]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
max17042_battery: Fix build errors caused by missing REGMAP_I2C config
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53
54 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
55 #define JUMBO_LEN 9000
56
57 /* Module parameters */
58 #define TX_TIMEO 5000
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
62
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
66
67 int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
70
71 #define DMA_TX_SIZE 256
72 static int dma_txsize = DMA_TX_SIZE;
73 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
74 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
75
76 #define DMA_RX_SIZE 256
77 static int dma_rxsize = DMA_RX_SIZE;
78 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
80
81 static int flow_ctrl = FLOW_OFF;
82 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
84
85 static int pause = PAUSE_TIME;
86 module_param(pause, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
88
89 #define TC_DEFAULT 64
90 static int tc = TC_DEFAULT;
91 module_param(tc, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(tc, "DMA threshold control value");
93
94 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
95 static int buf_sz = DMA_BUFFER_SIZE;
96 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
98
99 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
100 NETIF_MSG_LINK | NETIF_MSG_IFUP |
101 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
102
103 #define STMMAC_DEFAULT_LPI_TIMER 1000
104 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
105 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
107 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
108
109 /* By default the driver will use the ring mode to manage tx and rx descriptors
110 * but passing this value so user can force to use the chain instead of the ring
111 */
112 static unsigned int chain_mode;
113 module_param(chain_mode, int, S_IRUGO);
114 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
115
116 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
117
118 #ifdef CONFIG_STMMAC_DEBUG_FS
119 static int stmmac_init_fs(struct net_device *dev);
120 static void stmmac_exit_fs(void);
121 #endif
122
123 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124
125 /**
126 * stmmac_verify_args - verify the driver parameters.
127 * Description: it verifies if some wrong parameter is passed to the driver.
128 * Note that wrong parameters are replaced with the default values.
129 */
130 static void stmmac_verify_args(void)
131 {
132 if (unlikely(watchdog < 0))
133 watchdog = TX_TIMEO;
134 if (unlikely(dma_rxsize < 0))
135 dma_rxsize = DMA_RX_SIZE;
136 if (unlikely(dma_txsize < 0))
137 dma_txsize = DMA_TX_SIZE;
138 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
139 buf_sz = DMA_BUFFER_SIZE;
140 if (unlikely(flow_ctrl > 1))
141 flow_ctrl = FLOW_AUTO;
142 else if (likely(flow_ctrl < 0))
143 flow_ctrl = FLOW_OFF;
144 if (unlikely((pause < 0) || (pause > 0xffff)))
145 pause = PAUSE_TIME;
146 if (eee_timer < 0)
147 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
148 }
149
150 /**
151 * stmmac_clk_csr_set - dynamically set the MDC clock
152 * @priv: driver private structure
153 * Description: this is to dynamically set the MDC clock according to the csr
154 * clock input.
155 * Note:
156 * If a specific clk_csr value is passed from the platform
157 * this means that the CSR Clock Range selection cannot be
158 * changed at run-time and it is fixed (as reported in the driver
159 * documentation). Viceversa the driver will try to set the MDC
160 * clock dynamically according to the actual clock input.
161 */
162 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
163 {
164 u32 clk_rate;
165
166 clk_rate = clk_get_rate(priv->stmmac_clk);
167
168 /* Platform provided default clk_csr would be assumed valid
169 * for all other cases except for the below mentioned ones.
170 * For values higher than the IEEE 802.3 specified frequency
171 * we can not estimate the proper divider as it is not known
172 * the frequency of clk_csr_i. So we do not change the default
173 * divider.
174 */
175 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176 if (clk_rate < CSR_F_35M)
177 priv->clk_csr = STMMAC_CSR_20_35M;
178 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179 priv->clk_csr = STMMAC_CSR_35_60M;
180 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181 priv->clk_csr = STMMAC_CSR_60_100M;
182 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183 priv->clk_csr = STMMAC_CSR_100_150M;
184 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185 priv->clk_csr = STMMAC_CSR_150_250M;
186 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187 priv->clk_csr = STMMAC_CSR_250_300M;
188 }
189 }
190
191 static void print_pkt(unsigned char *buf, int len)
192 {
193 int j;
194 pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
195 for (j = 0; j < len; j++) {
196 if ((j % 16) == 0)
197 pr_debug("\n %03x:", j);
198 pr_debug(" %02x", buf[j]);
199 }
200 pr_debug("\n");
201 }
202
203 /* minimum number of free TX descriptors required to wake up TX process */
204 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
205
206 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
207 {
208 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
209 }
210
211 /**
212 * stmmac_hw_fix_mac_speed: callback for speed selection
213 * @priv: driver private structure
214 * Description: on some platforms (e.g. ST), some HW system configuraton
215 * registers have to be set according to the link speed negotiated.
216 */
217 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
218 {
219 struct phy_device *phydev = priv->phydev;
220
221 if (likely(priv->plat->fix_mac_speed))
222 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
223 }
224
225 /**
226 * stmmac_enable_eee_mode: Check and enter in LPI mode
227 * @priv: driver private structure
228 * Description: this function is to verify and enter in LPI mode for EEE.
229 */
230 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
231 {
232 /* Check and enter in LPI mode */
233 if ((priv->dirty_tx == priv->cur_tx) &&
234 (priv->tx_path_in_lpi_mode == false))
235 priv->hw->mac->set_eee_mode(priv->ioaddr);
236 }
237
238 /**
239 * stmmac_disable_eee_mode: disable/exit from EEE
240 * @priv: driver private structure
241 * Description: this function is to exit and disable EEE in case of
242 * LPI state is true. This is called by the xmit.
243 */
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246 priv->hw->mac->reset_eee_mode(priv->ioaddr);
247 del_timer_sync(&priv->eee_ctrl_timer);
248 priv->tx_path_in_lpi_mode = false;
249 }
250
251 /**
252 * stmmac_eee_ctrl_timer: EEE TX SW timer.
253 * @arg : data hook
254 * Description:
255 * if there is no data transfer and if we are not in LPI state,
256 * then MAC Transmitter can be moved to LPI state.
257 */
258 static void stmmac_eee_ctrl_timer(unsigned long arg)
259 {
260 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
261
262 stmmac_enable_eee_mode(priv);
263 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
264 }
265
266 /**
267 * stmmac_eee_init: init EEE
268 * @priv: driver private structure
269 * Description:
270 * If the EEE support has been enabled while configuring the driver,
271 * if the GMAC actually supports the EEE (from the HW cap reg) and the
272 * phy can also manage EEE, so enable the LPI state and start the timer
273 * to verify if the tx path can enter in LPI state.
274 */
275 bool stmmac_eee_init(struct stmmac_priv *priv)
276 {
277 bool ret = false;
278
279 /* Using PCS we cannot dial with the phy registers at this stage
280 * so we do not support extra feature like EEE.
281 */
282 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
283 (priv->pcs == STMMAC_PCS_RTBI))
284 goto out;
285
286 /* MAC core supports the EEE feature. */
287 if (priv->dma_cap.eee) {
288 /* Check if the PHY supports EEE */
289 if (phy_init_eee(priv->phydev, 1))
290 goto out;
291
292 if (!priv->eee_active) {
293 priv->eee_active = 1;
294 init_timer(&priv->eee_ctrl_timer);
295 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
296 priv->eee_ctrl_timer.data = (unsigned long)priv;
297 priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
298 add_timer(&priv->eee_ctrl_timer);
299
300 priv->hw->mac->set_eee_timer(priv->ioaddr,
301 STMMAC_DEFAULT_LIT_LS,
302 priv->tx_lpi_timer);
303 } else
304 /* Set HW EEE according to the speed */
305 priv->hw->mac->set_eee_pls(priv->ioaddr,
306 priv->phydev->link);
307
308 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
309
310 ret = true;
311 }
312 out:
313 return ret;
314 }
315
316 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
317 * @priv: driver private structure
318 * @entry : descriptor index to be used.
319 * @skb : the socket buffer
320 * Description :
321 * This function will read timestamp from the descriptor & pass it to stack.
322 * and also perform some sanity checks.
323 */
324 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
325 unsigned int entry, struct sk_buff *skb)
326 {
327 struct skb_shared_hwtstamps shhwtstamp;
328 u64 ns;
329 void *desc = NULL;
330
331 if (!priv->hwts_tx_en)
332 return;
333
334 /* exit if skb doesn't support hw tstamp */
335 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
336 return;
337
338 if (priv->adv_ts)
339 desc = (priv->dma_etx + entry);
340 else
341 desc = (priv->dma_tx + entry);
342
343 /* check tx tstamp status */
344 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
345 return;
346
347 /* get the valid tstamp */
348 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
349
350 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
351 shhwtstamp.hwtstamp = ns_to_ktime(ns);
352 /* pass tstamp to stack */
353 skb_tstamp_tx(skb, &shhwtstamp);
354
355 return;
356 }
357
358 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
359 * @priv: driver private structure
360 * @entry : descriptor index to be used.
361 * @skb : the socket buffer
362 * Description :
363 * This function will read received packet's timestamp from the descriptor
364 * and pass it to stack. It also perform some sanity checks.
365 */
366 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
367 unsigned int entry, struct sk_buff *skb)
368 {
369 struct skb_shared_hwtstamps *shhwtstamp = NULL;
370 u64 ns;
371 void *desc = NULL;
372
373 if (!priv->hwts_rx_en)
374 return;
375
376 if (priv->adv_ts)
377 desc = (priv->dma_erx + entry);
378 else
379 desc = (priv->dma_rx + entry);
380
381 /* exit if rx tstamp is not valid */
382 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
383 return;
384
385 /* get valid tstamp */
386 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
387 shhwtstamp = skb_hwtstamps(skb);
388 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
389 shhwtstamp->hwtstamp = ns_to_ktime(ns);
390 }
391
392 /**
393 * stmmac_hwtstamp_ioctl - control hardware timestamping.
394 * @dev: device pointer.
395 * @ifr: An IOCTL specefic structure, that can contain a pointer to
396 * a proprietary structure used to pass information to the driver.
397 * Description:
398 * This function configures the MAC to enable/disable both outgoing(TX)
399 * and incoming(RX) packets time stamping based on user input.
400 * Return Value:
401 * 0 on success and an appropriate -ve integer on failure.
402 */
403 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
404 {
405 struct stmmac_priv *priv = netdev_priv(dev);
406 struct hwtstamp_config config;
407 struct timespec now;
408 u64 temp = 0;
409 u32 ptp_v2 = 0;
410 u32 tstamp_all = 0;
411 u32 ptp_over_ipv4_udp = 0;
412 u32 ptp_over_ipv6_udp = 0;
413 u32 ptp_over_ethernet = 0;
414 u32 snap_type_sel = 0;
415 u32 ts_master_en = 0;
416 u32 ts_event_en = 0;
417 u32 value = 0;
418
419 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
420 netdev_alert(priv->dev, "No support for HW time stamping\n");
421 priv->hwts_tx_en = 0;
422 priv->hwts_rx_en = 0;
423
424 return -EOPNOTSUPP;
425 }
426
427 if (copy_from_user(&config, ifr->ifr_data,
428 sizeof(struct hwtstamp_config)))
429 return -EFAULT;
430
431 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
432 __func__, config.flags, config.tx_type, config.rx_filter);
433
434 /* reserved for future extensions */
435 if (config.flags)
436 return -EINVAL;
437
438 if (config.tx_type != HWTSTAMP_TX_OFF &&
439 config.tx_type != HWTSTAMP_TX_ON)
440 return -ERANGE;
441
442 if (priv->adv_ts) {
443 switch (config.rx_filter) {
444 case HWTSTAMP_FILTER_NONE:
445 /* time stamp no incoming packet at all */
446 config.rx_filter = HWTSTAMP_FILTER_NONE;
447 break;
448
449 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
450 /* PTP v1, UDP, any kind of event packet */
451 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
452 /* take time stamp for all event messages */
453 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
454
455 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
456 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
457 break;
458
459 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
460 /* PTP v1, UDP, Sync packet */
461 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
462 /* take time stamp for SYNC messages only */
463 ts_event_en = PTP_TCR_TSEVNTENA;
464
465 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
466 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
467 break;
468
469 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
470 /* PTP v1, UDP, Delay_req packet */
471 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
472 /* take time stamp for Delay_Req messages only */
473 ts_master_en = PTP_TCR_TSMSTRENA;
474 ts_event_en = PTP_TCR_TSEVNTENA;
475
476 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
477 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
478 break;
479
480 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
481 /* PTP v2, UDP, any kind of event packet */
482 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
483 ptp_v2 = PTP_TCR_TSVER2ENA;
484 /* take time stamp for all event messages */
485 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
486
487 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
488 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
489 break;
490
491 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
492 /* PTP v2, UDP, Sync packet */
493 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
494 ptp_v2 = PTP_TCR_TSVER2ENA;
495 /* take time stamp for SYNC messages only */
496 ts_event_en = PTP_TCR_TSEVNTENA;
497
498 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
499 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
500 break;
501
502 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
503 /* PTP v2, UDP, Delay_req packet */
504 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
505 ptp_v2 = PTP_TCR_TSVER2ENA;
506 /* take time stamp for Delay_Req messages only */
507 ts_master_en = PTP_TCR_TSMSTRENA;
508 ts_event_en = PTP_TCR_TSEVNTENA;
509
510 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
511 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
512 break;
513
514 case HWTSTAMP_FILTER_PTP_V2_EVENT:
515 /* PTP v2/802.AS1 any layer, any kind of event packet */
516 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
517 ptp_v2 = PTP_TCR_TSVER2ENA;
518 /* take time stamp for all event messages */
519 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
520
521 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
522 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
523 ptp_over_ethernet = PTP_TCR_TSIPENA;
524 break;
525
526 case HWTSTAMP_FILTER_PTP_V2_SYNC:
527 /* PTP v2/802.AS1, any layer, Sync packet */
528 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
529 ptp_v2 = PTP_TCR_TSVER2ENA;
530 /* take time stamp for SYNC messages only */
531 ts_event_en = PTP_TCR_TSEVNTENA;
532
533 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
534 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
535 ptp_over_ethernet = PTP_TCR_TSIPENA;
536 break;
537
538 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
539 /* PTP v2/802.AS1, any layer, Delay_req packet */
540 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
541 ptp_v2 = PTP_TCR_TSVER2ENA;
542 /* take time stamp for Delay_Req messages only */
543 ts_master_en = PTP_TCR_TSMSTRENA;
544 ts_event_en = PTP_TCR_TSEVNTENA;
545
546 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
547 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
548 ptp_over_ethernet = PTP_TCR_TSIPENA;
549 break;
550
551 case HWTSTAMP_FILTER_ALL:
552 /* time stamp any incoming packet */
553 config.rx_filter = HWTSTAMP_FILTER_ALL;
554 tstamp_all = PTP_TCR_TSENALL;
555 break;
556
557 default:
558 return -ERANGE;
559 }
560 } else {
561 switch (config.rx_filter) {
562 case HWTSTAMP_FILTER_NONE:
563 config.rx_filter = HWTSTAMP_FILTER_NONE;
564 break;
565 default:
566 /* PTP v1, UDP, any kind of event packet */
567 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
568 break;
569 }
570 }
571 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
572 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
573
574 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
575 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
576 else {
577 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
578 tstamp_all | ptp_v2 | ptp_over_ethernet |
579 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
580 ts_master_en | snap_type_sel);
581
582 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
583
584 /* program Sub Second Increment reg */
585 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
586
587 /* calculate default added value:
588 * formula is :
589 * addend = (2^32)/freq_div_ratio;
590 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
591 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
592 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
593 * achive 20ns accuracy.
594 *
595 * 2^x * y == (y << x), hence
596 * 2^32 * 50000000 ==> (50000000 << 32)
597 */
598 temp = (u64) (50000000ULL << 32);
599 priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
600 priv->hw->ptp->config_addend(priv->ioaddr,
601 priv->default_addend);
602
603 /* initialize system time */
604 getnstimeofday(&now);
605 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
606 now.tv_nsec);
607 }
608
609 return copy_to_user(ifr->ifr_data, &config,
610 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
611 }
612
613 /**
614 * stmmac_init_ptp: init PTP
615 * @priv: driver private structure
616 * Description: this is to verify if the HW supports the PTPv1 or v2.
617 * This is done by looking at the HW cap. register.
618 * Also it registers the ptp driver.
619 */
620 static int stmmac_init_ptp(struct stmmac_priv *priv)
621 {
622 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
623 return -EOPNOTSUPP;
624
625 if (netif_msg_hw(priv)) {
626 if (priv->dma_cap.time_stamp) {
627 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
628 priv->adv_ts = 0;
629 }
630 if (priv->dma_cap.atime_stamp && priv->extend_desc) {
631 pr_debug
632 ("IEEE 1588-2008 Advanced Time Stamp supported\n");
633 priv->adv_ts = 1;
634 }
635 }
636
637 priv->hw->ptp = &stmmac_ptp;
638 priv->hwts_tx_en = 0;
639 priv->hwts_rx_en = 0;
640
641 return stmmac_ptp_register(priv);
642 }
643
644 static void stmmac_release_ptp(struct stmmac_priv *priv)
645 {
646 stmmac_ptp_unregister(priv);
647 }
648
649 /**
650 * stmmac_adjust_link
651 * @dev: net device structure
652 * Description: it adjusts the link parameters.
653 */
654 static void stmmac_adjust_link(struct net_device *dev)
655 {
656 struct stmmac_priv *priv = netdev_priv(dev);
657 struct phy_device *phydev = priv->phydev;
658 unsigned long flags;
659 int new_state = 0;
660 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
661
662 if (phydev == NULL)
663 return;
664
665 spin_lock_irqsave(&priv->lock, flags);
666
667 if (phydev->link) {
668 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
669
670 /* Now we make sure that we can be in full duplex mode.
671 * If not, we operate in half-duplex mode. */
672 if (phydev->duplex != priv->oldduplex) {
673 new_state = 1;
674 if (!(phydev->duplex))
675 ctrl &= ~priv->hw->link.duplex;
676 else
677 ctrl |= priv->hw->link.duplex;
678 priv->oldduplex = phydev->duplex;
679 }
680 /* Flow Control operation */
681 if (phydev->pause)
682 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
683 fc, pause_time);
684
685 if (phydev->speed != priv->speed) {
686 new_state = 1;
687 switch (phydev->speed) {
688 case 1000:
689 if (likely(priv->plat->has_gmac))
690 ctrl &= ~priv->hw->link.port;
691 stmmac_hw_fix_mac_speed(priv);
692 break;
693 case 100:
694 case 10:
695 if (priv->plat->has_gmac) {
696 ctrl |= priv->hw->link.port;
697 if (phydev->speed == SPEED_100) {
698 ctrl |= priv->hw->link.speed;
699 } else {
700 ctrl &= ~(priv->hw->link.speed);
701 }
702 } else {
703 ctrl &= ~priv->hw->link.port;
704 }
705 stmmac_hw_fix_mac_speed(priv);
706 break;
707 default:
708 if (netif_msg_link(priv))
709 pr_warn("%s: Speed (%d) not 10/100\n",
710 dev->name, phydev->speed);
711 break;
712 }
713
714 priv->speed = phydev->speed;
715 }
716
717 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
718
719 if (!priv->oldlink) {
720 new_state = 1;
721 priv->oldlink = 1;
722 }
723 } else if (priv->oldlink) {
724 new_state = 1;
725 priv->oldlink = 0;
726 priv->speed = 0;
727 priv->oldduplex = -1;
728 }
729
730 if (new_state && netif_msg_link(priv))
731 phy_print_status(phydev);
732
733 /* At this stage, it could be needed to setup the EEE or adjust some
734 * MAC related HW registers.
735 */
736 priv->eee_enabled = stmmac_eee_init(priv);
737
738 spin_unlock_irqrestore(&priv->lock, flags);
739 }
740
741 /**
742 * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
743 * @priv: driver private structure
744 * Description: this is to verify if the HW supports the PCS.
745 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
746 * configured for the TBI, RTBI, or SGMII PHY interface.
747 */
748 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
749 {
750 int interface = priv->plat->interface;
751
752 if (priv->dma_cap.pcs) {
753 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
754 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
755 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
756 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
757 pr_debug("STMMAC: PCS RGMII support enable\n");
758 priv->pcs = STMMAC_PCS_RGMII;
759 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
760 pr_debug("STMMAC: PCS SGMII support enable\n");
761 priv->pcs = STMMAC_PCS_SGMII;
762 }
763 }
764 }
765
766 /**
767 * stmmac_init_phy - PHY initialization
768 * @dev: net device structure
769 * Description: it initializes the driver's PHY state, and attaches the PHY
770 * to the mac driver.
771 * Return value:
772 * 0 on success
773 */
774 static int stmmac_init_phy(struct net_device *dev)
775 {
776 struct stmmac_priv *priv = netdev_priv(dev);
777 struct phy_device *phydev;
778 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
779 char bus_id[MII_BUS_ID_SIZE];
780 int interface = priv->plat->interface;
781 priv->oldlink = 0;
782 priv->speed = 0;
783 priv->oldduplex = -1;
784
785 if (priv->plat->phy_bus_name)
786 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
787 priv->plat->phy_bus_name, priv->plat->bus_id);
788 else
789 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
790 priv->plat->bus_id);
791
792 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
793 priv->plat->phy_addr);
794 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
795
796 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
797
798 if (IS_ERR(phydev)) {
799 pr_err("%s: Could not attach to PHY\n", dev->name);
800 return PTR_ERR(phydev);
801 }
802
803 /* Stop Advertising 1000BASE Capability if interface is not GMII */
804 if ((interface == PHY_INTERFACE_MODE_MII) ||
805 (interface == PHY_INTERFACE_MODE_RMII))
806 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
807 SUPPORTED_1000baseT_Full);
808
809 /*
810 * Broken HW is sometimes missing the pull-up resistor on the
811 * MDIO line, which results in reads to non-existent devices returning
812 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
813 * device as well.
814 * Note: phydev->phy_id is the result of reading the UID PHY registers.
815 */
816 if (phydev->phy_id == 0) {
817 phy_disconnect(phydev);
818 return -ENODEV;
819 }
820 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
821 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
822
823 priv->phydev = phydev;
824
825 return 0;
826 }
827
828 /**
829 * stmmac_display_ring: display ring
830 * @head: pointer to the head of the ring passed.
831 * @size: size of the ring.
832 * @extend_desc: to verify if extended descriptors are used.
833 * Description: display the control/status and buffer descriptors.
834 */
835 static void stmmac_display_ring(void *head, int size, int extend_desc)
836 {
837 int i;
838 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
839 struct dma_desc *p = (struct dma_desc *)head;
840
841 for (i = 0; i < size; i++) {
842 u64 x;
843 if (extend_desc) {
844 x = *(u64 *) ep;
845 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
846 i, (unsigned int)virt_to_phys(ep),
847 (unsigned int)x, (unsigned int)(x >> 32),
848 ep->basic.des2, ep->basic.des3);
849 ep++;
850 } else {
851 x = *(u64 *) p;
852 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
853 i, (unsigned int)virt_to_phys(p),
854 (unsigned int)x, (unsigned int)(x >> 32),
855 p->des2, p->des3);
856 p++;
857 }
858 pr_info("\n");
859 }
860 }
861
862 static void stmmac_display_rings(struct stmmac_priv *priv)
863 {
864 unsigned int txsize = priv->dma_tx_size;
865 unsigned int rxsize = priv->dma_rx_size;
866
867 if (priv->extend_desc) {
868 pr_info("Extended RX descriptor ring:\n");
869 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
870 pr_info("Extended TX descriptor ring:\n");
871 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
872 } else {
873 pr_info("RX descriptor ring:\n");
874 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
875 pr_info("TX descriptor ring:\n");
876 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
877 }
878 }
879
880 static int stmmac_set_bfsize(int mtu, int bufsize)
881 {
882 int ret = bufsize;
883
884 if (mtu >= BUF_SIZE_4KiB)
885 ret = BUF_SIZE_8KiB;
886 else if (mtu >= BUF_SIZE_2KiB)
887 ret = BUF_SIZE_4KiB;
888 else if (mtu >= DMA_BUFFER_SIZE)
889 ret = BUF_SIZE_2KiB;
890 else
891 ret = DMA_BUFFER_SIZE;
892
893 return ret;
894 }
895
896 /**
897 * stmmac_clear_descriptors: clear descriptors
898 * @priv: driver private structure
899 * Description: this function is called to clear the tx and rx descriptors
900 * in case of both basic and extended descriptors are used.
901 */
902 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
903 {
904 int i;
905 unsigned int txsize = priv->dma_tx_size;
906 unsigned int rxsize = priv->dma_rx_size;
907
908 /* Clear the Rx/Tx descriptors */
909 for (i = 0; i < rxsize; i++)
910 if (priv->extend_desc)
911 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
912 priv->use_riwt, priv->mode,
913 (i == rxsize - 1));
914 else
915 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
916 priv->use_riwt, priv->mode,
917 (i == rxsize - 1));
918 for (i = 0; i < txsize; i++)
919 if (priv->extend_desc)
920 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
921 priv->mode,
922 (i == txsize - 1));
923 else
924 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
925 priv->mode,
926 (i == txsize - 1));
927 }
928
929 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
930 int i)
931 {
932 struct sk_buff *skb;
933
934 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
935 GFP_KERNEL);
936 if (!skb) {
937 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
938 return -ENOMEM;
939 }
940 skb_reserve(skb, NET_IP_ALIGN);
941 priv->rx_skbuff[i] = skb;
942 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
943 priv->dma_buf_sz,
944 DMA_FROM_DEVICE);
945 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
946 pr_err("%s: DMA mapping error\n", __func__);
947 dev_kfree_skb_any(skb);
948 return -EINVAL;
949 }
950
951 p->des2 = priv->rx_skbuff_dma[i];
952
953 if ((priv->mode == STMMAC_RING_MODE) &&
954 (priv->dma_buf_sz == BUF_SIZE_16KiB))
955 priv->hw->ring->init_desc3(p);
956
957 return 0;
958 }
959
960 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
961 {
962 if (priv->rx_skbuff[i]) {
963 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
964 priv->dma_buf_sz, DMA_FROM_DEVICE);
965 dev_kfree_skb_any(priv->rx_skbuff[i]);
966 }
967 priv->rx_skbuff[i] = NULL;
968 }
969
970 /**
971 * init_dma_desc_rings - init the RX/TX descriptor rings
972 * @dev: net device structure
973 * Description: this function initializes the DMA RX/TX descriptors
974 * and allocates the socket buffers. It suppors the chained and ring
975 * modes.
976 */
977 static int init_dma_desc_rings(struct net_device *dev)
978 {
979 int i;
980 struct stmmac_priv *priv = netdev_priv(dev);
981 unsigned int txsize = priv->dma_tx_size;
982 unsigned int rxsize = priv->dma_rx_size;
983 unsigned int bfsize = 0;
984 int ret = -ENOMEM;
985
986 /* Set the max buffer size according to the DESC mode
987 * and the MTU. Note that RING mode allows 16KiB bsize.
988 */
989 if (priv->mode == STMMAC_RING_MODE)
990 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
991
992 if (bfsize < BUF_SIZE_16KiB)
993 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
994
995 if (netif_msg_probe(priv))
996 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
997 txsize, rxsize, bfsize);
998
999 if (priv->extend_desc) {
1000 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1001 sizeof(struct
1002 dma_extended_desc),
1003 &priv->dma_rx_phy,
1004 GFP_KERNEL);
1005 if (!priv->dma_erx)
1006 goto err_dma;
1007
1008 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1009 sizeof(struct
1010 dma_extended_desc),
1011 &priv->dma_tx_phy,
1012 GFP_KERNEL);
1013 if (!priv->dma_etx) {
1014 dma_free_coherent(priv->device, priv->dma_rx_size *
1015 sizeof(struct dma_extended_desc),
1016 priv->dma_erx, priv->dma_rx_phy);
1017 goto err_dma;
1018 }
1019 } else {
1020 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1021 sizeof(struct dma_desc),
1022 &priv->dma_rx_phy,
1023 GFP_KERNEL);
1024 if (!priv->dma_rx)
1025 goto err_dma;
1026
1027 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1028 sizeof(struct dma_desc),
1029 &priv->dma_tx_phy,
1030 GFP_KERNEL);
1031 if (!priv->dma_tx) {
1032 dma_free_coherent(priv->device, priv->dma_rx_size *
1033 sizeof(struct dma_desc),
1034 priv->dma_rx, priv->dma_rx_phy);
1035 goto err_dma;
1036 }
1037 }
1038
1039 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1040 GFP_KERNEL);
1041 if (!priv->rx_skbuff_dma)
1042 goto err_rx_skbuff_dma;
1043
1044 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1045 GFP_KERNEL);
1046 if (!priv->rx_skbuff)
1047 goto err_rx_skbuff;
1048
1049 priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1050 GFP_KERNEL);
1051 if (!priv->tx_skbuff_dma)
1052 goto err_tx_skbuff_dma;
1053
1054 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1055 GFP_KERNEL);
1056 if (!priv->tx_skbuff)
1057 goto err_tx_skbuff;
1058
1059 if (netif_msg_probe(priv)) {
1060 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1061 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1062
1063 /* RX INITIALIZATION */
1064 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1065 }
1066 for (i = 0; i < rxsize; i++) {
1067 struct dma_desc *p;
1068 if (priv->extend_desc)
1069 p = &((priv->dma_erx + i)->basic);
1070 else
1071 p = priv->dma_rx + i;
1072
1073 ret = stmmac_init_rx_buffers(priv, p, i);
1074 if (ret)
1075 goto err_init_rx_buffers;
1076
1077 if (netif_msg_probe(priv))
1078 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1079 priv->rx_skbuff[i]->data,
1080 (unsigned int)priv->rx_skbuff_dma[i]);
1081 }
1082 priv->cur_rx = 0;
1083 priv->dirty_rx = (unsigned int)(i - rxsize);
1084 priv->dma_buf_sz = bfsize;
1085 buf_sz = bfsize;
1086
1087 /* Setup the chained descriptor addresses */
1088 if (priv->mode == STMMAC_CHAIN_MODE) {
1089 if (priv->extend_desc) {
1090 priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1091 rxsize, 1);
1092 priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1093 txsize, 1);
1094 } else {
1095 priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1096 rxsize, 0);
1097 priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1098 txsize, 0);
1099 }
1100 }
1101
1102 /* TX INITIALIZATION */
1103 for (i = 0; i < txsize; i++) {
1104 struct dma_desc *p;
1105 if (priv->extend_desc)
1106 p = &((priv->dma_etx + i)->basic);
1107 else
1108 p = priv->dma_tx + i;
1109 p->des2 = 0;
1110 priv->tx_skbuff_dma[i] = 0;
1111 priv->tx_skbuff[i] = NULL;
1112 }
1113
1114 priv->dirty_tx = 0;
1115 priv->cur_tx = 0;
1116
1117 stmmac_clear_descriptors(priv);
1118
1119 if (netif_msg_hw(priv))
1120 stmmac_display_rings(priv);
1121
1122 return 0;
1123 err_init_rx_buffers:
1124 while (--i >= 0)
1125 stmmac_free_rx_buffers(priv, i);
1126 kfree(priv->tx_skbuff);
1127 err_tx_skbuff:
1128 kfree(priv->tx_skbuff_dma);
1129 err_tx_skbuff_dma:
1130 kfree(priv->rx_skbuff);
1131 err_rx_skbuff:
1132 kfree(priv->rx_skbuff_dma);
1133 err_rx_skbuff_dma:
1134 if (priv->extend_desc) {
1135 dma_free_coherent(priv->device, priv->dma_tx_size *
1136 sizeof(struct dma_extended_desc),
1137 priv->dma_etx, priv->dma_tx_phy);
1138 dma_free_coherent(priv->device, priv->dma_rx_size *
1139 sizeof(struct dma_extended_desc),
1140 priv->dma_erx, priv->dma_rx_phy);
1141 } else {
1142 dma_free_coherent(priv->device,
1143 priv->dma_tx_size * sizeof(struct dma_desc),
1144 priv->dma_tx, priv->dma_tx_phy);
1145 dma_free_coherent(priv->device,
1146 priv->dma_rx_size * sizeof(struct dma_desc),
1147 priv->dma_rx, priv->dma_rx_phy);
1148 }
1149 err_dma:
1150 return ret;
1151 }
1152
1153 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1154 {
1155 int i;
1156
1157 for (i = 0; i < priv->dma_rx_size; i++)
1158 stmmac_free_rx_buffers(priv, i);
1159 }
1160
1161 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1162 {
1163 int i;
1164
1165 for (i = 0; i < priv->dma_tx_size; i++) {
1166 if (priv->tx_skbuff[i] != NULL) {
1167 struct dma_desc *p;
1168 if (priv->extend_desc)
1169 p = &((priv->dma_etx + i)->basic);
1170 else
1171 p = priv->dma_tx + i;
1172
1173 if (priv->tx_skbuff_dma[i])
1174 dma_unmap_single(priv->device,
1175 priv->tx_skbuff_dma[i],
1176 priv->hw->desc->get_tx_len(p),
1177 DMA_TO_DEVICE);
1178 dev_kfree_skb_any(priv->tx_skbuff[i]);
1179 priv->tx_skbuff[i] = NULL;
1180 priv->tx_skbuff_dma[i] = 0;
1181 }
1182 }
1183 }
1184
1185 static void free_dma_desc_resources(struct stmmac_priv *priv)
1186 {
1187 /* Release the DMA TX/RX socket buffers */
1188 dma_free_rx_skbufs(priv);
1189 dma_free_tx_skbufs(priv);
1190
1191 /* Free DMA regions of consistent memory previously allocated */
1192 if (!priv->extend_desc) {
1193 dma_free_coherent(priv->device,
1194 priv->dma_tx_size * sizeof(struct dma_desc),
1195 priv->dma_tx, priv->dma_tx_phy);
1196 dma_free_coherent(priv->device,
1197 priv->dma_rx_size * sizeof(struct dma_desc),
1198 priv->dma_rx, priv->dma_rx_phy);
1199 } else {
1200 dma_free_coherent(priv->device, priv->dma_tx_size *
1201 sizeof(struct dma_extended_desc),
1202 priv->dma_etx, priv->dma_tx_phy);
1203 dma_free_coherent(priv->device, priv->dma_rx_size *
1204 sizeof(struct dma_extended_desc),
1205 priv->dma_erx, priv->dma_rx_phy);
1206 }
1207 kfree(priv->rx_skbuff_dma);
1208 kfree(priv->rx_skbuff);
1209 kfree(priv->tx_skbuff_dma);
1210 kfree(priv->tx_skbuff);
1211 }
1212
1213 /**
1214 * stmmac_dma_operation_mode - HW DMA operation mode
1215 * @priv: driver private structure
1216 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
1217 * or Store-And-Forward capability.
1218 */
1219 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1220 {
1221 if (priv->plat->force_thresh_dma_mode)
1222 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1223 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1224 /*
1225 * In case of GMAC, SF mode can be enabled
1226 * to perform the TX COE in HW. This depends on:
1227 * 1) TX COE if actually supported
1228 * 2) There is no bugged Jumbo frame support
1229 * that needs to not insert csum in the TDES.
1230 */
1231 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1232 tc = SF_DMA_MODE;
1233 } else
1234 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1235 }
1236
1237 /**
1238 * stmmac_tx_clean:
1239 * @priv: driver private structure
1240 * Description: it reclaims resources after transmission completes.
1241 */
1242 static void stmmac_tx_clean(struct stmmac_priv *priv)
1243 {
1244 unsigned int txsize = priv->dma_tx_size;
1245
1246 spin_lock(&priv->tx_lock);
1247
1248 priv->xstats.tx_clean++;
1249
1250 while (priv->dirty_tx != priv->cur_tx) {
1251 int last;
1252 unsigned int entry = priv->dirty_tx % txsize;
1253 struct sk_buff *skb = priv->tx_skbuff[entry];
1254 struct dma_desc *p;
1255
1256 if (priv->extend_desc)
1257 p = (struct dma_desc *)(priv->dma_etx + entry);
1258 else
1259 p = priv->dma_tx + entry;
1260
1261 /* Check if the descriptor is owned by the DMA. */
1262 if (priv->hw->desc->get_tx_owner(p))
1263 break;
1264
1265 /* Verify tx error by looking at the last segment. */
1266 last = priv->hw->desc->get_tx_ls(p);
1267 if (likely(last)) {
1268 int tx_error =
1269 priv->hw->desc->tx_status(&priv->dev->stats,
1270 &priv->xstats, p,
1271 priv->ioaddr);
1272 if (likely(tx_error == 0)) {
1273 priv->dev->stats.tx_packets++;
1274 priv->xstats.tx_pkt_n++;
1275 } else
1276 priv->dev->stats.tx_errors++;
1277
1278 stmmac_get_tx_hwtstamp(priv, entry, skb);
1279 }
1280 if (netif_msg_tx_done(priv))
1281 pr_debug("%s: curr %d, dirty %d\n", __func__,
1282 priv->cur_tx, priv->dirty_tx);
1283
1284 if (likely(priv->tx_skbuff_dma[entry])) {
1285 dma_unmap_single(priv->device,
1286 priv->tx_skbuff_dma[entry],
1287 priv->hw->desc->get_tx_len(p),
1288 DMA_TO_DEVICE);
1289 priv->tx_skbuff_dma[entry] = 0;
1290 }
1291 priv->hw->ring->clean_desc3(priv, p);
1292
1293 if (likely(skb != NULL)) {
1294 dev_kfree_skb(skb);
1295 priv->tx_skbuff[entry] = NULL;
1296 }
1297
1298 priv->hw->desc->release_tx_desc(p, priv->mode);
1299
1300 priv->dirty_tx++;
1301 }
1302 if (unlikely(netif_queue_stopped(priv->dev) &&
1303 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1304 netif_tx_lock(priv->dev);
1305 if (netif_queue_stopped(priv->dev) &&
1306 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1307 if (netif_msg_tx_done(priv))
1308 pr_debug("%s: restart transmit\n", __func__);
1309 netif_wake_queue(priv->dev);
1310 }
1311 netif_tx_unlock(priv->dev);
1312 }
1313
1314 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1315 stmmac_enable_eee_mode(priv);
1316 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1317 }
1318 spin_unlock(&priv->tx_lock);
1319 }
1320
1321 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1322 {
1323 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1324 }
1325
1326 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1327 {
1328 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1329 }
1330
1331 /**
1332 * stmmac_tx_err: irq tx error mng function
1333 * @priv: driver private structure
1334 * Description: it cleans the descriptors and restarts the transmission
1335 * in case of errors.
1336 */
1337 static void stmmac_tx_err(struct stmmac_priv *priv)
1338 {
1339 int i;
1340 int txsize = priv->dma_tx_size;
1341 netif_stop_queue(priv->dev);
1342
1343 priv->hw->dma->stop_tx(priv->ioaddr);
1344 dma_free_tx_skbufs(priv);
1345 for (i = 0; i < txsize; i++)
1346 if (priv->extend_desc)
1347 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1348 priv->mode,
1349 (i == txsize - 1));
1350 else
1351 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1352 priv->mode,
1353 (i == txsize - 1));
1354 priv->dirty_tx = 0;
1355 priv->cur_tx = 0;
1356 priv->hw->dma->start_tx(priv->ioaddr);
1357
1358 priv->dev->stats.tx_errors++;
1359 netif_wake_queue(priv->dev);
1360 }
1361
1362 /**
1363 * stmmac_dma_interrupt: DMA ISR
1364 * @priv: driver private structure
1365 * Description: this is the DMA ISR. It is called by the main ISR.
1366 * It calls the dwmac dma routine to understand which type of interrupt
1367 * happened. In case of there is a Normal interrupt and either TX or RX
1368 * interrupt happened so the NAPI is scheduled.
1369 */
1370 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1371 {
1372 int status;
1373
1374 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1375 if (likely((status & handle_rx)) || (status & handle_tx)) {
1376 if (likely(napi_schedule_prep(&priv->napi))) {
1377 stmmac_disable_dma_irq(priv);
1378 __napi_schedule(&priv->napi);
1379 }
1380 }
1381 if (unlikely(status & tx_hard_error_bump_tc)) {
1382 /* Try to bump up the dma threshold on this failure */
1383 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1384 tc += 64;
1385 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1386 priv->xstats.threshold = tc;
1387 }
1388 } else if (unlikely(status == tx_hard_error))
1389 stmmac_tx_err(priv);
1390 }
1391
1392 /**
1393 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1394 * @priv: driver private structure
1395 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1396 */
1397 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1398 {
1399 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1400 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1401
1402 dwmac_mmc_intr_all_mask(priv->ioaddr);
1403
1404 if (priv->dma_cap.rmon) {
1405 dwmac_mmc_ctrl(priv->ioaddr, mode);
1406 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1407 } else
1408 pr_info(" No MAC Management Counters available\n");
1409 }
1410
1411 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1412 {
1413 u32 hwid = priv->hw->synopsys_uid;
1414
1415 /* Check Synopsys Id (not available on old chips) */
1416 if (likely(hwid)) {
1417 u32 uid = ((hwid & 0x0000ff00) >> 8);
1418 u32 synid = (hwid & 0x000000ff);
1419
1420 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1421 uid, synid);
1422
1423 return synid;
1424 }
1425 return 0;
1426 }
1427
1428 /**
1429 * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1430 * @priv: driver private structure
1431 * Description: select the Enhanced/Alternate or Normal descriptors.
1432 * In case of Enhanced/Alternate, it looks at the extended descriptors are
1433 * supported by the HW cap. register.
1434 */
1435 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1436 {
1437 if (priv->plat->enh_desc) {
1438 pr_info(" Enhanced/Alternate descriptors\n");
1439
1440 /* GMAC older than 3.50 has no extended descriptors */
1441 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1442 pr_info("\tEnabled extended descriptors\n");
1443 priv->extend_desc = 1;
1444 } else
1445 pr_warn("Extended descriptors not supported\n");
1446
1447 priv->hw->desc = &enh_desc_ops;
1448 } else {
1449 pr_info(" Normal descriptors\n");
1450 priv->hw->desc = &ndesc_ops;
1451 }
1452 }
1453
1454 /**
1455 * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1456 * @priv: driver private structure
1457 * Description:
1458 * new GMAC chip generations have a new register to indicate the
1459 * presence of the optional feature/functions.
1460 * This can be also used to override the value passed through the
1461 * platform and necessary for old MAC10/100 and GMAC chips.
1462 */
1463 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1464 {
1465 u32 hw_cap = 0;
1466
1467 if (priv->hw->dma->get_hw_feature) {
1468 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1469
1470 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1471 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1472 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1473 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1474 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1475 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1476 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1477 priv->dma_cap.pmt_remote_wake_up =
1478 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1479 priv->dma_cap.pmt_magic_frame =
1480 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1481 /* MMC */
1482 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1483 /* IEEE 1588-2002 */
1484 priv->dma_cap.time_stamp =
1485 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1486 /* IEEE 1588-2008 */
1487 priv->dma_cap.atime_stamp =
1488 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1489 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1490 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1491 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1492 /* TX and RX csum */
1493 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1494 priv->dma_cap.rx_coe_type1 =
1495 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1496 priv->dma_cap.rx_coe_type2 =
1497 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1498 priv->dma_cap.rxfifo_over_2048 =
1499 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1500 /* TX and RX number of channels */
1501 priv->dma_cap.number_rx_channel =
1502 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1503 priv->dma_cap.number_tx_channel =
1504 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1505 /* Alternate (enhanced) DESC mode */
1506 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1507 }
1508
1509 return hw_cap;
1510 }
1511
1512 /**
1513 * stmmac_check_ether_addr: check if the MAC addr is valid
1514 * @priv: driver private structure
1515 * Description:
1516 * it is to verify if the MAC address is valid, in case of failures it
1517 * generates a random MAC address
1518 */
1519 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1520 {
1521 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1522 priv->hw->mac->get_umac_addr((void __iomem *)
1523 priv->dev->base_addr,
1524 priv->dev->dev_addr, 0);
1525 if (!is_valid_ether_addr(priv->dev->dev_addr))
1526 eth_hw_addr_random(priv->dev);
1527 }
1528 pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1529 priv->dev->dev_addr);
1530 }
1531
1532 /**
1533 * stmmac_init_dma_engine: DMA init.
1534 * @priv: driver private structure
1535 * Description:
1536 * It inits the DMA invoking the specific MAC/GMAC callback.
1537 * Some DMA parameters can be passed from the platform;
1538 * in case of these are not passed a default is kept for the MAC or GMAC.
1539 */
1540 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1541 {
1542 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1543 int mixed_burst = 0;
1544 int atds = 0;
1545
1546 if (priv->plat->dma_cfg) {
1547 pbl = priv->plat->dma_cfg->pbl;
1548 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1549 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1550 burst_len = priv->plat->dma_cfg->burst_len;
1551 }
1552
1553 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1554 atds = 1;
1555
1556 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1557 burst_len, priv->dma_tx_phy,
1558 priv->dma_rx_phy, atds);
1559 }
1560
1561 /**
1562 * stmmac_tx_timer: mitigation sw timer for tx.
1563 * @data: data pointer
1564 * Description:
1565 * This is the timer handler to directly invoke the stmmac_tx_clean.
1566 */
1567 static void stmmac_tx_timer(unsigned long data)
1568 {
1569 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1570
1571 stmmac_tx_clean(priv);
1572 }
1573
1574 /**
1575 * stmmac_init_tx_coalesce: init tx mitigation options.
1576 * @priv: driver private structure
1577 * Description:
1578 * This inits the transmit coalesce parameters: i.e. timer rate,
1579 * timer handler and default threshold used for enabling the
1580 * interrupt on completion bit.
1581 */
1582 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1583 {
1584 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1585 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1586 init_timer(&priv->txtimer);
1587 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1588 priv->txtimer.data = (unsigned long)priv;
1589 priv->txtimer.function = stmmac_tx_timer;
1590 add_timer(&priv->txtimer);
1591 }
1592
1593 /**
1594 * stmmac_open - open entry point of the driver
1595 * @dev : pointer to the device structure.
1596 * Description:
1597 * This function is the open entry point of the driver.
1598 * Return value:
1599 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1600 * file on failure.
1601 */
1602 static int stmmac_open(struct net_device *dev)
1603 {
1604 struct stmmac_priv *priv = netdev_priv(dev);
1605 int ret;
1606
1607 clk_prepare_enable(priv->stmmac_clk);
1608
1609 stmmac_check_ether_addr(priv);
1610
1611 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1612 priv->pcs != STMMAC_PCS_RTBI) {
1613 ret = stmmac_init_phy(dev);
1614 if (ret) {
1615 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1616 __func__, ret);
1617 goto phy_error;
1618 }
1619 }
1620
1621 /* Create and initialize the TX/RX descriptors chains. */
1622 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1623 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1624 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1625
1626 ret = init_dma_desc_rings(dev);
1627 if (ret < 0) {
1628 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1629 goto dma_desc_error;
1630 }
1631
1632 /* DMA initialization and SW reset */
1633 ret = stmmac_init_dma_engine(priv);
1634 if (ret < 0) {
1635 pr_err("%s: DMA engine initialization failed\n", __func__);
1636 goto init_error;
1637 }
1638
1639 /* Copy the MAC addr into the HW */
1640 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1641
1642 /* If required, perform hw setup of the bus. */
1643 if (priv->plat->bus_setup)
1644 priv->plat->bus_setup(priv->ioaddr);
1645
1646 /* Initialize the MAC Core */
1647 priv->hw->mac->core_init(priv->ioaddr);
1648
1649 /* Request the IRQ lines */
1650 ret = request_irq(dev->irq, stmmac_interrupt,
1651 IRQF_SHARED, dev->name, dev);
1652 if (unlikely(ret < 0)) {
1653 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1654 __func__, dev->irq, ret);
1655 goto init_error;
1656 }
1657
1658 /* Request the Wake IRQ in case of another line is used for WoL */
1659 if (priv->wol_irq != dev->irq) {
1660 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1661 IRQF_SHARED, dev->name, dev);
1662 if (unlikely(ret < 0)) {
1663 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1664 __func__, priv->wol_irq, ret);
1665 goto wolirq_error;
1666 }
1667 }
1668
1669 /* Request the IRQ lines */
1670 if (priv->lpi_irq != -ENXIO) {
1671 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1672 dev->name, dev);
1673 if (unlikely(ret < 0)) {
1674 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1675 __func__, priv->lpi_irq, ret);
1676 goto lpiirq_error;
1677 }
1678 }
1679
1680 /* Enable the MAC Rx/Tx */
1681 stmmac_set_mac(priv->ioaddr, true);
1682
1683 /* Set the HW DMA mode and the COE */
1684 stmmac_dma_operation_mode(priv);
1685
1686 /* Extra statistics */
1687 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1688 priv->xstats.threshold = tc;
1689
1690 stmmac_mmc_setup(priv);
1691
1692 ret = stmmac_init_ptp(priv);
1693 if (ret)
1694 pr_warn("%s: failed PTP initialisation\n", __func__);
1695
1696 #ifdef CONFIG_STMMAC_DEBUG_FS
1697 ret = stmmac_init_fs(dev);
1698 if (ret < 0)
1699 pr_warn("%s: failed debugFS registration\n", __func__);
1700 #endif
1701 /* Start the ball rolling... */
1702 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1703 priv->hw->dma->start_tx(priv->ioaddr);
1704 priv->hw->dma->start_rx(priv->ioaddr);
1705
1706 /* Dump DMA/MAC registers */
1707 if (netif_msg_hw(priv)) {
1708 priv->hw->mac->dump_regs(priv->ioaddr);
1709 priv->hw->dma->dump_regs(priv->ioaddr);
1710 }
1711
1712 if (priv->phydev)
1713 phy_start(priv->phydev);
1714
1715 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1716
1717 priv->eee_enabled = stmmac_eee_init(priv);
1718
1719 stmmac_init_tx_coalesce(priv);
1720
1721 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1722 priv->rx_riwt = MAX_DMA_RIWT;
1723 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1724 }
1725
1726 if (priv->pcs && priv->hw->mac->ctrl_ane)
1727 priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1728
1729 napi_enable(&priv->napi);
1730 netif_start_queue(dev);
1731
1732 return 0;
1733
1734 lpiirq_error:
1735 if (priv->wol_irq != dev->irq)
1736 free_irq(priv->wol_irq, dev);
1737 wolirq_error:
1738 free_irq(dev->irq, dev);
1739
1740 init_error:
1741 free_dma_desc_resources(priv);
1742 dma_desc_error:
1743 if (priv->phydev)
1744 phy_disconnect(priv->phydev);
1745 phy_error:
1746 clk_disable_unprepare(priv->stmmac_clk);
1747
1748 return ret;
1749 }
1750
1751 /**
1752 * stmmac_release - close entry point of the driver
1753 * @dev : device pointer.
1754 * Description:
1755 * This is the stop entry point of the driver.
1756 */
1757 static int stmmac_release(struct net_device *dev)
1758 {
1759 struct stmmac_priv *priv = netdev_priv(dev);
1760
1761 if (priv->eee_enabled)
1762 del_timer_sync(&priv->eee_ctrl_timer);
1763
1764 /* Stop and disconnect the PHY */
1765 if (priv->phydev) {
1766 phy_stop(priv->phydev);
1767 phy_disconnect(priv->phydev);
1768 priv->phydev = NULL;
1769 }
1770
1771 netif_stop_queue(dev);
1772
1773 napi_disable(&priv->napi);
1774
1775 del_timer_sync(&priv->txtimer);
1776
1777 /* Free the IRQ lines */
1778 free_irq(dev->irq, dev);
1779 if (priv->wol_irq != dev->irq)
1780 free_irq(priv->wol_irq, dev);
1781 if (priv->lpi_irq != -ENXIO)
1782 free_irq(priv->lpi_irq, dev);
1783
1784 /* Stop TX/RX DMA and clear the descriptors */
1785 priv->hw->dma->stop_tx(priv->ioaddr);
1786 priv->hw->dma->stop_rx(priv->ioaddr);
1787
1788 /* Release and free the Rx/Tx resources */
1789 free_dma_desc_resources(priv);
1790
1791 /* Disable the MAC Rx/Tx */
1792 stmmac_set_mac(priv->ioaddr, false);
1793
1794 netif_carrier_off(dev);
1795
1796 #ifdef CONFIG_STMMAC_DEBUG_FS
1797 stmmac_exit_fs();
1798 #endif
1799 clk_disable_unprepare(priv->stmmac_clk);
1800
1801 stmmac_release_ptp(priv);
1802
1803 return 0;
1804 }
1805
1806 /**
1807 * stmmac_xmit: Tx entry point of the driver
1808 * @skb : the socket buffer
1809 * @dev : device pointer
1810 * Description : this is the tx entry point of the driver.
1811 * It programs the chain or the ring and supports oversized frames
1812 * and SG feature.
1813 */
1814 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1815 {
1816 struct stmmac_priv *priv = netdev_priv(dev);
1817 unsigned int txsize = priv->dma_tx_size;
1818 unsigned int entry;
1819 int i, csum_insertion = 0, is_jumbo = 0;
1820 int nfrags = skb_shinfo(skb)->nr_frags;
1821 struct dma_desc *desc, *first;
1822 unsigned int nopaged_len = skb_headlen(skb);
1823
1824 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1825 if (!netif_queue_stopped(dev)) {
1826 netif_stop_queue(dev);
1827 /* This is a hard error, log it. */
1828 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1829 }
1830 return NETDEV_TX_BUSY;
1831 }
1832
1833 spin_lock(&priv->tx_lock);
1834
1835 if (priv->tx_path_in_lpi_mode)
1836 stmmac_disable_eee_mode(priv);
1837
1838 entry = priv->cur_tx % txsize;
1839
1840 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1841
1842 if (priv->extend_desc)
1843 desc = (struct dma_desc *)(priv->dma_etx + entry);
1844 else
1845 desc = priv->dma_tx + entry;
1846
1847 first = desc;
1848
1849 priv->tx_skbuff[entry] = skb;
1850
1851 /* To program the descriptors according to the size of the frame */
1852 if (priv->mode == STMMAC_RING_MODE) {
1853 is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1854 priv->plat->enh_desc);
1855 if (unlikely(is_jumbo))
1856 entry = priv->hw->ring->jumbo_frm(priv, skb,
1857 csum_insertion);
1858 } else {
1859 is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1860 priv->plat->enh_desc);
1861 if (unlikely(is_jumbo))
1862 entry = priv->hw->chain->jumbo_frm(priv, skb,
1863 csum_insertion);
1864 }
1865 if (likely(!is_jumbo)) {
1866 desc->des2 = dma_map_single(priv->device, skb->data,
1867 nopaged_len, DMA_TO_DEVICE);
1868 priv->tx_skbuff_dma[entry] = desc->des2;
1869 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1870 csum_insertion, priv->mode);
1871 } else
1872 desc = first;
1873
1874 for (i = 0; i < nfrags; i++) {
1875 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1876 int len = skb_frag_size(frag);
1877
1878 entry = (++priv->cur_tx) % txsize;
1879 if (priv->extend_desc)
1880 desc = (struct dma_desc *)(priv->dma_etx + entry);
1881 else
1882 desc = priv->dma_tx + entry;
1883
1884 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1885 DMA_TO_DEVICE);
1886 priv->tx_skbuff_dma[entry] = desc->des2;
1887 priv->tx_skbuff[entry] = NULL;
1888 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1889 priv->mode);
1890 wmb();
1891 priv->hw->desc->set_tx_owner(desc);
1892 wmb();
1893 }
1894
1895 /* Finalize the latest segment. */
1896 priv->hw->desc->close_tx_desc(desc);
1897
1898 wmb();
1899 /* According to the coalesce parameter the IC bit for the latest
1900 * segment could be reset and the timer re-started to invoke the
1901 * stmmac_tx function. This approach takes care about the fragments.
1902 */
1903 priv->tx_count_frames += nfrags + 1;
1904 if (priv->tx_coal_frames > priv->tx_count_frames) {
1905 priv->hw->desc->clear_tx_ic(desc);
1906 priv->xstats.tx_reset_ic_bit++;
1907 mod_timer(&priv->txtimer,
1908 STMMAC_COAL_TIMER(priv->tx_coal_timer));
1909 } else
1910 priv->tx_count_frames = 0;
1911
1912 /* To avoid raise condition */
1913 priv->hw->desc->set_tx_owner(first);
1914 wmb();
1915
1916 priv->cur_tx++;
1917
1918 if (netif_msg_pktdata(priv)) {
1919 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1920 __func__, (priv->cur_tx % txsize),
1921 (priv->dirty_tx % txsize), entry, first, nfrags);
1922
1923 if (priv->extend_desc)
1924 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1925 else
1926 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1927
1928 pr_debug(">>> frame to be transmitted: ");
1929 print_pkt(skb->data, skb->len);
1930 }
1931 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1932 if (netif_msg_hw(priv))
1933 pr_debug("%s: stop transmitted packets\n", __func__);
1934 netif_stop_queue(dev);
1935 }
1936
1937 dev->stats.tx_bytes += skb->len;
1938
1939 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1940 priv->hwts_tx_en)) {
1941 /* declare that device is doing timestamping */
1942 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1943 priv->hw->desc->enable_tx_timestamp(first);
1944 }
1945
1946 if (!priv->hwts_tx_en)
1947 skb_tx_timestamp(skb);
1948
1949 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1950
1951 spin_unlock(&priv->tx_lock);
1952
1953 return NETDEV_TX_OK;
1954 }
1955
1956 /**
1957 * stmmac_rx_refill: refill used skb preallocated buffers
1958 * @priv: driver private structure
1959 * Description : this is to reallocate the skb for the reception process
1960 * that is based on zero-copy.
1961 */
1962 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1963 {
1964 unsigned int rxsize = priv->dma_rx_size;
1965 int bfsize = priv->dma_buf_sz;
1966
1967 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1968 unsigned int entry = priv->dirty_rx % rxsize;
1969 struct dma_desc *p;
1970
1971 if (priv->extend_desc)
1972 p = (struct dma_desc *)(priv->dma_erx + entry);
1973 else
1974 p = priv->dma_rx + entry;
1975
1976 if (likely(priv->rx_skbuff[entry] == NULL)) {
1977 struct sk_buff *skb;
1978
1979 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1980
1981 if (unlikely(skb == NULL))
1982 break;
1983
1984 priv->rx_skbuff[entry] = skb;
1985 priv->rx_skbuff_dma[entry] =
1986 dma_map_single(priv->device, skb->data, bfsize,
1987 DMA_FROM_DEVICE);
1988
1989 p->des2 = priv->rx_skbuff_dma[entry];
1990
1991 priv->hw->ring->refill_desc3(priv, p);
1992
1993 if (netif_msg_rx_status(priv))
1994 pr_debug("\trefill entry #%d\n", entry);
1995 }
1996 wmb();
1997 priv->hw->desc->set_rx_owner(p);
1998 wmb();
1999 }
2000 }
2001
2002 /**
2003 * stmmac_rx_refill: refill used skb preallocated buffers
2004 * @priv: driver private structure
2005 * @limit: napi bugget.
2006 * Description : this the function called by the napi poll method.
2007 * It gets all the frames inside the ring.
2008 */
2009 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2010 {
2011 unsigned int rxsize = priv->dma_rx_size;
2012 unsigned int entry = priv->cur_rx % rxsize;
2013 unsigned int next_entry;
2014 unsigned int count = 0;
2015 int coe = priv->plat->rx_coe;
2016
2017 if (netif_msg_rx_status(priv)) {
2018 pr_debug("%s: descriptor ring:\n", __func__);
2019 if (priv->extend_desc)
2020 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2021 else
2022 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2023 }
2024 while (count < limit) {
2025 int status;
2026 struct dma_desc *p;
2027
2028 if (priv->extend_desc)
2029 p = (struct dma_desc *)(priv->dma_erx + entry);
2030 else
2031 p = priv->dma_rx + entry;
2032
2033 if (priv->hw->desc->get_rx_owner(p))
2034 break;
2035
2036 count++;
2037
2038 next_entry = (++priv->cur_rx) % rxsize;
2039 if (priv->extend_desc)
2040 prefetch(priv->dma_erx + next_entry);
2041 else
2042 prefetch(priv->dma_rx + next_entry);
2043
2044 /* read the status of the incoming frame */
2045 status = priv->hw->desc->rx_status(&priv->dev->stats,
2046 &priv->xstats, p);
2047 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2048 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2049 &priv->xstats,
2050 priv->dma_erx +
2051 entry);
2052 if (unlikely(status == discard_frame)) {
2053 priv->dev->stats.rx_errors++;
2054 if (priv->hwts_rx_en && !priv->extend_desc) {
2055 /* DESC2 & DESC3 will be overwitten by device
2056 * with timestamp value, hence reinitialize
2057 * them in stmmac_rx_refill() function so that
2058 * device can reuse it.
2059 */
2060 priv->rx_skbuff[entry] = NULL;
2061 dma_unmap_single(priv->device,
2062 priv->rx_skbuff_dma[entry],
2063 priv->dma_buf_sz,
2064 DMA_FROM_DEVICE);
2065 }
2066 } else {
2067 struct sk_buff *skb;
2068 int frame_len;
2069
2070 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2071
2072 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2073 * Type frames (LLC/LLC-SNAP)
2074 */
2075 if (unlikely(status != llc_snap))
2076 frame_len -= ETH_FCS_LEN;
2077
2078 if (netif_msg_rx_status(priv)) {
2079 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2080 p, entry, p->des2);
2081 if (frame_len > ETH_FRAME_LEN)
2082 pr_debug("\tframe size %d, COE: %d\n",
2083 frame_len, status);
2084 }
2085 skb = priv->rx_skbuff[entry];
2086 if (unlikely(!skb)) {
2087 pr_err("%s: Inconsistent Rx descriptor chain\n",
2088 priv->dev->name);
2089 priv->dev->stats.rx_dropped++;
2090 break;
2091 }
2092 prefetch(skb->data - NET_IP_ALIGN);
2093 priv->rx_skbuff[entry] = NULL;
2094
2095 stmmac_get_rx_hwtstamp(priv, entry, skb);
2096
2097 skb_put(skb, frame_len);
2098 dma_unmap_single(priv->device,
2099 priv->rx_skbuff_dma[entry],
2100 priv->dma_buf_sz, DMA_FROM_DEVICE);
2101
2102 if (netif_msg_pktdata(priv)) {
2103 pr_debug("frame received (%dbytes)", frame_len);
2104 print_pkt(skb->data, frame_len);
2105 }
2106
2107 skb->protocol = eth_type_trans(skb, priv->dev);
2108
2109 if (unlikely(!coe))
2110 skb_checksum_none_assert(skb);
2111 else
2112 skb->ip_summed = CHECKSUM_UNNECESSARY;
2113
2114 napi_gro_receive(&priv->napi, skb);
2115
2116 priv->dev->stats.rx_packets++;
2117 priv->dev->stats.rx_bytes += frame_len;
2118 }
2119 entry = next_entry;
2120 }
2121
2122 stmmac_rx_refill(priv);
2123
2124 priv->xstats.rx_pkt_n += count;
2125
2126 return count;
2127 }
2128
2129 /**
2130 * stmmac_poll - stmmac poll method (NAPI)
2131 * @napi : pointer to the napi structure.
2132 * @budget : maximum number of packets that the current CPU can receive from
2133 * all interfaces.
2134 * Description :
2135 * To look at the incoming frames and clear the tx resources.
2136 */
2137 static int stmmac_poll(struct napi_struct *napi, int budget)
2138 {
2139 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2140 int work_done = 0;
2141
2142 priv->xstats.napi_poll++;
2143 stmmac_tx_clean(priv);
2144
2145 work_done = stmmac_rx(priv, budget);
2146 if (work_done < budget) {
2147 napi_complete(napi);
2148 stmmac_enable_dma_irq(priv);
2149 }
2150 return work_done;
2151 }
2152
2153 /**
2154 * stmmac_tx_timeout
2155 * @dev : Pointer to net device structure
2156 * Description: this function is called when a packet transmission fails to
2157 * complete within a reasonable time. The driver will mark the error in the
2158 * netdev structure and arrange for the device to be reset to a sane state
2159 * in order to transmit a new packet.
2160 */
2161 static void stmmac_tx_timeout(struct net_device *dev)
2162 {
2163 struct stmmac_priv *priv = netdev_priv(dev);
2164
2165 /* Clear Tx resources and restart transmitting again */
2166 stmmac_tx_err(priv);
2167 }
2168
2169 /* Configuration changes (passed on by ifconfig) */
2170 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2171 {
2172 if (dev->flags & IFF_UP) /* can't act on a running interface */
2173 return -EBUSY;
2174
2175 /* Don't allow changing the I/O address */
2176 if (map->base_addr != dev->base_addr) {
2177 pr_warn("%s: can't change I/O address\n", dev->name);
2178 return -EOPNOTSUPP;
2179 }
2180
2181 /* Don't allow changing the IRQ */
2182 if (map->irq != dev->irq) {
2183 pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2184 return -EOPNOTSUPP;
2185 }
2186
2187 return 0;
2188 }
2189
2190 /**
2191 * stmmac_set_rx_mode - entry point for multicast addressing
2192 * @dev : pointer to the device structure
2193 * Description:
2194 * This function is a driver entry point which gets called by the kernel
2195 * whenever multicast addresses must be enabled/disabled.
2196 * Return value:
2197 * void.
2198 */
2199 static void stmmac_set_rx_mode(struct net_device *dev)
2200 {
2201 struct stmmac_priv *priv = netdev_priv(dev);
2202
2203 spin_lock(&priv->lock);
2204 priv->hw->mac->set_filter(dev, priv->synopsys_id);
2205 spin_unlock(&priv->lock);
2206 }
2207
2208 /**
2209 * stmmac_change_mtu - entry point to change MTU size for the device.
2210 * @dev : device pointer.
2211 * @new_mtu : the new MTU size for the device.
2212 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2213 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2214 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2215 * Return value:
2216 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2217 * file on failure.
2218 */
2219 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2220 {
2221 struct stmmac_priv *priv = netdev_priv(dev);
2222 int max_mtu;
2223
2224 if (netif_running(dev)) {
2225 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2226 return -EBUSY;
2227 }
2228
2229 if (priv->plat->enh_desc)
2230 max_mtu = JUMBO_LEN;
2231 else
2232 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2233
2234 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2235 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2236 return -EINVAL;
2237 }
2238
2239 dev->mtu = new_mtu;
2240 netdev_update_features(dev);
2241
2242 return 0;
2243 }
2244
2245 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2246 netdev_features_t features)
2247 {
2248 struct stmmac_priv *priv = netdev_priv(dev);
2249
2250 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2251 features &= ~NETIF_F_RXCSUM;
2252 else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2253 features &= ~NETIF_F_IPV6_CSUM;
2254 if (!priv->plat->tx_coe)
2255 features &= ~NETIF_F_ALL_CSUM;
2256
2257 /* Some GMAC devices have a bugged Jumbo frame support that
2258 * needs to have the Tx COE disabled for oversized frames
2259 * (due to limited buffer sizes). In this case we disable
2260 * the TX csum insertionin the TDES and not use SF.
2261 */
2262 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2263 features &= ~NETIF_F_ALL_CSUM;
2264
2265 return features;
2266 }
2267
2268 /**
2269 * stmmac_interrupt - main ISR
2270 * @irq: interrupt number.
2271 * @dev_id: to pass the net device pointer.
2272 * Description: this is the main driver interrupt service routine.
2273 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2274 * interrupts.
2275 */
2276 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2277 {
2278 struct net_device *dev = (struct net_device *)dev_id;
2279 struct stmmac_priv *priv = netdev_priv(dev);
2280
2281 if (unlikely(!dev)) {
2282 pr_err("%s: invalid dev pointer\n", __func__);
2283 return IRQ_NONE;
2284 }
2285
2286 /* To handle GMAC own interrupts */
2287 if (priv->plat->has_gmac) {
2288 int status = priv->hw->mac->host_irq_status((void __iomem *)
2289 dev->base_addr,
2290 &priv->xstats);
2291 if (unlikely(status)) {
2292 /* For LPI we need to save the tx status */
2293 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2294 priv->tx_path_in_lpi_mode = true;
2295 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2296 priv->tx_path_in_lpi_mode = false;
2297 }
2298 }
2299
2300 /* To handle DMA interrupts */
2301 stmmac_dma_interrupt(priv);
2302
2303 return IRQ_HANDLED;
2304 }
2305
2306 #ifdef CONFIG_NET_POLL_CONTROLLER
2307 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2308 * to allow network I/O with interrupts disabled.
2309 */
2310 static void stmmac_poll_controller(struct net_device *dev)
2311 {
2312 disable_irq(dev->irq);
2313 stmmac_interrupt(dev->irq, dev);
2314 enable_irq(dev->irq);
2315 }
2316 #endif
2317
2318 /**
2319 * stmmac_ioctl - Entry point for the Ioctl
2320 * @dev: Device pointer.
2321 * @rq: An IOCTL specefic structure, that can contain a pointer to
2322 * a proprietary structure used to pass information to the driver.
2323 * @cmd: IOCTL command
2324 * Description:
2325 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2326 */
2327 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2328 {
2329 struct stmmac_priv *priv = netdev_priv(dev);
2330 int ret = -EOPNOTSUPP;
2331
2332 if (!netif_running(dev))
2333 return -EINVAL;
2334
2335 switch (cmd) {
2336 case SIOCGMIIPHY:
2337 case SIOCGMIIREG:
2338 case SIOCSMIIREG:
2339 if (!priv->phydev)
2340 return -EINVAL;
2341 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2342 break;
2343 case SIOCSHWTSTAMP:
2344 ret = stmmac_hwtstamp_ioctl(dev, rq);
2345 break;
2346 default:
2347 break;
2348 }
2349
2350 return ret;
2351 }
2352
2353 #ifdef CONFIG_STMMAC_DEBUG_FS
2354 static struct dentry *stmmac_fs_dir;
2355 static struct dentry *stmmac_rings_status;
2356 static struct dentry *stmmac_dma_cap;
2357
2358 static void sysfs_display_ring(void *head, int size, int extend_desc,
2359 struct seq_file *seq)
2360 {
2361 int i;
2362 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2363 struct dma_desc *p = (struct dma_desc *)head;
2364
2365 for (i = 0; i < size; i++) {
2366 u64 x;
2367 if (extend_desc) {
2368 x = *(u64 *) ep;
2369 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2370 i, (unsigned int)virt_to_phys(ep),
2371 (unsigned int)x, (unsigned int)(x >> 32),
2372 ep->basic.des2, ep->basic.des3);
2373 ep++;
2374 } else {
2375 x = *(u64 *) p;
2376 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2377 i, (unsigned int)virt_to_phys(ep),
2378 (unsigned int)x, (unsigned int)(x >> 32),
2379 p->des2, p->des3);
2380 p++;
2381 }
2382 seq_printf(seq, "\n");
2383 }
2384 }
2385
2386 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2387 {
2388 struct net_device *dev = seq->private;
2389 struct stmmac_priv *priv = netdev_priv(dev);
2390 unsigned int txsize = priv->dma_tx_size;
2391 unsigned int rxsize = priv->dma_rx_size;
2392
2393 if (priv->extend_desc) {
2394 seq_printf(seq, "Extended RX descriptor ring:\n");
2395 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2396 seq_printf(seq, "Extended TX descriptor ring:\n");
2397 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2398 } else {
2399 seq_printf(seq, "RX descriptor ring:\n");
2400 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2401 seq_printf(seq, "TX descriptor ring:\n");
2402 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2403 }
2404
2405 return 0;
2406 }
2407
2408 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2409 {
2410 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2411 }
2412
2413 static const struct file_operations stmmac_rings_status_fops = {
2414 .owner = THIS_MODULE,
2415 .open = stmmac_sysfs_ring_open,
2416 .read = seq_read,
2417 .llseek = seq_lseek,
2418 .release = single_release,
2419 };
2420
2421 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2422 {
2423 struct net_device *dev = seq->private;
2424 struct stmmac_priv *priv = netdev_priv(dev);
2425
2426 if (!priv->hw_cap_support) {
2427 seq_printf(seq, "DMA HW features not supported\n");
2428 return 0;
2429 }
2430
2431 seq_printf(seq, "==============================\n");
2432 seq_printf(seq, "\tDMA HW features\n");
2433 seq_printf(seq, "==============================\n");
2434
2435 seq_printf(seq, "\t10/100 Mbps %s\n",
2436 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2437 seq_printf(seq, "\t1000 Mbps %s\n",
2438 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2439 seq_printf(seq, "\tHalf duple %s\n",
2440 (priv->dma_cap.half_duplex) ? "Y" : "N");
2441 seq_printf(seq, "\tHash Filter: %s\n",
2442 (priv->dma_cap.hash_filter) ? "Y" : "N");
2443 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2444 (priv->dma_cap.multi_addr) ? "Y" : "N");
2445 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2446 (priv->dma_cap.pcs) ? "Y" : "N");
2447 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2448 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2449 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2450 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2451 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2452 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2453 seq_printf(seq, "\tRMON module: %s\n",
2454 (priv->dma_cap.rmon) ? "Y" : "N");
2455 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2456 (priv->dma_cap.time_stamp) ? "Y" : "N");
2457 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2458 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2459 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2460 (priv->dma_cap.eee) ? "Y" : "N");
2461 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2462 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2463 (priv->dma_cap.tx_coe) ? "Y" : "N");
2464 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2465 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2466 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2467 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2468 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2469 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2470 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2471 priv->dma_cap.number_rx_channel);
2472 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2473 priv->dma_cap.number_tx_channel);
2474 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2475 (priv->dma_cap.enh_desc) ? "Y" : "N");
2476
2477 return 0;
2478 }
2479
2480 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2481 {
2482 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2483 }
2484
2485 static const struct file_operations stmmac_dma_cap_fops = {
2486 .owner = THIS_MODULE,
2487 .open = stmmac_sysfs_dma_cap_open,
2488 .read = seq_read,
2489 .llseek = seq_lseek,
2490 .release = single_release,
2491 };
2492
2493 static int stmmac_init_fs(struct net_device *dev)
2494 {
2495 /* Create debugfs entries */
2496 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2497
2498 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2499 pr_err("ERROR %s, debugfs create directory failed\n",
2500 STMMAC_RESOURCE_NAME);
2501
2502 return -ENOMEM;
2503 }
2504
2505 /* Entry to report DMA RX/TX rings */
2506 stmmac_rings_status = debugfs_create_file("descriptors_status",
2507 S_IRUGO, stmmac_fs_dir, dev,
2508 &stmmac_rings_status_fops);
2509
2510 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2511 pr_info("ERROR creating stmmac ring debugfs file\n");
2512 debugfs_remove(stmmac_fs_dir);
2513
2514 return -ENOMEM;
2515 }
2516
2517 /* Entry to report the DMA HW features */
2518 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2519 dev, &stmmac_dma_cap_fops);
2520
2521 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2522 pr_info("ERROR creating stmmac MMC debugfs file\n");
2523 debugfs_remove(stmmac_rings_status);
2524 debugfs_remove(stmmac_fs_dir);
2525
2526 return -ENOMEM;
2527 }
2528
2529 return 0;
2530 }
2531
2532 static void stmmac_exit_fs(void)
2533 {
2534 debugfs_remove(stmmac_rings_status);
2535 debugfs_remove(stmmac_dma_cap);
2536 debugfs_remove(stmmac_fs_dir);
2537 }
2538 #endif /* CONFIG_STMMAC_DEBUG_FS */
2539
2540 static const struct net_device_ops stmmac_netdev_ops = {
2541 .ndo_open = stmmac_open,
2542 .ndo_start_xmit = stmmac_xmit,
2543 .ndo_stop = stmmac_release,
2544 .ndo_change_mtu = stmmac_change_mtu,
2545 .ndo_fix_features = stmmac_fix_features,
2546 .ndo_set_rx_mode = stmmac_set_rx_mode,
2547 .ndo_tx_timeout = stmmac_tx_timeout,
2548 .ndo_do_ioctl = stmmac_ioctl,
2549 .ndo_set_config = stmmac_config,
2550 #ifdef CONFIG_NET_POLL_CONTROLLER
2551 .ndo_poll_controller = stmmac_poll_controller,
2552 #endif
2553 .ndo_set_mac_address = eth_mac_addr,
2554 };
2555
2556 /**
2557 * stmmac_hw_init - Init the MAC device
2558 * @priv: driver private structure
2559 * Description: this function detects which MAC device
2560 * (GMAC/MAC10-100) has to attached, checks the HW capability
2561 * (if supported) and sets the driver's features (for example
2562 * to use the ring or chaine mode or support the normal/enh
2563 * descriptor structure).
2564 */
2565 static int stmmac_hw_init(struct stmmac_priv *priv)
2566 {
2567 int ret;
2568 struct mac_device_info *mac;
2569
2570 /* Identify the MAC HW device */
2571 if (priv->plat->has_gmac) {
2572 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2573 mac = dwmac1000_setup(priv->ioaddr);
2574 } else {
2575 mac = dwmac100_setup(priv->ioaddr);
2576 }
2577 if (!mac)
2578 return -ENOMEM;
2579
2580 priv->hw = mac;
2581
2582 /* Get and dump the chip ID */
2583 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2584
2585 /* To use the chained or ring mode */
2586 if (chain_mode) {
2587 priv->hw->chain = &chain_mode_ops;
2588 pr_info(" Chain mode enabled\n");
2589 priv->mode = STMMAC_CHAIN_MODE;
2590 } else {
2591 priv->hw->ring = &ring_mode_ops;
2592 pr_info(" Ring mode enabled\n");
2593 priv->mode = STMMAC_RING_MODE;
2594 }
2595
2596 /* Get the HW capability (new GMAC newer than 3.50a) */
2597 priv->hw_cap_support = stmmac_get_hw_features(priv);
2598 if (priv->hw_cap_support) {
2599 pr_info(" DMA HW capability register supported");
2600
2601 /* We can override some gmac/dma configuration fields: e.g.
2602 * enh_desc, tx_coe (e.g. that are passed through the
2603 * platform) with the values from the HW capability
2604 * register (if supported).
2605 */
2606 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2607 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2608
2609 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2610
2611 if (priv->dma_cap.rx_coe_type2)
2612 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2613 else if (priv->dma_cap.rx_coe_type1)
2614 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2615
2616 } else
2617 pr_info(" No HW DMA feature register supported");
2618
2619 /* To use alternate (extended) or normal descriptor structures */
2620 stmmac_selec_desc_mode(priv);
2621
2622 ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2623 if (!ret) {
2624 pr_warn(" RX IPC Checksum Offload not configured.\n");
2625 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2626 }
2627
2628 if (priv->plat->rx_coe)
2629 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2630 priv->plat->rx_coe);
2631 if (priv->plat->tx_coe)
2632 pr_info(" TX Checksum insertion supported\n");
2633
2634 if (priv->plat->pmt) {
2635 pr_info(" Wake-Up On Lan supported\n");
2636 device_set_wakeup_capable(priv->device, 1);
2637 }
2638
2639 return 0;
2640 }
2641
2642 /**
2643 * stmmac_dvr_probe
2644 * @device: device pointer
2645 * @plat_dat: platform data pointer
2646 * @addr: iobase memory address
2647 * Description: this is the main probe function used to
2648 * call the alloc_etherdev, allocate the priv structure.
2649 */
2650 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2651 struct plat_stmmacenet_data *plat_dat,
2652 void __iomem *addr)
2653 {
2654 int ret = 0;
2655 struct net_device *ndev = NULL;
2656 struct stmmac_priv *priv;
2657
2658 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2659 if (!ndev)
2660 return NULL;
2661
2662 SET_NETDEV_DEV(ndev, device);
2663
2664 priv = netdev_priv(ndev);
2665 priv->device = device;
2666 priv->dev = ndev;
2667
2668 ether_setup(ndev);
2669
2670 stmmac_set_ethtool_ops(ndev);
2671 priv->pause = pause;
2672 priv->plat = plat_dat;
2673 priv->ioaddr = addr;
2674 priv->dev->base_addr = (unsigned long)addr;
2675
2676 /* Verify driver arguments */
2677 stmmac_verify_args();
2678
2679 /* Override with kernel parameters if supplied XXX CRS XXX
2680 * this needs to have multiple instances
2681 */
2682 if ((phyaddr >= 0) && (phyaddr <= 31))
2683 priv->plat->phy_addr = phyaddr;
2684
2685 /* Init MAC and get the capabilities */
2686 ret = stmmac_hw_init(priv);
2687 if (ret)
2688 goto error_free_netdev;
2689
2690 ndev->netdev_ops = &stmmac_netdev_ops;
2691
2692 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2693 NETIF_F_RXCSUM;
2694 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2695 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2696 #ifdef STMMAC_VLAN_TAG_USED
2697 /* Both mac100 and gmac support receive VLAN tag detection */
2698 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2699 #endif
2700 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2701
2702 if (flow_ctrl)
2703 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2704
2705 /* Rx Watchdog is available in the COREs newer than the 3.40.
2706 * In some case, for example on bugged HW this feature
2707 * has to be disable and this can be done by passing the
2708 * riwt_off field from the platform.
2709 */
2710 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2711 priv->use_riwt = 1;
2712 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2713 }
2714
2715 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2716
2717 spin_lock_init(&priv->lock);
2718 spin_lock_init(&priv->tx_lock);
2719
2720 ret = register_netdev(ndev);
2721 if (ret) {
2722 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2723 goto error_netdev_register;
2724 }
2725
2726 priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2727 if (IS_ERR(priv->stmmac_clk)) {
2728 pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2729 goto error_clk_get;
2730 }
2731
2732 /* If a specific clk_csr value is passed from the platform
2733 * this means that the CSR Clock Range selection cannot be
2734 * changed at run-time and it is fixed. Viceversa the driver'll try to
2735 * set the MDC clock dynamically according to the csr actual
2736 * clock input.
2737 */
2738 if (!priv->plat->clk_csr)
2739 stmmac_clk_csr_set(priv);
2740 else
2741 priv->clk_csr = priv->plat->clk_csr;
2742
2743 stmmac_check_pcs_mode(priv);
2744
2745 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2746 priv->pcs != STMMAC_PCS_RTBI) {
2747 /* MDIO bus Registration */
2748 ret = stmmac_mdio_register(ndev);
2749 if (ret < 0) {
2750 pr_debug("%s: MDIO bus (id: %d) registration failed",
2751 __func__, priv->plat->bus_id);
2752 goto error_mdio_register;
2753 }
2754 }
2755
2756 return priv;
2757
2758 error_mdio_register:
2759 clk_put(priv->stmmac_clk);
2760 error_clk_get:
2761 unregister_netdev(ndev);
2762 error_netdev_register:
2763 netif_napi_del(&priv->napi);
2764 error_free_netdev:
2765 free_netdev(ndev);
2766
2767 return NULL;
2768 }
2769
2770 /**
2771 * stmmac_dvr_remove
2772 * @ndev: net device pointer
2773 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2774 * changes the link status, releases the DMA descriptor rings.
2775 */
2776 int stmmac_dvr_remove(struct net_device *ndev)
2777 {
2778 struct stmmac_priv *priv = netdev_priv(ndev);
2779
2780 pr_info("%s:\n\tremoving driver", __func__);
2781
2782 priv->hw->dma->stop_rx(priv->ioaddr);
2783 priv->hw->dma->stop_tx(priv->ioaddr);
2784
2785 stmmac_set_mac(priv->ioaddr, false);
2786 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2787 priv->pcs != STMMAC_PCS_RTBI)
2788 stmmac_mdio_unregister(ndev);
2789 netif_carrier_off(ndev);
2790 unregister_netdev(ndev);
2791 free_netdev(ndev);
2792
2793 return 0;
2794 }
2795
2796 #ifdef CONFIG_PM
2797 int stmmac_suspend(struct net_device *ndev)
2798 {
2799 struct stmmac_priv *priv = netdev_priv(ndev);
2800 unsigned long flags;
2801
2802 if (!ndev || !netif_running(ndev))
2803 return 0;
2804
2805 if (priv->phydev)
2806 phy_stop(priv->phydev);
2807
2808 spin_lock_irqsave(&priv->lock, flags);
2809
2810 netif_device_detach(ndev);
2811 netif_stop_queue(ndev);
2812
2813 napi_disable(&priv->napi);
2814
2815 /* Stop TX/RX DMA */
2816 priv->hw->dma->stop_tx(priv->ioaddr);
2817 priv->hw->dma->stop_rx(priv->ioaddr);
2818
2819 stmmac_clear_descriptors(priv);
2820
2821 /* Enable Power down mode by programming the PMT regs */
2822 if (device_may_wakeup(priv->device))
2823 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2824 else {
2825 stmmac_set_mac(priv->ioaddr, false);
2826 /* Disable clock in case of PWM is off */
2827 clk_disable_unprepare(priv->stmmac_clk);
2828 }
2829 spin_unlock_irqrestore(&priv->lock, flags);
2830 return 0;
2831 }
2832
2833 int stmmac_resume(struct net_device *ndev)
2834 {
2835 struct stmmac_priv *priv = netdev_priv(ndev);
2836 unsigned long flags;
2837
2838 if (!netif_running(ndev))
2839 return 0;
2840
2841 spin_lock_irqsave(&priv->lock, flags);
2842
2843 /* Power Down bit, into the PM register, is cleared
2844 * automatically as soon as a magic packet or a Wake-up frame
2845 * is received. Anyway, it's better to manually clear
2846 * this bit because it can generate problems while resuming
2847 * from another devices (e.g. serial console).
2848 */
2849 if (device_may_wakeup(priv->device))
2850 priv->hw->mac->pmt(priv->ioaddr, 0);
2851 else
2852 /* enable the clk prevously disabled */
2853 clk_prepare_enable(priv->stmmac_clk);
2854
2855 netif_device_attach(ndev);
2856
2857 /* Enable the MAC and DMA */
2858 stmmac_set_mac(priv->ioaddr, true);
2859 priv->hw->dma->start_tx(priv->ioaddr);
2860 priv->hw->dma->start_rx(priv->ioaddr);
2861
2862 napi_enable(&priv->napi);
2863
2864 netif_start_queue(ndev);
2865
2866 spin_unlock_irqrestore(&priv->lock, flags);
2867
2868 if (priv->phydev)
2869 phy_start(priv->phydev);
2870
2871 return 0;
2872 }
2873
2874 int stmmac_freeze(struct net_device *ndev)
2875 {
2876 if (!ndev || !netif_running(ndev))
2877 return 0;
2878
2879 return stmmac_release(ndev);
2880 }
2881
2882 int stmmac_restore(struct net_device *ndev)
2883 {
2884 if (!ndev || !netif_running(ndev))
2885 return 0;
2886
2887 return stmmac_open(ndev);
2888 }
2889 #endif /* CONFIG_PM */
2890
2891 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2892 * depending on the configuration selected.
2893 */
2894 static int __init stmmac_init(void)
2895 {
2896 int ret;
2897
2898 ret = stmmac_register_platform();
2899 if (ret)
2900 goto err;
2901 ret = stmmac_register_pci();
2902 if (ret)
2903 goto err_pci;
2904 return 0;
2905 err_pci:
2906 stmmac_unregister_platform();
2907 err:
2908 pr_err("stmmac: driver registration failed\n");
2909 return ret;
2910 }
2911
2912 static void __exit stmmac_exit(void)
2913 {
2914 stmmac_unregister_platform();
2915 stmmac_unregister_pci();
2916 }
2917
2918 module_init(stmmac_init);
2919 module_exit(stmmac_exit);
2920
2921 #ifndef MODULE
2922 static int __init stmmac_cmdline_opt(char *str)
2923 {
2924 char *opt;
2925
2926 if (!str || !*str)
2927 return -EINVAL;
2928 while ((opt = strsep(&str, ",")) != NULL) {
2929 if (!strncmp(opt, "debug:", 6)) {
2930 if (kstrtoint(opt + 6, 0, &debug))
2931 goto err;
2932 } else if (!strncmp(opt, "phyaddr:", 8)) {
2933 if (kstrtoint(opt + 8, 0, &phyaddr))
2934 goto err;
2935 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2936 if (kstrtoint(opt + 11, 0, &dma_txsize))
2937 goto err;
2938 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2939 if (kstrtoint(opt + 11, 0, &dma_rxsize))
2940 goto err;
2941 } else if (!strncmp(opt, "buf_sz:", 7)) {
2942 if (kstrtoint(opt + 7, 0, &buf_sz))
2943 goto err;
2944 } else if (!strncmp(opt, "tc:", 3)) {
2945 if (kstrtoint(opt + 3, 0, &tc))
2946 goto err;
2947 } else if (!strncmp(opt, "watchdog:", 9)) {
2948 if (kstrtoint(opt + 9, 0, &watchdog))
2949 goto err;
2950 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2951 if (kstrtoint(opt + 10, 0, &flow_ctrl))
2952 goto err;
2953 } else if (!strncmp(opt, "pause:", 6)) {
2954 if (kstrtoint(opt + 6, 0, &pause))
2955 goto err;
2956 } else if (!strncmp(opt, "eee_timer:", 10)) {
2957 if (kstrtoint(opt + 10, 0, &eee_timer))
2958 goto err;
2959 } else if (!strncmp(opt, "chain_mode:", 11)) {
2960 if (kstrtoint(opt + 11, 0, &chain_mode))
2961 goto err;
2962 }
2963 }
2964 return 0;
2965
2966 err:
2967 pr_err("%s: ERROR broken module parameter conversion", __func__);
2968 return -EINVAL;
2969 }
2970
2971 __setup("stmmaceth=", stmmac_cmdline_opt);
2972 #endif /* MODULE */
2973
2974 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2975 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2976 MODULE_LICENSE("GPL");