]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
Merge branch 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56
57 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
58
59 /* Module parameters */
60 #define TX_TIMEO 5000
61 static int watchdog = TX_TIMEO;
62 module_param(watchdog, int, S_IRUGO | S_IWUSR);
63 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
64
65 static int debug = -1;
66 module_param(debug, int, S_IRUGO | S_IWUSR);
67 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
68
69 static int phyaddr = -1;
70 module_param(phyaddr, int, S_IRUGO);
71 MODULE_PARM_DESC(phyaddr, "Physical device address");
72
73 #define DMA_TX_SIZE 256
74 static int dma_txsize = DMA_TX_SIZE;
75 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
76 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
77
78 #define DMA_RX_SIZE 256
79 static int dma_rxsize = DMA_RX_SIZE;
80 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
81 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
82
83 static int flow_ctrl = FLOW_OFF;
84 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95
96 #define DEFAULT_BUFSIZE 1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100
101 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
102 NETIF_MSG_LINK | NETIF_MSG_IFUP |
103 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
104
105 #define STMMAC_DEFAULT_LPI_TIMER 1000
106 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
107 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
109 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
110
111 /* By default the driver will use the ring mode to manage tx and rx descriptors
112 * but passing this value so user can force to use the chain instead of the ring
113 */
114 static unsigned int chain_mode;
115 module_param(chain_mode, int, S_IRUGO);
116 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
117
118 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
119
120 #ifdef CONFIG_DEBUG_FS
121 static int stmmac_init_fs(struct net_device *dev);
122 static void stmmac_exit_fs(struct net_device *dev);
123 #endif
124
125 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
126
127 /**
128 * stmmac_verify_args - verify the driver parameters.
129 * Description: it checks the driver parameters and set a default in case of
130 * errors.
131 */
132 static void stmmac_verify_args(void)
133 {
134 if (unlikely(watchdog < 0))
135 watchdog = TX_TIMEO;
136 if (unlikely(dma_rxsize < 0))
137 dma_rxsize = DMA_RX_SIZE;
138 if (unlikely(dma_txsize < 0))
139 dma_txsize = DMA_TX_SIZE;
140 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
141 buf_sz = DEFAULT_BUFSIZE;
142 if (unlikely(flow_ctrl > 1))
143 flow_ctrl = FLOW_AUTO;
144 else if (likely(flow_ctrl < 0))
145 flow_ctrl = FLOW_OFF;
146 if (unlikely((pause < 0) || (pause > 0xffff)))
147 pause = PAUSE_TIME;
148 if (eee_timer < 0)
149 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
150 }
151
152 /**
153 * stmmac_clk_csr_set - dynamically set the MDC clock
154 * @priv: driver private structure
155 * Description: this is to dynamically set the MDC clock according to the csr
156 * clock input.
157 * Note:
158 * If a specific clk_csr value is passed from the platform
159 * this means that the CSR Clock Range selection cannot be
160 * changed at run-time and it is fixed (as reported in the driver
161 * documentation). Viceversa the driver will try to set the MDC
162 * clock dynamically according to the actual clock input.
163 */
164 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
165 {
166 u32 clk_rate;
167
168 clk_rate = clk_get_rate(priv->stmmac_clk);
169
170 /* Platform provided default clk_csr would be assumed valid
171 * for all other cases except for the below mentioned ones.
172 * For values higher than the IEEE 802.3 specified frequency
173 * we can not estimate the proper divider as it is not known
174 * the frequency of clk_csr_i. So we do not change the default
175 * divider.
176 */
177 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
178 if (clk_rate < CSR_F_35M)
179 priv->clk_csr = STMMAC_CSR_20_35M;
180 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
181 priv->clk_csr = STMMAC_CSR_35_60M;
182 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
183 priv->clk_csr = STMMAC_CSR_60_100M;
184 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
185 priv->clk_csr = STMMAC_CSR_100_150M;
186 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
187 priv->clk_csr = STMMAC_CSR_150_250M;
188 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
189 priv->clk_csr = STMMAC_CSR_250_300M;
190 }
191 }
192
193 static void print_pkt(unsigned char *buf, int len)
194 {
195 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
196 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
197 }
198
199 /* minimum number of free TX descriptors required to wake up TX process */
200 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
201
202 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
203 {
204 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
205 }
206
207 /**
208 * stmmac_hw_fix_mac_speed - callback for speed selection
209 * @priv: driver private structure
210 * Description: on some platforms (e.g. ST), some HW system configuraton
211 * registers have to be set according to the link speed negotiated.
212 */
213 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
214 {
215 struct phy_device *phydev = priv->phydev;
216
217 if (likely(priv->plat->fix_mac_speed))
218 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
219 }
220
221 /**
222 * stmmac_enable_eee_mode - check and enter in LPI mode
223 * @priv: driver private structure
224 * Description: this function is to verify and enter in LPI mode in case of
225 * EEE.
226 */
227 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
228 {
229 /* Check and enter in LPI mode */
230 if ((priv->dirty_tx == priv->cur_tx) &&
231 (priv->tx_path_in_lpi_mode == false))
232 priv->hw->mac->set_eee_mode(priv->hw);
233 }
234
235 /**
236 * stmmac_disable_eee_mode - disable and exit from LPI mode
237 * @priv: driver private structure
238 * Description: this function is to exit and disable EEE in case of
239 * LPI state is true. This is called by the xmit.
240 */
241 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
242 {
243 priv->hw->mac->reset_eee_mode(priv->hw);
244 del_timer_sync(&priv->eee_ctrl_timer);
245 priv->tx_path_in_lpi_mode = false;
246 }
247
248 /**
249 * stmmac_eee_ctrl_timer - EEE TX SW timer.
250 * @arg : data hook
251 * Description:
252 * if there is no data transfer and if we are not in LPI state,
253 * then MAC Transmitter can be moved to LPI state.
254 */
255 static void stmmac_eee_ctrl_timer(unsigned long arg)
256 {
257 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
258
259 stmmac_enable_eee_mode(priv);
260 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
261 }
262
263 /**
264 * stmmac_eee_init - init EEE
265 * @priv: driver private structure
266 * Description:
267 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
268 * can also manage EEE, this function enable the LPI state and start related
269 * timer.
270 */
271 bool stmmac_eee_init(struct stmmac_priv *priv)
272 {
273 char *phy_bus_name = priv->plat->phy_bus_name;
274 unsigned long flags;
275 bool ret = false;
276
277 /* Using PCS we cannot dial with the phy registers at this stage
278 * so we do not support extra feature like EEE.
279 */
280 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
281 (priv->pcs == STMMAC_PCS_RTBI))
282 goto out;
283
284 /* Never init EEE in case of a switch is attached */
285 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
286 goto out;
287
288 /* MAC core supports the EEE feature. */
289 if (priv->dma_cap.eee) {
290 int tx_lpi_timer = priv->tx_lpi_timer;
291
292 /* Check if the PHY supports EEE */
293 if (phy_init_eee(priv->phydev, 1)) {
294 /* To manage at run-time if the EEE cannot be supported
295 * anymore (for example because the lp caps have been
296 * changed).
297 * In that case the driver disable own timers.
298 */
299 spin_lock_irqsave(&priv->lock, flags);
300 if (priv->eee_active) {
301 pr_debug("stmmac: disable EEE\n");
302 del_timer_sync(&priv->eee_ctrl_timer);
303 priv->hw->mac->set_eee_timer(priv->hw, 0,
304 tx_lpi_timer);
305 }
306 priv->eee_active = 0;
307 spin_unlock_irqrestore(&priv->lock, flags);
308 goto out;
309 }
310 /* Activate the EEE and start timers */
311 spin_lock_irqsave(&priv->lock, flags);
312 if (!priv->eee_active) {
313 priv->eee_active = 1;
314 setup_timer(&priv->eee_ctrl_timer,
315 stmmac_eee_ctrl_timer,
316 (unsigned long)priv);
317 mod_timer(&priv->eee_ctrl_timer,
318 STMMAC_LPI_T(eee_timer));
319
320 priv->hw->mac->set_eee_timer(priv->hw,
321 STMMAC_DEFAULT_LIT_LS,
322 tx_lpi_timer);
323 }
324 /* Set HW EEE according to the speed */
325 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
326
327 ret = true;
328 spin_unlock_irqrestore(&priv->lock, flags);
329
330 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
331 }
332 out:
333 return ret;
334 }
335
336 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
337 * @priv: driver private structure
338 * @entry : descriptor index to be used.
339 * @skb : the socket buffer
340 * Description :
341 * This function will read timestamp from the descriptor & pass it to stack.
342 * and also perform some sanity checks.
343 */
344 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
345 unsigned int entry, struct sk_buff *skb)
346 {
347 struct skb_shared_hwtstamps shhwtstamp;
348 u64 ns;
349 void *desc = NULL;
350
351 if (!priv->hwts_tx_en)
352 return;
353
354 /* exit if skb doesn't support hw tstamp */
355 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
356 return;
357
358 if (priv->adv_ts)
359 desc = (priv->dma_etx + entry);
360 else
361 desc = (priv->dma_tx + entry);
362
363 /* check tx tstamp status */
364 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
365 return;
366
367 /* get the valid tstamp */
368 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
369
370 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
371 shhwtstamp.hwtstamp = ns_to_ktime(ns);
372 /* pass tstamp to stack */
373 skb_tstamp_tx(skb, &shhwtstamp);
374
375 return;
376 }
377
378 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
379 * @priv: driver private structure
380 * @entry : descriptor index to be used.
381 * @skb : the socket buffer
382 * Description :
383 * This function will read received packet's timestamp from the descriptor
384 * and pass it to stack. It also perform some sanity checks.
385 */
386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
387 unsigned int entry, struct sk_buff *skb)
388 {
389 struct skb_shared_hwtstamps *shhwtstamp = NULL;
390 u64 ns;
391 void *desc = NULL;
392
393 if (!priv->hwts_rx_en)
394 return;
395
396 if (priv->adv_ts)
397 desc = (priv->dma_erx + entry);
398 else
399 desc = (priv->dma_rx + entry);
400
401 /* exit if rx tstamp is not valid */
402 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
403 return;
404
405 /* get valid tstamp */
406 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
407 shhwtstamp = skb_hwtstamps(skb);
408 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
409 shhwtstamp->hwtstamp = ns_to_ktime(ns);
410 }
411
412 /**
413 * stmmac_hwtstamp_ioctl - control hardware timestamping.
414 * @dev: device pointer.
415 * @ifr: An IOCTL specefic structure, that can contain a pointer to
416 * a proprietary structure used to pass information to the driver.
417 * Description:
418 * This function configures the MAC to enable/disable both outgoing(TX)
419 * and incoming(RX) packets time stamping based on user input.
420 * Return Value:
421 * 0 on success and an appropriate -ve integer on failure.
422 */
423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
424 {
425 struct stmmac_priv *priv = netdev_priv(dev);
426 struct hwtstamp_config config;
427 struct timespec64 now;
428 u64 temp = 0;
429 u32 ptp_v2 = 0;
430 u32 tstamp_all = 0;
431 u32 ptp_over_ipv4_udp = 0;
432 u32 ptp_over_ipv6_udp = 0;
433 u32 ptp_over_ethernet = 0;
434 u32 snap_type_sel = 0;
435 u32 ts_master_en = 0;
436 u32 ts_event_en = 0;
437 u32 value = 0;
438
439 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
440 netdev_alert(priv->dev, "No support for HW time stamping\n");
441 priv->hwts_tx_en = 0;
442 priv->hwts_rx_en = 0;
443
444 return -EOPNOTSUPP;
445 }
446
447 if (copy_from_user(&config, ifr->ifr_data,
448 sizeof(struct hwtstamp_config)))
449 return -EFAULT;
450
451 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
452 __func__, config.flags, config.tx_type, config.rx_filter);
453
454 /* reserved for future extensions */
455 if (config.flags)
456 return -EINVAL;
457
458 if (config.tx_type != HWTSTAMP_TX_OFF &&
459 config.tx_type != HWTSTAMP_TX_ON)
460 return -ERANGE;
461
462 if (priv->adv_ts) {
463 switch (config.rx_filter) {
464 case HWTSTAMP_FILTER_NONE:
465 /* time stamp no incoming packet at all */
466 config.rx_filter = HWTSTAMP_FILTER_NONE;
467 break;
468
469 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
470 /* PTP v1, UDP, any kind of event packet */
471 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
472 /* take time stamp for all event messages */
473 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
474
475 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
476 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
477 break;
478
479 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
480 /* PTP v1, UDP, Sync packet */
481 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
482 /* take time stamp for SYNC messages only */
483 ts_event_en = PTP_TCR_TSEVNTENA;
484
485 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
486 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
487 break;
488
489 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
490 /* PTP v1, UDP, Delay_req packet */
491 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
492 /* take time stamp for Delay_Req messages only */
493 ts_master_en = PTP_TCR_TSMSTRENA;
494 ts_event_en = PTP_TCR_TSEVNTENA;
495
496 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
497 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
498 break;
499
500 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
501 /* PTP v2, UDP, any kind of event packet */
502 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
503 ptp_v2 = PTP_TCR_TSVER2ENA;
504 /* take time stamp for all event messages */
505 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
506
507 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
508 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
509 break;
510
511 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
512 /* PTP v2, UDP, Sync packet */
513 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
514 ptp_v2 = PTP_TCR_TSVER2ENA;
515 /* take time stamp for SYNC messages only */
516 ts_event_en = PTP_TCR_TSEVNTENA;
517
518 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
519 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
520 break;
521
522 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
523 /* PTP v2, UDP, Delay_req packet */
524 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
525 ptp_v2 = PTP_TCR_TSVER2ENA;
526 /* take time stamp for Delay_Req messages only */
527 ts_master_en = PTP_TCR_TSMSTRENA;
528 ts_event_en = PTP_TCR_TSEVNTENA;
529
530 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
531 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
532 break;
533
534 case HWTSTAMP_FILTER_PTP_V2_EVENT:
535 /* PTP v2/802.AS1 any layer, any kind of event packet */
536 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
537 ptp_v2 = PTP_TCR_TSVER2ENA;
538 /* take time stamp for all event messages */
539 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
540
541 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
542 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
543 ptp_over_ethernet = PTP_TCR_TSIPENA;
544 break;
545
546 case HWTSTAMP_FILTER_PTP_V2_SYNC:
547 /* PTP v2/802.AS1, any layer, Sync packet */
548 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
549 ptp_v2 = PTP_TCR_TSVER2ENA;
550 /* take time stamp for SYNC messages only */
551 ts_event_en = PTP_TCR_TSEVNTENA;
552
553 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555 ptp_over_ethernet = PTP_TCR_TSIPENA;
556 break;
557
558 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
559 /* PTP v2/802.AS1, any layer, Delay_req packet */
560 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
561 ptp_v2 = PTP_TCR_TSVER2ENA;
562 /* take time stamp for Delay_Req messages only */
563 ts_master_en = PTP_TCR_TSMSTRENA;
564 ts_event_en = PTP_TCR_TSEVNTENA;
565
566 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
567 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
568 ptp_over_ethernet = PTP_TCR_TSIPENA;
569 break;
570
571 case HWTSTAMP_FILTER_ALL:
572 /* time stamp any incoming packet */
573 config.rx_filter = HWTSTAMP_FILTER_ALL;
574 tstamp_all = PTP_TCR_TSENALL;
575 break;
576
577 default:
578 return -ERANGE;
579 }
580 } else {
581 switch (config.rx_filter) {
582 case HWTSTAMP_FILTER_NONE:
583 config.rx_filter = HWTSTAMP_FILTER_NONE;
584 break;
585 default:
586 /* PTP v1, UDP, any kind of event packet */
587 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
588 break;
589 }
590 }
591 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
592 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
593
594 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
595 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
596 else {
597 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
598 tstamp_all | ptp_v2 | ptp_over_ethernet |
599 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
600 ts_master_en | snap_type_sel);
601
602 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
603
604 /* program Sub Second Increment reg */
605 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
606
607 /* calculate default added value:
608 * formula is :
609 * addend = (2^32)/freq_div_ratio;
610 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
611 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
612 * NOTE: clk_ptp_ref_i should be >= 50MHz to
613 * achieve 20ns accuracy.
614 *
615 * 2^x * y == (y << x), hence
616 * 2^32 * 50000000 ==> (50000000 << 32)
617 */
618 temp = (u64) (50000000ULL << 32);
619 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620 priv->hw->ptp->config_addend(priv->ioaddr,
621 priv->default_addend);
622
623 /* initialize system time */
624 ktime_get_real_ts64(&now);
625
626 /* lower 32 bits of tv_sec are safe until y2106 */
627 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
628 now.tv_nsec);
629 }
630
631 return copy_to_user(ifr->ifr_data, &config,
632 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
633 }
634
635 /**
636 * stmmac_init_ptp - init PTP
637 * @priv: driver private structure
638 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
639 * This is done by looking at the HW cap. register.
640 * This function also registers the ptp driver.
641 */
642 static int stmmac_init_ptp(struct stmmac_priv *priv)
643 {
644 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
645 return -EOPNOTSUPP;
646
647 /* Fall-back to main clock in case of no PTP ref is passed */
648 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
649 if (IS_ERR(priv->clk_ptp_ref)) {
650 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
651 priv->clk_ptp_ref = NULL;
652 } else {
653 clk_prepare_enable(priv->clk_ptp_ref);
654 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
655 }
656
657 priv->adv_ts = 0;
658 if (priv->dma_cap.atime_stamp && priv->extend_desc)
659 priv->adv_ts = 1;
660
661 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
662 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
663
664 if (netif_msg_hw(priv) && priv->adv_ts)
665 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
666
667 priv->hw->ptp = &stmmac_ptp;
668 priv->hwts_tx_en = 0;
669 priv->hwts_rx_en = 0;
670
671 return stmmac_ptp_register(priv);
672 }
673
674 static void stmmac_release_ptp(struct stmmac_priv *priv)
675 {
676 if (priv->clk_ptp_ref)
677 clk_disable_unprepare(priv->clk_ptp_ref);
678 stmmac_ptp_unregister(priv);
679 }
680
681 /**
682 * stmmac_adjust_link - adjusts the link parameters
683 * @dev: net device structure
684 * Description: this is the helper called by the physical abstraction layer
685 * drivers to communicate the phy link status. According the speed and duplex
686 * this driver can invoke registered glue-logic as well.
687 * It also invoke the eee initialization because it could happen when switch
688 * on different networks (that are eee capable).
689 */
690 static void stmmac_adjust_link(struct net_device *dev)
691 {
692 struct stmmac_priv *priv = netdev_priv(dev);
693 struct phy_device *phydev = priv->phydev;
694 unsigned long flags;
695 int new_state = 0;
696 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
697
698 if (phydev == NULL)
699 return;
700
701 spin_lock_irqsave(&priv->lock, flags);
702
703 if (phydev->link) {
704 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
705
706 /* Now we make sure that we can be in full duplex mode.
707 * If not, we operate in half-duplex mode. */
708 if (phydev->duplex != priv->oldduplex) {
709 new_state = 1;
710 if (!(phydev->duplex))
711 ctrl &= ~priv->hw->link.duplex;
712 else
713 ctrl |= priv->hw->link.duplex;
714 priv->oldduplex = phydev->duplex;
715 }
716 /* Flow Control operation */
717 if (phydev->pause)
718 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
719 fc, pause_time);
720
721 if (phydev->speed != priv->speed) {
722 new_state = 1;
723 switch (phydev->speed) {
724 case 1000:
725 if (likely(priv->plat->has_gmac))
726 ctrl &= ~priv->hw->link.port;
727 stmmac_hw_fix_mac_speed(priv);
728 break;
729 case 100:
730 case 10:
731 if (priv->plat->has_gmac) {
732 ctrl |= priv->hw->link.port;
733 if (phydev->speed == SPEED_100) {
734 ctrl |= priv->hw->link.speed;
735 } else {
736 ctrl &= ~(priv->hw->link.speed);
737 }
738 } else {
739 ctrl &= ~priv->hw->link.port;
740 }
741 stmmac_hw_fix_mac_speed(priv);
742 break;
743 default:
744 if (netif_msg_link(priv))
745 pr_warn("%s: Speed (%d) not 10/100\n",
746 dev->name, phydev->speed);
747 break;
748 }
749
750 priv->speed = phydev->speed;
751 }
752
753 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
754
755 if (!priv->oldlink) {
756 new_state = 1;
757 priv->oldlink = 1;
758 }
759 } else if (priv->oldlink) {
760 new_state = 1;
761 priv->oldlink = 0;
762 priv->speed = 0;
763 priv->oldduplex = -1;
764 }
765
766 if (new_state && netif_msg_link(priv))
767 phy_print_status(phydev);
768
769 spin_unlock_irqrestore(&priv->lock, flags);
770
771 /* At this stage, it could be needed to setup the EEE or adjust some
772 * MAC related HW registers.
773 */
774 priv->eee_enabled = stmmac_eee_init(priv);
775 }
776
777 /**
778 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
779 * @priv: driver private structure
780 * Description: this is to verify if the HW supports the PCS.
781 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
782 * configured for the TBI, RTBI, or SGMII PHY interface.
783 */
784 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
785 {
786 int interface = priv->plat->interface;
787
788 if (priv->dma_cap.pcs) {
789 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
790 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
791 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
792 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
793 pr_debug("STMMAC: PCS RGMII support enable\n");
794 priv->pcs = STMMAC_PCS_RGMII;
795 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
796 pr_debug("STMMAC: PCS SGMII support enable\n");
797 priv->pcs = STMMAC_PCS_SGMII;
798 }
799 }
800 }
801
802 /**
803 * stmmac_init_phy - PHY initialization
804 * @dev: net device structure
805 * Description: it initializes the driver's PHY state, and attaches the PHY
806 * to the mac driver.
807 * Return value:
808 * 0 on success
809 */
810 static int stmmac_init_phy(struct net_device *dev)
811 {
812 struct stmmac_priv *priv = netdev_priv(dev);
813 struct phy_device *phydev;
814 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
815 char bus_id[MII_BUS_ID_SIZE];
816 int interface = priv->plat->interface;
817 int max_speed = priv->plat->max_speed;
818 priv->oldlink = 0;
819 priv->speed = 0;
820 priv->oldduplex = -1;
821
822 if (priv->plat->phy_node) {
823 phydev = of_phy_connect(dev, priv->plat->phy_node,
824 &stmmac_adjust_link, 0, interface);
825 } else {
826 if (priv->plat->phy_bus_name)
827 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
828 priv->plat->phy_bus_name, priv->plat->bus_id);
829 else
830 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
831 priv->plat->bus_id);
832
833 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
834 priv->plat->phy_addr);
835 pr_debug("stmmac_init_phy: trying to attach to %s\n",
836 phy_id_fmt);
837
838 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
839 interface);
840 }
841
842 if (IS_ERR_OR_NULL(phydev)) {
843 pr_err("%s: Could not attach to PHY\n", dev->name);
844 if (!phydev)
845 return -ENODEV;
846
847 return PTR_ERR(phydev);
848 }
849
850 /* Stop Advertising 1000BASE Capability if interface is not GMII */
851 if ((interface == PHY_INTERFACE_MODE_MII) ||
852 (interface == PHY_INTERFACE_MODE_RMII) ||
853 (max_speed < 1000 && max_speed > 0))
854 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
855 SUPPORTED_1000baseT_Full);
856
857 /*
858 * Broken HW is sometimes missing the pull-up resistor on the
859 * MDIO line, which results in reads to non-existent devices returning
860 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
861 * device as well.
862 * Note: phydev->phy_id is the result of reading the UID PHY registers.
863 */
864 if (!priv->plat->phy_node && phydev->phy_id == 0) {
865 phy_disconnect(phydev);
866 return -ENODEV;
867 }
868 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
869 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
870
871 priv->phydev = phydev;
872
873 return 0;
874 }
875
876 /**
877 * stmmac_display_ring - display ring
878 * @head: pointer to the head of the ring passed.
879 * @size: size of the ring.
880 * @extend_desc: to verify if extended descriptors are used.
881 * Description: display the control/status and buffer descriptors.
882 */
883 static void stmmac_display_ring(void *head, int size, int extend_desc)
884 {
885 int i;
886 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
887 struct dma_desc *p = (struct dma_desc *)head;
888
889 for (i = 0; i < size; i++) {
890 u64 x;
891 if (extend_desc) {
892 x = *(u64 *) ep;
893 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
894 i, (unsigned int)virt_to_phys(ep),
895 (unsigned int)x, (unsigned int)(x >> 32),
896 ep->basic.des2, ep->basic.des3);
897 ep++;
898 } else {
899 x = *(u64 *) p;
900 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
901 i, (unsigned int)virt_to_phys(p),
902 (unsigned int)x, (unsigned int)(x >> 32),
903 p->des2, p->des3);
904 p++;
905 }
906 pr_info("\n");
907 }
908 }
909
910 static void stmmac_display_rings(struct stmmac_priv *priv)
911 {
912 unsigned int txsize = priv->dma_tx_size;
913 unsigned int rxsize = priv->dma_rx_size;
914
915 if (priv->extend_desc) {
916 pr_info("Extended RX descriptor ring:\n");
917 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
918 pr_info("Extended TX descriptor ring:\n");
919 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
920 } else {
921 pr_info("RX descriptor ring:\n");
922 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
923 pr_info("TX descriptor ring:\n");
924 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
925 }
926 }
927
928 static int stmmac_set_bfsize(int mtu, int bufsize)
929 {
930 int ret = bufsize;
931
932 if (mtu >= BUF_SIZE_4KiB)
933 ret = BUF_SIZE_8KiB;
934 else if (mtu >= BUF_SIZE_2KiB)
935 ret = BUF_SIZE_4KiB;
936 else if (mtu > DEFAULT_BUFSIZE)
937 ret = BUF_SIZE_2KiB;
938 else
939 ret = DEFAULT_BUFSIZE;
940
941 return ret;
942 }
943
944 /**
945 * stmmac_clear_descriptors - clear descriptors
946 * @priv: driver private structure
947 * Description: this function is called to clear the tx and rx descriptors
948 * in case of both basic and extended descriptors are used.
949 */
950 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
951 {
952 int i;
953 unsigned int txsize = priv->dma_tx_size;
954 unsigned int rxsize = priv->dma_rx_size;
955
956 /* Clear the Rx/Tx descriptors */
957 for (i = 0; i < rxsize; i++)
958 if (priv->extend_desc)
959 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
960 priv->use_riwt, priv->mode,
961 (i == rxsize - 1));
962 else
963 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
964 priv->use_riwt, priv->mode,
965 (i == rxsize - 1));
966 for (i = 0; i < txsize; i++)
967 if (priv->extend_desc)
968 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
969 priv->mode,
970 (i == txsize - 1));
971 else
972 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
973 priv->mode,
974 (i == txsize - 1));
975 }
976
977 /**
978 * stmmac_init_rx_buffers - init the RX descriptor buffer.
979 * @priv: driver private structure
980 * @p: descriptor pointer
981 * @i: descriptor index
982 * @flags: gfp flag.
983 * Description: this function is called to allocate a receive buffer, perform
984 * the DMA mapping and init the descriptor.
985 */
986 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
987 int i, gfp_t flags)
988 {
989 struct sk_buff *skb;
990
991 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
992 if (!skb) {
993 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
994 return -ENOMEM;
995 }
996 priv->rx_skbuff[i] = skb;
997 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
998 priv->dma_buf_sz,
999 DMA_FROM_DEVICE);
1000 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
1001 pr_err("%s: DMA mapping error\n", __func__);
1002 dev_kfree_skb_any(skb);
1003 return -EINVAL;
1004 }
1005
1006 p->des2 = priv->rx_skbuff_dma[i];
1007
1008 if ((priv->hw->mode->init_desc3) &&
1009 (priv->dma_buf_sz == BUF_SIZE_16KiB))
1010 priv->hw->mode->init_desc3(p);
1011
1012 return 0;
1013 }
1014
1015 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1016 {
1017 if (priv->rx_skbuff[i]) {
1018 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1019 priv->dma_buf_sz, DMA_FROM_DEVICE);
1020 dev_kfree_skb_any(priv->rx_skbuff[i]);
1021 }
1022 priv->rx_skbuff[i] = NULL;
1023 }
1024
1025 /**
1026 * init_dma_desc_rings - init the RX/TX descriptor rings
1027 * @dev: net device structure
1028 * @flags: gfp flag.
1029 * Description: this function initializes the DMA RX/TX descriptors
1030 * and allocates the socket buffers. It suppors the chained and ring
1031 * modes.
1032 */
1033 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1034 {
1035 int i;
1036 struct stmmac_priv *priv = netdev_priv(dev);
1037 unsigned int txsize = priv->dma_tx_size;
1038 unsigned int rxsize = priv->dma_rx_size;
1039 unsigned int bfsize = 0;
1040 int ret = -ENOMEM;
1041
1042 if (priv->hw->mode->set_16kib_bfsize)
1043 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1044
1045 if (bfsize < BUF_SIZE_16KiB)
1046 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1047
1048 priv->dma_buf_sz = bfsize;
1049
1050 if (netif_msg_probe(priv))
1051 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1052 txsize, rxsize, bfsize);
1053
1054 if (netif_msg_probe(priv)) {
1055 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1056 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1057
1058 /* RX INITIALIZATION */
1059 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1060 }
1061 for (i = 0; i < rxsize; i++) {
1062 struct dma_desc *p;
1063 if (priv->extend_desc)
1064 p = &((priv->dma_erx + i)->basic);
1065 else
1066 p = priv->dma_rx + i;
1067
1068 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1069 if (ret)
1070 goto err_init_rx_buffers;
1071
1072 if (netif_msg_probe(priv))
1073 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1074 priv->rx_skbuff[i]->data,
1075 (unsigned int)priv->rx_skbuff_dma[i]);
1076 }
1077 priv->cur_rx = 0;
1078 priv->dirty_rx = (unsigned int)(i - rxsize);
1079 buf_sz = bfsize;
1080
1081 /* Setup the chained descriptor addresses */
1082 if (priv->mode == STMMAC_CHAIN_MODE) {
1083 if (priv->extend_desc) {
1084 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1085 rxsize, 1);
1086 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1087 txsize, 1);
1088 } else {
1089 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1090 rxsize, 0);
1091 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1092 txsize, 0);
1093 }
1094 }
1095
1096 /* TX INITIALIZATION */
1097 for (i = 0; i < txsize; i++) {
1098 struct dma_desc *p;
1099 if (priv->extend_desc)
1100 p = &((priv->dma_etx + i)->basic);
1101 else
1102 p = priv->dma_tx + i;
1103 p->des2 = 0;
1104 priv->tx_skbuff_dma[i].buf = 0;
1105 priv->tx_skbuff_dma[i].map_as_page = false;
1106 priv->tx_skbuff[i] = NULL;
1107 }
1108
1109 priv->dirty_tx = 0;
1110 priv->cur_tx = 0;
1111 netdev_reset_queue(priv->dev);
1112
1113 stmmac_clear_descriptors(priv);
1114
1115 if (netif_msg_hw(priv))
1116 stmmac_display_rings(priv);
1117
1118 return 0;
1119 err_init_rx_buffers:
1120 while (--i >= 0)
1121 stmmac_free_rx_buffers(priv, i);
1122 return ret;
1123 }
1124
1125 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1126 {
1127 int i;
1128
1129 for (i = 0; i < priv->dma_rx_size; i++)
1130 stmmac_free_rx_buffers(priv, i);
1131 }
1132
1133 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1134 {
1135 int i;
1136
1137 for (i = 0; i < priv->dma_tx_size; i++) {
1138 struct dma_desc *p;
1139
1140 if (priv->extend_desc)
1141 p = &((priv->dma_etx + i)->basic);
1142 else
1143 p = priv->dma_tx + i;
1144
1145 if (priv->tx_skbuff_dma[i].buf) {
1146 if (priv->tx_skbuff_dma[i].map_as_page)
1147 dma_unmap_page(priv->device,
1148 priv->tx_skbuff_dma[i].buf,
1149 priv->hw->desc->get_tx_len(p),
1150 DMA_TO_DEVICE);
1151 else
1152 dma_unmap_single(priv->device,
1153 priv->tx_skbuff_dma[i].buf,
1154 priv->hw->desc->get_tx_len(p),
1155 DMA_TO_DEVICE);
1156 }
1157
1158 if (priv->tx_skbuff[i] != NULL) {
1159 dev_kfree_skb_any(priv->tx_skbuff[i]);
1160 priv->tx_skbuff[i] = NULL;
1161 priv->tx_skbuff_dma[i].buf = 0;
1162 priv->tx_skbuff_dma[i].map_as_page = false;
1163 }
1164 }
1165 }
1166
1167 /**
1168 * alloc_dma_desc_resources - alloc TX/RX resources.
1169 * @priv: private structure
1170 * Description: according to which descriptor can be used (extend or basic)
1171 * this function allocates the resources for TX and RX paths. In case of
1172 * reception, for example, it pre-allocated the RX socket buffer in order to
1173 * allow zero-copy mechanism.
1174 */
1175 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1176 {
1177 unsigned int txsize = priv->dma_tx_size;
1178 unsigned int rxsize = priv->dma_rx_size;
1179 int ret = -ENOMEM;
1180
1181 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1182 GFP_KERNEL);
1183 if (!priv->rx_skbuff_dma)
1184 return -ENOMEM;
1185
1186 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1187 GFP_KERNEL);
1188 if (!priv->rx_skbuff)
1189 goto err_rx_skbuff;
1190
1191 priv->tx_skbuff_dma = kmalloc_array(txsize,
1192 sizeof(*priv->tx_skbuff_dma),
1193 GFP_KERNEL);
1194 if (!priv->tx_skbuff_dma)
1195 goto err_tx_skbuff_dma;
1196
1197 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1198 GFP_KERNEL);
1199 if (!priv->tx_skbuff)
1200 goto err_tx_skbuff;
1201
1202 if (priv->extend_desc) {
1203 priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1204 sizeof(struct
1205 dma_extended_desc),
1206 &priv->dma_rx_phy,
1207 GFP_KERNEL);
1208 if (!priv->dma_erx)
1209 goto err_dma;
1210
1211 priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1212 sizeof(struct
1213 dma_extended_desc),
1214 &priv->dma_tx_phy,
1215 GFP_KERNEL);
1216 if (!priv->dma_etx) {
1217 dma_free_coherent(priv->device, priv->dma_rx_size *
1218 sizeof(struct dma_extended_desc),
1219 priv->dma_erx, priv->dma_rx_phy);
1220 goto err_dma;
1221 }
1222 } else {
1223 priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1224 sizeof(struct dma_desc),
1225 &priv->dma_rx_phy,
1226 GFP_KERNEL);
1227 if (!priv->dma_rx)
1228 goto err_dma;
1229
1230 priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1231 sizeof(struct dma_desc),
1232 &priv->dma_tx_phy,
1233 GFP_KERNEL);
1234 if (!priv->dma_tx) {
1235 dma_free_coherent(priv->device, priv->dma_rx_size *
1236 sizeof(struct dma_desc),
1237 priv->dma_rx, priv->dma_rx_phy);
1238 goto err_dma;
1239 }
1240 }
1241
1242 return 0;
1243
1244 err_dma:
1245 kfree(priv->tx_skbuff);
1246 err_tx_skbuff:
1247 kfree(priv->tx_skbuff_dma);
1248 err_tx_skbuff_dma:
1249 kfree(priv->rx_skbuff);
1250 err_rx_skbuff:
1251 kfree(priv->rx_skbuff_dma);
1252 return ret;
1253 }
1254
1255 static void free_dma_desc_resources(struct stmmac_priv *priv)
1256 {
1257 /* Release the DMA TX/RX socket buffers */
1258 dma_free_rx_skbufs(priv);
1259 dma_free_tx_skbufs(priv);
1260
1261 /* Free DMA regions of consistent memory previously allocated */
1262 if (!priv->extend_desc) {
1263 dma_free_coherent(priv->device,
1264 priv->dma_tx_size * sizeof(struct dma_desc),
1265 priv->dma_tx, priv->dma_tx_phy);
1266 dma_free_coherent(priv->device,
1267 priv->dma_rx_size * sizeof(struct dma_desc),
1268 priv->dma_rx, priv->dma_rx_phy);
1269 } else {
1270 dma_free_coherent(priv->device, priv->dma_tx_size *
1271 sizeof(struct dma_extended_desc),
1272 priv->dma_etx, priv->dma_tx_phy);
1273 dma_free_coherent(priv->device, priv->dma_rx_size *
1274 sizeof(struct dma_extended_desc),
1275 priv->dma_erx, priv->dma_rx_phy);
1276 }
1277 kfree(priv->rx_skbuff_dma);
1278 kfree(priv->rx_skbuff);
1279 kfree(priv->tx_skbuff_dma);
1280 kfree(priv->tx_skbuff);
1281 }
1282
1283 /**
1284 * stmmac_dma_operation_mode - HW DMA operation mode
1285 * @priv: driver private structure
1286 * Description: it is used for configuring the DMA operation mode register in
1287 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1288 */
1289 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1290 {
1291 int rxfifosz = priv->plat->rx_fifo_size;
1292
1293 if (priv->plat->force_thresh_dma_mode)
1294 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1295 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1296 /*
1297 * In case of GMAC, SF mode can be enabled
1298 * to perform the TX COE in HW. This depends on:
1299 * 1) TX COE if actually supported
1300 * 2) There is no bugged Jumbo frame support
1301 * that needs to not insert csum in the TDES.
1302 */
1303 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1304 rxfifosz);
1305 priv->xstats.threshold = SF_DMA_MODE;
1306 } else
1307 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1308 rxfifosz);
1309 }
1310
1311 /**
1312 * stmmac_tx_clean - to manage the transmission completion
1313 * @priv: driver private structure
1314 * Description: it reclaims the transmit resources after transmission completes.
1315 */
1316 static void stmmac_tx_clean(struct stmmac_priv *priv)
1317 {
1318 unsigned int txsize = priv->dma_tx_size;
1319 unsigned int bytes_compl = 0, pkts_compl = 0;
1320
1321 spin_lock(&priv->tx_lock);
1322
1323 priv->xstats.tx_clean++;
1324
1325 while (priv->dirty_tx != priv->cur_tx) {
1326 int last;
1327 unsigned int entry = priv->dirty_tx % txsize;
1328 struct sk_buff *skb = priv->tx_skbuff[entry];
1329 struct dma_desc *p;
1330
1331 if (priv->extend_desc)
1332 p = (struct dma_desc *)(priv->dma_etx + entry);
1333 else
1334 p = priv->dma_tx + entry;
1335
1336 /* Check if the descriptor is owned by the DMA. */
1337 if (priv->hw->desc->get_tx_owner(p))
1338 break;
1339
1340 /* Verify tx error by looking at the last segment. */
1341 last = priv->hw->desc->get_tx_ls(p);
1342 if (likely(last)) {
1343 int tx_error =
1344 priv->hw->desc->tx_status(&priv->dev->stats,
1345 &priv->xstats, p,
1346 priv->ioaddr);
1347 if (likely(tx_error == 0)) {
1348 priv->dev->stats.tx_packets++;
1349 priv->xstats.tx_pkt_n++;
1350 } else
1351 priv->dev->stats.tx_errors++;
1352
1353 stmmac_get_tx_hwtstamp(priv, entry, skb);
1354 }
1355 if (netif_msg_tx_done(priv))
1356 pr_debug("%s: curr %d, dirty %d\n", __func__,
1357 priv->cur_tx, priv->dirty_tx);
1358
1359 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1360 if (priv->tx_skbuff_dma[entry].map_as_page)
1361 dma_unmap_page(priv->device,
1362 priv->tx_skbuff_dma[entry].buf,
1363 priv->hw->desc->get_tx_len(p),
1364 DMA_TO_DEVICE);
1365 else
1366 dma_unmap_single(priv->device,
1367 priv->tx_skbuff_dma[entry].buf,
1368 priv->hw->desc->get_tx_len(p),
1369 DMA_TO_DEVICE);
1370 priv->tx_skbuff_dma[entry].buf = 0;
1371 priv->tx_skbuff_dma[entry].map_as_page = false;
1372 }
1373 priv->hw->mode->clean_desc3(priv, p);
1374
1375 if (likely(skb != NULL)) {
1376 pkts_compl++;
1377 bytes_compl += skb->len;
1378 dev_consume_skb_any(skb);
1379 priv->tx_skbuff[entry] = NULL;
1380 }
1381
1382 priv->hw->desc->release_tx_desc(p, priv->mode);
1383
1384 priv->dirty_tx++;
1385 }
1386
1387 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1388
1389 if (unlikely(netif_queue_stopped(priv->dev) &&
1390 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1391 netif_tx_lock(priv->dev);
1392 if (netif_queue_stopped(priv->dev) &&
1393 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1394 if (netif_msg_tx_done(priv))
1395 pr_debug("%s: restart transmit\n", __func__);
1396 netif_wake_queue(priv->dev);
1397 }
1398 netif_tx_unlock(priv->dev);
1399 }
1400
1401 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1402 stmmac_enable_eee_mode(priv);
1403 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1404 }
1405 spin_unlock(&priv->tx_lock);
1406 }
1407
1408 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1409 {
1410 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1411 }
1412
1413 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1414 {
1415 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1416 }
1417
1418 /**
1419 * stmmac_tx_err - to manage the tx error
1420 * @priv: driver private structure
1421 * Description: it cleans the descriptors and restarts the transmission
1422 * in case of transmission errors.
1423 */
1424 static void stmmac_tx_err(struct stmmac_priv *priv)
1425 {
1426 int i;
1427 int txsize = priv->dma_tx_size;
1428 netif_stop_queue(priv->dev);
1429
1430 priv->hw->dma->stop_tx(priv->ioaddr);
1431 dma_free_tx_skbufs(priv);
1432 for (i = 0; i < txsize; i++)
1433 if (priv->extend_desc)
1434 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1435 priv->mode,
1436 (i == txsize - 1));
1437 else
1438 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1439 priv->mode,
1440 (i == txsize - 1));
1441 priv->dirty_tx = 0;
1442 priv->cur_tx = 0;
1443 netdev_reset_queue(priv->dev);
1444 priv->hw->dma->start_tx(priv->ioaddr);
1445
1446 priv->dev->stats.tx_errors++;
1447 netif_wake_queue(priv->dev);
1448 }
1449
1450 /**
1451 * stmmac_dma_interrupt - DMA ISR
1452 * @priv: driver private structure
1453 * Description: this is the DMA ISR. It is called by the main ISR.
1454 * It calls the dwmac dma routine and schedule poll method in case of some
1455 * work can be done.
1456 */
1457 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1458 {
1459 int status;
1460 int rxfifosz = priv->plat->rx_fifo_size;
1461
1462 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1463 if (likely((status & handle_rx)) || (status & handle_tx)) {
1464 if (likely(napi_schedule_prep(&priv->napi))) {
1465 stmmac_disable_dma_irq(priv);
1466 __napi_schedule(&priv->napi);
1467 }
1468 }
1469 if (unlikely(status & tx_hard_error_bump_tc)) {
1470 /* Try to bump up the dma threshold on this failure */
1471 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1472 (tc <= 256)) {
1473 tc += 64;
1474 if (priv->plat->force_thresh_dma_mode)
1475 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1476 rxfifosz);
1477 else
1478 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1479 SF_DMA_MODE, rxfifosz);
1480 priv->xstats.threshold = tc;
1481 }
1482 } else if (unlikely(status == tx_hard_error))
1483 stmmac_tx_err(priv);
1484 }
1485
1486 /**
1487 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1488 * @priv: driver private structure
1489 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1490 */
1491 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1492 {
1493 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1494 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1495
1496 dwmac_mmc_intr_all_mask(priv->ioaddr);
1497
1498 if (priv->dma_cap.rmon) {
1499 dwmac_mmc_ctrl(priv->ioaddr, mode);
1500 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1501 } else
1502 pr_info(" No MAC Management Counters available\n");
1503 }
1504
1505 /**
1506 * stmmac_get_synopsys_id - return the SYINID.
1507 * @priv: driver private structure
1508 * Description: this simple function is to decode and return the SYINID
1509 * starting from the HW core register.
1510 */
1511 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1512 {
1513 u32 hwid = priv->hw->synopsys_uid;
1514
1515 /* Check Synopsys Id (not available on old chips) */
1516 if (likely(hwid)) {
1517 u32 uid = ((hwid & 0x0000ff00) >> 8);
1518 u32 synid = (hwid & 0x000000ff);
1519
1520 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1521 uid, synid);
1522
1523 return synid;
1524 }
1525 return 0;
1526 }
1527
1528 /**
1529 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1530 * @priv: driver private structure
1531 * Description: select the Enhanced/Alternate or Normal descriptors.
1532 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1533 * supported by the HW capability register.
1534 */
1535 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1536 {
1537 if (priv->plat->enh_desc) {
1538 pr_info(" Enhanced/Alternate descriptors\n");
1539
1540 /* GMAC older than 3.50 has no extended descriptors */
1541 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1542 pr_info("\tEnabled extended descriptors\n");
1543 priv->extend_desc = 1;
1544 } else
1545 pr_warn("Extended descriptors not supported\n");
1546
1547 priv->hw->desc = &enh_desc_ops;
1548 } else {
1549 pr_info(" Normal descriptors\n");
1550 priv->hw->desc = &ndesc_ops;
1551 }
1552 }
1553
1554 /**
1555 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1556 * @priv: driver private structure
1557 * Description:
1558 * new GMAC chip generations have a new register to indicate the
1559 * presence of the optional feature/functions.
1560 * This can be also used to override the value passed through the
1561 * platform and necessary for old MAC10/100 and GMAC chips.
1562 */
1563 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1564 {
1565 u32 hw_cap = 0;
1566
1567 if (priv->hw->dma->get_hw_feature) {
1568 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1569
1570 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1571 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1572 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1573 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1574 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1575 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1576 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1577 priv->dma_cap.pmt_remote_wake_up =
1578 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1579 priv->dma_cap.pmt_magic_frame =
1580 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1581 /* MMC */
1582 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1583 /* IEEE 1588-2002 */
1584 priv->dma_cap.time_stamp =
1585 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1586 /* IEEE 1588-2008 */
1587 priv->dma_cap.atime_stamp =
1588 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1589 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1590 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1591 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1592 /* TX and RX csum */
1593 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1594 priv->dma_cap.rx_coe_type1 =
1595 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1596 priv->dma_cap.rx_coe_type2 =
1597 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1598 priv->dma_cap.rxfifo_over_2048 =
1599 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1600 /* TX and RX number of channels */
1601 priv->dma_cap.number_rx_channel =
1602 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1603 priv->dma_cap.number_tx_channel =
1604 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1605 /* Alternate (enhanced) DESC mode */
1606 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1607 }
1608
1609 return hw_cap;
1610 }
1611
1612 /**
1613 * stmmac_check_ether_addr - check if the MAC addr is valid
1614 * @priv: driver private structure
1615 * Description:
1616 * it is to verify if the MAC address is valid, in case of failures it
1617 * generates a random MAC address
1618 */
1619 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1620 {
1621 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1622 priv->hw->mac->get_umac_addr(priv->hw,
1623 priv->dev->dev_addr, 0);
1624 if (!is_valid_ether_addr(priv->dev->dev_addr))
1625 eth_hw_addr_random(priv->dev);
1626 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1627 priv->dev->dev_addr);
1628 }
1629 }
1630
1631 /**
1632 * stmmac_init_dma_engine - DMA init.
1633 * @priv: driver private structure
1634 * Description:
1635 * It inits the DMA invoking the specific MAC/GMAC callback.
1636 * Some DMA parameters can be passed from the platform;
1637 * in case of these are not passed a default is kept for the MAC or GMAC.
1638 */
1639 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1640 {
1641 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1642 int mixed_burst = 0;
1643 int atds = 0;
1644
1645 if (priv->plat->dma_cfg) {
1646 pbl = priv->plat->dma_cfg->pbl;
1647 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1648 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1649 burst_len = priv->plat->dma_cfg->burst_len;
1650 }
1651
1652 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1653 atds = 1;
1654
1655 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1656 burst_len, priv->dma_tx_phy,
1657 priv->dma_rx_phy, atds);
1658 }
1659
1660 /**
1661 * stmmac_tx_timer - mitigation sw timer for tx.
1662 * @data: data pointer
1663 * Description:
1664 * This is the timer handler to directly invoke the stmmac_tx_clean.
1665 */
1666 static void stmmac_tx_timer(unsigned long data)
1667 {
1668 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1669
1670 stmmac_tx_clean(priv);
1671 }
1672
1673 /**
1674 * stmmac_init_tx_coalesce - init tx mitigation options.
1675 * @priv: driver private structure
1676 * Description:
1677 * This inits the transmit coalesce parameters: i.e. timer rate,
1678 * timer handler and default threshold used for enabling the
1679 * interrupt on completion bit.
1680 */
1681 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1682 {
1683 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1684 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1685 init_timer(&priv->txtimer);
1686 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1687 priv->txtimer.data = (unsigned long)priv;
1688 priv->txtimer.function = stmmac_tx_timer;
1689 add_timer(&priv->txtimer);
1690 }
1691
1692 /**
1693 * stmmac_hw_setup - setup mac in a usable state.
1694 * @dev : pointer to the device structure.
1695 * Description:
1696 * this is the main function to setup the HW in a usable state because the
1697 * dma engine is reset, the core registers are configured (e.g. AXI,
1698 * Checksum features, timers). The DMA is ready to start receiving and
1699 * transmitting.
1700 * Return value:
1701 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1702 * file on failure.
1703 */
1704 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1705 {
1706 struct stmmac_priv *priv = netdev_priv(dev);
1707 int ret;
1708
1709 /* DMA initialization and SW reset */
1710 ret = stmmac_init_dma_engine(priv);
1711 if (ret < 0) {
1712 pr_err("%s: DMA engine initialization failed\n", __func__);
1713 return ret;
1714 }
1715
1716 /* Copy the MAC addr into the HW */
1717 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1718
1719 /* If required, perform hw setup of the bus. */
1720 if (priv->plat->bus_setup)
1721 priv->plat->bus_setup(priv->ioaddr);
1722
1723 /* Initialize the MAC Core */
1724 priv->hw->mac->core_init(priv->hw, dev->mtu);
1725
1726 ret = priv->hw->mac->rx_ipc(priv->hw);
1727 if (!ret) {
1728 pr_warn(" RX IPC Checksum Offload disabled\n");
1729 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1730 priv->hw->rx_csum = 0;
1731 }
1732
1733 /* Enable the MAC Rx/Tx */
1734 stmmac_set_mac(priv->ioaddr, true);
1735
1736 /* Set the HW DMA mode and the COE */
1737 stmmac_dma_operation_mode(priv);
1738
1739 stmmac_mmc_setup(priv);
1740
1741 if (init_ptp) {
1742 ret = stmmac_init_ptp(priv);
1743 if (ret && ret != -EOPNOTSUPP)
1744 pr_warn("%s: failed PTP initialisation\n", __func__);
1745 }
1746
1747 #ifdef CONFIG_DEBUG_FS
1748 ret = stmmac_init_fs(dev);
1749 if (ret < 0)
1750 pr_warn("%s: failed debugFS registration\n", __func__);
1751 #endif
1752 /* Start the ball rolling... */
1753 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1754 priv->hw->dma->start_tx(priv->ioaddr);
1755 priv->hw->dma->start_rx(priv->ioaddr);
1756
1757 /* Dump DMA/MAC registers */
1758 if (netif_msg_hw(priv)) {
1759 priv->hw->mac->dump_regs(priv->hw);
1760 priv->hw->dma->dump_regs(priv->ioaddr);
1761 }
1762 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1763
1764 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1765 priv->rx_riwt = MAX_DMA_RIWT;
1766 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1767 }
1768
1769 if (priv->pcs && priv->hw->mac->ctrl_ane)
1770 priv->hw->mac->ctrl_ane(priv->hw, 0);
1771
1772 return 0;
1773 }
1774
1775 /**
1776 * stmmac_open - open entry point of the driver
1777 * @dev : pointer to the device structure.
1778 * Description:
1779 * This function is the open entry point of the driver.
1780 * Return value:
1781 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1782 * file on failure.
1783 */
1784 static int stmmac_open(struct net_device *dev)
1785 {
1786 struct stmmac_priv *priv = netdev_priv(dev);
1787 int ret;
1788
1789 stmmac_check_ether_addr(priv);
1790
1791 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1792 priv->pcs != STMMAC_PCS_RTBI) {
1793 ret = stmmac_init_phy(dev);
1794 if (ret) {
1795 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1796 __func__, ret);
1797 return ret;
1798 }
1799 }
1800
1801 /* Extra statistics */
1802 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1803 priv->xstats.threshold = tc;
1804
1805 /* Create and initialize the TX/RX descriptors chains. */
1806 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1807 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1808 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1809
1810 ret = alloc_dma_desc_resources(priv);
1811 if (ret < 0) {
1812 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1813 goto dma_desc_error;
1814 }
1815
1816 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1817 if (ret < 0) {
1818 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1819 goto init_error;
1820 }
1821
1822 ret = stmmac_hw_setup(dev, true);
1823 if (ret < 0) {
1824 pr_err("%s: Hw setup failed\n", __func__);
1825 goto init_error;
1826 }
1827
1828 stmmac_init_tx_coalesce(priv);
1829
1830 if (priv->phydev)
1831 phy_start(priv->phydev);
1832
1833 /* Request the IRQ lines */
1834 ret = request_irq(dev->irq, stmmac_interrupt,
1835 IRQF_SHARED, dev->name, dev);
1836 if (unlikely(ret < 0)) {
1837 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1838 __func__, dev->irq, ret);
1839 goto init_error;
1840 }
1841
1842 /* Request the Wake IRQ in case of another line is used for WoL */
1843 if (priv->wol_irq != dev->irq) {
1844 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1845 IRQF_SHARED, dev->name, dev);
1846 if (unlikely(ret < 0)) {
1847 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1848 __func__, priv->wol_irq, ret);
1849 goto wolirq_error;
1850 }
1851 }
1852
1853 /* Request the IRQ lines */
1854 if (priv->lpi_irq > 0) {
1855 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1856 dev->name, dev);
1857 if (unlikely(ret < 0)) {
1858 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1859 __func__, priv->lpi_irq, ret);
1860 goto lpiirq_error;
1861 }
1862 }
1863
1864 napi_enable(&priv->napi);
1865 netif_start_queue(dev);
1866
1867 return 0;
1868
1869 lpiirq_error:
1870 if (priv->wol_irq != dev->irq)
1871 free_irq(priv->wol_irq, dev);
1872 wolirq_error:
1873 free_irq(dev->irq, dev);
1874
1875 init_error:
1876 free_dma_desc_resources(priv);
1877 dma_desc_error:
1878 if (priv->phydev)
1879 phy_disconnect(priv->phydev);
1880
1881 return ret;
1882 }
1883
1884 /**
1885 * stmmac_release - close entry point of the driver
1886 * @dev : device pointer.
1887 * Description:
1888 * This is the stop entry point of the driver.
1889 */
1890 static int stmmac_release(struct net_device *dev)
1891 {
1892 struct stmmac_priv *priv = netdev_priv(dev);
1893
1894 if (priv->eee_enabled)
1895 del_timer_sync(&priv->eee_ctrl_timer);
1896
1897 /* Stop and disconnect the PHY */
1898 if (priv->phydev) {
1899 phy_stop(priv->phydev);
1900 phy_disconnect(priv->phydev);
1901 priv->phydev = NULL;
1902 }
1903
1904 netif_stop_queue(dev);
1905
1906 napi_disable(&priv->napi);
1907
1908 del_timer_sync(&priv->txtimer);
1909
1910 /* Free the IRQ lines */
1911 free_irq(dev->irq, dev);
1912 if (priv->wol_irq != dev->irq)
1913 free_irq(priv->wol_irq, dev);
1914 if (priv->lpi_irq > 0)
1915 free_irq(priv->lpi_irq, dev);
1916
1917 /* Stop TX/RX DMA and clear the descriptors */
1918 priv->hw->dma->stop_tx(priv->ioaddr);
1919 priv->hw->dma->stop_rx(priv->ioaddr);
1920
1921 /* Release and free the Rx/Tx resources */
1922 free_dma_desc_resources(priv);
1923
1924 /* Disable the MAC Rx/Tx */
1925 stmmac_set_mac(priv->ioaddr, false);
1926
1927 netif_carrier_off(dev);
1928
1929 #ifdef CONFIG_DEBUG_FS
1930 stmmac_exit_fs(dev);
1931 #endif
1932
1933 stmmac_release_ptp(priv);
1934
1935 return 0;
1936 }
1937
1938 /**
1939 * stmmac_xmit - Tx entry point of the driver
1940 * @skb : the socket buffer
1941 * @dev : device pointer
1942 * Description : this is the tx entry point of the driver.
1943 * It programs the chain or the ring and supports oversized frames
1944 * and SG feature.
1945 */
1946 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1947 {
1948 struct stmmac_priv *priv = netdev_priv(dev);
1949 unsigned int txsize = priv->dma_tx_size;
1950 int entry;
1951 int i, csum_insertion = 0, is_jumbo = 0;
1952 int nfrags = skb_shinfo(skb)->nr_frags;
1953 struct dma_desc *desc, *first;
1954 unsigned int nopaged_len = skb_headlen(skb);
1955 unsigned int enh_desc = priv->plat->enh_desc;
1956
1957 spin_lock(&priv->tx_lock);
1958
1959 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1960 spin_unlock(&priv->tx_lock);
1961 if (!netif_queue_stopped(dev)) {
1962 netif_stop_queue(dev);
1963 /* This is a hard error, log it. */
1964 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1965 }
1966 return NETDEV_TX_BUSY;
1967 }
1968
1969 if (priv->tx_path_in_lpi_mode)
1970 stmmac_disable_eee_mode(priv);
1971
1972 entry = priv->cur_tx % txsize;
1973
1974 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1975
1976 if (priv->extend_desc)
1977 desc = (struct dma_desc *)(priv->dma_etx + entry);
1978 else
1979 desc = priv->dma_tx + entry;
1980
1981 first = desc;
1982
1983 /* To program the descriptors according to the size of the frame */
1984 if (enh_desc)
1985 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1986
1987 if (likely(!is_jumbo)) {
1988 desc->des2 = dma_map_single(priv->device, skb->data,
1989 nopaged_len, DMA_TO_DEVICE);
1990 if (dma_mapping_error(priv->device, desc->des2))
1991 goto dma_map_err;
1992 priv->tx_skbuff_dma[entry].buf = desc->des2;
1993 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1994 csum_insertion, priv->mode);
1995 } else {
1996 desc = first;
1997 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1998 if (unlikely(entry < 0))
1999 goto dma_map_err;
2000 }
2001
2002 for (i = 0; i < nfrags; i++) {
2003 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2004 int len = skb_frag_size(frag);
2005
2006 priv->tx_skbuff[entry] = NULL;
2007 entry = (++priv->cur_tx) % txsize;
2008 if (priv->extend_desc)
2009 desc = (struct dma_desc *)(priv->dma_etx + entry);
2010 else
2011 desc = priv->dma_tx + entry;
2012
2013 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2014 DMA_TO_DEVICE);
2015 if (dma_mapping_error(priv->device, desc->des2))
2016 goto dma_map_err; /* should reuse desc w/o issues */
2017
2018 priv->tx_skbuff_dma[entry].buf = desc->des2;
2019 priv->tx_skbuff_dma[entry].map_as_page = true;
2020 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2021 priv->mode);
2022 wmb();
2023 priv->hw->desc->set_tx_owner(desc);
2024 wmb();
2025 }
2026
2027 priv->tx_skbuff[entry] = skb;
2028
2029 /* Finalize the latest segment. */
2030 priv->hw->desc->close_tx_desc(desc);
2031
2032 wmb();
2033 /* According to the coalesce parameter the IC bit for the latest
2034 * segment could be reset and the timer re-started to invoke the
2035 * stmmac_tx function. This approach takes care about the fragments.
2036 */
2037 priv->tx_count_frames += nfrags + 1;
2038 if (priv->tx_coal_frames > priv->tx_count_frames) {
2039 priv->hw->desc->clear_tx_ic(desc);
2040 priv->xstats.tx_reset_ic_bit++;
2041 mod_timer(&priv->txtimer,
2042 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2043 } else
2044 priv->tx_count_frames = 0;
2045
2046 /* To avoid raise condition */
2047 priv->hw->desc->set_tx_owner(first);
2048 wmb();
2049
2050 priv->cur_tx++;
2051
2052 if (netif_msg_pktdata(priv)) {
2053 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2054 __func__, (priv->cur_tx % txsize),
2055 (priv->dirty_tx % txsize), entry, first, nfrags);
2056
2057 if (priv->extend_desc)
2058 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2059 else
2060 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2061
2062 pr_debug(">>> frame to be transmitted: ");
2063 print_pkt(skb->data, skb->len);
2064 }
2065 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2066 if (netif_msg_hw(priv))
2067 pr_debug("%s: stop transmitted packets\n", __func__);
2068 netif_stop_queue(dev);
2069 }
2070
2071 dev->stats.tx_bytes += skb->len;
2072
2073 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2074 priv->hwts_tx_en)) {
2075 /* declare that device is doing timestamping */
2076 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2077 priv->hw->desc->enable_tx_timestamp(first);
2078 }
2079
2080 if (!priv->hwts_tx_en)
2081 skb_tx_timestamp(skb);
2082
2083 netdev_sent_queue(dev, skb->len);
2084 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2085
2086 spin_unlock(&priv->tx_lock);
2087 return NETDEV_TX_OK;
2088
2089 dma_map_err:
2090 spin_unlock(&priv->tx_lock);
2091 dev_err(priv->device, "Tx dma map failed\n");
2092 dev_kfree_skb(skb);
2093 priv->dev->stats.tx_dropped++;
2094 return NETDEV_TX_OK;
2095 }
2096
2097 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2098 {
2099 struct ethhdr *ehdr;
2100 u16 vlanid;
2101
2102 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2103 NETIF_F_HW_VLAN_CTAG_RX &&
2104 !__vlan_get_tag(skb, &vlanid)) {
2105 /* pop the vlan tag */
2106 ehdr = (struct ethhdr *)skb->data;
2107 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2108 skb_pull(skb, VLAN_HLEN);
2109 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2110 }
2111 }
2112
2113
2114 /**
2115 * stmmac_rx_refill - refill used skb preallocated buffers
2116 * @priv: driver private structure
2117 * Description : this is to reallocate the skb for the reception process
2118 * that is based on zero-copy.
2119 */
2120 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2121 {
2122 unsigned int rxsize = priv->dma_rx_size;
2123 int bfsize = priv->dma_buf_sz;
2124
2125 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2126 unsigned int entry = priv->dirty_rx % rxsize;
2127 struct dma_desc *p;
2128
2129 if (priv->extend_desc)
2130 p = (struct dma_desc *)(priv->dma_erx + entry);
2131 else
2132 p = priv->dma_rx + entry;
2133
2134 if (likely(priv->rx_skbuff[entry] == NULL)) {
2135 struct sk_buff *skb;
2136
2137 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2138
2139 if (unlikely(skb == NULL))
2140 break;
2141
2142 priv->rx_skbuff[entry] = skb;
2143 priv->rx_skbuff_dma[entry] =
2144 dma_map_single(priv->device, skb->data, bfsize,
2145 DMA_FROM_DEVICE);
2146 if (dma_mapping_error(priv->device,
2147 priv->rx_skbuff_dma[entry])) {
2148 dev_err(priv->device, "Rx dma map failed\n");
2149 dev_kfree_skb(skb);
2150 break;
2151 }
2152 p->des2 = priv->rx_skbuff_dma[entry];
2153
2154 priv->hw->mode->refill_desc3(priv, p);
2155
2156 if (netif_msg_rx_status(priv))
2157 pr_debug("\trefill entry #%d\n", entry);
2158 }
2159 wmb();
2160 priv->hw->desc->set_rx_owner(p);
2161 wmb();
2162 }
2163 }
2164
2165 /**
2166 * stmmac_rx - manage the receive process
2167 * @priv: driver private structure
2168 * @limit: napi bugget.
2169 * Description : this the function called by the napi poll method.
2170 * It gets all the frames inside the ring.
2171 */
2172 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2173 {
2174 unsigned int rxsize = priv->dma_rx_size;
2175 unsigned int entry = priv->cur_rx % rxsize;
2176 unsigned int next_entry;
2177 unsigned int count = 0;
2178 int coe = priv->hw->rx_csum;
2179
2180 if (netif_msg_rx_status(priv)) {
2181 pr_debug("%s: descriptor ring:\n", __func__);
2182 if (priv->extend_desc)
2183 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2184 else
2185 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2186 }
2187 while (count < limit) {
2188 int status;
2189 struct dma_desc *p;
2190
2191 if (priv->extend_desc)
2192 p = (struct dma_desc *)(priv->dma_erx + entry);
2193 else
2194 p = priv->dma_rx + entry;
2195
2196 if (priv->hw->desc->get_rx_owner(p))
2197 break;
2198
2199 count++;
2200
2201 next_entry = (++priv->cur_rx) % rxsize;
2202 if (priv->extend_desc)
2203 prefetch(priv->dma_erx + next_entry);
2204 else
2205 prefetch(priv->dma_rx + next_entry);
2206
2207 /* read the status of the incoming frame */
2208 status = priv->hw->desc->rx_status(&priv->dev->stats,
2209 &priv->xstats, p);
2210 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2211 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2212 &priv->xstats,
2213 priv->dma_erx +
2214 entry);
2215 if (unlikely(status == discard_frame)) {
2216 priv->dev->stats.rx_errors++;
2217 if (priv->hwts_rx_en && !priv->extend_desc) {
2218 /* DESC2 & DESC3 will be overwitten by device
2219 * with timestamp value, hence reinitialize
2220 * them in stmmac_rx_refill() function so that
2221 * device can reuse it.
2222 */
2223 priv->rx_skbuff[entry] = NULL;
2224 dma_unmap_single(priv->device,
2225 priv->rx_skbuff_dma[entry],
2226 priv->dma_buf_sz,
2227 DMA_FROM_DEVICE);
2228 }
2229 } else {
2230 struct sk_buff *skb;
2231 int frame_len;
2232
2233 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2234
2235 /* check if frame_len fits the preallocated memory */
2236 if (frame_len > priv->dma_buf_sz) {
2237 priv->dev->stats.rx_length_errors++;
2238 break;
2239 }
2240
2241 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2242 * Type frames (LLC/LLC-SNAP)
2243 */
2244 if (unlikely(status != llc_snap))
2245 frame_len -= ETH_FCS_LEN;
2246
2247 if (netif_msg_rx_status(priv)) {
2248 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2249 p, entry, p->des2);
2250 if (frame_len > ETH_FRAME_LEN)
2251 pr_debug("\tframe size %d, COE: %d\n",
2252 frame_len, status);
2253 }
2254 skb = priv->rx_skbuff[entry];
2255 if (unlikely(!skb)) {
2256 pr_err("%s: Inconsistent Rx descriptor chain\n",
2257 priv->dev->name);
2258 priv->dev->stats.rx_dropped++;
2259 break;
2260 }
2261 prefetch(skb->data - NET_IP_ALIGN);
2262 priv->rx_skbuff[entry] = NULL;
2263
2264 stmmac_get_rx_hwtstamp(priv, entry, skb);
2265
2266 skb_put(skb, frame_len);
2267 dma_unmap_single(priv->device,
2268 priv->rx_skbuff_dma[entry],
2269 priv->dma_buf_sz, DMA_FROM_DEVICE);
2270
2271 if (netif_msg_pktdata(priv)) {
2272 pr_debug("frame received (%dbytes)", frame_len);
2273 print_pkt(skb->data, frame_len);
2274 }
2275
2276 stmmac_rx_vlan(priv->dev, skb);
2277
2278 skb->protocol = eth_type_trans(skb, priv->dev);
2279
2280 if (unlikely(!coe))
2281 skb_checksum_none_assert(skb);
2282 else
2283 skb->ip_summed = CHECKSUM_UNNECESSARY;
2284
2285 napi_gro_receive(&priv->napi, skb);
2286
2287 priv->dev->stats.rx_packets++;
2288 priv->dev->stats.rx_bytes += frame_len;
2289 }
2290 entry = next_entry;
2291 }
2292
2293 stmmac_rx_refill(priv);
2294
2295 priv->xstats.rx_pkt_n += count;
2296
2297 return count;
2298 }
2299
2300 /**
2301 * stmmac_poll - stmmac poll method (NAPI)
2302 * @napi : pointer to the napi structure.
2303 * @budget : maximum number of packets that the current CPU can receive from
2304 * all interfaces.
2305 * Description :
2306 * To look at the incoming frames and clear the tx resources.
2307 */
2308 static int stmmac_poll(struct napi_struct *napi, int budget)
2309 {
2310 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2311 int work_done = 0;
2312
2313 priv->xstats.napi_poll++;
2314 stmmac_tx_clean(priv);
2315
2316 work_done = stmmac_rx(priv, budget);
2317 if (work_done < budget) {
2318 napi_complete(napi);
2319 stmmac_enable_dma_irq(priv);
2320 }
2321 return work_done;
2322 }
2323
2324 /**
2325 * stmmac_tx_timeout
2326 * @dev : Pointer to net device structure
2327 * Description: this function is called when a packet transmission fails to
2328 * complete within a reasonable time. The driver will mark the error in the
2329 * netdev structure and arrange for the device to be reset to a sane state
2330 * in order to transmit a new packet.
2331 */
2332 static void stmmac_tx_timeout(struct net_device *dev)
2333 {
2334 struct stmmac_priv *priv = netdev_priv(dev);
2335
2336 /* Clear Tx resources and restart transmitting again */
2337 stmmac_tx_err(priv);
2338 }
2339
2340 /**
2341 * stmmac_set_rx_mode - entry point for multicast addressing
2342 * @dev : pointer to the device structure
2343 * Description:
2344 * This function is a driver entry point which gets called by the kernel
2345 * whenever multicast addresses must be enabled/disabled.
2346 * Return value:
2347 * void.
2348 */
2349 static void stmmac_set_rx_mode(struct net_device *dev)
2350 {
2351 struct stmmac_priv *priv = netdev_priv(dev);
2352
2353 priv->hw->mac->set_filter(priv->hw, dev);
2354 }
2355
2356 /**
2357 * stmmac_change_mtu - entry point to change MTU size for the device.
2358 * @dev : device pointer.
2359 * @new_mtu : the new MTU size for the device.
2360 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2361 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2362 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2363 * Return value:
2364 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2365 * file on failure.
2366 */
2367 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2368 {
2369 struct stmmac_priv *priv = netdev_priv(dev);
2370 int max_mtu;
2371
2372 if (netif_running(dev)) {
2373 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2374 return -EBUSY;
2375 }
2376
2377 if (priv->plat->enh_desc)
2378 max_mtu = JUMBO_LEN;
2379 else
2380 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2381
2382 if (priv->plat->maxmtu < max_mtu)
2383 max_mtu = priv->plat->maxmtu;
2384
2385 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2386 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2387 return -EINVAL;
2388 }
2389
2390 dev->mtu = new_mtu;
2391 netdev_update_features(dev);
2392
2393 return 0;
2394 }
2395
2396 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2397 netdev_features_t features)
2398 {
2399 struct stmmac_priv *priv = netdev_priv(dev);
2400
2401 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2402 features &= ~NETIF_F_RXCSUM;
2403
2404 if (!priv->plat->tx_coe)
2405 features &= ~NETIF_F_ALL_CSUM;
2406
2407 /* Some GMAC devices have a bugged Jumbo frame support that
2408 * needs to have the Tx COE disabled for oversized frames
2409 * (due to limited buffer sizes). In this case we disable
2410 * the TX csum insertionin the TDES and not use SF.
2411 */
2412 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2413 features &= ~NETIF_F_ALL_CSUM;
2414
2415 return features;
2416 }
2417
2418 static int stmmac_set_features(struct net_device *netdev,
2419 netdev_features_t features)
2420 {
2421 struct stmmac_priv *priv = netdev_priv(netdev);
2422
2423 /* Keep the COE Type in case of csum is supporting */
2424 if (features & NETIF_F_RXCSUM)
2425 priv->hw->rx_csum = priv->plat->rx_coe;
2426 else
2427 priv->hw->rx_csum = 0;
2428 /* No check needed because rx_coe has been set before and it will be
2429 * fixed in case of issue.
2430 */
2431 priv->hw->mac->rx_ipc(priv->hw);
2432
2433 return 0;
2434 }
2435
2436 /**
2437 * stmmac_interrupt - main ISR
2438 * @irq: interrupt number.
2439 * @dev_id: to pass the net device pointer.
2440 * Description: this is the main driver interrupt service routine.
2441 * It can call:
2442 * o DMA service routine (to manage incoming frame reception and transmission
2443 * status)
2444 * o Core interrupts to manage: remote wake-up, management counter, LPI
2445 * interrupts.
2446 */
2447 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2448 {
2449 struct net_device *dev = (struct net_device *)dev_id;
2450 struct stmmac_priv *priv = netdev_priv(dev);
2451
2452 if (priv->irq_wake)
2453 pm_wakeup_event(priv->device, 0);
2454
2455 if (unlikely(!dev)) {
2456 pr_err("%s: invalid dev pointer\n", __func__);
2457 return IRQ_NONE;
2458 }
2459
2460 /* To handle GMAC own interrupts */
2461 if (priv->plat->has_gmac) {
2462 int status = priv->hw->mac->host_irq_status(priv->hw,
2463 &priv->xstats);
2464 if (unlikely(status)) {
2465 /* For LPI we need to save the tx status */
2466 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2467 priv->tx_path_in_lpi_mode = true;
2468 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2469 priv->tx_path_in_lpi_mode = false;
2470 }
2471 }
2472
2473 /* To handle DMA interrupts */
2474 stmmac_dma_interrupt(priv);
2475
2476 return IRQ_HANDLED;
2477 }
2478
2479 #ifdef CONFIG_NET_POLL_CONTROLLER
2480 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2481 * to allow network I/O with interrupts disabled.
2482 */
2483 static void stmmac_poll_controller(struct net_device *dev)
2484 {
2485 disable_irq(dev->irq);
2486 stmmac_interrupt(dev->irq, dev);
2487 enable_irq(dev->irq);
2488 }
2489 #endif
2490
2491 /**
2492 * stmmac_ioctl - Entry point for the Ioctl
2493 * @dev: Device pointer.
2494 * @rq: An IOCTL specefic structure, that can contain a pointer to
2495 * a proprietary structure used to pass information to the driver.
2496 * @cmd: IOCTL command
2497 * Description:
2498 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2499 */
2500 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2501 {
2502 struct stmmac_priv *priv = netdev_priv(dev);
2503 int ret = -EOPNOTSUPP;
2504
2505 if (!netif_running(dev))
2506 return -EINVAL;
2507
2508 switch (cmd) {
2509 case SIOCGMIIPHY:
2510 case SIOCGMIIREG:
2511 case SIOCSMIIREG:
2512 if (!priv->phydev)
2513 return -EINVAL;
2514 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2515 break;
2516 case SIOCSHWTSTAMP:
2517 ret = stmmac_hwtstamp_ioctl(dev, rq);
2518 break;
2519 default:
2520 break;
2521 }
2522
2523 return ret;
2524 }
2525
2526 #ifdef CONFIG_DEBUG_FS
2527 static struct dentry *stmmac_fs_dir;
2528
2529 static void sysfs_display_ring(void *head, int size, int extend_desc,
2530 struct seq_file *seq)
2531 {
2532 int i;
2533 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2534 struct dma_desc *p = (struct dma_desc *)head;
2535
2536 for (i = 0; i < size; i++) {
2537 u64 x;
2538 if (extend_desc) {
2539 x = *(u64 *) ep;
2540 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2541 i, (unsigned int)virt_to_phys(ep),
2542 (unsigned int)x, (unsigned int)(x >> 32),
2543 ep->basic.des2, ep->basic.des3);
2544 ep++;
2545 } else {
2546 x = *(u64 *) p;
2547 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2548 i, (unsigned int)virt_to_phys(ep),
2549 (unsigned int)x, (unsigned int)(x >> 32),
2550 p->des2, p->des3);
2551 p++;
2552 }
2553 seq_printf(seq, "\n");
2554 }
2555 }
2556
2557 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2558 {
2559 struct net_device *dev = seq->private;
2560 struct stmmac_priv *priv = netdev_priv(dev);
2561 unsigned int txsize = priv->dma_tx_size;
2562 unsigned int rxsize = priv->dma_rx_size;
2563
2564 if (priv->extend_desc) {
2565 seq_printf(seq, "Extended RX descriptor ring:\n");
2566 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2567 seq_printf(seq, "Extended TX descriptor ring:\n");
2568 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2569 } else {
2570 seq_printf(seq, "RX descriptor ring:\n");
2571 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2572 seq_printf(seq, "TX descriptor ring:\n");
2573 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2574 }
2575
2576 return 0;
2577 }
2578
2579 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2580 {
2581 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2582 }
2583
2584 static const struct file_operations stmmac_rings_status_fops = {
2585 .owner = THIS_MODULE,
2586 .open = stmmac_sysfs_ring_open,
2587 .read = seq_read,
2588 .llseek = seq_lseek,
2589 .release = single_release,
2590 };
2591
2592 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2593 {
2594 struct net_device *dev = seq->private;
2595 struct stmmac_priv *priv = netdev_priv(dev);
2596
2597 if (!priv->hw_cap_support) {
2598 seq_printf(seq, "DMA HW features not supported\n");
2599 return 0;
2600 }
2601
2602 seq_printf(seq, "==============================\n");
2603 seq_printf(seq, "\tDMA HW features\n");
2604 seq_printf(seq, "==============================\n");
2605
2606 seq_printf(seq, "\t10/100 Mbps %s\n",
2607 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2608 seq_printf(seq, "\t1000 Mbps %s\n",
2609 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2610 seq_printf(seq, "\tHalf duple %s\n",
2611 (priv->dma_cap.half_duplex) ? "Y" : "N");
2612 seq_printf(seq, "\tHash Filter: %s\n",
2613 (priv->dma_cap.hash_filter) ? "Y" : "N");
2614 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2615 (priv->dma_cap.multi_addr) ? "Y" : "N");
2616 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2617 (priv->dma_cap.pcs) ? "Y" : "N");
2618 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2619 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2620 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2621 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2622 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2623 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2624 seq_printf(seq, "\tRMON module: %s\n",
2625 (priv->dma_cap.rmon) ? "Y" : "N");
2626 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2627 (priv->dma_cap.time_stamp) ? "Y" : "N");
2628 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2629 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2630 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2631 (priv->dma_cap.eee) ? "Y" : "N");
2632 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2633 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2634 (priv->dma_cap.tx_coe) ? "Y" : "N");
2635 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2636 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2637 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2638 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2639 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2640 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2641 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2642 priv->dma_cap.number_rx_channel);
2643 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2644 priv->dma_cap.number_tx_channel);
2645 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2646 (priv->dma_cap.enh_desc) ? "Y" : "N");
2647
2648 return 0;
2649 }
2650
2651 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2652 {
2653 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2654 }
2655
2656 static const struct file_operations stmmac_dma_cap_fops = {
2657 .owner = THIS_MODULE,
2658 .open = stmmac_sysfs_dma_cap_open,
2659 .read = seq_read,
2660 .llseek = seq_lseek,
2661 .release = single_release,
2662 };
2663
2664 static int stmmac_init_fs(struct net_device *dev)
2665 {
2666 struct stmmac_priv *priv = netdev_priv(dev);
2667
2668 /* Create per netdev entries */
2669 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2670
2671 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2672 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2673 STMMAC_RESOURCE_NAME, dev->name);
2674
2675 return -ENOMEM;
2676 }
2677
2678 /* Entry to report DMA RX/TX rings */
2679 priv->dbgfs_rings_status =
2680 debugfs_create_file("descriptors_status", S_IRUGO,
2681 priv->dbgfs_dir, dev,
2682 &stmmac_rings_status_fops);
2683
2684 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2685 pr_info("ERROR creating stmmac ring debugfs file\n");
2686 debugfs_remove_recursive(priv->dbgfs_dir);
2687
2688 return -ENOMEM;
2689 }
2690
2691 /* Entry to report the DMA HW features */
2692 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2693 priv->dbgfs_dir,
2694 dev, &stmmac_dma_cap_fops);
2695
2696 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2697 pr_info("ERROR creating stmmac MMC debugfs file\n");
2698 debugfs_remove_recursive(priv->dbgfs_dir);
2699
2700 return -ENOMEM;
2701 }
2702
2703 return 0;
2704 }
2705
2706 static void stmmac_exit_fs(struct net_device *dev)
2707 {
2708 struct stmmac_priv *priv = netdev_priv(dev);
2709
2710 debugfs_remove_recursive(priv->dbgfs_dir);
2711 }
2712 #endif /* CONFIG_DEBUG_FS */
2713
2714 static const struct net_device_ops stmmac_netdev_ops = {
2715 .ndo_open = stmmac_open,
2716 .ndo_start_xmit = stmmac_xmit,
2717 .ndo_stop = stmmac_release,
2718 .ndo_change_mtu = stmmac_change_mtu,
2719 .ndo_fix_features = stmmac_fix_features,
2720 .ndo_set_features = stmmac_set_features,
2721 .ndo_set_rx_mode = stmmac_set_rx_mode,
2722 .ndo_tx_timeout = stmmac_tx_timeout,
2723 .ndo_do_ioctl = stmmac_ioctl,
2724 #ifdef CONFIG_NET_POLL_CONTROLLER
2725 .ndo_poll_controller = stmmac_poll_controller,
2726 #endif
2727 .ndo_set_mac_address = eth_mac_addr,
2728 };
2729
2730 /**
2731 * stmmac_hw_init - Init the MAC device
2732 * @priv: driver private structure
2733 * Description: this function is to configure the MAC device according to
2734 * some platform parameters or the HW capability register. It prepares the
2735 * driver to use either ring or chain modes and to setup either enhanced or
2736 * normal descriptors.
2737 */
2738 static int stmmac_hw_init(struct stmmac_priv *priv)
2739 {
2740 struct mac_device_info *mac;
2741
2742 /* Identify the MAC HW device */
2743 if (priv->plat->has_gmac) {
2744 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2745 mac = dwmac1000_setup(priv->ioaddr,
2746 priv->plat->multicast_filter_bins,
2747 priv->plat->unicast_filter_entries);
2748 } else {
2749 mac = dwmac100_setup(priv->ioaddr);
2750 }
2751 if (!mac)
2752 return -ENOMEM;
2753
2754 priv->hw = mac;
2755
2756 /* Get and dump the chip ID */
2757 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2758
2759 /* To use the chained or ring mode */
2760 if (chain_mode) {
2761 priv->hw->mode = &chain_mode_ops;
2762 pr_info(" Chain mode enabled\n");
2763 priv->mode = STMMAC_CHAIN_MODE;
2764 } else {
2765 priv->hw->mode = &ring_mode_ops;
2766 pr_info(" Ring mode enabled\n");
2767 priv->mode = STMMAC_RING_MODE;
2768 }
2769
2770 /* Get the HW capability (new GMAC newer than 3.50a) */
2771 priv->hw_cap_support = stmmac_get_hw_features(priv);
2772 if (priv->hw_cap_support) {
2773 pr_info(" DMA HW capability register supported");
2774
2775 /* We can override some gmac/dma configuration fields: e.g.
2776 * enh_desc, tx_coe (e.g. that are passed through the
2777 * platform) with the values from the HW capability
2778 * register (if supported).
2779 */
2780 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2781 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2782
2783 /* TXCOE doesn't work in thresh DMA mode */
2784 if (priv->plat->force_thresh_dma_mode)
2785 priv->plat->tx_coe = 0;
2786 else
2787 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2788
2789 if (priv->dma_cap.rx_coe_type2)
2790 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2791 else if (priv->dma_cap.rx_coe_type1)
2792 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2793
2794 } else
2795 pr_info(" No HW DMA feature register supported");
2796
2797 /* To use alternate (extended) or normal descriptor structures */
2798 stmmac_selec_desc_mode(priv);
2799
2800 if (priv->plat->rx_coe) {
2801 priv->hw->rx_csum = priv->plat->rx_coe;
2802 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2803 priv->plat->rx_coe);
2804 }
2805 if (priv->plat->tx_coe)
2806 pr_info(" TX Checksum insertion supported\n");
2807
2808 if (priv->plat->pmt) {
2809 pr_info(" Wake-Up On Lan supported\n");
2810 device_set_wakeup_capable(priv->device, 1);
2811 }
2812
2813 return 0;
2814 }
2815
2816 /**
2817 * stmmac_dvr_probe
2818 * @device: device pointer
2819 * @plat_dat: platform data pointer
2820 * @res: stmmac resource pointer
2821 * Description: this is the main probe function used to
2822 * call the alloc_etherdev, allocate the priv structure.
2823 * Return:
2824 * returns 0 on success, otherwise errno.
2825 */
2826 int stmmac_dvr_probe(struct device *device,
2827 struct plat_stmmacenet_data *plat_dat,
2828 struct stmmac_resources *res)
2829 {
2830 int ret = 0;
2831 struct net_device *ndev = NULL;
2832 struct stmmac_priv *priv;
2833
2834 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2835 if (!ndev)
2836 return -ENOMEM;
2837
2838 SET_NETDEV_DEV(ndev, device);
2839
2840 priv = netdev_priv(ndev);
2841 priv->device = device;
2842 priv->dev = ndev;
2843
2844 stmmac_set_ethtool_ops(ndev);
2845 priv->pause = pause;
2846 priv->plat = plat_dat;
2847 priv->ioaddr = res->addr;
2848 priv->dev->base_addr = (unsigned long)res->addr;
2849
2850 priv->dev->irq = res->irq;
2851 priv->wol_irq = res->wol_irq;
2852 priv->lpi_irq = res->lpi_irq;
2853
2854 if (res->mac)
2855 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2856
2857 dev_set_drvdata(device, priv->dev);
2858
2859 /* Verify driver arguments */
2860 stmmac_verify_args();
2861
2862 /* Override with kernel parameters if supplied XXX CRS XXX
2863 * this needs to have multiple instances
2864 */
2865 if ((phyaddr >= 0) && (phyaddr <= 31))
2866 priv->plat->phy_addr = phyaddr;
2867
2868 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2869 if (IS_ERR(priv->stmmac_clk)) {
2870 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2871 __func__);
2872 /* If failed to obtain stmmac_clk and specific clk_csr value
2873 * is NOT passed from the platform, probe fail.
2874 */
2875 if (!priv->plat->clk_csr) {
2876 ret = PTR_ERR(priv->stmmac_clk);
2877 goto error_clk_get;
2878 } else {
2879 priv->stmmac_clk = NULL;
2880 }
2881 }
2882 clk_prepare_enable(priv->stmmac_clk);
2883
2884 priv->pclk = devm_clk_get(priv->device, "pclk");
2885 if (IS_ERR(priv->pclk)) {
2886 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2887 ret = -EPROBE_DEFER;
2888 goto error_pclk_get;
2889 }
2890 priv->pclk = NULL;
2891 }
2892 clk_prepare_enable(priv->pclk);
2893
2894 priv->stmmac_rst = devm_reset_control_get(priv->device,
2895 STMMAC_RESOURCE_NAME);
2896 if (IS_ERR(priv->stmmac_rst)) {
2897 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2898 ret = -EPROBE_DEFER;
2899 goto error_hw_init;
2900 }
2901 dev_info(priv->device, "no reset control found\n");
2902 priv->stmmac_rst = NULL;
2903 }
2904 if (priv->stmmac_rst)
2905 reset_control_deassert(priv->stmmac_rst);
2906
2907 /* Init MAC and get the capabilities */
2908 ret = stmmac_hw_init(priv);
2909 if (ret)
2910 goto error_hw_init;
2911
2912 ndev->netdev_ops = &stmmac_netdev_ops;
2913
2914 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2915 NETIF_F_RXCSUM;
2916 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2917 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2918 #ifdef STMMAC_VLAN_TAG_USED
2919 /* Both mac100 and gmac support receive VLAN tag detection */
2920 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2921 #endif
2922 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2923
2924 if (flow_ctrl)
2925 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2926
2927 /* Rx Watchdog is available in the COREs newer than the 3.40.
2928 * In some case, for example on bugged HW this feature
2929 * has to be disable and this can be done by passing the
2930 * riwt_off field from the platform.
2931 */
2932 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2933 priv->use_riwt = 1;
2934 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2935 }
2936
2937 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2938
2939 spin_lock_init(&priv->lock);
2940 spin_lock_init(&priv->tx_lock);
2941
2942 ret = register_netdev(ndev);
2943 if (ret) {
2944 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2945 goto error_netdev_register;
2946 }
2947
2948 /* If a specific clk_csr value is passed from the platform
2949 * this means that the CSR Clock Range selection cannot be
2950 * changed at run-time and it is fixed. Viceversa the driver'll try to
2951 * set the MDC clock dynamically according to the csr actual
2952 * clock input.
2953 */
2954 if (!priv->plat->clk_csr)
2955 stmmac_clk_csr_set(priv);
2956 else
2957 priv->clk_csr = priv->plat->clk_csr;
2958
2959 stmmac_check_pcs_mode(priv);
2960
2961 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2962 priv->pcs != STMMAC_PCS_RTBI) {
2963 /* MDIO bus Registration */
2964 ret = stmmac_mdio_register(ndev);
2965 if (ret < 0) {
2966 pr_debug("%s: MDIO bus (id: %d) registration failed",
2967 __func__, priv->plat->bus_id);
2968 goto error_mdio_register;
2969 }
2970 }
2971
2972 return 0;
2973
2974 error_mdio_register:
2975 unregister_netdev(ndev);
2976 error_netdev_register:
2977 netif_napi_del(&priv->napi);
2978 error_hw_init:
2979 clk_disable_unprepare(priv->pclk);
2980 error_pclk_get:
2981 clk_disable_unprepare(priv->stmmac_clk);
2982 error_clk_get:
2983 free_netdev(ndev);
2984
2985 return ret;
2986 }
2987 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2988
2989 /**
2990 * stmmac_dvr_remove
2991 * @ndev: net device pointer
2992 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2993 * changes the link status, releases the DMA descriptor rings.
2994 */
2995 int stmmac_dvr_remove(struct net_device *ndev)
2996 {
2997 struct stmmac_priv *priv = netdev_priv(ndev);
2998
2999 pr_info("%s:\n\tremoving driver", __func__);
3000
3001 priv->hw->dma->stop_rx(priv->ioaddr);
3002 priv->hw->dma->stop_tx(priv->ioaddr);
3003
3004 stmmac_set_mac(priv->ioaddr, false);
3005 netif_carrier_off(ndev);
3006 unregister_netdev(ndev);
3007 if (priv->stmmac_rst)
3008 reset_control_assert(priv->stmmac_rst);
3009 clk_disable_unprepare(priv->pclk);
3010 clk_disable_unprepare(priv->stmmac_clk);
3011 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3012 priv->pcs != STMMAC_PCS_RTBI)
3013 stmmac_mdio_unregister(ndev);
3014 free_netdev(ndev);
3015
3016 return 0;
3017 }
3018 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3019
3020 /**
3021 * stmmac_suspend - suspend callback
3022 * @ndev: net device pointer
3023 * Description: this is the function to suspend the device and it is called
3024 * by the platform driver to stop the network queue, release the resources,
3025 * program the PMT register (for WoL), clean and release driver resources.
3026 */
3027 int stmmac_suspend(struct net_device *ndev)
3028 {
3029 struct stmmac_priv *priv = netdev_priv(ndev);
3030 unsigned long flags;
3031
3032 if (!ndev || !netif_running(ndev))
3033 return 0;
3034
3035 if (priv->phydev)
3036 phy_stop(priv->phydev);
3037
3038 spin_lock_irqsave(&priv->lock, flags);
3039
3040 netif_device_detach(ndev);
3041 netif_stop_queue(ndev);
3042
3043 napi_disable(&priv->napi);
3044
3045 /* Stop TX/RX DMA */
3046 priv->hw->dma->stop_tx(priv->ioaddr);
3047 priv->hw->dma->stop_rx(priv->ioaddr);
3048
3049 /* Enable Power down mode by programming the PMT regs */
3050 if (device_may_wakeup(priv->device)) {
3051 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3052 priv->irq_wake = 1;
3053 } else {
3054 stmmac_set_mac(priv->ioaddr, false);
3055 pinctrl_pm_select_sleep_state(priv->device);
3056 /* Disable clock in case of PWM is off */
3057 clk_disable(priv->pclk);
3058 clk_disable(priv->stmmac_clk);
3059 }
3060 spin_unlock_irqrestore(&priv->lock, flags);
3061
3062 priv->oldlink = 0;
3063 priv->speed = 0;
3064 priv->oldduplex = -1;
3065 return 0;
3066 }
3067 EXPORT_SYMBOL_GPL(stmmac_suspend);
3068
3069 /**
3070 * stmmac_resume - resume callback
3071 * @ndev: net device pointer
3072 * Description: when resume this function is invoked to setup the DMA and CORE
3073 * in a usable state.
3074 */
3075 int stmmac_resume(struct net_device *ndev)
3076 {
3077 struct stmmac_priv *priv = netdev_priv(ndev);
3078 unsigned long flags;
3079
3080 if (!netif_running(ndev))
3081 return 0;
3082
3083 spin_lock_irqsave(&priv->lock, flags);
3084
3085 /* Power Down bit, into the PM register, is cleared
3086 * automatically as soon as a magic packet or a Wake-up frame
3087 * is received. Anyway, it's better to manually clear
3088 * this bit because it can generate problems while resuming
3089 * from another devices (e.g. serial console).
3090 */
3091 if (device_may_wakeup(priv->device)) {
3092 priv->hw->mac->pmt(priv->hw, 0);
3093 priv->irq_wake = 0;
3094 } else {
3095 pinctrl_pm_select_default_state(priv->device);
3096 /* enable the clk prevously disabled */
3097 clk_enable(priv->stmmac_clk);
3098 clk_enable(priv->pclk);
3099 /* reset the phy so that it's ready */
3100 if (priv->mii)
3101 stmmac_mdio_reset(priv->mii);
3102 }
3103
3104 netif_device_attach(ndev);
3105
3106 priv->cur_rx = 0;
3107 priv->dirty_rx = 0;
3108 priv->dirty_tx = 0;
3109 priv->cur_tx = 0;
3110 stmmac_clear_descriptors(priv);
3111
3112 stmmac_hw_setup(ndev, false);
3113 stmmac_init_tx_coalesce(priv);
3114 stmmac_set_rx_mode(ndev);
3115
3116 napi_enable(&priv->napi);
3117
3118 netif_start_queue(ndev);
3119
3120 spin_unlock_irqrestore(&priv->lock, flags);
3121
3122 if (priv->phydev)
3123 phy_start(priv->phydev);
3124
3125 return 0;
3126 }
3127 EXPORT_SYMBOL_GPL(stmmac_resume);
3128
3129 #ifndef MODULE
3130 static int __init stmmac_cmdline_opt(char *str)
3131 {
3132 char *opt;
3133
3134 if (!str || !*str)
3135 return -EINVAL;
3136 while ((opt = strsep(&str, ",")) != NULL) {
3137 if (!strncmp(opt, "debug:", 6)) {
3138 if (kstrtoint(opt + 6, 0, &debug))
3139 goto err;
3140 } else if (!strncmp(opt, "phyaddr:", 8)) {
3141 if (kstrtoint(opt + 8, 0, &phyaddr))
3142 goto err;
3143 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3144 if (kstrtoint(opt + 11, 0, &dma_txsize))
3145 goto err;
3146 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3147 if (kstrtoint(opt + 11, 0, &dma_rxsize))
3148 goto err;
3149 } else if (!strncmp(opt, "buf_sz:", 7)) {
3150 if (kstrtoint(opt + 7, 0, &buf_sz))
3151 goto err;
3152 } else if (!strncmp(opt, "tc:", 3)) {
3153 if (kstrtoint(opt + 3, 0, &tc))
3154 goto err;
3155 } else if (!strncmp(opt, "watchdog:", 9)) {
3156 if (kstrtoint(opt + 9, 0, &watchdog))
3157 goto err;
3158 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3159 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3160 goto err;
3161 } else if (!strncmp(opt, "pause:", 6)) {
3162 if (kstrtoint(opt + 6, 0, &pause))
3163 goto err;
3164 } else if (!strncmp(opt, "eee_timer:", 10)) {
3165 if (kstrtoint(opt + 10, 0, &eee_timer))
3166 goto err;
3167 } else if (!strncmp(opt, "chain_mode:", 11)) {
3168 if (kstrtoint(opt + 11, 0, &chain_mode))
3169 goto err;
3170 }
3171 }
3172 return 0;
3173
3174 err:
3175 pr_err("%s: ERROR broken module parameter conversion", __func__);
3176 return -EINVAL;
3177 }
3178
3179 __setup("stmmaceth=", stmmac_cmdline_opt);
3180 #endif /* MODULE */
3181
3182 static int __init stmmac_init(void)
3183 {
3184 #ifdef CONFIG_DEBUG_FS
3185 /* Create debugfs main directory if it doesn't exist yet */
3186 if (!stmmac_fs_dir) {
3187 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3188
3189 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3190 pr_err("ERROR %s, debugfs create directory failed\n",
3191 STMMAC_RESOURCE_NAME);
3192
3193 return -ENOMEM;
3194 }
3195 }
3196 #endif
3197
3198 return 0;
3199 }
3200
3201 static void __exit stmmac_exit(void)
3202 {
3203 #ifdef CONFIG_DEBUG_FS
3204 debugfs_remove_recursive(stmmac_fs_dir);
3205 #endif
3206 }
3207
3208 module_init(stmmac_init)
3209 module_exit(stmmac_exit)
3210
3211 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3212 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3213 MODULE_LICENSE("GPL");