]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
spi: s3c64xx: Let spi core handle validating transfer length
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_STMMAC_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_STMMAC_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55
56 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
57
58 /* Module parameters */
59 #define TX_TIMEO 5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94
95 #define DMA_BUFFER_SIZE BUF_SIZE_4KiB
96 static int buf_sz = DMA_BUFFER_SIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103
104 #define STMMAC_DEFAULT_LPI_TIMER 1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111 * but passing this value so user can force to use the chain instead of the ring
112 */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118
119 #ifdef CONFIG_STMMAC_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125
126 /**
127 * stmmac_verify_args - verify the driver parameters.
128 * Description: it verifies if some wrong parameter is passed to the driver.
129 * Note that wrong parameters are replaced with the default values.
130 */
131 static void stmmac_verify_args(void)
132 {
133 if (unlikely(watchdog < 0))
134 watchdog = TX_TIMEO;
135 if (unlikely(dma_rxsize < 0))
136 dma_rxsize = DMA_RX_SIZE;
137 if (unlikely(dma_txsize < 0))
138 dma_txsize = DMA_TX_SIZE;
139 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 buf_sz = DMA_BUFFER_SIZE;
141 if (unlikely(flow_ctrl > 1))
142 flow_ctrl = FLOW_AUTO;
143 else if (likely(flow_ctrl < 0))
144 flow_ctrl = FLOW_OFF;
145 if (unlikely((pause < 0) || (pause > 0xffff)))
146 pause = PAUSE_TIME;
147 if (eee_timer < 0)
148 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150
151 /**
152 * stmmac_clk_csr_set - dynamically set the MDC clock
153 * @priv: driver private structure
154 * Description: this is to dynamically set the MDC clock according to the csr
155 * clock input.
156 * Note:
157 * If a specific clk_csr value is passed from the platform
158 * this means that the CSR Clock Range selection cannot be
159 * changed at run-time and it is fixed (as reported in the driver
160 * documentation). Viceversa the driver will try to set the MDC
161 * clock dynamically according to the actual clock input.
162 */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 u32 clk_rate;
166
167 clk_rate = clk_get_rate(priv->stmmac_clk);
168
169 /* Platform provided default clk_csr would be assumed valid
170 * for all other cases except for the below mentioned ones.
171 * For values higher than the IEEE 802.3 specified frequency
172 * we can not estimate the proper divider as it is not known
173 * the frequency of clk_csr_i. So we do not change the default
174 * divider.
175 */
176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 if (clk_rate < CSR_F_35M)
178 priv->clk_csr = STMMAC_CSR_20_35M;
179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 priv->clk_csr = STMMAC_CSR_35_60M;
181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 priv->clk_csr = STMMAC_CSR_60_100M;
183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 priv->clk_csr = STMMAC_CSR_100_150M;
185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 priv->clk_csr = STMMAC_CSR_150_250M;
187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 priv->clk_csr = STMMAC_CSR_250_300M;
189 }
190 }
191
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 int j;
195 pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
196 for (j = 0; j < len; j++) {
197 if ((j % 16) == 0)
198 pr_debug("\n %03x:", j);
199 pr_debug(" %02x", buf[j]);
200 }
201 pr_debug("\n");
202 }
203
204 /* minimum number of free TX descriptors required to wake up TX process */
205 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
206
207 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
208 {
209 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
210 }
211
212 /**
213 * stmmac_hw_fix_mac_speed: callback for speed selection
214 * @priv: driver private structure
215 * Description: on some platforms (e.g. ST), some HW system configuraton
216 * registers have to be set according to the link speed negotiated.
217 */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220 struct phy_device *phydev = priv->phydev;
221
222 if (likely(priv->plat->fix_mac_speed))
223 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
224 }
225
226 /**
227 * stmmac_enable_eee_mode: Check and enter in LPI mode
228 * @priv: driver private structure
229 * Description: this function is to verify and enter in LPI mode for EEE.
230 */
231 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
232 {
233 /* Check and enter in LPI mode */
234 if ((priv->dirty_tx == priv->cur_tx) &&
235 (priv->tx_path_in_lpi_mode == false))
236 priv->hw->mac->set_eee_mode(priv->ioaddr);
237 }
238
239 /**
240 * stmmac_disable_eee_mode: disable/exit from EEE
241 * @priv: driver private structure
242 * Description: this function is to exit and disable EEE in case of
243 * LPI state is true. This is called by the xmit.
244 */
245 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
246 {
247 priv->hw->mac->reset_eee_mode(priv->ioaddr);
248 del_timer_sync(&priv->eee_ctrl_timer);
249 priv->tx_path_in_lpi_mode = false;
250 }
251
252 /**
253 * stmmac_eee_ctrl_timer: EEE TX SW timer.
254 * @arg : data hook
255 * Description:
256 * if there is no data transfer and if we are not in LPI state,
257 * then MAC Transmitter can be moved to LPI state.
258 */
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262
263 stmmac_enable_eee_mode(priv);
264 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
265 }
266
267 /**
268 * stmmac_eee_init: init EEE
269 * @priv: driver private structure
270 * Description:
271 * If the EEE support has been enabled while configuring the driver,
272 * if the GMAC actually supports the EEE (from the HW cap reg) and the
273 * phy can also manage EEE, so enable the LPI state and start the timer
274 * to verify if the tx path can enter in LPI state.
275 */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 bool ret = false;
279
280 /* Using PCS we cannot dial with the phy registers at this stage
281 * so we do not support extra feature like EEE.
282 */
283 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
284 (priv->pcs == STMMAC_PCS_RTBI))
285 goto out;
286
287 /* MAC core supports the EEE feature. */
288 if (priv->dma_cap.eee) {
289 /* Check if the PHY supports EEE */
290 if (phy_init_eee(priv->phydev, 1))
291 goto out;
292
293 if (!priv->eee_active) {
294 priv->eee_active = 1;
295 init_timer(&priv->eee_ctrl_timer);
296 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
297 priv->eee_ctrl_timer.data = (unsigned long)priv;
298 priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
299 add_timer(&priv->eee_ctrl_timer);
300
301 priv->hw->mac->set_eee_timer(priv->ioaddr,
302 STMMAC_DEFAULT_LIT_LS,
303 priv->tx_lpi_timer);
304 } else
305 /* Set HW EEE according to the speed */
306 priv->hw->mac->set_eee_pls(priv->ioaddr,
307 priv->phydev->link);
308
309 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
310
311 ret = true;
312 }
313 out:
314 return ret;
315 }
316
317 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
318 * @priv: driver private structure
319 * @entry : descriptor index to be used.
320 * @skb : the socket buffer
321 * Description :
322 * This function will read timestamp from the descriptor & pass it to stack.
323 * and also perform some sanity checks.
324 */
325 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
326 unsigned int entry, struct sk_buff *skb)
327 {
328 struct skb_shared_hwtstamps shhwtstamp;
329 u64 ns;
330 void *desc = NULL;
331
332 if (!priv->hwts_tx_en)
333 return;
334
335 /* exit if skb doesn't support hw tstamp */
336 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
337 return;
338
339 if (priv->adv_ts)
340 desc = (priv->dma_etx + entry);
341 else
342 desc = (priv->dma_tx + entry);
343
344 /* check tx tstamp status */
345 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
346 return;
347
348 /* get the valid tstamp */
349 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
350
351 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
352 shhwtstamp.hwtstamp = ns_to_ktime(ns);
353 /* pass tstamp to stack */
354 skb_tstamp_tx(skb, &shhwtstamp);
355
356 return;
357 }
358
359 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
360 * @priv: driver private structure
361 * @entry : descriptor index to be used.
362 * @skb : the socket buffer
363 * Description :
364 * This function will read received packet's timestamp from the descriptor
365 * and pass it to stack. It also perform some sanity checks.
366 */
367 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
368 unsigned int entry, struct sk_buff *skb)
369 {
370 struct skb_shared_hwtstamps *shhwtstamp = NULL;
371 u64 ns;
372 void *desc = NULL;
373
374 if (!priv->hwts_rx_en)
375 return;
376
377 if (priv->adv_ts)
378 desc = (priv->dma_erx + entry);
379 else
380 desc = (priv->dma_rx + entry);
381
382 /* exit if rx tstamp is not valid */
383 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
384 return;
385
386 /* get valid tstamp */
387 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
388 shhwtstamp = skb_hwtstamps(skb);
389 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
390 shhwtstamp->hwtstamp = ns_to_ktime(ns);
391 }
392
393 /**
394 * stmmac_hwtstamp_ioctl - control hardware timestamping.
395 * @dev: device pointer.
396 * @ifr: An IOCTL specefic structure, that can contain a pointer to
397 * a proprietary structure used to pass information to the driver.
398 * Description:
399 * This function configures the MAC to enable/disable both outgoing(TX)
400 * and incoming(RX) packets time stamping based on user input.
401 * Return Value:
402 * 0 on success and an appropriate -ve integer on failure.
403 */
404 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
405 {
406 struct stmmac_priv *priv = netdev_priv(dev);
407 struct hwtstamp_config config;
408 struct timespec now;
409 u64 temp = 0;
410 u32 ptp_v2 = 0;
411 u32 tstamp_all = 0;
412 u32 ptp_over_ipv4_udp = 0;
413 u32 ptp_over_ipv6_udp = 0;
414 u32 ptp_over_ethernet = 0;
415 u32 snap_type_sel = 0;
416 u32 ts_master_en = 0;
417 u32 ts_event_en = 0;
418 u32 value = 0;
419
420 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
421 netdev_alert(priv->dev, "No support for HW time stamping\n");
422 priv->hwts_tx_en = 0;
423 priv->hwts_rx_en = 0;
424
425 return -EOPNOTSUPP;
426 }
427
428 if (copy_from_user(&config, ifr->ifr_data,
429 sizeof(struct hwtstamp_config)))
430 return -EFAULT;
431
432 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
433 __func__, config.flags, config.tx_type, config.rx_filter);
434
435 /* reserved for future extensions */
436 if (config.flags)
437 return -EINVAL;
438
439 if (config.tx_type != HWTSTAMP_TX_OFF &&
440 config.tx_type != HWTSTAMP_TX_ON)
441 return -ERANGE;
442
443 if (priv->adv_ts) {
444 switch (config.rx_filter) {
445 case HWTSTAMP_FILTER_NONE:
446 /* time stamp no incoming packet at all */
447 config.rx_filter = HWTSTAMP_FILTER_NONE;
448 break;
449
450 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
451 /* PTP v1, UDP, any kind of event packet */
452 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
453 /* take time stamp for all event messages */
454 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
455
456 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
457 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
458 break;
459
460 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
461 /* PTP v1, UDP, Sync packet */
462 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
463 /* take time stamp for SYNC messages only */
464 ts_event_en = PTP_TCR_TSEVNTENA;
465
466 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
467 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
468 break;
469
470 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
471 /* PTP v1, UDP, Delay_req packet */
472 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
473 /* take time stamp for Delay_Req messages only */
474 ts_master_en = PTP_TCR_TSMSTRENA;
475 ts_event_en = PTP_TCR_TSEVNTENA;
476
477 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
478 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
479 break;
480
481 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
482 /* PTP v2, UDP, any kind of event packet */
483 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
484 ptp_v2 = PTP_TCR_TSVER2ENA;
485 /* take time stamp for all event messages */
486 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
487
488 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
489 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
490 break;
491
492 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
493 /* PTP v2, UDP, Sync packet */
494 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
495 ptp_v2 = PTP_TCR_TSVER2ENA;
496 /* take time stamp for SYNC messages only */
497 ts_event_en = PTP_TCR_TSEVNTENA;
498
499 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
500 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
501 break;
502
503 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
504 /* PTP v2, UDP, Delay_req packet */
505 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
506 ptp_v2 = PTP_TCR_TSVER2ENA;
507 /* take time stamp for Delay_Req messages only */
508 ts_master_en = PTP_TCR_TSMSTRENA;
509 ts_event_en = PTP_TCR_TSEVNTENA;
510
511 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
512 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
513 break;
514
515 case HWTSTAMP_FILTER_PTP_V2_EVENT:
516 /* PTP v2/802.AS1 any layer, any kind of event packet */
517 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
518 ptp_v2 = PTP_TCR_TSVER2ENA;
519 /* take time stamp for all event messages */
520 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
521
522 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
523 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
524 ptp_over_ethernet = PTP_TCR_TSIPENA;
525 break;
526
527 case HWTSTAMP_FILTER_PTP_V2_SYNC:
528 /* PTP v2/802.AS1, any layer, Sync packet */
529 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
530 ptp_v2 = PTP_TCR_TSVER2ENA;
531 /* take time stamp for SYNC messages only */
532 ts_event_en = PTP_TCR_TSEVNTENA;
533
534 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
535 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
536 ptp_over_ethernet = PTP_TCR_TSIPENA;
537 break;
538
539 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
540 /* PTP v2/802.AS1, any layer, Delay_req packet */
541 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
542 ptp_v2 = PTP_TCR_TSVER2ENA;
543 /* take time stamp for Delay_Req messages only */
544 ts_master_en = PTP_TCR_TSMSTRENA;
545 ts_event_en = PTP_TCR_TSEVNTENA;
546
547 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549 ptp_over_ethernet = PTP_TCR_TSIPENA;
550 break;
551
552 case HWTSTAMP_FILTER_ALL:
553 /* time stamp any incoming packet */
554 config.rx_filter = HWTSTAMP_FILTER_ALL;
555 tstamp_all = PTP_TCR_TSENALL;
556 break;
557
558 default:
559 return -ERANGE;
560 }
561 } else {
562 switch (config.rx_filter) {
563 case HWTSTAMP_FILTER_NONE:
564 config.rx_filter = HWTSTAMP_FILTER_NONE;
565 break;
566 default:
567 /* PTP v1, UDP, any kind of event packet */
568 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
569 break;
570 }
571 }
572 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
573 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
574
575 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
576 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
577 else {
578 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
579 tstamp_all | ptp_v2 | ptp_over_ethernet |
580 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
581 ts_master_en | snap_type_sel);
582
583 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
584
585 /* program Sub Second Increment reg */
586 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
587
588 /* calculate default added value:
589 * formula is :
590 * addend = (2^32)/freq_div_ratio;
591 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
592 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
593 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
594 * achive 20ns accuracy.
595 *
596 * 2^x * y == (y << x), hence
597 * 2^32 * 50000000 ==> (50000000 << 32)
598 */
599 temp = (u64) (50000000ULL << 32);
600 priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
601 priv->hw->ptp->config_addend(priv->ioaddr,
602 priv->default_addend);
603
604 /* initialize system time */
605 getnstimeofday(&now);
606 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
607 now.tv_nsec);
608 }
609
610 return copy_to_user(ifr->ifr_data, &config,
611 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
612 }
613
614 /**
615 * stmmac_init_ptp: init PTP
616 * @priv: driver private structure
617 * Description: this is to verify if the HW supports the PTPv1 or v2.
618 * This is done by looking at the HW cap. register.
619 * Also it registers the ptp driver.
620 */
621 static int stmmac_init_ptp(struct stmmac_priv *priv)
622 {
623 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
624 return -EOPNOTSUPP;
625
626 priv->adv_ts = 0;
627 if (priv->dma_cap.atime_stamp && priv->extend_desc)
628 priv->adv_ts = 1;
629
630 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
631 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
632
633 if (netif_msg_hw(priv) && priv->adv_ts)
634 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
635
636 priv->hw->ptp = &stmmac_ptp;
637 priv->hwts_tx_en = 0;
638 priv->hwts_rx_en = 0;
639
640 return stmmac_ptp_register(priv);
641 }
642
643 static void stmmac_release_ptp(struct stmmac_priv *priv)
644 {
645 stmmac_ptp_unregister(priv);
646 }
647
648 /**
649 * stmmac_adjust_link
650 * @dev: net device structure
651 * Description: it adjusts the link parameters.
652 */
653 static void stmmac_adjust_link(struct net_device *dev)
654 {
655 struct stmmac_priv *priv = netdev_priv(dev);
656 struct phy_device *phydev = priv->phydev;
657 unsigned long flags;
658 int new_state = 0;
659 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
660
661 if (phydev == NULL)
662 return;
663
664 spin_lock_irqsave(&priv->lock, flags);
665
666 if (phydev->link) {
667 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
668
669 /* Now we make sure that we can be in full duplex mode.
670 * If not, we operate in half-duplex mode. */
671 if (phydev->duplex != priv->oldduplex) {
672 new_state = 1;
673 if (!(phydev->duplex))
674 ctrl &= ~priv->hw->link.duplex;
675 else
676 ctrl |= priv->hw->link.duplex;
677 priv->oldduplex = phydev->duplex;
678 }
679 /* Flow Control operation */
680 if (phydev->pause)
681 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
682 fc, pause_time);
683
684 if (phydev->speed != priv->speed) {
685 new_state = 1;
686 switch (phydev->speed) {
687 case 1000:
688 if (likely(priv->plat->has_gmac))
689 ctrl &= ~priv->hw->link.port;
690 stmmac_hw_fix_mac_speed(priv);
691 break;
692 case 100:
693 case 10:
694 if (priv->plat->has_gmac) {
695 ctrl |= priv->hw->link.port;
696 if (phydev->speed == SPEED_100) {
697 ctrl |= priv->hw->link.speed;
698 } else {
699 ctrl &= ~(priv->hw->link.speed);
700 }
701 } else {
702 ctrl &= ~priv->hw->link.port;
703 }
704 stmmac_hw_fix_mac_speed(priv);
705 break;
706 default:
707 if (netif_msg_link(priv))
708 pr_warn("%s: Speed (%d) not 10/100\n",
709 dev->name, phydev->speed);
710 break;
711 }
712
713 priv->speed = phydev->speed;
714 }
715
716 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
717
718 if (!priv->oldlink) {
719 new_state = 1;
720 priv->oldlink = 1;
721 }
722 } else if (priv->oldlink) {
723 new_state = 1;
724 priv->oldlink = 0;
725 priv->speed = 0;
726 priv->oldduplex = -1;
727 }
728
729 if (new_state && netif_msg_link(priv))
730 phy_print_status(phydev);
731
732 /* At this stage, it could be needed to setup the EEE or adjust some
733 * MAC related HW registers.
734 */
735 priv->eee_enabled = stmmac_eee_init(priv);
736
737 spin_unlock_irqrestore(&priv->lock, flags);
738 }
739
740 /**
741 * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
742 * @priv: driver private structure
743 * Description: this is to verify if the HW supports the PCS.
744 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
745 * configured for the TBI, RTBI, or SGMII PHY interface.
746 */
747 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
748 {
749 int interface = priv->plat->interface;
750
751 if (priv->dma_cap.pcs) {
752 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
753 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
754 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
755 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
756 pr_debug("STMMAC: PCS RGMII support enable\n");
757 priv->pcs = STMMAC_PCS_RGMII;
758 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
759 pr_debug("STMMAC: PCS SGMII support enable\n");
760 priv->pcs = STMMAC_PCS_SGMII;
761 }
762 }
763 }
764
765 /**
766 * stmmac_init_phy - PHY initialization
767 * @dev: net device structure
768 * Description: it initializes the driver's PHY state, and attaches the PHY
769 * to the mac driver.
770 * Return value:
771 * 0 on success
772 */
773 static int stmmac_init_phy(struct net_device *dev)
774 {
775 struct stmmac_priv *priv = netdev_priv(dev);
776 struct phy_device *phydev;
777 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
778 char bus_id[MII_BUS_ID_SIZE];
779 int interface = priv->plat->interface;
780 int max_speed = priv->plat->max_speed;
781 priv->oldlink = 0;
782 priv->speed = 0;
783 priv->oldduplex = -1;
784
785 if (priv->plat->phy_bus_name)
786 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
787 priv->plat->phy_bus_name, priv->plat->bus_id);
788 else
789 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
790 priv->plat->bus_id);
791
792 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
793 priv->plat->phy_addr);
794 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
795
796 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
797
798 if (IS_ERR(phydev)) {
799 pr_err("%s: Could not attach to PHY\n", dev->name);
800 return PTR_ERR(phydev);
801 }
802
803 /* Stop Advertising 1000BASE Capability if interface is not GMII */
804 if ((interface == PHY_INTERFACE_MODE_MII) ||
805 (interface == PHY_INTERFACE_MODE_RMII) ||
806 (max_speed < 1000 && max_speed > 0))
807 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
808 SUPPORTED_1000baseT_Full);
809
810 /*
811 * Broken HW is sometimes missing the pull-up resistor on the
812 * MDIO line, which results in reads to non-existent devices returning
813 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
814 * device as well.
815 * Note: phydev->phy_id is the result of reading the UID PHY registers.
816 */
817 if (phydev->phy_id == 0) {
818 phy_disconnect(phydev);
819 return -ENODEV;
820 }
821 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
822 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
823
824 priv->phydev = phydev;
825
826 return 0;
827 }
828
829 /**
830 * stmmac_display_ring: display ring
831 * @head: pointer to the head of the ring passed.
832 * @size: size of the ring.
833 * @extend_desc: to verify if extended descriptors are used.
834 * Description: display the control/status and buffer descriptors.
835 */
836 static void stmmac_display_ring(void *head, int size, int extend_desc)
837 {
838 int i;
839 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
840 struct dma_desc *p = (struct dma_desc *)head;
841
842 for (i = 0; i < size; i++) {
843 u64 x;
844 if (extend_desc) {
845 x = *(u64 *) ep;
846 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
847 i, (unsigned int)virt_to_phys(ep),
848 (unsigned int)x, (unsigned int)(x >> 32),
849 ep->basic.des2, ep->basic.des3);
850 ep++;
851 } else {
852 x = *(u64 *) p;
853 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
854 i, (unsigned int)virt_to_phys(p),
855 (unsigned int)x, (unsigned int)(x >> 32),
856 p->des2, p->des3);
857 p++;
858 }
859 pr_info("\n");
860 }
861 }
862
863 static void stmmac_display_rings(struct stmmac_priv *priv)
864 {
865 unsigned int txsize = priv->dma_tx_size;
866 unsigned int rxsize = priv->dma_rx_size;
867
868 if (priv->extend_desc) {
869 pr_info("Extended RX descriptor ring:\n");
870 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
871 pr_info("Extended TX descriptor ring:\n");
872 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
873 } else {
874 pr_info("RX descriptor ring:\n");
875 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
876 pr_info("TX descriptor ring:\n");
877 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
878 }
879 }
880
881 static int stmmac_set_bfsize(int mtu, int bufsize)
882 {
883 int ret = bufsize;
884
885 if (mtu >= BUF_SIZE_4KiB)
886 ret = BUF_SIZE_8KiB;
887 else if (mtu >= BUF_SIZE_2KiB)
888 ret = BUF_SIZE_4KiB;
889 else if (mtu >= DMA_BUFFER_SIZE)
890 ret = BUF_SIZE_2KiB;
891 else
892 ret = DMA_BUFFER_SIZE;
893
894 return ret;
895 }
896
897 /**
898 * stmmac_clear_descriptors: clear descriptors
899 * @priv: driver private structure
900 * Description: this function is called to clear the tx and rx descriptors
901 * in case of both basic and extended descriptors are used.
902 */
903 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
904 {
905 int i;
906 unsigned int txsize = priv->dma_tx_size;
907 unsigned int rxsize = priv->dma_rx_size;
908
909 /* Clear the Rx/Tx descriptors */
910 for (i = 0; i < rxsize; i++)
911 if (priv->extend_desc)
912 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
913 priv->use_riwt, priv->mode,
914 (i == rxsize - 1));
915 else
916 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
917 priv->use_riwt, priv->mode,
918 (i == rxsize - 1));
919 for (i = 0; i < txsize; i++)
920 if (priv->extend_desc)
921 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
922 priv->mode,
923 (i == txsize - 1));
924 else
925 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
926 priv->mode,
927 (i == txsize - 1));
928 }
929
930 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
931 int i)
932 {
933 struct sk_buff *skb;
934
935 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
936 GFP_KERNEL);
937 if (!skb) {
938 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
939 return -ENOMEM;
940 }
941 skb_reserve(skb, NET_IP_ALIGN);
942 priv->rx_skbuff[i] = skb;
943 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
944 priv->dma_buf_sz,
945 DMA_FROM_DEVICE);
946 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
947 pr_err("%s: DMA mapping error\n", __func__);
948 dev_kfree_skb_any(skb);
949 return -EINVAL;
950 }
951
952 p->des2 = priv->rx_skbuff_dma[i];
953
954 if ((priv->mode == STMMAC_RING_MODE) &&
955 (priv->dma_buf_sz == BUF_SIZE_16KiB))
956 priv->hw->ring->init_desc3(p);
957
958 return 0;
959 }
960
961 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
962 {
963 if (priv->rx_skbuff[i]) {
964 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
965 priv->dma_buf_sz, DMA_FROM_DEVICE);
966 dev_kfree_skb_any(priv->rx_skbuff[i]);
967 }
968 priv->rx_skbuff[i] = NULL;
969 }
970
971 /**
972 * init_dma_desc_rings - init the RX/TX descriptor rings
973 * @dev: net device structure
974 * Description: this function initializes the DMA RX/TX descriptors
975 * and allocates the socket buffers. It suppors the chained and ring
976 * modes.
977 */
978 static int init_dma_desc_rings(struct net_device *dev)
979 {
980 int i;
981 struct stmmac_priv *priv = netdev_priv(dev);
982 unsigned int txsize = priv->dma_tx_size;
983 unsigned int rxsize = priv->dma_rx_size;
984 unsigned int bfsize = 0;
985 int ret = -ENOMEM;
986
987 /* Set the max buffer size according to the DESC mode
988 * and the MTU. Note that RING mode allows 16KiB bsize.
989 */
990 if (priv->mode == STMMAC_RING_MODE)
991 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
992
993 if (bfsize < BUF_SIZE_16KiB)
994 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
995
996 priv->dma_buf_sz = bfsize;
997
998 if (netif_msg_probe(priv))
999 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1000 txsize, rxsize, bfsize);
1001
1002 if (netif_msg_probe(priv)) {
1003 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1004 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1005
1006 /* RX INITIALIZATION */
1007 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1008 }
1009 for (i = 0; i < rxsize; i++) {
1010 struct dma_desc *p;
1011 if (priv->extend_desc)
1012 p = &((priv->dma_erx + i)->basic);
1013 else
1014 p = priv->dma_rx + i;
1015
1016 ret = stmmac_init_rx_buffers(priv, p, i);
1017 if (ret)
1018 goto err_init_rx_buffers;
1019
1020 if (netif_msg_probe(priv))
1021 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1022 priv->rx_skbuff[i]->data,
1023 (unsigned int)priv->rx_skbuff_dma[i]);
1024 }
1025 priv->cur_rx = 0;
1026 priv->dirty_rx = (unsigned int)(i - rxsize);
1027 buf_sz = bfsize;
1028
1029 /* Setup the chained descriptor addresses */
1030 if (priv->mode == STMMAC_CHAIN_MODE) {
1031 if (priv->extend_desc) {
1032 priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1033 rxsize, 1);
1034 priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1035 txsize, 1);
1036 } else {
1037 priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1038 rxsize, 0);
1039 priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1040 txsize, 0);
1041 }
1042 }
1043
1044 /* TX INITIALIZATION */
1045 for (i = 0; i < txsize; i++) {
1046 struct dma_desc *p;
1047 if (priv->extend_desc)
1048 p = &((priv->dma_etx + i)->basic);
1049 else
1050 p = priv->dma_tx + i;
1051 p->des2 = 0;
1052 priv->tx_skbuff_dma[i] = 0;
1053 priv->tx_skbuff[i] = NULL;
1054 }
1055
1056 priv->dirty_tx = 0;
1057 priv->cur_tx = 0;
1058
1059 stmmac_clear_descriptors(priv);
1060
1061 if (netif_msg_hw(priv))
1062 stmmac_display_rings(priv);
1063
1064 return 0;
1065 err_init_rx_buffers:
1066 while (--i >= 0)
1067 stmmac_free_rx_buffers(priv, i);
1068 return ret;
1069 }
1070
1071 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1072 {
1073 int i;
1074
1075 for (i = 0; i < priv->dma_rx_size; i++)
1076 stmmac_free_rx_buffers(priv, i);
1077 }
1078
1079 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1080 {
1081 int i;
1082
1083 for (i = 0; i < priv->dma_tx_size; i++) {
1084 struct dma_desc *p;
1085
1086 if (priv->extend_desc)
1087 p = &((priv->dma_etx + i)->basic);
1088 else
1089 p = priv->dma_tx + i;
1090
1091 if (priv->tx_skbuff_dma[i]) {
1092 dma_unmap_single(priv->device,
1093 priv->tx_skbuff_dma[i],
1094 priv->hw->desc->get_tx_len(p),
1095 DMA_TO_DEVICE);
1096 priv->tx_skbuff_dma[i] = 0;
1097 }
1098
1099 if (priv->tx_skbuff[i] != NULL) {
1100 dev_kfree_skb_any(priv->tx_skbuff[i]);
1101 priv->tx_skbuff[i] = NULL;
1102 }
1103 }
1104 }
1105
1106 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1107 {
1108 unsigned int txsize = priv->dma_tx_size;
1109 unsigned int rxsize = priv->dma_rx_size;
1110 int ret = -ENOMEM;
1111
1112 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1113 GFP_KERNEL);
1114 if (!priv->rx_skbuff_dma)
1115 return -ENOMEM;
1116
1117 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1118 GFP_KERNEL);
1119 if (!priv->rx_skbuff)
1120 goto err_rx_skbuff;
1121
1122 priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1123 GFP_KERNEL);
1124 if (!priv->tx_skbuff_dma)
1125 goto err_tx_skbuff_dma;
1126
1127 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1128 GFP_KERNEL);
1129 if (!priv->tx_skbuff)
1130 goto err_tx_skbuff;
1131
1132 if (priv->extend_desc) {
1133 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1134 sizeof(struct
1135 dma_extended_desc),
1136 &priv->dma_rx_phy,
1137 GFP_KERNEL);
1138 if (!priv->dma_erx)
1139 goto err_dma;
1140
1141 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1142 sizeof(struct
1143 dma_extended_desc),
1144 &priv->dma_tx_phy,
1145 GFP_KERNEL);
1146 if (!priv->dma_etx) {
1147 dma_free_coherent(priv->device, priv->dma_rx_size *
1148 sizeof(struct dma_extended_desc),
1149 priv->dma_erx, priv->dma_rx_phy);
1150 goto err_dma;
1151 }
1152 } else {
1153 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1154 sizeof(struct dma_desc),
1155 &priv->dma_rx_phy,
1156 GFP_KERNEL);
1157 if (!priv->dma_rx)
1158 goto err_dma;
1159
1160 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1161 sizeof(struct dma_desc),
1162 &priv->dma_tx_phy,
1163 GFP_KERNEL);
1164 if (!priv->dma_tx) {
1165 dma_free_coherent(priv->device, priv->dma_rx_size *
1166 sizeof(struct dma_desc),
1167 priv->dma_rx, priv->dma_rx_phy);
1168 goto err_dma;
1169 }
1170 }
1171
1172 return 0;
1173
1174 err_dma:
1175 kfree(priv->tx_skbuff);
1176 err_tx_skbuff:
1177 kfree(priv->tx_skbuff_dma);
1178 err_tx_skbuff_dma:
1179 kfree(priv->rx_skbuff);
1180 err_rx_skbuff:
1181 kfree(priv->rx_skbuff_dma);
1182 return ret;
1183 }
1184
1185 static void free_dma_desc_resources(struct stmmac_priv *priv)
1186 {
1187 /* Release the DMA TX/RX socket buffers */
1188 dma_free_rx_skbufs(priv);
1189 dma_free_tx_skbufs(priv);
1190
1191 /* Free DMA regions of consistent memory previously allocated */
1192 if (!priv->extend_desc) {
1193 dma_free_coherent(priv->device,
1194 priv->dma_tx_size * sizeof(struct dma_desc),
1195 priv->dma_tx, priv->dma_tx_phy);
1196 dma_free_coherent(priv->device,
1197 priv->dma_rx_size * sizeof(struct dma_desc),
1198 priv->dma_rx, priv->dma_rx_phy);
1199 } else {
1200 dma_free_coherent(priv->device, priv->dma_tx_size *
1201 sizeof(struct dma_extended_desc),
1202 priv->dma_etx, priv->dma_tx_phy);
1203 dma_free_coherent(priv->device, priv->dma_rx_size *
1204 sizeof(struct dma_extended_desc),
1205 priv->dma_erx, priv->dma_rx_phy);
1206 }
1207 kfree(priv->rx_skbuff_dma);
1208 kfree(priv->rx_skbuff);
1209 kfree(priv->tx_skbuff_dma);
1210 kfree(priv->tx_skbuff);
1211 }
1212
1213 /**
1214 * stmmac_dma_operation_mode - HW DMA operation mode
1215 * @priv: driver private structure
1216 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
1217 * or Store-And-Forward capability.
1218 */
1219 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1220 {
1221 if (priv->plat->force_thresh_dma_mode)
1222 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1223 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1224 /*
1225 * In case of GMAC, SF mode can be enabled
1226 * to perform the TX COE in HW. This depends on:
1227 * 1) TX COE if actually supported
1228 * 2) There is no bugged Jumbo frame support
1229 * that needs to not insert csum in the TDES.
1230 */
1231 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1232 tc = SF_DMA_MODE;
1233 } else
1234 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1235 }
1236
1237 /**
1238 * stmmac_tx_clean:
1239 * @priv: driver private structure
1240 * Description: it reclaims resources after transmission completes.
1241 */
1242 static void stmmac_tx_clean(struct stmmac_priv *priv)
1243 {
1244 unsigned int txsize = priv->dma_tx_size;
1245
1246 spin_lock(&priv->tx_lock);
1247
1248 priv->xstats.tx_clean++;
1249
1250 while (priv->dirty_tx != priv->cur_tx) {
1251 int last;
1252 unsigned int entry = priv->dirty_tx % txsize;
1253 struct sk_buff *skb = priv->tx_skbuff[entry];
1254 struct dma_desc *p;
1255
1256 if (priv->extend_desc)
1257 p = (struct dma_desc *)(priv->dma_etx + entry);
1258 else
1259 p = priv->dma_tx + entry;
1260
1261 /* Check if the descriptor is owned by the DMA. */
1262 if (priv->hw->desc->get_tx_owner(p))
1263 break;
1264
1265 /* Verify tx error by looking at the last segment. */
1266 last = priv->hw->desc->get_tx_ls(p);
1267 if (likely(last)) {
1268 int tx_error =
1269 priv->hw->desc->tx_status(&priv->dev->stats,
1270 &priv->xstats, p,
1271 priv->ioaddr);
1272 if (likely(tx_error == 0)) {
1273 priv->dev->stats.tx_packets++;
1274 priv->xstats.tx_pkt_n++;
1275 } else
1276 priv->dev->stats.tx_errors++;
1277
1278 stmmac_get_tx_hwtstamp(priv, entry, skb);
1279 }
1280 if (netif_msg_tx_done(priv))
1281 pr_debug("%s: curr %d, dirty %d\n", __func__,
1282 priv->cur_tx, priv->dirty_tx);
1283
1284 if (likely(priv->tx_skbuff_dma[entry])) {
1285 dma_unmap_single(priv->device,
1286 priv->tx_skbuff_dma[entry],
1287 priv->hw->desc->get_tx_len(p),
1288 DMA_TO_DEVICE);
1289 priv->tx_skbuff_dma[entry] = 0;
1290 }
1291 priv->hw->ring->clean_desc3(priv, p);
1292
1293 if (likely(skb != NULL)) {
1294 dev_kfree_skb(skb);
1295 priv->tx_skbuff[entry] = NULL;
1296 }
1297
1298 priv->hw->desc->release_tx_desc(p, priv->mode);
1299
1300 priv->dirty_tx++;
1301 }
1302 if (unlikely(netif_queue_stopped(priv->dev) &&
1303 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1304 netif_tx_lock(priv->dev);
1305 if (netif_queue_stopped(priv->dev) &&
1306 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1307 if (netif_msg_tx_done(priv))
1308 pr_debug("%s: restart transmit\n", __func__);
1309 netif_wake_queue(priv->dev);
1310 }
1311 netif_tx_unlock(priv->dev);
1312 }
1313
1314 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1315 stmmac_enable_eee_mode(priv);
1316 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1317 }
1318 spin_unlock(&priv->tx_lock);
1319 }
1320
1321 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1322 {
1323 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1324 }
1325
1326 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1327 {
1328 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1329 }
1330
1331 /**
1332 * stmmac_tx_err: irq tx error mng function
1333 * @priv: driver private structure
1334 * Description: it cleans the descriptors and restarts the transmission
1335 * in case of errors.
1336 */
1337 static void stmmac_tx_err(struct stmmac_priv *priv)
1338 {
1339 int i;
1340 int txsize = priv->dma_tx_size;
1341 netif_stop_queue(priv->dev);
1342
1343 priv->hw->dma->stop_tx(priv->ioaddr);
1344 dma_free_tx_skbufs(priv);
1345 for (i = 0; i < txsize; i++)
1346 if (priv->extend_desc)
1347 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1348 priv->mode,
1349 (i == txsize - 1));
1350 else
1351 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1352 priv->mode,
1353 (i == txsize - 1));
1354 priv->dirty_tx = 0;
1355 priv->cur_tx = 0;
1356 priv->hw->dma->start_tx(priv->ioaddr);
1357
1358 priv->dev->stats.tx_errors++;
1359 netif_wake_queue(priv->dev);
1360 }
1361
1362 /**
1363 * stmmac_dma_interrupt: DMA ISR
1364 * @priv: driver private structure
1365 * Description: this is the DMA ISR. It is called by the main ISR.
1366 * It calls the dwmac dma routine to understand which type of interrupt
1367 * happened. In case of there is a Normal interrupt and either TX or RX
1368 * interrupt happened so the NAPI is scheduled.
1369 */
1370 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1371 {
1372 int status;
1373
1374 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1375 if (likely((status & handle_rx)) || (status & handle_tx)) {
1376 if (likely(napi_schedule_prep(&priv->napi))) {
1377 stmmac_disable_dma_irq(priv);
1378 __napi_schedule(&priv->napi);
1379 }
1380 }
1381 if (unlikely(status & tx_hard_error_bump_tc)) {
1382 /* Try to bump up the dma threshold on this failure */
1383 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1384 tc += 64;
1385 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1386 priv->xstats.threshold = tc;
1387 }
1388 } else if (unlikely(status == tx_hard_error))
1389 stmmac_tx_err(priv);
1390 }
1391
1392 /**
1393 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1394 * @priv: driver private structure
1395 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1396 */
1397 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1398 {
1399 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1400 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1401
1402 dwmac_mmc_intr_all_mask(priv->ioaddr);
1403
1404 if (priv->dma_cap.rmon) {
1405 dwmac_mmc_ctrl(priv->ioaddr, mode);
1406 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1407 } else
1408 pr_info(" No MAC Management Counters available\n");
1409 }
1410
1411 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1412 {
1413 u32 hwid = priv->hw->synopsys_uid;
1414
1415 /* Check Synopsys Id (not available on old chips) */
1416 if (likely(hwid)) {
1417 u32 uid = ((hwid & 0x0000ff00) >> 8);
1418 u32 synid = (hwid & 0x000000ff);
1419
1420 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1421 uid, synid);
1422
1423 return synid;
1424 }
1425 return 0;
1426 }
1427
1428 /**
1429 * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1430 * @priv: driver private structure
1431 * Description: select the Enhanced/Alternate or Normal descriptors.
1432 * In case of Enhanced/Alternate, it looks at the extended descriptors are
1433 * supported by the HW cap. register.
1434 */
1435 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1436 {
1437 if (priv->plat->enh_desc) {
1438 pr_info(" Enhanced/Alternate descriptors\n");
1439
1440 /* GMAC older than 3.50 has no extended descriptors */
1441 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1442 pr_info("\tEnabled extended descriptors\n");
1443 priv->extend_desc = 1;
1444 } else
1445 pr_warn("Extended descriptors not supported\n");
1446
1447 priv->hw->desc = &enh_desc_ops;
1448 } else {
1449 pr_info(" Normal descriptors\n");
1450 priv->hw->desc = &ndesc_ops;
1451 }
1452 }
1453
1454 /**
1455 * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1456 * @priv: driver private structure
1457 * Description:
1458 * new GMAC chip generations have a new register to indicate the
1459 * presence of the optional feature/functions.
1460 * This can be also used to override the value passed through the
1461 * platform and necessary for old MAC10/100 and GMAC chips.
1462 */
1463 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1464 {
1465 u32 hw_cap = 0;
1466
1467 if (priv->hw->dma->get_hw_feature) {
1468 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1469
1470 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1471 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1472 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1473 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1474 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1475 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1476 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1477 priv->dma_cap.pmt_remote_wake_up =
1478 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1479 priv->dma_cap.pmt_magic_frame =
1480 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1481 /* MMC */
1482 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1483 /* IEEE 1588-2002 */
1484 priv->dma_cap.time_stamp =
1485 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1486 /* IEEE 1588-2008 */
1487 priv->dma_cap.atime_stamp =
1488 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1489 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1490 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1491 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1492 /* TX and RX csum */
1493 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1494 priv->dma_cap.rx_coe_type1 =
1495 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1496 priv->dma_cap.rx_coe_type2 =
1497 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1498 priv->dma_cap.rxfifo_over_2048 =
1499 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1500 /* TX and RX number of channels */
1501 priv->dma_cap.number_rx_channel =
1502 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1503 priv->dma_cap.number_tx_channel =
1504 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1505 /* Alternate (enhanced) DESC mode */
1506 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1507 }
1508
1509 return hw_cap;
1510 }
1511
1512 /**
1513 * stmmac_check_ether_addr: check if the MAC addr is valid
1514 * @priv: driver private structure
1515 * Description:
1516 * it is to verify if the MAC address is valid, in case of failures it
1517 * generates a random MAC address
1518 */
1519 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1520 {
1521 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1522 priv->hw->mac->get_umac_addr((void __iomem *)
1523 priv->dev->base_addr,
1524 priv->dev->dev_addr, 0);
1525 if (!is_valid_ether_addr(priv->dev->dev_addr))
1526 eth_hw_addr_random(priv->dev);
1527 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1528 priv->dev->dev_addr);
1529 }
1530 }
1531
1532 /**
1533 * stmmac_init_dma_engine: DMA init.
1534 * @priv: driver private structure
1535 * Description:
1536 * It inits the DMA invoking the specific MAC/GMAC callback.
1537 * Some DMA parameters can be passed from the platform;
1538 * in case of these are not passed a default is kept for the MAC or GMAC.
1539 */
1540 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1541 {
1542 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1543 int mixed_burst = 0;
1544 int atds = 0;
1545
1546 if (priv->plat->dma_cfg) {
1547 pbl = priv->plat->dma_cfg->pbl;
1548 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1549 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1550 burst_len = priv->plat->dma_cfg->burst_len;
1551 }
1552
1553 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1554 atds = 1;
1555
1556 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1557 burst_len, priv->dma_tx_phy,
1558 priv->dma_rx_phy, atds);
1559 }
1560
1561 /**
1562 * stmmac_tx_timer: mitigation sw timer for tx.
1563 * @data: data pointer
1564 * Description:
1565 * This is the timer handler to directly invoke the stmmac_tx_clean.
1566 */
1567 static void stmmac_tx_timer(unsigned long data)
1568 {
1569 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1570
1571 stmmac_tx_clean(priv);
1572 }
1573
1574 /**
1575 * stmmac_init_tx_coalesce: init tx mitigation options.
1576 * @priv: driver private structure
1577 * Description:
1578 * This inits the transmit coalesce parameters: i.e. timer rate,
1579 * timer handler and default threshold used for enabling the
1580 * interrupt on completion bit.
1581 */
1582 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1583 {
1584 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1585 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1586 init_timer(&priv->txtimer);
1587 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1588 priv->txtimer.data = (unsigned long)priv;
1589 priv->txtimer.function = stmmac_tx_timer;
1590 add_timer(&priv->txtimer);
1591 }
1592
1593 /**
1594 * stmmac_hw_setup: setup mac in a usable state.
1595 * @dev : pointer to the device structure.
1596 * Description:
1597 * This function sets up the ip in a usable state.
1598 * Return value:
1599 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1600 * file on failure.
1601 */
1602 static int stmmac_hw_setup(struct net_device *dev)
1603 {
1604 struct stmmac_priv *priv = netdev_priv(dev);
1605 int ret;
1606
1607 ret = init_dma_desc_rings(dev);
1608 if (ret < 0) {
1609 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1610 return ret;
1611 }
1612 /* DMA initialization and SW reset */
1613 ret = stmmac_init_dma_engine(priv);
1614 if (ret < 0) {
1615 pr_err("%s: DMA engine initialization failed\n", __func__);
1616 return ret;
1617 }
1618
1619 /* Copy the MAC addr into the HW */
1620 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1621
1622 /* If required, perform hw setup of the bus. */
1623 if (priv->plat->bus_setup)
1624 priv->plat->bus_setup(priv->ioaddr);
1625
1626 /* Initialize the MAC Core */
1627 priv->hw->mac->core_init(priv->ioaddr, dev->mtu);
1628
1629 /* Enable the MAC Rx/Tx */
1630 stmmac_set_mac(priv->ioaddr, true);
1631
1632 /* Set the HW DMA mode and the COE */
1633 stmmac_dma_operation_mode(priv);
1634
1635 stmmac_mmc_setup(priv);
1636
1637 ret = stmmac_init_ptp(priv);
1638 if (ret && ret != -EOPNOTSUPP)
1639 pr_warn("%s: failed PTP initialisation\n", __func__);
1640
1641 #ifdef CONFIG_STMMAC_DEBUG_FS
1642 ret = stmmac_init_fs(dev);
1643 if (ret < 0)
1644 pr_warn("%s: failed debugFS registration\n", __func__);
1645 #endif
1646 /* Start the ball rolling... */
1647 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1648 priv->hw->dma->start_tx(priv->ioaddr);
1649 priv->hw->dma->start_rx(priv->ioaddr);
1650
1651 /* Dump DMA/MAC registers */
1652 if (netif_msg_hw(priv)) {
1653 priv->hw->mac->dump_regs(priv->ioaddr);
1654 priv->hw->dma->dump_regs(priv->ioaddr);
1655 }
1656 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1657
1658 priv->eee_enabled = stmmac_eee_init(priv);
1659
1660 stmmac_init_tx_coalesce(priv);
1661
1662 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1663 priv->rx_riwt = MAX_DMA_RIWT;
1664 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1665 }
1666
1667 if (priv->pcs && priv->hw->mac->ctrl_ane)
1668 priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1669
1670 return 0;
1671 }
1672
1673 /**
1674 * stmmac_open - open entry point of the driver
1675 * @dev : pointer to the device structure.
1676 * Description:
1677 * This function is the open entry point of the driver.
1678 * Return value:
1679 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1680 * file on failure.
1681 */
1682 static int stmmac_open(struct net_device *dev)
1683 {
1684 struct stmmac_priv *priv = netdev_priv(dev);
1685 int ret;
1686
1687 stmmac_check_ether_addr(priv);
1688
1689 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1690 priv->pcs != STMMAC_PCS_RTBI) {
1691 ret = stmmac_init_phy(dev);
1692 if (ret) {
1693 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1694 __func__, ret);
1695 goto phy_error;
1696 }
1697 }
1698
1699 /* Extra statistics */
1700 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1701 priv->xstats.threshold = tc;
1702
1703 /* Create and initialize the TX/RX descriptors chains. */
1704 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1705 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1706 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1707
1708 alloc_dma_desc_resources(priv);
1709 if (ret < 0) {
1710 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1711 goto dma_desc_error;
1712 }
1713
1714 ret = stmmac_hw_setup(dev);
1715 if (ret < 0) {
1716 pr_err("%s: Hw setup failed\n", __func__);
1717 goto init_error;
1718 }
1719
1720 if (priv->phydev)
1721 phy_start(priv->phydev);
1722
1723 /* Request the IRQ lines */
1724 ret = request_irq(dev->irq, stmmac_interrupt,
1725 IRQF_SHARED, dev->name, dev);
1726 if (unlikely(ret < 0)) {
1727 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1728 __func__, dev->irq, ret);
1729 goto init_error;
1730 }
1731
1732 /* Request the Wake IRQ in case of another line is used for WoL */
1733 if (priv->wol_irq != dev->irq) {
1734 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1735 IRQF_SHARED, dev->name, dev);
1736 if (unlikely(ret < 0)) {
1737 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1738 __func__, priv->wol_irq, ret);
1739 goto wolirq_error;
1740 }
1741 }
1742
1743 /* Request the IRQ lines */
1744 if (priv->lpi_irq != -ENXIO) {
1745 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1746 dev->name, dev);
1747 if (unlikely(ret < 0)) {
1748 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1749 __func__, priv->lpi_irq, ret);
1750 goto lpiirq_error;
1751 }
1752 }
1753
1754 napi_enable(&priv->napi);
1755 netif_start_queue(dev);
1756
1757 return 0;
1758
1759 lpiirq_error:
1760 if (priv->wol_irq != dev->irq)
1761 free_irq(priv->wol_irq, dev);
1762 wolirq_error:
1763 free_irq(dev->irq, dev);
1764
1765 init_error:
1766 free_dma_desc_resources(priv);
1767 dma_desc_error:
1768 if (priv->phydev)
1769 phy_disconnect(priv->phydev);
1770 phy_error:
1771 clk_disable_unprepare(priv->stmmac_clk);
1772
1773 return ret;
1774 }
1775
1776 /**
1777 * stmmac_release - close entry point of the driver
1778 * @dev : device pointer.
1779 * Description:
1780 * This is the stop entry point of the driver.
1781 */
1782 static int stmmac_release(struct net_device *dev)
1783 {
1784 struct stmmac_priv *priv = netdev_priv(dev);
1785
1786 if (priv->eee_enabled)
1787 del_timer_sync(&priv->eee_ctrl_timer);
1788
1789 /* Stop and disconnect the PHY */
1790 if (priv->phydev) {
1791 phy_stop(priv->phydev);
1792 phy_disconnect(priv->phydev);
1793 priv->phydev = NULL;
1794 }
1795
1796 netif_stop_queue(dev);
1797
1798 napi_disable(&priv->napi);
1799
1800 del_timer_sync(&priv->txtimer);
1801
1802 /* Free the IRQ lines */
1803 free_irq(dev->irq, dev);
1804 if (priv->wol_irq != dev->irq)
1805 free_irq(priv->wol_irq, dev);
1806 if (priv->lpi_irq != -ENXIO)
1807 free_irq(priv->lpi_irq, dev);
1808
1809 /* Stop TX/RX DMA and clear the descriptors */
1810 priv->hw->dma->stop_tx(priv->ioaddr);
1811 priv->hw->dma->stop_rx(priv->ioaddr);
1812
1813 /* Release and free the Rx/Tx resources */
1814 free_dma_desc_resources(priv);
1815
1816 /* Disable the MAC Rx/Tx */
1817 stmmac_set_mac(priv->ioaddr, false);
1818
1819 netif_carrier_off(dev);
1820
1821 #ifdef CONFIG_STMMAC_DEBUG_FS
1822 stmmac_exit_fs();
1823 #endif
1824
1825 stmmac_release_ptp(priv);
1826
1827 return 0;
1828 }
1829
1830 /**
1831 * stmmac_xmit: Tx entry point of the driver
1832 * @skb : the socket buffer
1833 * @dev : device pointer
1834 * Description : this is the tx entry point of the driver.
1835 * It programs the chain or the ring and supports oversized frames
1836 * and SG feature.
1837 */
1838 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1839 {
1840 struct stmmac_priv *priv = netdev_priv(dev);
1841 unsigned int txsize = priv->dma_tx_size;
1842 unsigned int entry;
1843 int i, csum_insertion = 0, is_jumbo = 0;
1844 int nfrags = skb_shinfo(skb)->nr_frags;
1845 struct dma_desc *desc, *first;
1846 unsigned int nopaged_len = skb_headlen(skb);
1847
1848 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1849 if (!netif_queue_stopped(dev)) {
1850 netif_stop_queue(dev);
1851 /* This is a hard error, log it. */
1852 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1853 }
1854 return NETDEV_TX_BUSY;
1855 }
1856
1857 spin_lock(&priv->tx_lock);
1858
1859 if (priv->tx_path_in_lpi_mode)
1860 stmmac_disable_eee_mode(priv);
1861
1862 entry = priv->cur_tx % txsize;
1863
1864 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1865
1866 if (priv->extend_desc)
1867 desc = (struct dma_desc *)(priv->dma_etx + entry);
1868 else
1869 desc = priv->dma_tx + entry;
1870
1871 first = desc;
1872
1873 /* To program the descriptors according to the size of the frame */
1874 if (priv->mode == STMMAC_RING_MODE) {
1875 is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1876 priv->plat->enh_desc);
1877 if (unlikely(is_jumbo))
1878 entry = priv->hw->ring->jumbo_frm(priv, skb,
1879 csum_insertion);
1880 } else {
1881 is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1882 priv->plat->enh_desc);
1883 if (unlikely(is_jumbo))
1884 entry = priv->hw->chain->jumbo_frm(priv, skb,
1885 csum_insertion);
1886 }
1887 if (likely(!is_jumbo)) {
1888 desc->des2 = dma_map_single(priv->device, skb->data,
1889 nopaged_len, DMA_TO_DEVICE);
1890 priv->tx_skbuff_dma[entry] = desc->des2;
1891 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1892 csum_insertion, priv->mode);
1893 } else
1894 desc = first;
1895
1896 for (i = 0; i < nfrags; i++) {
1897 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1898 int len = skb_frag_size(frag);
1899
1900 priv->tx_skbuff[entry] = NULL;
1901 entry = (++priv->cur_tx) % txsize;
1902 if (priv->extend_desc)
1903 desc = (struct dma_desc *)(priv->dma_etx + entry);
1904 else
1905 desc = priv->dma_tx + entry;
1906
1907 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1908 DMA_TO_DEVICE);
1909 priv->tx_skbuff_dma[entry] = desc->des2;
1910 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1911 priv->mode);
1912 wmb();
1913 priv->hw->desc->set_tx_owner(desc);
1914 wmb();
1915 }
1916
1917 priv->tx_skbuff[entry] = skb;
1918
1919 /* Finalize the latest segment. */
1920 priv->hw->desc->close_tx_desc(desc);
1921
1922 wmb();
1923 /* According to the coalesce parameter the IC bit for the latest
1924 * segment could be reset and the timer re-started to invoke the
1925 * stmmac_tx function. This approach takes care about the fragments.
1926 */
1927 priv->tx_count_frames += nfrags + 1;
1928 if (priv->tx_coal_frames > priv->tx_count_frames) {
1929 priv->hw->desc->clear_tx_ic(desc);
1930 priv->xstats.tx_reset_ic_bit++;
1931 mod_timer(&priv->txtimer,
1932 STMMAC_COAL_TIMER(priv->tx_coal_timer));
1933 } else
1934 priv->tx_count_frames = 0;
1935
1936 /* To avoid raise condition */
1937 priv->hw->desc->set_tx_owner(first);
1938 wmb();
1939
1940 priv->cur_tx++;
1941
1942 if (netif_msg_pktdata(priv)) {
1943 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1944 __func__, (priv->cur_tx % txsize),
1945 (priv->dirty_tx % txsize), entry, first, nfrags);
1946
1947 if (priv->extend_desc)
1948 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1949 else
1950 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1951
1952 pr_debug(">>> frame to be transmitted: ");
1953 print_pkt(skb->data, skb->len);
1954 }
1955 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1956 if (netif_msg_hw(priv))
1957 pr_debug("%s: stop transmitted packets\n", __func__);
1958 netif_stop_queue(dev);
1959 }
1960
1961 dev->stats.tx_bytes += skb->len;
1962
1963 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1964 priv->hwts_tx_en)) {
1965 /* declare that device is doing timestamping */
1966 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1967 priv->hw->desc->enable_tx_timestamp(first);
1968 }
1969
1970 if (!priv->hwts_tx_en)
1971 skb_tx_timestamp(skb);
1972
1973 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1974
1975 spin_unlock(&priv->tx_lock);
1976
1977 return NETDEV_TX_OK;
1978 }
1979
1980 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
1981 {
1982 struct ethhdr *ehdr;
1983 u16 vlanid;
1984
1985 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
1986 NETIF_F_HW_VLAN_CTAG_RX &&
1987 !__vlan_get_tag(skb, &vlanid)) {
1988 /* pop the vlan tag */
1989 ehdr = (struct ethhdr *)skb->data;
1990 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
1991 skb_pull(skb, VLAN_HLEN);
1992 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
1993 }
1994 }
1995
1996
1997 /**
1998 * stmmac_rx_refill: refill used skb preallocated buffers
1999 * @priv: driver private structure
2000 * Description : this is to reallocate the skb for the reception process
2001 * that is based on zero-copy.
2002 */
2003 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2004 {
2005 unsigned int rxsize = priv->dma_rx_size;
2006 int bfsize = priv->dma_buf_sz;
2007
2008 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2009 unsigned int entry = priv->dirty_rx % rxsize;
2010 struct dma_desc *p;
2011
2012 if (priv->extend_desc)
2013 p = (struct dma_desc *)(priv->dma_erx + entry);
2014 else
2015 p = priv->dma_rx + entry;
2016
2017 if (likely(priv->rx_skbuff[entry] == NULL)) {
2018 struct sk_buff *skb;
2019
2020 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2021
2022 if (unlikely(skb == NULL))
2023 break;
2024
2025 priv->rx_skbuff[entry] = skb;
2026 priv->rx_skbuff_dma[entry] =
2027 dma_map_single(priv->device, skb->data, bfsize,
2028 DMA_FROM_DEVICE);
2029
2030 p->des2 = priv->rx_skbuff_dma[entry];
2031
2032 priv->hw->ring->refill_desc3(priv, p);
2033
2034 if (netif_msg_rx_status(priv))
2035 pr_debug("\trefill entry #%d\n", entry);
2036 }
2037 wmb();
2038 priv->hw->desc->set_rx_owner(p);
2039 wmb();
2040 }
2041 }
2042
2043 /**
2044 * stmmac_rx_refill: refill used skb preallocated buffers
2045 * @priv: driver private structure
2046 * @limit: napi bugget.
2047 * Description : this the function called by the napi poll method.
2048 * It gets all the frames inside the ring.
2049 */
2050 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2051 {
2052 unsigned int rxsize = priv->dma_rx_size;
2053 unsigned int entry = priv->cur_rx % rxsize;
2054 unsigned int next_entry;
2055 unsigned int count = 0;
2056 int coe = priv->plat->rx_coe;
2057
2058 if (netif_msg_rx_status(priv)) {
2059 pr_debug("%s: descriptor ring:\n", __func__);
2060 if (priv->extend_desc)
2061 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2062 else
2063 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2064 }
2065 while (count < limit) {
2066 int status;
2067 struct dma_desc *p;
2068
2069 if (priv->extend_desc)
2070 p = (struct dma_desc *)(priv->dma_erx + entry);
2071 else
2072 p = priv->dma_rx + entry;
2073
2074 if (priv->hw->desc->get_rx_owner(p))
2075 break;
2076
2077 count++;
2078
2079 next_entry = (++priv->cur_rx) % rxsize;
2080 if (priv->extend_desc)
2081 prefetch(priv->dma_erx + next_entry);
2082 else
2083 prefetch(priv->dma_rx + next_entry);
2084
2085 /* read the status of the incoming frame */
2086 status = priv->hw->desc->rx_status(&priv->dev->stats,
2087 &priv->xstats, p);
2088 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2089 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2090 &priv->xstats,
2091 priv->dma_erx +
2092 entry);
2093 if (unlikely(status == discard_frame)) {
2094 priv->dev->stats.rx_errors++;
2095 if (priv->hwts_rx_en && !priv->extend_desc) {
2096 /* DESC2 & DESC3 will be overwitten by device
2097 * with timestamp value, hence reinitialize
2098 * them in stmmac_rx_refill() function so that
2099 * device can reuse it.
2100 */
2101 priv->rx_skbuff[entry] = NULL;
2102 dma_unmap_single(priv->device,
2103 priv->rx_skbuff_dma[entry],
2104 priv->dma_buf_sz,
2105 DMA_FROM_DEVICE);
2106 }
2107 } else {
2108 struct sk_buff *skb;
2109 int frame_len;
2110
2111 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2112
2113 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2114 * Type frames (LLC/LLC-SNAP)
2115 */
2116 if (unlikely(status != llc_snap))
2117 frame_len -= ETH_FCS_LEN;
2118
2119 if (netif_msg_rx_status(priv)) {
2120 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2121 p, entry, p->des2);
2122 if (frame_len > ETH_FRAME_LEN)
2123 pr_debug("\tframe size %d, COE: %d\n",
2124 frame_len, status);
2125 }
2126 skb = priv->rx_skbuff[entry];
2127 if (unlikely(!skb)) {
2128 pr_err("%s: Inconsistent Rx descriptor chain\n",
2129 priv->dev->name);
2130 priv->dev->stats.rx_dropped++;
2131 break;
2132 }
2133 prefetch(skb->data - NET_IP_ALIGN);
2134 priv->rx_skbuff[entry] = NULL;
2135
2136 stmmac_get_rx_hwtstamp(priv, entry, skb);
2137
2138 skb_put(skb, frame_len);
2139 dma_unmap_single(priv->device,
2140 priv->rx_skbuff_dma[entry],
2141 priv->dma_buf_sz, DMA_FROM_DEVICE);
2142
2143 if (netif_msg_pktdata(priv)) {
2144 pr_debug("frame received (%dbytes)", frame_len);
2145 print_pkt(skb->data, frame_len);
2146 }
2147
2148 stmmac_rx_vlan(priv->dev, skb);
2149
2150 skb->protocol = eth_type_trans(skb, priv->dev);
2151
2152 if (unlikely(!coe))
2153 skb_checksum_none_assert(skb);
2154 else
2155 skb->ip_summed = CHECKSUM_UNNECESSARY;
2156
2157 napi_gro_receive(&priv->napi, skb);
2158
2159 priv->dev->stats.rx_packets++;
2160 priv->dev->stats.rx_bytes += frame_len;
2161 }
2162 entry = next_entry;
2163 }
2164
2165 stmmac_rx_refill(priv);
2166
2167 priv->xstats.rx_pkt_n += count;
2168
2169 return count;
2170 }
2171
2172 /**
2173 * stmmac_poll - stmmac poll method (NAPI)
2174 * @napi : pointer to the napi structure.
2175 * @budget : maximum number of packets that the current CPU can receive from
2176 * all interfaces.
2177 * Description :
2178 * To look at the incoming frames and clear the tx resources.
2179 */
2180 static int stmmac_poll(struct napi_struct *napi, int budget)
2181 {
2182 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2183 int work_done = 0;
2184
2185 priv->xstats.napi_poll++;
2186 stmmac_tx_clean(priv);
2187
2188 work_done = stmmac_rx(priv, budget);
2189 if (work_done < budget) {
2190 napi_complete(napi);
2191 stmmac_enable_dma_irq(priv);
2192 }
2193 return work_done;
2194 }
2195
2196 /**
2197 * stmmac_tx_timeout
2198 * @dev : Pointer to net device structure
2199 * Description: this function is called when a packet transmission fails to
2200 * complete within a reasonable time. The driver will mark the error in the
2201 * netdev structure and arrange for the device to be reset to a sane state
2202 * in order to transmit a new packet.
2203 */
2204 static void stmmac_tx_timeout(struct net_device *dev)
2205 {
2206 struct stmmac_priv *priv = netdev_priv(dev);
2207
2208 /* Clear Tx resources and restart transmitting again */
2209 stmmac_tx_err(priv);
2210 }
2211
2212 /* Configuration changes (passed on by ifconfig) */
2213 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2214 {
2215 if (dev->flags & IFF_UP) /* can't act on a running interface */
2216 return -EBUSY;
2217
2218 /* Don't allow changing the I/O address */
2219 if (map->base_addr != dev->base_addr) {
2220 pr_warn("%s: can't change I/O address\n", dev->name);
2221 return -EOPNOTSUPP;
2222 }
2223
2224 /* Don't allow changing the IRQ */
2225 if (map->irq != dev->irq) {
2226 pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2227 return -EOPNOTSUPP;
2228 }
2229
2230 return 0;
2231 }
2232
2233 /**
2234 * stmmac_set_rx_mode - entry point for multicast addressing
2235 * @dev : pointer to the device structure
2236 * Description:
2237 * This function is a driver entry point which gets called by the kernel
2238 * whenever multicast addresses must be enabled/disabled.
2239 * Return value:
2240 * void.
2241 */
2242 static void stmmac_set_rx_mode(struct net_device *dev)
2243 {
2244 struct stmmac_priv *priv = netdev_priv(dev);
2245
2246 spin_lock(&priv->lock);
2247 priv->hw->mac->set_filter(dev, priv->synopsys_id);
2248 spin_unlock(&priv->lock);
2249 }
2250
2251 /**
2252 * stmmac_change_mtu - entry point to change MTU size for the device.
2253 * @dev : device pointer.
2254 * @new_mtu : the new MTU size for the device.
2255 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2256 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2257 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2258 * Return value:
2259 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2260 * file on failure.
2261 */
2262 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2263 {
2264 struct stmmac_priv *priv = netdev_priv(dev);
2265 int max_mtu;
2266
2267 if (netif_running(dev)) {
2268 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2269 return -EBUSY;
2270 }
2271
2272 if (priv->plat->enh_desc)
2273 max_mtu = JUMBO_LEN;
2274 else
2275 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2276
2277 if (priv->plat->maxmtu < max_mtu)
2278 max_mtu = priv->plat->maxmtu;
2279
2280 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2281 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2282 return -EINVAL;
2283 }
2284
2285 dev->mtu = new_mtu;
2286 netdev_update_features(dev);
2287
2288 return 0;
2289 }
2290
2291 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2292 netdev_features_t features)
2293 {
2294 struct stmmac_priv *priv = netdev_priv(dev);
2295
2296 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2297 features &= ~NETIF_F_RXCSUM;
2298 else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2299 features &= ~NETIF_F_IPV6_CSUM;
2300 if (!priv->plat->tx_coe)
2301 features &= ~NETIF_F_ALL_CSUM;
2302
2303 /* Some GMAC devices have a bugged Jumbo frame support that
2304 * needs to have the Tx COE disabled for oversized frames
2305 * (due to limited buffer sizes). In this case we disable
2306 * the TX csum insertionin the TDES and not use SF.
2307 */
2308 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2309 features &= ~NETIF_F_ALL_CSUM;
2310
2311 return features;
2312 }
2313
2314 /**
2315 * stmmac_interrupt - main ISR
2316 * @irq: interrupt number.
2317 * @dev_id: to pass the net device pointer.
2318 * Description: this is the main driver interrupt service routine.
2319 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2320 * interrupts.
2321 */
2322 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2323 {
2324 struct net_device *dev = (struct net_device *)dev_id;
2325 struct stmmac_priv *priv = netdev_priv(dev);
2326
2327 if (priv->irq_wake)
2328 pm_wakeup_event(priv->device, 0);
2329
2330 if (unlikely(!dev)) {
2331 pr_err("%s: invalid dev pointer\n", __func__);
2332 return IRQ_NONE;
2333 }
2334
2335 /* To handle GMAC own interrupts */
2336 if (priv->plat->has_gmac) {
2337 int status = priv->hw->mac->host_irq_status((void __iomem *)
2338 dev->base_addr,
2339 &priv->xstats);
2340 if (unlikely(status)) {
2341 /* For LPI we need to save the tx status */
2342 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2343 priv->tx_path_in_lpi_mode = true;
2344 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2345 priv->tx_path_in_lpi_mode = false;
2346 }
2347 }
2348
2349 /* To handle DMA interrupts */
2350 stmmac_dma_interrupt(priv);
2351
2352 return IRQ_HANDLED;
2353 }
2354
2355 #ifdef CONFIG_NET_POLL_CONTROLLER
2356 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2357 * to allow network I/O with interrupts disabled.
2358 */
2359 static void stmmac_poll_controller(struct net_device *dev)
2360 {
2361 disable_irq(dev->irq);
2362 stmmac_interrupt(dev->irq, dev);
2363 enable_irq(dev->irq);
2364 }
2365 #endif
2366
2367 /**
2368 * stmmac_ioctl - Entry point for the Ioctl
2369 * @dev: Device pointer.
2370 * @rq: An IOCTL specefic structure, that can contain a pointer to
2371 * a proprietary structure used to pass information to the driver.
2372 * @cmd: IOCTL command
2373 * Description:
2374 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2375 */
2376 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2377 {
2378 struct stmmac_priv *priv = netdev_priv(dev);
2379 int ret = -EOPNOTSUPP;
2380
2381 if (!netif_running(dev))
2382 return -EINVAL;
2383
2384 switch (cmd) {
2385 case SIOCGMIIPHY:
2386 case SIOCGMIIREG:
2387 case SIOCSMIIREG:
2388 if (!priv->phydev)
2389 return -EINVAL;
2390 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2391 break;
2392 case SIOCSHWTSTAMP:
2393 ret = stmmac_hwtstamp_ioctl(dev, rq);
2394 break;
2395 default:
2396 break;
2397 }
2398
2399 return ret;
2400 }
2401
2402 #ifdef CONFIG_STMMAC_DEBUG_FS
2403 static struct dentry *stmmac_fs_dir;
2404 static struct dentry *stmmac_rings_status;
2405 static struct dentry *stmmac_dma_cap;
2406
2407 static void sysfs_display_ring(void *head, int size, int extend_desc,
2408 struct seq_file *seq)
2409 {
2410 int i;
2411 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2412 struct dma_desc *p = (struct dma_desc *)head;
2413
2414 for (i = 0; i < size; i++) {
2415 u64 x;
2416 if (extend_desc) {
2417 x = *(u64 *) ep;
2418 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2419 i, (unsigned int)virt_to_phys(ep),
2420 (unsigned int)x, (unsigned int)(x >> 32),
2421 ep->basic.des2, ep->basic.des3);
2422 ep++;
2423 } else {
2424 x = *(u64 *) p;
2425 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2426 i, (unsigned int)virt_to_phys(ep),
2427 (unsigned int)x, (unsigned int)(x >> 32),
2428 p->des2, p->des3);
2429 p++;
2430 }
2431 seq_printf(seq, "\n");
2432 }
2433 }
2434
2435 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2436 {
2437 struct net_device *dev = seq->private;
2438 struct stmmac_priv *priv = netdev_priv(dev);
2439 unsigned int txsize = priv->dma_tx_size;
2440 unsigned int rxsize = priv->dma_rx_size;
2441
2442 if (priv->extend_desc) {
2443 seq_printf(seq, "Extended RX descriptor ring:\n");
2444 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2445 seq_printf(seq, "Extended TX descriptor ring:\n");
2446 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2447 } else {
2448 seq_printf(seq, "RX descriptor ring:\n");
2449 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2450 seq_printf(seq, "TX descriptor ring:\n");
2451 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2452 }
2453
2454 return 0;
2455 }
2456
2457 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2458 {
2459 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2460 }
2461
2462 static const struct file_operations stmmac_rings_status_fops = {
2463 .owner = THIS_MODULE,
2464 .open = stmmac_sysfs_ring_open,
2465 .read = seq_read,
2466 .llseek = seq_lseek,
2467 .release = single_release,
2468 };
2469
2470 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2471 {
2472 struct net_device *dev = seq->private;
2473 struct stmmac_priv *priv = netdev_priv(dev);
2474
2475 if (!priv->hw_cap_support) {
2476 seq_printf(seq, "DMA HW features not supported\n");
2477 return 0;
2478 }
2479
2480 seq_printf(seq, "==============================\n");
2481 seq_printf(seq, "\tDMA HW features\n");
2482 seq_printf(seq, "==============================\n");
2483
2484 seq_printf(seq, "\t10/100 Mbps %s\n",
2485 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2486 seq_printf(seq, "\t1000 Mbps %s\n",
2487 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2488 seq_printf(seq, "\tHalf duple %s\n",
2489 (priv->dma_cap.half_duplex) ? "Y" : "N");
2490 seq_printf(seq, "\tHash Filter: %s\n",
2491 (priv->dma_cap.hash_filter) ? "Y" : "N");
2492 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2493 (priv->dma_cap.multi_addr) ? "Y" : "N");
2494 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2495 (priv->dma_cap.pcs) ? "Y" : "N");
2496 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2497 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2498 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2499 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2500 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2501 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2502 seq_printf(seq, "\tRMON module: %s\n",
2503 (priv->dma_cap.rmon) ? "Y" : "N");
2504 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2505 (priv->dma_cap.time_stamp) ? "Y" : "N");
2506 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2507 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2508 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2509 (priv->dma_cap.eee) ? "Y" : "N");
2510 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2511 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2512 (priv->dma_cap.tx_coe) ? "Y" : "N");
2513 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2514 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2515 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2516 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2517 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2518 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2519 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2520 priv->dma_cap.number_rx_channel);
2521 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2522 priv->dma_cap.number_tx_channel);
2523 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2524 (priv->dma_cap.enh_desc) ? "Y" : "N");
2525
2526 return 0;
2527 }
2528
2529 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2530 {
2531 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2532 }
2533
2534 static const struct file_operations stmmac_dma_cap_fops = {
2535 .owner = THIS_MODULE,
2536 .open = stmmac_sysfs_dma_cap_open,
2537 .read = seq_read,
2538 .llseek = seq_lseek,
2539 .release = single_release,
2540 };
2541
2542 static int stmmac_init_fs(struct net_device *dev)
2543 {
2544 /* Create debugfs entries */
2545 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2546
2547 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2548 pr_err("ERROR %s, debugfs create directory failed\n",
2549 STMMAC_RESOURCE_NAME);
2550
2551 return -ENOMEM;
2552 }
2553
2554 /* Entry to report DMA RX/TX rings */
2555 stmmac_rings_status = debugfs_create_file("descriptors_status",
2556 S_IRUGO, stmmac_fs_dir, dev,
2557 &stmmac_rings_status_fops);
2558
2559 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2560 pr_info("ERROR creating stmmac ring debugfs file\n");
2561 debugfs_remove(stmmac_fs_dir);
2562
2563 return -ENOMEM;
2564 }
2565
2566 /* Entry to report the DMA HW features */
2567 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2568 dev, &stmmac_dma_cap_fops);
2569
2570 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2571 pr_info("ERROR creating stmmac MMC debugfs file\n");
2572 debugfs_remove(stmmac_rings_status);
2573 debugfs_remove(stmmac_fs_dir);
2574
2575 return -ENOMEM;
2576 }
2577
2578 return 0;
2579 }
2580
2581 static void stmmac_exit_fs(void)
2582 {
2583 debugfs_remove(stmmac_rings_status);
2584 debugfs_remove(stmmac_dma_cap);
2585 debugfs_remove(stmmac_fs_dir);
2586 }
2587 #endif /* CONFIG_STMMAC_DEBUG_FS */
2588
2589 static const struct net_device_ops stmmac_netdev_ops = {
2590 .ndo_open = stmmac_open,
2591 .ndo_start_xmit = stmmac_xmit,
2592 .ndo_stop = stmmac_release,
2593 .ndo_change_mtu = stmmac_change_mtu,
2594 .ndo_fix_features = stmmac_fix_features,
2595 .ndo_set_rx_mode = stmmac_set_rx_mode,
2596 .ndo_tx_timeout = stmmac_tx_timeout,
2597 .ndo_do_ioctl = stmmac_ioctl,
2598 .ndo_set_config = stmmac_config,
2599 #ifdef CONFIG_NET_POLL_CONTROLLER
2600 .ndo_poll_controller = stmmac_poll_controller,
2601 #endif
2602 .ndo_set_mac_address = eth_mac_addr,
2603 };
2604
2605 /**
2606 * stmmac_hw_init - Init the MAC device
2607 * @priv: driver private structure
2608 * Description: this function detects which MAC device
2609 * (GMAC/MAC10-100) has to attached, checks the HW capability
2610 * (if supported) and sets the driver's features (for example
2611 * to use the ring or chaine mode or support the normal/enh
2612 * descriptor structure).
2613 */
2614 static int stmmac_hw_init(struct stmmac_priv *priv)
2615 {
2616 int ret;
2617 struct mac_device_info *mac;
2618
2619 /* Identify the MAC HW device */
2620 if (priv->plat->has_gmac) {
2621 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2622 mac = dwmac1000_setup(priv->ioaddr);
2623 } else {
2624 mac = dwmac100_setup(priv->ioaddr);
2625 }
2626 if (!mac)
2627 return -ENOMEM;
2628
2629 priv->hw = mac;
2630
2631 /* Get and dump the chip ID */
2632 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2633
2634 /* To use the chained or ring mode */
2635 if (chain_mode) {
2636 priv->hw->chain = &chain_mode_ops;
2637 pr_info(" Chain mode enabled\n");
2638 priv->mode = STMMAC_CHAIN_MODE;
2639 } else {
2640 priv->hw->ring = &ring_mode_ops;
2641 pr_info(" Ring mode enabled\n");
2642 priv->mode = STMMAC_RING_MODE;
2643 }
2644
2645 /* Get the HW capability (new GMAC newer than 3.50a) */
2646 priv->hw_cap_support = stmmac_get_hw_features(priv);
2647 if (priv->hw_cap_support) {
2648 pr_info(" DMA HW capability register supported");
2649
2650 /* We can override some gmac/dma configuration fields: e.g.
2651 * enh_desc, tx_coe (e.g. that are passed through the
2652 * platform) with the values from the HW capability
2653 * register (if supported).
2654 */
2655 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2656 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2657
2658 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2659
2660 if (priv->dma_cap.rx_coe_type2)
2661 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2662 else if (priv->dma_cap.rx_coe_type1)
2663 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2664
2665 } else
2666 pr_info(" No HW DMA feature register supported");
2667
2668 /* To use alternate (extended) or normal descriptor structures */
2669 stmmac_selec_desc_mode(priv);
2670
2671 ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2672 if (!ret) {
2673 pr_warn(" RX IPC Checksum Offload not configured.\n");
2674 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2675 }
2676
2677 if (priv->plat->rx_coe)
2678 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2679 priv->plat->rx_coe);
2680 if (priv->plat->tx_coe)
2681 pr_info(" TX Checksum insertion supported\n");
2682
2683 if (priv->plat->pmt) {
2684 pr_info(" Wake-Up On Lan supported\n");
2685 device_set_wakeup_capable(priv->device, 1);
2686 }
2687
2688 return 0;
2689 }
2690
2691 /**
2692 * stmmac_dvr_probe
2693 * @device: device pointer
2694 * @plat_dat: platform data pointer
2695 * @addr: iobase memory address
2696 * Description: this is the main probe function used to
2697 * call the alloc_etherdev, allocate the priv structure.
2698 */
2699 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2700 struct plat_stmmacenet_data *plat_dat,
2701 void __iomem *addr)
2702 {
2703 int ret = 0;
2704 struct net_device *ndev = NULL;
2705 struct stmmac_priv *priv;
2706
2707 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2708 if (!ndev)
2709 return NULL;
2710
2711 SET_NETDEV_DEV(ndev, device);
2712
2713 priv = netdev_priv(ndev);
2714 priv->device = device;
2715 priv->dev = ndev;
2716
2717 ether_setup(ndev);
2718
2719 stmmac_set_ethtool_ops(ndev);
2720 priv->pause = pause;
2721 priv->plat = plat_dat;
2722 priv->ioaddr = addr;
2723 priv->dev->base_addr = (unsigned long)addr;
2724
2725 /* Verify driver arguments */
2726 stmmac_verify_args();
2727
2728 /* Override with kernel parameters if supplied XXX CRS XXX
2729 * this needs to have multiple instances
2730 */
2731 if ((phyaddr >= 0) && (phyaddr <= 31))
2732 priv->plat->phy_addr = phyaddr;
2733
2734 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2735 if (IS_ERR(priv->stmmac_clk)) {
2736 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2737 __func__);
2738 ret = PTR_ERR(priv->stmmac_clk);
2739 goto error_clk_get;
2740 }
2741 clk_prepare_enable(priv->stmmac_clk);
2742
2743 priv->stmmac_rst = devm_reset_control_get(priv->device,
2744 STMMAC_RESOURCE_NAME);
2745 if (IS_ERR(priv->stmmac_rst)) {
2746 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2747 ret = -EPROBE_DEFER;
2748 goto error_hw_init;
2749 }
2750 dev_info(priv->device, "no reset control found\n");
2751 priv->stmmac_rst = NULL;
2752 }
2753 if (priv->stmmac_rst)
2754 reset_control_deassert(priv->stmmac_rst);
2755
2756 /* Init MAC and get the capabilities */
2757 ret = stmmac_hw_init(priv);
2758 if (ret)
2759 goto error_hw_init;
2760
2761 ndev->netdev_ops = &stmmac_netdev_ops;
2762
2763 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2764 NETIF_F_RXCSUM;
2765 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2766 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2767 #ifdef STMMAC_VLAN_TAG_USED
2768 /* Both mac100 and gmac support receive VLAN tag detection */
2769 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2770 #endif
2771 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2772
2773 if (flow_ctrl)
2774 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2775
2776 /* Rx Watchdog is available in the COREs newer than the 3.40.
2777 * In some case, for example on bugged HW this feature
2778 * has to be disable and this can be done by passing the
2779 * riwt_off field from the platform.
2780 */
2781 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2782 priv->use_riwt = 1;
2783 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2784 }
2785
2786 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2787
2788 spin_lock_init(&priv->lock);
2789 spin_lock_init(&priv->tx_lock);
2790
2791 ret = register_netdev(ndev);
2792 if (ret) {
2793 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2794 goto error_netdev_register;
2795 }
2796
2797 /* If a specific clk_csr value is passed from the platform
2798 * this means that the CSR Clock Range selection cannot be
2799 * changed at run-time and it is fixed. Viceversa the driver'll try to
2800 * set the MDC clock dynamically according to the csr actual
2801 * clock input.
2802 */
2803 if (!priv->plat->clk_csr)
2804 stmmac_clk_csr_set(priv);
2805 else
2806 priv->clk_csr = priv->plat->clk_csr;
2807
2808 stmmac_check_pcs_mode(priv);
2809
2810 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2811 priv->pcs != STMMAC_PCS_RTBI) {
2812 /* MDIO bus Registration */
2813 ret = stmmac_mdio_register(ndev);
2814 if (ret < 0) {
2815 pr_debug("%s: MDIO bus (id: %d) registration failed",
2816 __func__, priv->plat->bus_id);
2817 goto error_mdio_register;
2818 }
2819 }
2820
2821 return priv;
2822
2823 error_mdio_register:
2824 unregister_netdev(ndev);
2825 error_netdev_register:
2826 netif_napi_del(&priv->napi);
2827 error_hw_init:
2828 clk_disable_unprepare(priv->stmmac_clk);
2829 error_clk_get:
2830 free_netdev(ndev);
2831
2832 return ERR_PTR(ret);
2833 }
2834
2835 /**
2836 * stmmac_dvr_remove
2837 * @ndev: net device pointer
2838 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2839 * changes the link status, releases the DMA descriptor rings.
2840 */
2841 int stmmac_dvr_remove(struct net_device *ndev)
2842 {
2843 struct stmmac_priv *priv = netdev_priv(ndev);
2844
2845 pr_info("%s:\n\tremoving driver", __func__);
2846
2847 priv->hw->dma->stop_rx(priv->ioaddr);
2848 priv->hw->dma->stop_tx(priv->ioaddr);
2849
2850 stmmac_set_mac(priv->ioaddr, false);
2851 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2852 priv->pcs != STMMAC_PCS_RTBI)
2853 stmmac_mdio_unregister(ndev);
2854 netif_carrier_off(ndev);
2855 unregister_netdev(ndev);
2856 if (priv->stmmac_rst)
2857 reset_control_assert(priv->stmmac_rst);
2858 clk_disable_unprepare(priv->stmmac_clk);
2859 free_netdev(ndev);
2860
2861 return 0;
2862 }
2863
2864 #ifdef CONFIG_PM
2865 int stmmac_suspend(struct net_device *ndev)
2866 {
2867 struct stmmac_priv *priv = netdev_priv(ndev);
2868 unsigned long flags;
2869
2870 if (!ndev || !netif_running(ndev))
2871 return 0;
2872
2873 if (priv->phydev)
2874 phy_stop(priv->phydev);
2875
2876 spin_lock_irqsave(&priv->lock, flags);
2877
2878 netif_device_detach(ndev);
2879 netif_stop_queue(ndev);
2880
2881 napi_disable(&priv->napi);
2882
2883 /* Stop TX/RX DMA */
2884 priv->hw->dma->stop_tx(priv->ioaddr);
2885 priv->hw->dma->stop_rx(priv->ioaddr);
2886
2887 stmmac_clear_descriptors(priv);
2888
2889 /* Enable Power down mode by programming the PMT regs */
2890 if (device_may_wakeup(priv->device)) {
2891 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2892 priv->irq_wake = 1;
2893 } else {
2894 stmmac_set_mac(priv->ioaddr, false);
2895 pinctrl_pm_select_sleep_state(priv->device);
2896 /* Disable clock in case of PWM is off */
2897 clk_disable_unprepare(priv->stmmac_clk);
2898 }
2899 spin_unlock_irqrestore(&priv->lock, flags);
2900 return 0;
2901 }
2902
2903 int stmmac_resume(struct net_device *ndev)
2904 {
2905 struct stmmac_priv *priv = netdev_priv(ndev);
2906 unsigned long flags;
2907
2908 if (!netif_running(ndev))
2909 return 0;
2910
2911 spin_lock_irqsave(&priv->lock, flags);
2912
2913 /* Power Down bit, into the PM register, is cleared
2914 * automatically as soon as a magic packet or a Wake-up frame
2915 * is received. Anyway, it's better to manually clear
2916 * this bit because it can generate problems while resuming
2917 * from another devices (e.g. serial console).
2918 */
2919 if (device_may_wakeup(priv->device)) {
2920 priv->hw->mac->pmt(priv->ioaddr, 0);
2921 priv->irq_wake = 0;
2922 } else {
2923 pinctrl_pm_select_default_state(priv->device);
2924 /* enable the clk prevously disabled */
2925 clk_prepare_enable(priv->stmmac_clk);
2926 /* reset the phy so that it's ready */
2927 if (priv->mii)
2928 stmmac_mdio_reset(priv->mii);
2929 }
2930
2931 netif_device_attach(ndev);
2932
2933 stmmac_hw_setup(ndev);
2934
2935 napi_enable(&priv->napi);
2936
2937 netif_start_queue(ndev);
2938
2939 spin_unlock_irqrestore(&priv->lock, flags);
2940
2941 if (priv->phydev)
2942 phy_start(priv->phydev);
2943
2944 return 0;
2945 }
2946 #endif /* CONFIG_PM */
2947
2948 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2949 * depending on the configuration selected.
2950 */
2951 static int __init stmmac_init(void)
2952 {
2953 int ret;
2954
2955 ret = stmmac_register_platform();
2956 if (ret)
2957 goto err;
2958 ret = stmmac_register_pci();
2959 if (ret)
2960 goto err_pci;
2961 return 0;
2962 err_pci:
2963 stmmac_unregister_platform();
2964 err:
2965 pr_err("stmmac: driver registration failed\n");
2966 return ret;
2967 }
2968
2969 static void __exit stmmac_exit(void)
2970 {
2971 stmmac_unregister_platform();
2972 stmmac_unregister_pci();
2973 }
2974
2975 module_init(stmmac_init);
2976 module_exit(stmmac_exit);
2977
2978 #ifndef MODULE
2979 static int __init stmmac_cmdline_opt(char *str)
2980 {
2981 char *opt;
2982
2983 if (!str || !*str)
2984 return -EINVAL;
2985 while ((opt = strsep(&str, ",")) != NULL) {
2986 if (!strncmp(opt, "debug:", 6)) {
2987 if (kstrtoint(opt + 6, 0, &debug))
2988 goto err;
2989 } else if (!strncmp(opt, "phyaddr:", 8)) {
2990 if (kstrtoint(opt + 8, 0, &phyaddr))
2991 goto err;
2992 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2993 if (kstrtoint(opt + 11, 0, &dma_txsize))
2994 goto err;
2995 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2996 if (kstrtoint(opt + 11, 0, &dma_rxsize))
2997 goto err;
2998 } else if (!strncmp(opt, "buf_sz:", 7)) {
2999 if (kstrtoint(opt + 7, 0, &buf_sz))
3000 goto err;
3001 } else if (!strncmp(opt, "tc:", 3)) {
3002 if (kstrtoint(opt + 3, 0, &tc))
3003 goto err;
3004 } else if (!strncmp(opt, "watchdog:", 9)) {
3005 if (kstrtoint(opt + 9, 0, &watchdog))
3006 goto err;
3007 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3008 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3009 goto err;
3010 } else if (!strncmp(opt, "pause:", 6)) {
3011 if (kstrtoint(opt + 6, 0, &pause))
3012 goto err;
3013 } else if (!strncmp(opt, "eee_timer:", 10)) {
3014 if (kstrtoint(opt + 10, 0, &eee_timer))
3015 goto err;
3016 } else if (!strncmp(opt, "chain_mode:", 11)) {
3017 if (kstrtoint(opt + 11, 0, &chain_mode))
3018 goto err;
3019 }
3020 }
3021 return 0;
3022
3023 err:
3024 pr_err("%s: ERROR broken module parameter conversion", __func__);
3025 return -EINVAL;
3026 }
3027
3028 __setup("stmmaceth=", stmmac_cmdline_opt);
3029 #endif /* MODULE */
3030
3031 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3032 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3033 MODULE_LICENSE("GPL");