1666 }
1667
1668 /**
1669 * stmmac_init_tx_coalesce - init tx mitigation options.
1670 * @priv: driver private structure
1671 * Description:
1672 * This inits the transmit coalesce parameters: i.e. timer rate,
1673 * timer handler and default threshold used for enabling the
1674 * interrupt on completion bit.
1675 */
1676 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1677 {
1678 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1679 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1680 init_timer(&priv->txtimer);
1681 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1682 priv->txtimer.data = (unsigned long)priv;
1683 priv->txtimer.function = stmmac_tx_timer;
1684 add_timer(&priv->txtimer);
1685 }
1686
1687 /**
1688 * stmmac_hw_setup - setup mac in a usable state.
1689 * @dev : pointer to the device structure.
1690 * Description:
1691 * this is the main function to setup the HW in a usable state because the
1692 * dma engine is reset, the core registers are configured (e.g. AXI,
1693 * Checksum features, timers). The DMA is ready to start receiving and
1694 * transmitting.
1695 * Return value:
1696 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1697 * file on failure.
1698 */
1699 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1700 {
1701 struct stmmac_priv *priv = netdev_priv(dev);
1702 int ret;
1703
1704 /* DMA initialization and SW reset */
1705 ret = stmmac_init_dma_engine(priv);
1706 if (ret < 0) {
1707 pr_err("%s: DMA engine initialization failed\n", __func__);
1708 return ret;
1709 }
1710
1711 /* Copy the MAC addr into the HW */
1712 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1713
1714 /* If required, perform hw setup of the bus. */
1715 if (priv->plat->bus_setup)
1716 priv->plat->bus_setup(priv->ioaddr);
1717
1718 /* Initialize the MAC Core */
1719 priv->hw->mac->core_init(priv->hw, dev->mtu);
1720
1721 ret = priv->hw->mac->rx_ipc(priv->hw);
1722 if (!ret) {
1723 pr_warn(" RX IPC Checksum Offload disabled\n");
1724 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1725 priv->hw->rx_csum = 0;
1726 }
1727
1728 /* Enable the MAC Rx/Tx */
1729 stmmac_set_mac(priv->ioaddr, true);
1730
1731 /* Set the HW DMA mode and the COE */
1732 stmmac_dma_operation_mode(priv);
1733
1734 stmmac_mmc_setup(priv);
1735
1736 if (init_ptp) {
1737 ret = stmmac_init_ptp(priv);
1738 if (ret && ret != -EOPNOTSUPP)
1739 pr_warn("%s: failed PTP initialisation\n", __func__);
1740 }
1741
1742 #ifdef CONFIG_DEBUG_FS
1743 ret = stmmac_init_fs(dev);
1744 if (ret < 0)
1745 pr_warn("%s: failed debugFS registration\n", __func__);
1746 #endif
1747 /* Start the ball rolling... */
1748 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1749 priv->hw->dma->start_tx(priv->ioaddr);
1750 priv->hw->dma->start_rx(priv->ioaddr);
1751
1752 /* Dump DMA/MAC registers */
1753 if (netif_msg_hw(priv)) {
1754 priv->hw->mac->dump_regs(priv->hw);
1755 priv->hw->dma->dump_regs(priv->ioaddr);
1756 }
1757 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1758
1759 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1760 priv->rx_riwt = MAX_DMA_RIWT;
1761 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1762 }
1763
1764 if (priv->pcs && priv->hw->mac->ctrl_ane)
1765 priv->hw->mac->ctrl_ane(priv->hw, 0);
1766
1767 return 0;
1768 }
1769
1770 /**
1771 * stmmac_open - open entry point of the driver
1772 * @dev : pointer to the device structure.
1773 * Description:
1774 * This function is the open entry point of the driver.
1775 * Return value:
1776 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1777 * file on failure.
1778 */
1779 static int stmmac_open(struct net_device *dev)
1780 {
1781 struct stmmac_priv *priv = netdev_priv(dev);
1782 int ret;
1783
1784 stmmac_check_ether_addr(priv);
1785
1786 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1787 priv->pcs != STMMAC_PCS_RTBI) {
1788 ret = stmmac_init_phy(dev);
1789 if (ret) {
1790 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1791 __func__, ret);
1792 return ret;
1793 }
1794 }
1795
1796 /* Extra statistics */
1797 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1798 priv->xstats.threshold = tc;
1799
1800 /* Create and initialize the TX/RX descriptors chains. */
1801 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1802 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1803 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1804
1805 ret = alloc_dma_desc_resources(priv);
1806 if (ret < 0) {
1807 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1808 goto dma_desc_error;
1809 }
1810
1811 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1812 if (ret < 0) {
1813 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1814 goto init_error;
1815 }
1816
1817 ret = stmmac_hw_setup(dev, true);
1818 if (ret < 0) {
1819 pr_err("%s: Hw setup failed\n", __func__);
1820 goto init_error;
1821 }
1822
1823 stmmac_init_tx_coalesce(priv);
1824
1825 if (priv->phydev)
1826 phy_start(priv->phydev);
1827
1828 /* Request the IRQ lines */
1829 ret = request_irq(dev->irq, stmmac_interrupt,
1830 IRQF_SHARED, dev->name, dev);
1831 if (unlikely(ret < 0)) {
1832 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1833 __func__, dev->irq, ret);
1834 goto init_error;
1835 }
1836
1837 /* Request the Wake IRQ in case of another line is used for WoL */
1838 if (priv->wol_irq != dev->irq) {
1839 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1840 IRQF_SHARED, dev->name, dev);
1841 if (unlikely(ret < 0)) {
1842 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1843 __func__, priv->wol_irq, ret);
1844 goto wolirq_error;
1845 }
1846 }
1847
1848 /* Request the IRQ lines */
1849 if (priv->lpi_irq > 0) {
1850 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1851 dev->name, dev);
1852 if (unlikely(ret < 0)) {
1853 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1854 __func__, priv->lpi_irq, ret);
1855 goto lpiirq_error;
1856 }
1857 }
1858
1859 napi_enable(&priv->napi);
1860 netif_start_queue(dev);
1861
1862 return 0;
1863
1864 lpiirq_error:
1865 if (priv->wol_irq != dev->irq)
1866 free_irq(priv->wol_irq, dev);
1867 wolirq_error:
1868 free_irq(dev->irq, dev);
1869
1870 init_error:
1871 free_dma_desc_resources(priv);
1872 dma_desc_error:
1873 if (priv->phydev)
1874 phy_disconnect(priv->phydev);
1875
1876 return ret;
1877 }
1878
1879 /**
1880 * stmmac_release - close entry point of the driver
1881 * @dev : device pointer.
1882 * Description:
1883 * This is the stop entry point of the driver.
1884 */
1885 static int stmmac_release(struct net_device *dev)
1886 {
1887 struct stmmac_priv *priv = netdev_priv(dev);
1888
1889 if (priv->eee_enabled)
1890 del_timer_sync(&priv->eee_ctrl_timer);
1891
1892 /* Stop and disconnect the PHY */
1893 if (priv->phydev) {
1894 phy_stop(priv->phydev);
1895 phy_disconnect(priv->phydev);
1896 priv->phydev = NULL;
1897 }
1898
1899 netif_stop_queue(dev);
1900
1901 napi_disable(&priv->napi);
1902
1903 del_timer_sync(&priv->txtimer);
1904
1905 /* Free the IRQ lines */
1906 free_irq(dev->irq, dev);
1907 if (priv->wol_irq != dev->irq)
1908 free_irq(priv->wol_irq, dev);
1909 if (priv->lpi_irq > 0)
1910 free_irq(priv->lpi_irq, dev);
1911
1912 /* Stop TX/RX DMA and clear the descriptors */
1913 priv->hw->dma->stop_tx(priv->ioaddr);
1914 priv->hw->dma->stop_rx(priv->ioaddr);
1915
1916 /* Release and free the Rx/Tx resources */
1917 free_dma_desc_resources(priv);
1918
1919 /* Disable the MAC Rx/Tx */
1920 stmmac_set_mac(priv->ioaddr, false);
1921
1922 netif_carrier_off(dev);
1923
1924 #ifdef CONFIG_DEBUG_FS
1925 stmmac_exit_fs(dev);
1926 #endif
1927
1928 stmmac_release_ptp(priv);
1929
1930 return 0;
1931 }
1932
1933 /**
1934 * stmmac_xmit - Tx entry point of the driver
1935 * @skb : the socket buffer
1936 * @dev : device pointer
1937 * Description : this is the tx entry point of the driver.
1938 * It programs the chain or the ring and supports oversized frames
1939 * and SG feature.
1940 */
1941 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1942 {
1943 struct stmmac_priv *priv = netdev_priv(dev);
1944 unsigned int txsize = priv->dma_tx_size;
1945 unsigned int entry;
1946 int i, csum_insertion = 0, is_jumbo = 0;
1947 int nfrags = skb_shinfo(skb)->nr_frags;
1948 struct dma_desc *desc, *first;
1949 unsigned int nopaged_len = skb_headlen(skb);
1950 unsigned int enh_desc = priv->plat->enh_desc;
1951
1952 spin_lock(&priv->tx_lock);
1953
1954 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1955 spin_unlock(&priv->tx_lock);
1956 if (!netif_queue_stopped(dev)) {
1957 netif_stop_queue(dev);
1958 /* This is a hard error, log it. */
1959 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1960 }
1961 return NETDEV_TX_BUSY;
1962 }
1963
1964 if (priv->tx_path_in_lpi_mode)
1965 stmmac_disable_eee_mode(priv);
1966
1967 entry = priv->cur_tx % txsize;
1968
1969 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1970
1971 if (priv->extend_desc)
1972 desc = (struct dma_desc *)(priv->dma_etx + entry);
1973 else
1974 desc = priv->dma_tx + entry;
1975
1976 first = desc;
1977
1978 /* To program the descriptors according to the size of the frame */
1979 if (enh_desc)
1980 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1981
1982 if (likely(!is_jumbo)) {
1983 desc->des2 = dma_map_single(priv->device, skb->data,
1984 nopaged_len, DMA_TO_DEVICE);
1985 if (dma_mapping_error(priv->device, desc->des2))
1986 goto dma_map_err;
1987 priv->tx_skbuff_dma[entry].buf = desc->des2;
1988 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1989 csum_insertion, priv->mode);
1990 } else {
1991 desc = first;
1992 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1993 if (unlikely(entry < 0))
1994 goto dma_map_err;
1995 }
1996
1997 for (i = 0; i < nfrags; i++) {
1998 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1999 int len = skb_frag_size(frag);
2000
2001 priv->tx_skbuff[entry] = NULL;
2002 entry = (++priv->cur_tx) % txsize;
2003 if (priv->extend_desc)
2004 desc = (struct dma_desc *)(priv->dma_etx + entry);
2005 else
2006 desc = priv->dma_tx + entry;
2007
2008 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2009 DMA_TO_DEVICE);
2010 if (dma_mapping_error(priv->device, desc->des2))
2011 goto dma_map_err; /* should reuse desc w/o issues */
2012
2013 priv->tx_skbuff_dma[entry].buf = desc->des2;
2014 priv->tx_skbuff_dma[entry].map_as_page = true;
2015 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2016 priv->mode);
2017 wmb();
2018 priv->hw->desc->set_tx_owner(desc);
2019 wmb();
2020 }
2021
2022 priv->tx_skbuff[entry] = skb;
2023
2024 /* Finalize the latest segment. */
2025 priv->hw->desc->close_tx_desc(desc);
2026
2027 wmb();
2028 /* According to the coalesce parameter the IC bit for the latest
2029 * segment could be reset and the timer re-started to invoke the
2030 * stmmac_tx function. This approach takes care about the fragments.
2031 */
2032 priv->tx_count_frames += nfrags + 1;
2033 if (priv->tx_coal_frames > priv->tx_count_frames) {
2034 priv->hw->desc->clear_tx_ic(desc);
2035 priv->xstats.tx_reset_ic_bit++;
2036 mod_timer(&priv->txtimer,
2037 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2038 } else
2039 priv->tx_count_frames = 0;
2040
2041 /* To avoid raise condition */
2042 priv->hw->desc->set_tx_owner(first);
2043 wmb();
2044
2045 priv->cur_tx++;
2046
2047 if (netif_msg_pktdata(priv)) {
2048 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2049 __func__, (priv->cur_tx % txsize),
2050 (priv->dirty_tx % txsize), entry, first, nfrags);
2051
2052 if (priv->extend_desc)
2053 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2054 else
2055 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2056
2057 pr_debug(">>> frame to be transmitted: ");
2058 print_pkt(skb->data, skb->len);
2059 }
2060 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2061 if (netif_msg_hw(priv))
2062 pr_debug("%s: stop transmitted packets\n", __func__);
2063 netif_stop_queue(dev);
2064 }
2065
2066 dev->stats.tx_bytes += skb->len;
2067
2068 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2069 priv->hwts_tx_en)) {
2070 /* declare that device is doing timestamping */
2071 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2072 priv->hw->desc->enable_tx_timestamp(first);
2073 }
2074
2075 if (!priv->hwts_tx_en)
2076 skb_tx_timestamp(skb);
2077
2078 netdev_sent_queue(dev, skb->len);
2079 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2080
2081 spin_unlock(&priv->tx_lock);
2082 return NETDEV_TX_OK;
2083
2084 dma_map_err:
2085 spin_unlock(&priv->tx_lock);
2086 dev_err(priv->device, "Tx dma map failed\n");
2087 dev_kfree_skb(skb);
2088 priv->dev->stats.tx_dropped++;
2089 return NETDEV_TX_OK;
2090 }
2091
2092 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2093 {
2094 struct ethhdr *ehdr;
2095 u16 vlanid;
2096
2097 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2098 NETIF_F_HW_VLAN_CTAG_RX &&
2099 !__vlan_get_tag(skb, &vlanid)) {
2100 /* pop the vlan tag */
2101 ehdr = (struct ethhdr *)skb->data;
2102 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2103 skb_pull(skb, VLAN_HLEN);
2104 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2105 }
2106 }
2107
2108
2109 /**
2110 * stmmac_rx_refill - refill used skb preallocated buffers
2111 * @priv: driver private structure
2112 * Description : this is to reallocate the skb for the reception process
2113 * that is based on zero-copy.
2114 */
2115 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2116 {
2117 unsigned int rxsize = priv->dma_rx_size;
2118 int bfsize = priv->dma_buf_sz;
2119
2120 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2121 unsigned int entry = priv->dirty_rx % rxsize;
2122 struct dma_desc *p;
2123
2124 if (priv->extend_desc)
2125 p = (struct dma_desc *)(priv->dma_erx + entry);
2126 else
2127 p = priv->dma_rx + entry;
2128
2129 if (likely(priv->rx_skbuff[entry] == NULL)) {
2130 struct sk_buff *skb;
2131
2132 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2133
2134 if (unlikely(skb == NULL))
2135 break;
2136
2137 priv->rx_skbuff[entry] = skb;
2138 priv->rx_skbuff_dma[entry] =
2139 dma_map_single(priv->device, skb->data, bfsize,
2140 DMA_FROM_DEVICE);
2141 if (dma_mapping_error(priv->device,
2142 priv->rx_skbuff_dma[entry])) {
2143 dev_err(priv->device, "Rx dma map failed\n");
2144 dev_kfree_skb(skb);
2145 break;
2146 }
2147 p->des2 = priv->rx_skbuff_dma[entry];
2148
2149 priv->hw->mode->refill_desc3(priv, p);
2150
2151 if (netif_msg_rx_status(priv))
2152 pr_debug("\trefill entry #%d\n", entry);
2153 }
2154 wmb();
2155 priv->hw->desc->set_rx_owner(p);
2156 wmb();
2157 }
2158 }
2159
2160 /**
2161 * stmmac_rx - manage the receive process
2162 * @priv: driver private structure
2163 * @limit: napi bugget.
2164 * Description : this the function called by the napi poll method.
2165 * It gets all the frames inside the ring.
2166 */
2167 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2168 {
2169 unsigned int rxsize = priv->dma_rx_size;
2170 unsigned int entry = priv->cur_rx % rxsize;
2171 unsigned int next_entry;
2172 unsigned int count = 0;
2173 int coe = priv->hw->rx_csum;
2174
2175 if (netif_msg_rx_status(priv)) {
2176 pr_debug("%s: descriptor ring:\n", __func__);
2177 if (priv->extend_desc)
2178 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2179 else
2180 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2181 }
2182 while (count < limit) {
2183 int status;
2184 struct dma_desc *p;
2185
2186 if (priv->extend_desc)
2187 p = (struct dma_desc *)(priv->dma_erx + entry);
2188 else
2189 p = priv->dma_rx + entry;
2190
2191 if (priv->hw->desc->get_rx_owner(p))
2192 break;
2193
2194 count++;
2195
2196 next_entry = (++priv->cur_rx) % rxsize;
2197 if (priv->extend_desc)
2198 prefetch(priv->dma_erx + next_entry);
2199 else
2200 prefetch(priv->dma_rx + next_entry);
2201
2202 /* read the status of the incoming frame */
2203 status = priv->hw->desc->rx_status(&priv->dev->stats,
2204 &priv->xstats, p);
2205 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2206 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2207 &priv->xstats,
2208 priv->dma_erx +
2209 entry);
2210 if (unlikely(status == discard_frame)) {
2211 priv->dev->stats.rx_errors++;
2212 if (priv->hwts_rx_en && !priv->extend_desc) {
2213 /* DESC2 & DESC3 will be overwitten by device
2214 * with timestamp value, hence reinitialize
2215 * them in stmmac_rx_refill() function so that
2216 * device can reuse it.
2217 */
2218 priv->rx_skbuff[entry] = NULL;
2219 dma_unmap_single(priv->device,
2220 priv->rx_skbuff_dma[entry],
2221 priv->dma_buf_sz,
2222 DMA_FROM_DEVICE);
2223 }
2224 } else {
2225 struct sk_buff *skb;
2226 int frame_len;
2227
2228 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2229
2230 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2231 * Type frames (LLC/LLC-SNAP)
2232 */
2233 if (unlikely(status != llc_snap))
2234 frame_len -= ETH_FCS_LEN;
2235
2236 if (netif_msg_rx_status(priv)) {
2237 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2238 p, entry, p->des2);
2239 if (frame_len > ETH_FRAME_LEN)
2240 pr_debug("\tframe size %d, COE: %d\n",
2241 frame_len, status);
2242 }
2243 skb = priv->rx_skbuff[entry];
2244 if (unlikely(!skb)) {
2245 pr_err("%s: Inconsistent Rx descriptor chain\n",
2246 priv->dev->name);
2247 priv->dev->stats.rx_dropped++;
2248 break;
2249 }
2250 prefetch(skb->data - NET_IP_ALIGN);
2251 priv->rx_skbuff[entry] = NULL;
2252
2253 stmmac_get_rx_hwtstamp(priv, entry, skb);
2254
2255 skb_put(skb, frame_len);
2256 dma_unmap_single(priv->device,
2257 priv->rx_skbuff_dma[entry],
2258 priv->dma_buf_sz, DMA_FROM_DEVICE);
2259
2260 if (netif_msg_pktdata(priv)) {
2261 pr_debug("frame received (%dbytes)", frame_len);
2262 print_pkt(skb->data, frame_len);
2263 }
2264
2265 stmmac_rx_vlan(priv->dev, skb);
2266
2267 skb->protocol = eth_type_trans(skb, priv->dev);
2268
2269 if (unlikely(!coe))
2270 skb_checksum_none_assert(skb);
2271 else
2272 skb->ip_summed = CHECKSUM_UNNECESSARY;
2273
2274 napi_gro_receive(&priv->napi, skb);
2275
2276 priv->dev->stats.rx_packets++;
2277 priv->dev->stats.rx_bytes += frame_len;
2278 }
2279 entry = next_entry;
2280 }
2281
2282 stmmac_rx_refill(priv);
2283
2284 priv->xstats.rx_pkt_n += count;
2285
2286 return count;
2287 }
2288
2289 /**
2290 * stmmac_poll - stmmac poll method (NAPI)
2291 * @napi : pointer to the napi structure.
2292 * @budget : maximum number of packets that the current CPU can receive from
2293 * all interfaces.
2294 * Description :
2295 * To look at the incoming frames and clear the tx resources.
2296 */
2297 static int stmmac_poll(struct napi_struct *napi, int budget)
2298 {
2299 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2300 int work_done = 0;
2301
2302 priv->xstats.napi_poll++;
2303 stmmac_tx_clean(priv);
2304
2305 work_done = stmmac_rx(priv, budget);
2306 if (work_done < budget) {
2307 napi_complete(napi);
2308 stmmac_enable_dma_irq(priv);
2309 }
2310 return work_done;
2311 }
2312
2313 /**
2314 * stmmac_tx_timeout
2315 * @dev : Pointer to net device structure
2316 * Description: this function is called when a packet transmission fails to
2317 * complete within a reasonable time. The driver will mark the error in the
2318 * netdev structure and arrange for the device to be reset to a sane state
2319 * in order to transmit a new packet.
2320 */
2321 static void stmmac_tx_timeout(struct net_device *dev)
2322 {
2323 struct stmmac_priv *priv = netdev_priv(dev);
2324
2325 /* Clear Tx resources and restart transmitting again */
2326 stmmac_tx_err(priv);
2327 }
2328
2329 /**
2330 * stmmac_set_rx_mode - entry point for multicast addressing
2331 * @dev : pointer to the device structure
2332 * Description:
2333 * This function is a driver entry point which gets called by the kernel
2334 * whenever multicast addresses must be enabled/disabled.
2335 * Return value:
2336 * void.
2337 */
2338 static void stmmac_set_rx_mode(struct net_device *dev)
2339 {
2340 struct stmmac_priv *priv = netdev_priv(dev);
2341
2342 priv->hw->mac->set_filter(priv->hw, dev);
2343 }
2344
2345 /**
2346 * stmmac_change_mtu - entry point to change MTU size for the device.
2347 * @dev : device pointer.
2348 * @new_mtu : the new MTU size for the device.
2349 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2350 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2351 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2352 * Return value:
2353 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2354 * file on failure.
2355 */
2356 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2357 {
2358 struct stmmac_priv *priv = netdev_priv(dev);
2359 int max_mtu;
2360
2361 if (netif_running(dev)) {
2362 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2363 return -EBUSY;
2364 }
2365
2366 if (priv->plat->enh_desc)
2367 max_mtu = JUMBO_LEN;
2368 else
2369 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2370
2371 if (priv->plat->maxmtu < max_mtu)
2372 max_mtu = priv->plat->maxmtu;
2373
2374 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2375 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2376 return -EINVAL;
2377 }
2378
2379 dev->mtu = new_mtu;
2380 netdev_update_features(dev);
2381
2382 return 0;
2383 }
2384
2385 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2386 netdev_features_t features)
2387 {
2388 struct stmmac_priv *priv = netdev_priv(dev);
2389
2390 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2391 features &= ~NETIF_F_RXCSUM;
2392
2393 if (!priv->plat->tx_coe)
2394 features &= ~NETIF_F_ALL_CSUM;
2395
2396 /* Some GMAC devices have a bugged Jumbo frame support that
2397 * needs to have the Tx COE disabled for oversized frames
2398 * (due to limited buffer sizes). In this case we disable
2399 * the TX csum insertionin the TDES and not use SF.
2400 */
2401 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2402 features &= ~NETIF_F_ALL_CSUM;
2403
2404 return features;
2405 }
2406
2407 static int stmmac_set_features(struct net_device *netdev,
2408 netdev_features_t features)
2409 {
2410 struct stmmac_priv *priv = netdev_priv(netdev);
2411
2412 /* Keep the COE Type in case of csum is supporting */
2413 if (features & NETIF_F_RXCSUM)
2414 priv->hw->rx_csum = priv->plat->rx_coe;
2415 else
2416 priv->hw->rx_csum = 0;
2417 /* No check needed because rx_coe has been set before and it will be
2418 * fixed in case of issue.
2419 */
2420 priv->hw->mac->rx_ipc(priv->hw);
2421
2422 return 0;
2423 }
2424
2425 /**
2426 * stmmac_interrupt - main ISR
2427 * @irq: interrupt number.
2428 * @dev_id: to pass the net device pointer.
2429 * Description: this is the main driver interrupt service routine.
2430 * It can call:
2431 * o DMA service routine (to manage incoming frame reception and transmission
2432 * status)
2433 * o Core interrupts to manage: remote wake-up, management counter, LPI
2434 * interrupts.
2435 */
2436 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2437 {
2438 struct net_device *dev = (struct net_device *)dev_id;
2439 struct stmmac_priv *priv = netdev_priv(dev);
2440
2441 if (priv->irq_wake)
2442 pm_wakeup_event(priv->device, 0);
2443
2444 if (unlikely(!dev)) {
2445 pr_err("%s: invalid dev pointer\n", __func__);
2446 return IRQ_NONE;
2447 }
2448
2449 /* To handle GMAC own interrupts */
2450 if (priv->plat->has_gmac) {
2451 int status = priv->hw->mac->host_irq_status(priv->hw,
2452 &priv->xstats);
2453 if (unlikely(status)) {
2454 /* For LPI we need to save the tx status */
2455 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2456 priv->tx_path_in_lpi_mode = true;
2457 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2458 priv->tx_path_in_lpi_mode = false;
2459 }
2460 }
2461
2462 /* To handle DMA interrupts */
2463 stmmac_dma_interrupt(priv);
2464
2465 return IRQ_HANDLED;
2466 }
2467
2468 #ifdef CONFIG_NET_POLL_CONTROLLER
2469 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2470 * to allow network I/O with interrupts disabled.
2471 */
2472 static void stmmac_poll_controller(struct net_device *dev)
2473 {
2474 disable_irq(dev->irq);
2475 stmmac_interrupt(dev->irq, dev);
2476 enable_irq(dev->irq);
2477 }
2478 #endif
2479
2480 /**
2481 * stmmac_ioctl - Entry point for the Ioctl
2482 * @dev: Device pointer.
2483 * @rq: An IOCTL specefic structure, that can contain a pointer to
2484 * a proprietary structure used to pass information to the driver.
2485 * @cmd: IOCTL command
2486 * Description:
2487 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2488 */
2489 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2490 {
2491 struct stmmac_priv *priv = netdev_priv(dev);
2492 int ret = -EOPNOTSUPP;
2493
2494 if (!netif_running(dev))
2495 return -EINVAL;
2496
2497 switch (cmd) {
2498 case SIOCGMIIPHY:
2499 case SIOCGMIIREG:
2500 case SIOCSMIIREG:
2501 if (!priv->phydev)
2502 return -EINVAL;
2503 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2504 break;
2505 case SIOCSHWTSTAMP:
2506 ret = stmmac_hwtstamp_ioctl(dev, rq);
2507 break;
2508 default:
2509 break;
2510 }
2511
2512 return ret;
2513 }
2514
2515 #ifdef CONFIG_DEBUG_FS
2516 static struct dentry *stmmac_fs_dir;
2517
2518 static void sysfs_display_ring(void *head, int size, int extend_desc,
2519 struct seq_file *seq)
2520 {
2521 int i;
2522 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2523 struct dma_desc *p = (struct dma_desc *)head;
2524
2525 for (i = 0; i < size; i++) {
2526 u64 x;
2527 if (extend_desc) {
2528 x = *(u64 *) ep;
2529 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2530 i, (unsigned int)virt_to_phys(ep),
2531 (unsigned int)x, (unsigned int)(x >> 32),
2532 ep->basic.des2, ep->basic.des3);
2533 ep++;
2534 } else {
2535 x = *(u64 *) p;
2536 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2537 i, (unsigned int)virt_to_phys(ep),
2538 (unsigned int)x, (unsigned int)(x >> 32),
2539 p->des2, p->des3);
2540 p++;
2541 }
2542 seq_printf(seq, "\n");
2543 }
2544 }
2545
2546 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2547 {
2548 struct net_device *dev = seq->private;
2549 struct stmmac_priv *priv = netdev_priv(dev);
2550 unsigned int txsize = priv->dma_tx_size;
2551 unsigned int rxsize = priv->dma_rx_size;
2552
2553 if (priv->extend_desc) {
2554 seq_printf(seq, "Extended RX descriptor ring:\n");
2555 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2556 seq_printf(seq, "Extended TX descriptor ring:\n");
2557 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2558 } else {
2559 seq_printf(seq, "RX descriptor ring:\n");
2560 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2561 seq_printf(seq, "TX descriptor ring:\n");
2562 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2563 }
2564
2565 return 0;
2566 }
2567
2568 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2569 {
2570 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2571 }
2572
2573 static const struct file_operations stmmac_rings_status_fops = {
2574 .owner = THIS_MODULE,
2575 .open = stmmac_sysfs_ring_open,
2576 .read = seq_read,
2577 .llseek = seq_lseek,
2578 .release = single_release,
2579 };
2580
2581 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2582 {
2583 struct net_device *dev = seq->private;
2584 struct stmmac_priv *priv = netdev_priv(dev);
2585
2586 if (!priv->hw_cap_support) {
2587 seq_printf(seq, "DMA HW features not supported\n");
2588 return 0;
2589 }
2590
2591 seq_printf(seq, "==============================\n");
2592 seq_printf(seq, "\tDMA HW features\n");
2593 seq_printf(seq, "==============================\n");
2594
2595 seq_printf(seq, "\t10/100 Mbps %s\n",
2596 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2597 seq_printf(seq, "\t1000 Mbps %s\n",
2598 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2599 seq_printf(seq, "\tHalf duple %s\n",
2600 (priv->dma_cap.half_duplex) ? "Y" : "N");
2601 seq_printf(seq, "\tHash Filter: %s\n",
2602 (priv->dma_cap.hash_filter) ? "Y" : "N");
2603 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2604 (priv->dma_cap.multi_addr) ? "Y" : "N");
2605 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2606 (priv->dma_cap.pcs) ? "Y" : "N");
2607 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2608 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2609 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2610 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2611 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2612 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2613 seq_printf(seq, "\tRMON module: %s\n",
2614 (priv->dma_cap.rmon) ? "Y" : "N");
2615 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2616 (priv->dma_cap.time_stamp) ? "Y" : "N");
2617 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2618 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2619 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2620 (priv->dma_cap.eee) ? "Y" : "N");
2621 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2622 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2623 (priv->dma_cap.tx_coe) ? "Y" : "N");
2624 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2625 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2626 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2627 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2628 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2629 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2630 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2631 priv->dma_cap.number_rx_channel);
2632 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2633 priv->dma_cap.number_tx_channel);
2634 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2635 (priv->dma_cap.enh_desc) ? "Y" : "N");
2636
2637 return 0;
2638 }
2639
2640 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2641 {
2642 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2643 }
2644
2645 static const struct file_operations stmmac_dma_cap_fops = {
2646 .owner = THIS_MODULE,
2647 .open = stmmac_sysfs_dma_cap_open,
2648 .read = seq_read,
2649 .llseek = seq_lseek,
2650 .release = single_release,
2651 };
2652
2653 static int stmmac_init_fs(struct net_device *dev)
2654 {
2655 struct stmmac_priv *priv = netdev_priv(dev);
2656
2657 /* Create per netdev entries */
2658 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2659
2660 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2661 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2662 STMMAC_RESOURCE_NAME, dev->name);
2663
2664 return -ENOMEM;
2665 }
2666
2667 /* Entry to report DMA RX/TX rings */
2668 priv->dbgfs_rings_status =
2669 debugfs_create_file("descriptors_status", S_IRUGO,
2670 priv->dbgfs_dir, dev,
2671 &stmmac_rings_status_fops);
2672
2673 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2674 pr_info("ERROR creating stmmac ring debugfs file\n");
2675 debugfs_remove_recursive(priv->dbgfs_dir);
2676
2677 return -ENOMEM;
2678 }
2679
2680 /* Entry to report the DMA HW features */
2681 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2682 priv->dbgfs_dir,
2683 dev, &stmmac_dma_cap_fops);
2684
2685 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2686 pr_info("ERROR creating stmmac MMC debugfs file\n");
2687 debugfs_remove_recursive(priv->dbgfs_dir);
2688
2689 return -ENOMEM;
2690 }
2691
2692 return 0;
2693 }
2694
2695 static void stmmac_exit_fs(struct net_device *dev)
2696 {
2697 struct stmmac_priv *priv = netdev_priv(dev);
2698
2699 debugfs_remove_recursive(priv->dbgfs_dir);
2700 }
2701 #endif /* CONFIG_DEBUG_FS */
2702
2703 static const struct net_device_ops stmmac_netdev_ops = {
2704 .ndo_open = stmmac_open,
2705 .ndo_start_xmit = stmmac_xmit,
2706 .ndo_stop = stmmac_release,
2707 .ndo_change_mtu = stmmac_change_mtu,
2708 .ndo_fix_features = stmmac_fix_features,
2709 .ndo_set_features = stmmac_set_features,
2710 .ndo_set_rx_mode = stmmac_set_rx_mode,
2711 .ndo_tx_timeout = stmmac_tx_timeout,
2712 .ndo_do_ioctl = stmmac_ioctl,
2713 #ifdef CONFIG_NET_POLL_CONTROLLER
2714 .ndo_poll_controller = stmmac_poll_controller,
2715 #endif
2716 .ndo_set_mac_address = eth_mac_addr,
2717 };
2718
2719 /**
2720 * stmmac_hw_init - Init the MAC device
2721 * @priv: driver private structure
2722 * Description: this function is to configure the MAC device according to
2723 * some platform parameters or the HW capability register. It prepares the
2724 * driver to use either ring or chain modes and to setup either enhanced or
2725 * normal descriptors.
2726 */
2727 static int stmmac_hw_init(struct stmmac_priv *priv)
2728 {
2729 struct mac_device_info *mac;
2730
2731 /* Identify the MAC HW device */
2732 if (priv->plat->has_gmac) {
2733 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2734 mac = dwmac1000_setup(priv->ioaddr,
2735 priv->plat->multicast_filter_bins,
2736 priv->plat->unicast_filter_entries);
2737 } else {
2738 mac = dwmac100_setup(priv->ioaddr);
2739 }
2740 if (!mac)
2741 return -ENOMEM;
2742
2743 priv->hw = mac;
2744
2745 /* Get and dump the chip ID */
2746 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2747
2748 /* To use the chained or ring mode */
2749 if (chain_mode) {
2750 priv->hw->mode = &chain_mode_ops;
2751 pr_info(" Chain mode enabled\n");
2752 priv->mode = STMMAC_CHAIN_MODE;
2753 } else {
2754 priv->hw->mode = &ring_mode_ops;
2755 pr_info(" Ring mode enabled\n");
2756 priv->mode = STMMAC_RING_MODE;
2757 }
2758
2759 /* Get the HW capability (new GMAC newer than 3.50a) */
2760 priv->hw_cap_support = stmmac_get_hw_features(priv);
2761 if (priv->hw_cap_support) {
2762 pr_info(" DMA HW capability register supported");
2763
2764 /* We can override some gmac/dma configuration fields: e.g.
2765 * enh_desc, tx_coe (e.g. that are passed through the
2766 * platform) with the values from the HW capability
2767 * register (if supported).
2768 */
2769 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2770 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2771
2772 /* TXCOE doesn't work in thresh DMA mode */
2773 if (priv->plat->force_thresh_dma_mode)
2774 priv->plat->tx_coe = 0;
2775 else
2776 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2777
2778 if (priv->dma_cap.rx_coe_type2)
2779 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2780 else if (priv->dma_cap.rx_coe_type1)
2781 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2782
2783 } else
2784 pr_info(" No HW DMA feature register supported");
2785
2786 /* To use alternate (extended) or normal descriptor structures */
2787 stmmac_selec_desc_mode(priv);
2788
2789 if (priv->plat->rx_coe) {
2790 priv->hw->rx_csum = priv->plat->rx_coe;
2791 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2792 priv->plat->rx_coe);
2793 }
2794 if (priv->plat->tx_coe)
2795 pr_info(" TX Checksum insertion supported\n");
2796
2797 if (priv->plat->pmt) {
2798 pr_info(" Wake-Up On Lan supported\n");
2799 device_set_wakeup_capable(priv->device, 1);
2800 }
2801
2802 return 0;
2803 }
2804
2805 /**
2806 * stmmac_dvr_probe
2807 * @device: device pointer
2808 * @plat_dat: platform data pointer
2809 * @res: stmmac resource pointer
2810 * Description: this is the main probe function used to
2811 * call the alloc_etherdev, allocate the priv structure.
2812 * Return:
2813 * returns 0 on success, otherwise errno.
2814 */
2815 int stmmac_dvr_probe(struct device *device,
2816 struct plat_stmmacenet_data *plat_dat,
2817 struct stmmac_resources *res)
2818 {
2819 int ret = 0;
2820 struct net_device *ndev = NULL;
2821 struct stmmac_priv *priv;
2822
2823 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2824 if (!ndev)
2825 return -ENOMEM;
2826
2827 SET_NETDEV_DEV(ndev, device);
2828
2829 priv = netdev_priv(ndev);
2830 priv->device = device;
2831 priv->dev = ndev;
2832
2833 stmmac_set_ethtool_ops(ndev);
2834 priv->pause = pause;
2835 priv->plat = plat_dat;
2836 priv->ioaddr = res->addr;
2837 priv->dev->base_addr = (unsigned long)res->addr;
2838
2839 priv->dev->irq = res->irq;
2840 priv->wol_irq = res->wol_irq;
2841 priv->lpi_irq = res->lpi_irq;
2842
2843 if (res->mac)
2844 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2845
2846 dev_set_drvdata(device, priv);
2847
2848 /* Verify driver arguments */
2849 stmmac_verify_args();
2850
2851 /* Override with kernel parameters if supplied XXX CRS XXX
2852 * this needs to have multiple instances
2853 */
2854 if ((phyaddr >= 0) && (phyaddr <= 31))
2855 priv->plat->phy_addr = phyaddr;
2856
2857 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2858 if (IS_ERR(priv->stmmac_clk)) {
2859 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2860 __func__);
2861 /* If failed to obtain stmmac_clk and specific clk_csr value
2862 * is NOT passed from the platform, probe fail.
2863 */
2864 if (!priv->plat->clk_csr) {
2865 ret = PTR_ERR(priv->stmmac_clk);
2866 goto error_clk_get;
2867 } else {
2868 priv->stmmac_clk = NULL;
2869 }
2870 }
2871 clk_prepare_enable(priv->stmmac_clk);
2872
2873 priv->pclk = devm_clk_get(priv->device, "pclk");
2874 if (IS_ERR(priv->pclk)) {
2875 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2876 ret = -EPROBE_DEFER;
2877 goto error_pclk_get;
2878 }
2879 priv->pclk = NULL;
2880 }
2881 clk_prepare_enable(priv->pclk);
2882
2883 priv->stmmac_rst = devm_reset_control_get(priv->device,
2884 STMMAC_RESOURCE_NAME);
2885 if (IS_ERR(priv->stmmac_rst)) {
2886 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2887 ret = -EPROBE_DEFER;
2888 goto error_hw_init;
2889 }
2890 dev_info(priv->device, "no reset control found\n");
2891 priv->stmmac_rst = NULL;
2892 }
2893 if (priv->stmmac_rst)
2894 reset_control_deassert(priv->stmmac_rst);
2895
2896 /* Init MAC and get the capabilities */
2897 ret = stmmac_hw_init(priv);
2898 if (ret)
2899 goto error_hw_init;
2900
2901 ndev->netdev_ops = &stmmac_netdev_ops;
2902
2903 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2904 NETIF_F_RXCSUM;
2905 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2906 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2907 #ifdef STMMAC_VLAN_TAG_USED
2908 /* Both mac100 and gmac support receive VLAN tag detection */
2909 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2910 #endif
2911 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2912
2913 if (flow_ctrl)
2914 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2915
2916 /* Rx Watchdog is available in the COREs newer than the 3.40.
2917 * In some case, for example on bugged HW this feature
2918 * has to be disable and this can be done by passing the
2919 * riwt_off field from the platform.
2920 */
2921 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2922 priv->use_riwt = 1;
2923 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2924 }
2925
2926 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2927
2928 spin_lock_init(&priv->lock);
2929 spin_lock_init(&priv->tx_lock);
2930
2931 ret = register_netdev(ndev);
2932 if (ret) {
2933 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2934 goto error_netdev_register;
2935 }
2936
2937 /* If a specific clk_csr value is passed from the platform
2938 * this means that the CSR Clock Range selection cannot be
2939 * changed at run-time and it is fixed. Viceversa the driver'll try to
2940 * set the MDC clock dynamically according to the csr actual
2941 * clock input.
2942 */
2943 if (!priv->plat->clk_csr)
2944 stmmac_clk_csr_set(priv);
2945 else
2946 priv->clk_csr = priv->plat->clk_csr;
2947
2948 stmmac_check_pcs_mode(priv);
2949
2950 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2951 priv->pcs != STMMAC_PCS_RTBI) {
2952 /* MDIO bus Registration */
2953 ret = stmmac_mdio_register(ndev);
2954 if (ret < 0) {
2955 pr_debug("%s: MDIO bus (id: %d) registration failed",
2956 __func__, priv->plat->bus_id);
2957 goto error_mdio_register;
2958 }
2959 }
2960
2961 return 0;
2962
2963 error_mdio_register:
2964 unregister_netdev(ndev);
2965 error_netdev_register:
2966 netif_napi_del(&priv->napi);
2967 error_hw_init:
2968 clk_disable_unprepare(priv->pclk);
2969 error_pclk_get:
2970 clk_disable_unprepare(priv->stmmac_clk);
2971 error_clk_get:
2972 free_netdev(ndev);
2973
2974 return ret;
2975 }
2976 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2977
2978 /**
2979 * stmmac_dvr_remove
2980 * @ndev: net device pointer
2981 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2982 * changes the link status, releases the DMA descriptor rings.
2983 */
2984 int stmmac_dvr_remove(struct net_device *ndev)
2985 {
2986 struct stmmac_priv *priv = netdev_priv(ndev);
2987
2988 pr_info("%s:\n\tremoving driver", __func__);
2989
2990 priv->hw->dma->stop_rx(priv->ioaddr);
2991 priv->hw->dma->stop_tx(priv->ioaddr);
2992
2993 stmmac_set_mac(priv->ioaddr, false);
2994 netif_carrier_off(ndev);
2995 unregister_netdev(ndev);
2996 if (priv->stmmac_rst)
2997 reset_control_assert(priv->stmmac_rst);
2998 clk_disable_unprepare(priv->pclk);
2999 clk_disable_unprepare(priv->stmmac_clk);
3000 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3001 priv->pcs != STMMAC_PCS_RTBI)
3002 stmmac_mdio_unregister(ndev);
3003 free_netdev(ndev);
3004
3005 return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3008
3009 /**
3010 * stmmac_suspend - suspend callback
3011 * @ndev: net device pointer
3012 * Description: this is the function to suspend the device and it is called
3013 * by the platform driver to stop the network queue, release the resources,
3014 * program the PMT register (for WoL), clean and release driver resources.
3015 */
3016 int stmmac_suspend(struct net_device *ndev)
3017 {
3018 struct stmmac_priv *priv = netdev_priv(ndev);
3019 unsigned long flags;
3020
3021 if (!ndev || !netif_running(ndev))
3022 return 0;
3023
3024 if (priv->phydev)
3025 phy_stop(priv->phydev);
3026
3027 spin_lock_irqsave(&priv->lock, flags);
3028
3029 netif_device_detach(ndev);
3030 netif_stop_queue(ndev);
3031
3032 napi_disable(&priv->napi);
3033
3034 /* Stop TX/RX DMA */
3035 priv->hw->dma->stop_tx(priv->ioaddr);
3036 priv->hw->dma->stop_rx(priv->ioaddr);
3037
3038 stmmac_clear_descriptors(priv);
3039
3040 /* Enable Power down mode by programming the PMT regs */
3041 if (device_may_wakeup(priv->device)) {
3042 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3043 priv->irq_wake = 1;
3044 } else {
3045 stmmac_set_mac(priv->ioaddr, false);
3046 pinctrl_pm_select_sleep_state(priv->device);
3047 /* Disable clock in case of PWM is off */
3048 clk_disable(priv->pclk);
3049 clk_disable(priv->stmmac_clk);
3050 }
3051 spin_unlock_irqrestore(&priv->lock, flags);
3052
3053 priv->oldlink = 0;
3054 priv->speed = 0;
3055 priv->oldduplex = -1;
3056 return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(stmmac_suspend);
3059
3060 /**
3061 * stmmac_resume - resume callback
3062 * @ndev: net device pointer
3063 * Description: when resume this function is invoked to setup the DMA and CORE
3064 * in a usable state.
3065 */
3066 int stmmac_resume(struct net_device *ndev)
3067 {
3068 struct stmmac_priv *priv = netdev_priv(ndev);
3069 unsigned long flags;
3070
3071 if (!netif_running(ndev))
3072 return 0;
3073
3074 spin_lock_irqsave(&priv->lock, flags);
3075
3076 /* Power Down bit, into the PM register, is cleared
3077 * automatically as soon as a magic packet or a Wake-up frame
3078 * is received. Anyway, it's better to manually clear
3079 * this bit because it can generate problems while resuming
3080 * from another devices (e.g. serial console).
3081 */
3082 if (device_may_wakeup(priv->device)) {
3083 priv->hw->mac->pmt(priv->hw, 0);
3084 priv->irq_wake = 0;
3085 } else {
3086 pinctrl_pm_select_default_state(priv->device);
3087 /* enable the clk prevously disabled */
3088 clk_enable(priv->stmmac_clk);
3089 clk_enable(priv->pclk);
3090 /* reset the phy so that it's ready */
3091 if (priv->mii)
3092 stmmac_mdio_reset(priv->mii);
3093 }
3094
3095 netif_device_attach(ndev);
3096
3097 init_dma_desc_rings(ndev, GFP_ATOMIC);
3098 stmmac_hw_setup(ndev, false);
3099 stmmac_init_tx_coalesce(priv);
3100
3101 napi_enable(&priv->napi);
3102
3103 netif_start_queue(ndev);
3104
3105 spin_unlock_irqrestore(&priv->lock, flags);
3106
3107 if (priv->phydev)
3108 phy_start(priv->phydev);
3109
3110 return 0;
3111 }
3112 EXPORT_SYMBOL_GPL(stmmac_resume);
3113
3114 #ifndef MODULE
3115 static int __init stmmac_cmdline_opt(char *str)
3116 {
3117 char *opt;
3118
3119 if (!str || !*str)
3120 return -EINVAL;
3121 while ((opt = strsep(&str, ",")) != NULL) {
3122 if (!strncmp(opt, "debug:", 6)) {
3123 if (kstrtoint(opt + 6, 0, &debug))
3124 goto err;
3125 } else if (!strncmp(opt, "phyaddr:", 8)) {
3126 if (kstrtoint(opt + 8, 0, &phyaddr))
3127 goto err;
3128 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3129 if (kstrtoint(opt + 11, 0, &dma_txsize))
3130 goto err;
3131 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3132 if (kstrtoint(opt + 11, 0, &dma_rxsize))
3133 goto err;
3134 } else if (!strncmp(opt, "buf_sz:", 7)) {
3135 if (kstrtoint(opt + 7, 0, &buf_sz))
3136 goto err;
3137 } else if (!strncmp(opt, "tc:", 3)) {
3138 if (kstrtoint(opt + 3, 0, &tc))
3139 goto err;
3140 } else if (!strncmp(opt, "watchdog:", 9)) {
3141 if (kstrtoint(opt + 9, 0, &watchdog))
3142 goto err;
3143 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3144 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3145 goto err;
3146 } else if (!strncmp(opt, "pause:", 6)) {
3147 if (kstrtoint(opt + 6, 0, &pause))
3148 goto err;
3149 } else if (!strncmp(opt, "eee_timer:", 10)) {
3150 if (kstrtoint(opt + 10, 0, &eee_timer))
3151 goto err;
3152 } else if (!strncmp(opt, "chain_mode:", 11)) {
3153 if (kstrtoint(opt + 11, 0, &chain_mode))
3154 goto err;
3155 }
3156 }
3157 return 0;
3158
3159 err:
3160 pr_err("%s: ERROR broken module parameter conversion", __func__);
3161 return -EINVAL;
3162 }
3163
3164 __setup("stmmaceth=", stmmac_cmdline_opt);
3165 #endif /* MODULE */
3166
3167 static int __init stmmac_init(void)
3168 {
3169 #ifdef CONFIG_DEBUG_FS
3170 /* Create debugfs main directory if it doesn't exist yet */
3171 if (!stmmac_fs_dir) {
3172 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3173
3174 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3175 pr_err("ERROR %s, debugfs create directory failed\n",
3176 STMMAC_RESOURCE_NAME);
3177
3178 return -ENOMEM;
3179 }
3180 }
3181 #endif
3182
3183 return 0;
3184 }
3185
3186 static void __exit stmmac_exit(void)
3187 {
3188 #ifdef CONFIG_DEBUG_FS
3189 debugfs_remove_recursive(stmmac_fs_dir);
3190 #endif
3191 }
3192
3193 module_init(stmmac_init)
3194 module_exit(stmmac_exit)
3195
3196 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3197 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3198 MODULE_LICENSE("GPL");