]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
Merge remote-tracking branches 'asoc/topic/txx9', 'asoc/topic/wm8750', 'asoc/topic...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55
56 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
57
58 /* Module parameters */
59 #define TX_TIMEO 5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94
95 #define DEFAULT_BUFSIZE 1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103
104 #define STMMAC_DEFAULT_LPI_TIMER 1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111 * but passing this value so user can force to use the chain instead of the ring
112 */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118
119 #ifdef CONFIG_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125
126 /**
127 * stmmac_verify_args - verify the driver parameters.
128 * Description: it checks the driver parameters and set a default in case of
129 * errors.
130 */
131 static void stmmac_verify_args(void)
132 {
133 if (unlikely(watchdog < 0))
134 watchdog = TX_TIMEO;
135 if (unlikely(dma_rxsize < 0))
136 dma_rxsize = DMA_RX_SIZE;
137 if (unlikely(dma_txsize < 0))
138 dma_txsize = DMA_TX_SIZE;
139 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 buf_sz = DEFAULT_BUFSIZE;
141 if (unlikely(flow_ctrl > 1))
142 flow_ctrl = FLOW_AUTO;
143 else if (likely(flow_ctrl < 0))
144 flow_ctrl = FLOW_OFF;
145 if (unlikely((pause < 0) || (pause > 0xffff)))
146 pause = PAUSE_TIME;
147 if (eee_timer < 0)
148 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150
151 /**
152 * stmmac_clk_csr_set - dynamically set the MDC clock
153 * @priv: driver private structure
154 * Description: this is to dynamically set the MDC clock according to the csr
155 * clock input.
156 * Note:
157 * If a specific clk_csr value is passed from the platform
158 * this means that the CSR Clock Range selection cannot be
159 * changed at run-time and it is fixed (as reported in the driver
160 * documentation). Viceversa the driver will try to set the MDC
161 * clock dynamically according to the actual clock input.
162 */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 u32 clk_rate;
166
167 clk_rate = clk_get_rate(priv->stmmac_clk);
168
169 /* Platform provided default clk_csr would be assumed valid
170 * for all other cases except for the below mentioned ones.
171 * For values higher than the IEEE 802.3 specified frequency
172 * we can not estimate the proper divider as it is not known
173 * the frequency of clk_csr_i. So we do not change the default
174 * divider.
175 */
176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 if (clk_rate < CSR_F_35M)
178 priv->clk_csr = STMMAC_CSR_20_35M;
179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 priv->clk_csr = STMMAC_CSR_35_60M;
181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 priv->clk_csr = STMMAC_CSR_60_100M;
183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 priv->clk_csr = STMMAC_CSR_100_150M;
185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 priv->clk_csr = STMMAC_CSR_150_250M;
187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 priv->clk_csr = STMMAC_CSR_250_300M;
189 }
190 }
191
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
195 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
196 }
197
198 /* minimum number of free TX descriptors required to wake up TX process */
199 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
200
201 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
202 {
203 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
204 }
205
206 /**
207 * stmmac_hw_fix_mac_speed - callback for speed selection
208 * @priv: driver private structure
209 * Description: on some platforms (e.g. ST), some HW system configuraton
210 * registers have to be set according to the link speed negotiated.
211 */
212 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
213 {
214 struct phy_device *phydev = priv->phydev;
215
216 if (likely(priv->plat->fix_mac_speed))
217 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
218 }
219
220 /**
221 * stmmac_enable_eee_mode - check and enter in LPI mode
222 * @priv: driver private structure
223 * Description: this function is to verify and enter in LPI mode in case of
224 * EEE.
225 */
226 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
227 {
228 /* Check and enter in LPI mode */
229 if ((priv->dirty_tx == priv->cur_tx) &&
230 (priv->tx_path_in_lpi_mode == false))
231 priv->hw->mac->set_eee_mode(priv->hw);
232 }
233
234 /**
235 * stmmac_disable_eee_mode - disable and exit from LPI mode
236 * @priv: driver private structure
237 * Description: this function is to exit and disable EEE in case of
238 * LPI state is true. This is called by the xmit.
239 */
240 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
241 {
242 priv->hw->mac->reset_eee_mode(priv->hw);
243 del_timer_sync(&priv->eee_ctrl_timer);
244 priv->tx_path_in_lpi_mode = false;
245 }
246
247 /**
248 * stmmac_eee_ctrl_timer - EEE TX SW timer.
249 * @arg : data hook
250 * Description:
251 * if there is no data transfer and if we are not in LPI state,
252 * then MAC Transmitter can be moved to LPI state.
253 */
254 static void stmmac_eee_ctrl_timer(unsigned long arg)
255 {
256 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
257
258 stmmac_enable_eee_mode(priv);
259 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
260 }
261
262 /**
263 * stmmac_eee_init - init EEE
264 * @priv: driver private structure
265 * Description:
266 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
267 * can also manage EEE, this function enable the LPI state and start related
268 * timer.
269 */
270 bool stmmac_eee_init(struct stmmac_priv *priv)
271 {
272 char *phy_bus_name = priv->plat->phy_bus_name;
273 unsigned long flags;
274 bool ret = false;
275
276 /* Using PCS we cannot dial with the phy registers at this stage
277 * so we do not support extra feature like EEE.
278 */
279 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
280 (priv->pcs == STMMAC_PCS_RTBI))
281 goto out;
282
283 /* Never init EEE in case of a switch is attached */
284 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
285 goto out;
286
287 /* MAC core supports the EEE feature. */
288 if (priv->dma_cap.eee) {
289 int tx_lpi_timer = priv->tx_lpi_timer;
290
291 /* Check if the PHY supports EEE */
292 if (phy_init_eee(priv->phydev, 1)) {
293 /* To manage at run-time if the EEE cannot be supported
294 * anymore (for example because the lp caps have been
295 * changed).
296 * In that case the driver disable own timers.
297 */
298 spin_lock_irqsave(&priv->lock, flags);
299 if (priv->eee_active) {
300 pr_debug("stmmac: disable EEE\n");
301 del_timer_sync(&priv->eee_ctrl_timer);
302 priv->hw->mac->set_eee_timer(priv->hw, 0,
303 tx_lpi_timer);
304 }
305 priv->eee_active = 0;
306 spin_unlock_irqrestore(&priv->lock, flags);
307 goto out;
308 }
309 /* Activate the EEE and start timers */
310 spin_lock_irqsave(&priv->lock, flags);
311 if (!priv->eee_active) {
312 priv->eee_active = 1;
313 init_timer(&priv->eee_ctrl_timer);
314 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
315 priv->eee_ctrl_timer.data = (unsigned long)priv;
316 priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
317 add_timer(&priv->eee_ctrl_timer);
318
319 priv->hw->mac->set_eee_timer(priv->hw,
320 STMMAC_DEFAULT_LIT_LS,
321 tx_lpi_timer);
322 }
323 /* Set HW EEE according to the speed */
324 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
325
326 ret = true;
327 spin_unlock_irqrestore(&priv->lock, flags);
328
329 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
330 }
331 out:
332 return ret;
333 }
334
335 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
336 * @priv: driver private structure
337 * @entry : descriptor index to be used.
338 * @skb : the socket buffer
339 * Description :
340 * This function will read timestamp from the descriptor & pass it to stack.
341 * and also perform some sanity checks.
342 */
343 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
344 unsigned int entry, struct sk_buff *skb)
345 {
346 struct skb_shared_hwtstamps shhwtstamp;
347 u64 ns;
348 void *desc = NULL;
349
350 if (!priv->hwts_tx_en)
351 return;
352
353 /* exit if skb doesn't support hw tstamp */
354 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
355 return;
356
357 if (priv->adv_ts)
358 desc = (priv->dma_etx + entry);
359 else
360 desc = (priv->dma_tx + entry);
361
362 /* check tx tstamp status */
363 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
364 return;
365
366 /* get the valid tstamp */
367 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
368
369 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
370 shhwtstamp.hwtstamp = ns_to_ktime(ns);
371 /* pass tstamp to stack */
372 skb_tstamp_tx(skb, &shhwtstamp);
373
374 return;
375 }
376
377 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
378 * @priv: driver private structure
379 * @entry : descriptor index to be used.
380 * @skb : the socket buffer
381 * Description :
382 * This function will read received packet's timestamp from the descriptor
383 * and pass it to stack. It also perform some sanity checks.
384 */
385 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
386 unsigned int entry, struct sk_buff *skb)
387 {
388 struct skb_shared_hwtstamps *shhwtstamp = NULL;
389 u64 ns;
390 void *desc = NULL;
391
392 if (!priv->hwts_rx_en)
393 return;
394
395 if (priv->adv_ts)
396 desc = (priv->dma_erx + entry);
397 else
398 desc = (priv->dma_rx + entry);
399
400 /* exit if rx tstamp is not valid */
401 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
402 return;
403
404 /* get valid tstamp */
405 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
406 shhwtstamp = skb_hwtstamps(skb);
407 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
408 shhwtstamp->hwtstamp = ns_to_ktime(ns);
409 }
410
411 /**
412 * stmmac_hwtstamp_ioctl - control hardware timestamping.
413 * @dev: device pointer.
414 * @ifr: An IOCTL specefic structure, that can contain a pointer to
415 * a proprietary structure used to pass information to the driver.
416 * Description:
417 * This function configures the MAC to enable/disable both outgoing(TX)
418 * and incoming(RX) packets time stamping based on user input.
419 * Return Value:
420 * 0 on success and an appropriate -ve integer on failure.
421 */
422 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
423 {
424 struct stmmac_priv *priv = netdev_priv(dev);
425 struct hwtstamp_config config;
426 struct timespec now;
427 u64 temp = 0;
428 u32 ptp_v2 = 0;
429 u32 tstamp_all = 0;
430 u32 ptp_over_ipv4_udp = 0;
431 u32 ptp_over_ipv6_udp = 0;
432 u32 ptp_over_ethernet = 0;
433 u32 snap_type_sel = 0;
434 u32 ts_master_en = 0;
435 u32 ts_event_en = 0;
436 u32 value = 0;
437
438 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
439 netdev_alert(priv->dev, "No support for HW time stamping\n");
440 priv->hwts_tx_en = 0;
441 priv->hwts_rx_en = 0;
442
443 return -EOPNOTSUPP;
444 }
445
446 if (copy_from_user(&config, ifr->ifr_data,
447 sizeof(struct hwtstamp_config)))
448 return -EFAULT;
449
450 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
451 __func__, config.flags, config.tx_type, config.rx_filter);
452
453 /* reserved for future extensions */
454 if (config.flags)
455 return -EINVAL;
456
457 if (config.tx_type != HWTSTAMP_TX_OFF &&
458 config.tx_type != HWTSTAMP_TX_ON)
459 return -ERANGE;
460
461 if (priv->adv_ts) {
462 switch (config.rx_filter) {
463 case HWTSTAMP_FILTER_NONE:
464 /* time stamp no incoming packet at all */
465 config.rx_filter = HWTSTAMP_FILTER_NONE;
466 break;
467
468 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
469 /* PTP v1, UDP, any kind of event packet */
470 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
471 /* take time stamp for all event messages */
472 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
473
474 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
475 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
476 break;
477
478 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
479 /* PTP v1, UDP, Sync packet */
480 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
481 /* take time stamp for SYNC messages only */
482 ts_event_en = PTP_TCR_TSEVNTENA;
483
484 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
485 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
486 break;
487
488 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
489 /* PTP v1, UDP, Delay_req packet */
490 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
491 /* take time stamp for Delay_Req messages only */
492 ts_master_en = PTP_TCR_TSMSTRENA;
493 ts_event_en = PTP_TCR_TSEVNTENA;
494
495 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
496 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
497 break;
498
499 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
500 /* PTP v2, UDP, any kind of event packet */
501 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
502 ptp_v2 = PTP_TCR_TSVER2ENA;
503 /* take time stamp for all event messages */
504 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
505
506 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
507 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
508 break;
509
510 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
511 /* PTP v2, UDP, Sync packet */
512 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
513 ptp_v2 = PTP_TCR_TSVER2ENA;
514 /* take time stamp for SYNC messages only */
515 ts_event_en = PTP_TCR_TSEVNTENA;
516
517 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519 break;
520
521 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
522 /* PTP v2, UDP, Delay_req packet */
523 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
524 ptp_v2 = PTP_TCR_TSVER2ENA;
525 /* take time stamp for Delay_Req messages only */
526 ts_master_en = PTP_TCR_TSMSTRENA;
527 ts_event_en = PTP_TCR_TSEVNTENA;
528
529 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
530 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
531 break;
532
533 case HWTSTAMP_FILTER_PTP_V2_EVENT:
534 /* PTP v2/802.AS1 any layer, any kind of event packet */
535 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
536 ptp_v2 = PTP_TCR_TSVER2ENA;
537 /* take time stamp for all event messages */
538 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
539
540 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542 ptp_over_ethernet = PTP_TCR_TSIPENA;
543 break;
544
545 case HWTSTAMP_FILTER_PTP_V2_SYNC:
546 /* PTP v2/802.AS1, any layer, Sync packet */
547 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
548 ptp_v2 = PTP_TCR_TSVER2ENA;
549 /* take time stamp for SYNC messages only */
550 ts_event_en = PTP_TCR_TSEVNTENA;
551
552 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
553 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
554 ptp_over_ethernet = PTP_TCR_TSIPENA;
555 break;
556
557 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
558 /* PTP v2/802.AS1, any layer, Delay_req packet */
559 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
560 ptp_v2 = PTP_TCR_TSVER2ENA;
561 /* take time stamp for Delay_Req messages only */
562 ts_master_en = PTP_TCR_TSMSTRENA;
563 ts_event_en = PTP_TCR_TSEVNTENA;
564
565 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 ptp_over_ethernet = PTP_TCR_TSIPENA;
568 break;
569
570 case HWTSTAMP_FILTER_ALL:
571 /* time stamp any incoming packet */
572 config.rx_filter = HWTSTAMP_FILTER_ALL;
573 tstamp_all = PTP_TCR_TSENALL;
574 break;
575
576 default:
577 return -ERANGE;
578 }
579 } else {
580 switch (config.rx_filter) {
581 case HWTSTAMP_FILTER_NONE:
582 config.rx_filter = HWTSTAMP_FILTER_NONE;
583 break;
584 default:
585 /* PTP v1, UDP, any kind of event packet */
586 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
587 break;
588 }
589 }
590 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
591 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
592
593 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
594 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
595 else {
596 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
597 tstamp_all | ptp_v2 | ptp_over_ethernet |
598 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
599 ts_master_en | snap_type_sel);
600
601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
602
603 /* program Sub Second Increment reg */
604 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
605
606 /* calculate default added value:
607 * formula is :
608 * addend = (2^32)/freq_div_ratio;
609 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
610 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
611 * NOTE: clk_ptp_ref_i should be >= 50MHz to
612 * achive 20ns accuracy.
613 *
614 * 2^x * y == (y << x), hence
615 * 2^32 * 50000000 ==> (50000000 << 32)
616 */
617 temp = (u64) (50000000ULL << 32);
618 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
619 priv->hw->ptp->config_addend(priv->ioaddr,
620 priv->default_addend);
621
622 /* initialize system time */
623 getnstimeofday(&now);
624 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
625 now.tv_nsec);
626 }
627
628 return copy_to_user(ifr->ifr_data, &config,
629 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631
632 /**
633 * stmmac_init_ptp - init PTP
634 * @priv: driver private structure
635 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636 * This is done by looking at the HW cap. register.
637 * This function also registers the ptp driver.
638 */
639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642 return -EOPNOTSUPP;
643
644 /* Fall-back to main clock in case of no PTP ref is passed */
645 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646 if (IS_ERR(priv->clk_ptp_ref)) {
647 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648 priv->clk_ptp_ref = NULL;
649 } else {
650 clk_prepare_enable(priv->clk_ptp_ref);
651 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652 }
653
654 priv->adv_ts = 0;
655 if (priv->dma_cap.atime_stamp && priv->extend_desc)
656 priv->adv_ts = 1;
657
658 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660
661 if (netif_msg_hw(priv) && priv->adv_ts)
662 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663
664 priv->hw->ptp = &stmmac_ptp;
665 priv->hwts_tx_en = 0;
666 priv->hwts_rx_en = 0;
667
668 return stmmac_ptp_register(priv);
669 }
670
671 static void stmmac_release_ptp(struct stmmac_priv *priv)
672 {
673 if (priv->clk_ptp_ref)
674 clk_disable_unprepare(priv->clk_ptp_ref);
675 stmmac_ptp_unregister(priv);
676 }
677
678 /**
679 * stmmac_adjust_link - adjusts the link parameters
680 * @dev: net device structure
681 * Description: this is the helper called by the physical abstraction layer
682 * drivers to communicate the phy link status. According the speed and duplex
683 * this driver can invoke registered glue-logic as well.
684 * It also invoke the eee initialization because it could happen when switch
685 * on different networks (that are eee capable).
686 */
687 static void stmmac_adjust_link(struct net_device *dev)
688 {
689 struct stmmac_priv *priv = netdev_priv(dev);
690 struct phy_device *phydev = priv->phydev;
691 unsigned long flags;
692 int new_state = 0;
693 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
694
695 if (phydev == NULL)
696 return;
697
698 spin_lock_irqsave(&priv->lock, flags);
699
700 if (phydev->link) {
701 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
702
703 /* Now we make sure that we can be in full duplex mode.
704 * If not, we operate in half-duplex mode. */
705 if (phydev->duplex != priv->oldduplex) {
706 new_state = 1;
707 if (!(phydev->duplex))
708 ctrl &= ~priv->hw->link.duplex;
709 else
710 ctrl |= priv->hw->link.duplex;
711 priv->oldduplex = phydev->duplex;
712 }
713 /* Flow Control operation */
714 if (phydev->pause)
715 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
716 fc, pause_time);
717
718 if (phydev->speed != priv->speed) {
719 new_state = 1;
720 switch (phydev->speed) {
721 case 1000:
722 if (likely(priv->plat->has_gmac))
723 ctrl &= ~priv->hw->link.port;
724 stmmac_hw_fix_mac_speed(priv);
725 break;
726 case 100:
727 case 10:
728 if (priv->plat->has_gmac) {
729 ctrl |= priv->hw->link.port;
730 if (phydev->speed == SPEED_100) {
731 ctrl |= priv->hw->link.speed;
732 } else {
733 ctrl &= ~(priv->hw->link.speed);
734 }
735 } else {
736 ctrl &= ~priv->hw->link.port;
737 }
738 stmmac_hw_fix_mac_speed(priv);
739 break;
740 default:
741 if (netif_msg_link(priv))
742 pr_warn("%s: Speed (%d) not 10/100\n",
743 dev->name, phydev->speed);
744 break;
745 }
746
747 priv->speed = phydev->speed;
748 }
749
750 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
751
752 if (!priv->oldlink) {
753 new_state = 1;
754 priv->oldlink = 1;
755 }
756 } else if (priv->oldlink) {
757 new_state = 1;
758 priv->oldlink = 0;
759 priv->speed = 0;
760 priv->oldduplex = -1;
761 }
762
763 if (new_state && netif_msg_link(priv))
764 phy_print_status(phydev);
765
766 spin_unlock_irqrestore(&priv->lock, flags);
767
768 /* At this stage, it could be needed to setup the EEE or adjust some
769 * MAC related HW registers.
770 */
771 priv->eee_enabled = stmmac_eee_init(priv);
772 }
773
774 /**
775 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
776 * @priv: driver private structure
777 * Description: this is to verify if the HW supports the PCS.
778 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
779 * configured for the TBI, RTBI, or SGMII PHY interface.
780 */
781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
782 {
783 int interface = priv->plat->interface;
784
785 if (priv->dma_cap.pcs) {
786 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
787 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
788 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
789 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
790 pr_debug("STMMAC: PCS RGMII support enable\n");
791 priv->pcs = STMMAC_PCS_RGMII;
792 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
793 pr_debug("STMMAC: PCS SGMII support enable\n");
794 priv->pcs = STMMAC_PCS_SGMII;
795 }
796 }
797 }
798
799 /**
800 * stmmac_init_phy - PHY initialization
801 * @dev: net device structure
802 * Description: it initializes the driver's PHY state, and attaches the PHY
803 * to the mac driver.
804 * Return value:
805 * 0 on success
806 */
807 static int stmmac_init_phy(struct net_device *dev)
808 {
809 struct stmmac_priv *priv = netdev_priv(dev);
810 struct phy_device *phydev;
811 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
812 char bus_id[MII_BUS_ID_SIZE];
813 int interface = priv->plat->interface;
814 int max_speed = priv->plat->max_speed;
815 priv->oldlink = 0;
816 priv->speed = 0;
817 priv->oldduplex = -1;
818
819 if (priv->plat->phy_bus_name)
820 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
821 priv->plat->phy_bus_name, priv->plat->bus_id);
822 else
823 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
824 priv->plat->bus_id);
825
826 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
827 priv->plat->phy_addr);
828 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
829
830 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
831
832 if (IS_ERR(phydev)) {
833 pr_err("%s: Could not attach to PHY\n", dev->name);
834 return PTR_ERR(phydev);
835 }
836
837 /* Stop Advertising 1000BASE Capability if interface is not GMII */
838 if ((interface == PHY_INTERFACE_MODE_MII) ||
839 (interface == PHY_INTERFACE_MODE_RMII) ||
840 (max_speed < 1000 && max_speed > 0))
841 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
842 SUPPORTED_1000baseT_Full);
843
844 /*
845 * Broken HW is sometimes missing the pull-up resistor on the
846 * MDIO line, which results in reads to non-existent devices returning
847 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
848 * device as well.
849 * Note: phydev->phy_id is the result of reading the UID PHY registers.
850 */
851 if (phydev->phy_id == 0) {
852 phy_disconnect(phydev);
853 return -ENODEV;
854 }
855 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
856 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
857
858 priv->phydev = phydev;
859
860 return 0;
861 }
862
863 /**
864 * stmmac_display_ring - display ring
865 * @head: pointer to the head of the ring passed.
866 * @size: size of the ring.
867 * @extend_desc: to verify if extended descriptors are used.
868 * Description: display the control/status and buffer descriptors.
869 */
870 static void stmmac_display_ring(void *head, int size, int extend_desc)
871 {
872 int i;
873 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
874 struct dma_desc *p = (struct dma_desc *)head;
875
876 for (i = 0; i < size; i++) {
877 u64 x;
878 if (extend_desc) {
879 x = *(u64 *) ep;
880 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
881 i, (unsigned int)virt_to_phys(ep),
882 (unsigned int)x, (unsigned int)(x >> 32),
883 ep->basic.des2, ep->basic.des3);
884 ep++;
885 } else {
886 x = *(u64 *) p;
887 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
888 i, (unsigned int)virt_to_phys(p),
889 (unsigned int)x, (unsigned int)(x >> 32),
890 p->des2, p->des3);
891 p++;
892 }
893 pr_info("\n");
894 }
895 }
896
897 static void stmmac_display_rings(struct stmmac_priv *priv)
898 {
899 unsigned int txsize = priv->dma_tx_size;
900 unsigned int rxsize = priv->dma_rx_size;
901
902 if (priv->extend_desc) {
903 pr_info("Extended RX descriptor ring:\n");
904 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
905 pr_info("Extended TX descriptor ring:\n");
906 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
907 } else {
908 pr_info("RX descriptor ring:\n");
909 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
910 pr_info("TX descriptor ring:\n");
911 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
912 }
913 }
914
915 static int stmmac_set_bfsize(int mtu, int bufsize)
916 {
917 int ret = bufsize;
918
919 if (mtu >= BUF_SIZE_4KiB)
920 ret = BUF_SIZE_8KiB;
921 else if (mtu >= BUF_SIZE_2KiB)
922 ret = BUF_SIZE_4KiB;
923 else if (mtu > DEFAULT_BUFSIZE)
924 ret = BUF_SIZE_2KiB;
925 else
926 ret = DEFAULT_BUFSIZE;
927
928 return ret;
929 }
930
931 /**
932 * stmmac_clear_descriptors - clear descriptors
933 * @priv: driver private structure
934 * Description: this function is called to clear the tx and rx descriptors
935 * in case of both basic and extended descriptors are used.
936 */
937 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
938 {
939 int i;
940 unsigned int txsize = priv->dma_tx_size;
941 unsigned int rxsize = priv->dma_rx_size;
942
943 /* Clear the Rx/Tx descriptors */
944 for (i = 0; i < rxsize; i++)
945 if (priv->extend_desc)
946 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
947 priv->use_riwt, priv->mode,
948 (i == rxsize - 1));
949 else
950 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
951 priv->use_riwt, priv->mode,
952 (i == rxsize - 1));
953 for (i = 0; i < txsize; i++)
954 if (priv->extend_desc)
955 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
956 priv->mode,
957 (i == txsize - 1));
958 else
959 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
960 priv->mode,
961 (i == txsize - 1));
962 }
963
964 /**
965 * stmmac_init_rx_buffers - init the RX descriptor buffer.
966 * @priv: driver private structure
967 * @p: descriptor pointer
968 * @i: descriptor index
969 * @flags: gfp flag.
970 * Description: this function is called to allocate a receive buffer, perform
971 * the DMA mapping and init the descriptor.
972 */
973 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
974 int i, gfp_t flags)
975 {
976 struct sk_buff *skb;
977
978 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
979 flags);
980 if (!skb) {
981 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
982 return -ENOMEM;
983 }
984 skb_reserve(skb, NET_IP_ALIGN);
985 priv->rx_skbuff[i] = skb;
986 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
987 priv->dma_buf_sz,
988 DMA_FROM_DEVICE);
989 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
990 pr_err("%s: DMA mapping error\n", __func__);
991 dev_kfree_skb_any(skb);
992 return -EINVAL;
993 }
994
995 p->des2 = priv->rx_skbuff_dma[i];
996
997 if ((priv->hw->mode->init_desc3) &&
998 (priv->dma_buf_sz == BUF_SIZE_16KiB))
999 priv->hw->mode->init_desc3(p);
1000
1001 return 0;
1002 }
1003
1004 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1005 {
1006 if (priv->rx_skbuff[i]) {
1007 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1008 priv->dma_buf_sz, DMA_FROM_DEVICE);
1009 dev_kfree_skb_any(priv->rx_skbuff[i]);
1010 }
1011 priv->rx_skbuff[i] = NULL;
1012 }
1013
1014 /**
1015 * init_dma_desc_rings - init the RX/TX descriptor rings
1016 * @dev: net device structure
1017 * @flags: gfp flag.
1018 * Description: this function initializes the DMA RX/TX descriptors
1019 * and allocates the socket buffers. It suppors the chained and ring
1020 * modes.
1021 */
1022 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1023 {
1024 int i;
1025 struct stmmac_priv *priv = netdev_priv(dev);
1026 unsigned int txsize = priv->dma_tx_size;
1027 unsigned int rxsize = priv->dma_rx_size;
1028 unsigned int bfsize = 0;
1029 int ret = -ENOMEM;
1030
1031 if (priv->hw->mode->set_16kib_bfsize)
1032 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1033
1034 if (bfsize < BUF_SIZE_16KiB)
1035 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1036
1037 priv->dma_buf_sz = bfsize;
1038
1039 if (netif_msg_probe(priv))
1040 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1041 txsize, rxsize, bfsize);
1042
1043 if (netif_msg_probe(priv)) {
1044 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1045 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1046
1047 /* RX INITIALIZATION */
1048 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1049 }
1050 for (i = 0; i < rxsize; i++) {
1051 struct dma_desc *p;
1052 if (priv->extend_desc)
1053 p = &((priv->dma_erx + i)->basic);
1054 else
1055 p = priv->dma_rx + i;
1056
1057 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1058 if (ret)
1059 goto err_init_rx_buffers;
1060
1061 if (netif_msg_probe(priv))
1062 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1063 priv->rx_skbuff[i]->data,
1064 (unsigned int)priv->rx_skbuff_dma[i]);
1065 }
1066 priv->cur_rx = 0;
1067 priv->dirty_rx = (unsigned int)(i - rxsize);
1068 buf_sz = bfsize;
1069
1070 /* Setup the chained descriptor addresses */
1071 if (priv->mode == STMMAC_CHAIN_MODE) {
1072 if (priv->extend_desc) {
1073 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1074 rxsize, 1);
1075 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1076 txsize, 1);
1077 } else {
1078 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1079 rxsize, 0);
1080 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1081 txsize, 0);
1082 }
1083 }
1084
1085 /* TX INITIALIZATION */
1086 for (i = 0; i < txsize; i++) {
1087 struct dma_desc *p;
1088 if (priv->extend_desc)
1089 p = &((priv->dma_etx + i)->basic);
1090 else
1091 p = priv->dma_tx + i;
1092 p->des2 = 0;
1093 priv->tx_skbuff_dma[i].buf = 0;
1094 priv->tx_skbuff_dma[i].map_as_page = false;
1095 priv->tx_skbuff[i] = NULL;
1096 }
1097
1098 priv->dirty_tx = 0;
1099 priv->cur_tx = 0;
1100
1101 stmmac_clear_descriptors(priv);
1102
1103 if (netif_msg_hw(priv))
1104 stmmac_display_rings(priv);
1105
1106 return 0;
1107 err_init_rx_buffers:
1108 while (--i >= 0)
1109 stmmac_free_rx_buffers(priv, i);
1110 return ret;
1111 }
1112
1113 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1114 {
1115 int i;
1116
1117 for (i = 0; i < priv->dma_rx_size; i++)
1118 stmmac_free_rx_buffers(priv, i);
1119 }
1120
1121 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1122 {
1123 int i;
1124
1125 for (i = 0; i < priv->dma_tx_size; i++) {
1126 struct dma_desc *p;
1127
1128 if (priv->extend_desc)
1129 p = &((priv->dma_etx + i)->basic);
1130 else
1131 p = priv->dma_tx + i;
1132
1133 if (priv->tx_skbuff_dma[i].buf) {
1134 if (priv->tx_skbuff_dma[i].map_as_page)
1135 dma_unmap_page(priv->device,
1136 priv->tx_skbuff_dma[i].buf,
1137 priv->hw->desc->get_tx_len(p),
1138 DMA_TO_DEVICE);
1139 else
1140 dma_unmap_single(priv->device,
1141 priv->tx_skbuff_dma[i].buf,
1142 priv->hw->desc->get_tx_len(p),
1143 DMA_TO_DEVICE);
1144 }
1145
1146 if (priv->tx_skbuff[i] != NULL) {
1147 dev_kfree_skb_any(priv->tx_skbuff[i]);
1148 priv->tx_skbuff[i] = NULL;
1149 priv->tx_skbuff_dma[i].buf = 0;
1150 priv->tx_skbuff_dma[i].map_as_page = false;
1151 }
1152 }
1153 }
1154
1155 /**
1156 * alloc_dma_desc_resources - alloc TX/RX resources.
1157 * @priv: private structure
1158 * Description: according to which descriptor can be used (extend or basic)
1159 * this function allocates the resources for TX and RX paths. In case of
1160 * reception, for example, it pre-allocated the RX socket buffer in order to
1161 * allow zero-copy mechanism.
1162 */
1163 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1164 {
1165 unsigned int txsize = priv->dma_tx_size;
1166 unsigned int rxsize = priv->dma_rx_size;
1167 int ret = -ENOMEM;
1168
1169 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1170 GFP_KERNEL);
1171 if (!priv->rx_skbuff_dma)
1172 return -ENOMEM;
1173
1174 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1175 GFP_KERNEL);
1176 if (!priv->rx_skbuff)
1177 goto err_rx_skbuff;
1178
1179 priv->tx_skbuff_dma = kmalloc_array(txsize,
1180 sizeof(*priv->tx_skbuff_dma),
1181 GFP_KERNEL);
1182 if (!priv->tx_skbuff_dma)
1183 goto err_tx_skbuff_dma;
1184
1185 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1186 GFP_KERNEL);
1187 if (!priv->tx_skbuff)
1188 goto err_tx_skbuff;
1189
1190 if (priv->extend_desc) {
1191 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1192 sizeof(struct
1193 dma_extended_desc),
1194 &priv->dma_rx_phy,
1195 GFP_KERNEL);
1196 if (!priv->dma_erx)
1197 goto err_dma;
1198
1199 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1200 sizeof(struct
1201 dma_extended_desc),
1202 &priv->dma_tx_phy,
1203 GFP_KERNEL);
1204 if (!priv->dma_etx) {
1205 dma_free_coherent(priv->device, priv->dma_rx_size *
1206 sizeof(struct dma_extended_desc),
1207 priv->dma_erx, priv->dma_rx_phy);
1208 goto err_dma;
1209 }
1210 } else {
1211 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1212 sizeof(struct dma_desc),
1213 &priv->dma_rx_phy,
1214 GFP_KERNEL);
1215 if (!priv->dma_rx)
1216 goto err_dma;
1217
1218 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1219 sizeof(struct dma_desc),
1220 &priv->dma_tx_phy,
1221 GFP_KERNEL);
1222 if (!priv->dma_tx) {
1223 dma_free_coherent(priv->device, priv->dma_rx_size *
1224 sizeof(struct dma_desc),
1225 priv->dma_rx, priv->dma_rx_phy);
1226 goto err_dma;
1227 }
1228 }
1229
1230 return 0;
1231
1232 err_dma:
1233 kfree(priv->tx_skbuff);
1234 err_tx_skbuff:
1235 kfree(priv->tx_skbuff_dma);
1236 err_tx_skbuff_dma:
1237 kfree(priv->rx_skbuff);
1238 err_rx_skbuff:
1239 kfree(priv->rx_skbuff_dma);
1240 return ret;
1241 }
1242
1243 static void free_dma_desc_resources(struct stmmac_priv *priv)
1244 {
1245 /* Release the DMA TX/RX socket buffers */
1246 dma_free_rx_skbufs(priv);
1247 dma_free_tx_skbufs(priv);
1248
1249 /* Free DMA regions of consistent memory previously allocated */
1250 if (!priv->extend_desc) {
1251 dma_free_coherent(priv->device,
1252 priv->dma_tx_size * sizeof(struct dma_desc),
1253 priv->dma_tx, priv->dma_tx_phy);
1254 dma_free_coherent(priv->device,
1255 priv->dma_rx_size * sizeof(struct dma_desc),
1256 priv->dma_rx, priv->dma_rx_phy);
1257 } else {
1258 dma_free_coherent(priv->device, priv->dma_tx_size *
1259 sizeof(struct dma_extended_desc),
1260 priv->dma_etx, priv->dma_tx_phy);
1261 dma_free_coherent(priv->device, priv->dma_rx_size *
1262 sizeof(struct dma_extended_desc),
1263 priv->dma_erx, priv->dma_rx_phy);
1264 }
1265 kfree(priv->rx_skbuff_dma);
1266 kfree(priv->rx_skbuff);
1267 kfree(priv->tx_skbuff_dma);
1268 kfree(priv->tx_skbuff);
1269 }
1270
1271 /**
1272 * stmmac_dma_operation_mode - HW DMA operation mode
1273 * @priv: driver private structure
1274 * Description: it is used for configuring the DMA operation mode register in
1275 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1276 */
1277 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1278 {
1279 if (priv->plat->force_thresh_dma_mode)
1280 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1281 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1282 /*
1283 * In case of GMAC, SF mode can be enabled
1284 * to perform the TX COE in HW. This depends on:
1285 * 1) TX COE if actually supported
1286 * 2) There is no bugged Jumbo frame support
1287 * that needs to not insert csum in the TDES.
1288 */
1289 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1290 tc = SF_DMA_MODE;
1291 } else
1292 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1293 }
1294
1295 /**
1296 * stmmac_tx_clean - to manage the transmission completion
1297 * @priv: driver private structure
1298 * Description: it reclaims the transmit resources after transmission completes.
1299 */
1300 static void stmmac_tx_clean(struct stmmac_priv *priv)
1301 {
1302 unsigned int txsize = priv->dma_tx_size;
1303
1304 spin_lock(&priv->tx_lock);
1305
1306 priv->xstats.tx_clean++;
1307
1308 while (priv->dirty_tx != priv->cur_tx) {
1309 int last;
1310 unsigned int entry = priv->dirty_tx % txsize;
1311 struct sk_buff *skb = priv->tx_skbuff[entry];
1312 struct dma_desc *p;
1313
1314 if (priv->extend_desc)
1315 p = (struct dma_desc *)(priv->dma_etx + entry);
1316 else
1317 p = priv->dma_tx + entry;
1318
1319 /* Check if the descriptor is owned by the DMA. */
1320 if (priv->hw->desc->get_tx_owner(p))
1321 break;
1322
1323 /* Verify tx error by looking at the last segment. */
1324 last = priv->hw->desc->get_tx_ls(p);
1325 if (likely(last)) {
1326 int tx_error =
1327 priv->hw->desc->tx_status(&priv->dev->stats,
1328 &priv->xstats, p,
1329 priv->ioaddr);
1330 if (likely(tx_error == 0)) {
1331 priv->dev->stats.tx_packets++;
1332 priv->xstats.tx_pkt_n++;
1333 } else
1334 priv->dev->stats.tx_errors++;
1335
1336 stmmac_get_tx_hwtstamp(priv, entry, skb);
1337 }
1338 if (netif_msg_tx_done(priv))
1339 pr_debug("%s: curr %d, dirty %d\n", __func__,
1340 priv->cur_tx, priv->dirty_tx);
1341
1342 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1343 if (priv->tx_skbuff_dma[entry].map_as_page)
1344 dma_unmap_page(priv->device,
1345 priv->tx_skbuff_dma[entry].buf,
1346 priv->hw->desc->get_tx_len(p),
1347 DMA_TO_DEVICE);
1348 else
1349 dma_unmap_single(priv->device,
1350 priv->tx_skbuff_dma[entry].buf,
1351 priv->hw->desc->get_tx_len(p),
1352 DMA_TO_DEVICE);
1353 priv->tx_skbuff_dma[entry].buf = 0;
1354 priv->tx_skbuff_dma[entry].map_as_page = false;
1355 }
1356 priv->hw->mode->clean_desc3(priv, p);
1357
1358 if (likely(skb != NULL)) {
1359 dev_consume_skb_any(skb);
1360 priv->tx_skbuff[entry] = NULL;
1361 }
1362
1363 priv->hw->desc->release_tx_desc(p, priv->mode);
1364
1365 priv->dirty_tx++;
1366 }
1367 if (unlikely(netif_queue_stopped(priv->dev) &&
1368 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1369 netif_tx_lock(priv->dev);
1370 if (netif_queue_stopped(priv->dev) &&
1371 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1372 if (netif_msg_tx_done(priv))
1373 pr_debug("%s: restart transmit\n", __func__);
1374 netif_wake_queue(priv->dev);
1375 }
1376 netif_tx_unlock(priv->dev);
1377 }
1378
1379 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1380 stmmac_enable_eee_mode(priv);
1381 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1382 }
1383 spin_unlock(&priv->tx_lock);
1384 }
1385
1386 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1387 {
1388 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1389 }
1390
1391 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1392 {
1393 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1394 }
1395
1396 /**
1397 * stmmac_tx_err - to manage the tx error
1398 * @priv: driver private structure
1399 * Description: it cleans the descriptors and restarts the transmission
1400 * in case of transmission errors.
1401 */
1402 static void stmmac_tx_err(struct stmmac_priv *priv)
1403 {
1404 int i;
1405 int txsize = priv->dma_tx_size;
1406 netif_stop_queue(priv->dev);
1407
1408 priv->hw->dma->stop_tx(priv->ioaddr);
1409 dma_free_tx_skbufs(priv);
1410 for (i = 0; i < txsize; i++)
1411 if (priv->extend_desc)
1412 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1413 priv->mode,
1414 (i == txsize - 1));
1415 else
1416 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1417 priv->mode,
1418 (i == txsize - 1));
1419 priv->dirty_tx = 0;
1420 priv->cur_tx = 0;
1421 priv->hw->dma->start_tx(priv->ioaddr);
1422
1423 priv->dev->stats.tx_errors++;
1424 netif_wake_queue(priv->dev);
1425 }
1426
1427 /**
1428 * stmmac_dma_interrupt - DMA ISR
1429 * @priv: driver private structure
1430 * Description: this is the DMA ISR. It is called by the main ISR.
1431 * It calls the dwmac dma routine and schedule poll method in case of some
1432 * work can be done.
1433 */
1434 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1435 {
1436 int status;
1437
1438 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1439 if (likely((status & handle_rx)) || (status & handle_tx)) {
1440 if (likely(napi_schedule_prep(&priv->napi))) {
1441 stmmac_disable_dma_irq(priv);
1442 __napi_schedule(&priv->napi);
1443 }
1444 }
1445 if (unlikely(status & tx_hard_error_bump_tc)) {
1446 /* Try to bump up the dma threshold on this failure */
1447 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1448 tc += 64;
1449 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1450 priv->xstats.threshold = tc;
1451 }
1452 } else if (unlikely(status == tx_hard_error))
1453 stmmac_tx_err(priv);
1454 }
1455
1456 /**
1457 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1458 * @priv: driver private structure
1459 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1460 */
1461 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1462 {
1463 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1464 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1465
1466 dwmac_mmc_intr_all_mask(priv->ioaddr);
1467
1468 if (priv->dma_cap.rmon) {
1469 dwmac_mmc_ctrl(priv->ioaddr, mode);
1470 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1471 } else
1472 pr_info(" No MAC Management Counters available\n");
1473 }
1474
1475 /**
1476 * stmmac_get_synopsys_id - return the SYINID.
1477 * @priv: driver private structure
1478 * Description: this simple function is to decode and return the SYINID
1479 * starting from the HW core register.
1480 */
1481 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1482 {
1483 u32 hwid = priv->hw->synopsys_uid;
1484
1485 /* Check Synopsys Id (not available on old chips) */
1486 if (likely(hwid)) {
1487 u32 uid = ((hwid & 0x0000ff00) >> 8);
1488 u32 synid = (hwid & 0x000000ff);
1489
1490 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1491 uid, synid);
1492
1493 return synid;
1494 }
1495 return 0;
1496 }
1497
1498 /**
1499 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1500 * @priv: driver private structure
1501 * Description: select the Enhanced/Alternate or Normal descriptors.
1502 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1503 * supported by the HW capability register.
1504 */
1505 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1506 {
1507 if (priv->plat->enh_desc) {
1508 pr_info(" Enhanced/Alternate descriptors\n");
1509
1510 /* GMAC older than 3.50 has no extended descriptors */
1511 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1512 pr_info("\tEnabled extended descriptors\n");
1513 priv->extend_desc = 1;
1514 } else
1515 pr_warn("Extended descriptors not supported\n");
1516
1517 priv->hw->desc = &enh_desc_ops;
1518 } else {
1519 pr_info(" Normal descriptors\n");
1520 priv->hw->desc = &ndesc_ops;
1521 }
1522 }
1523
1524 /**
1525 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1526 * @priv: driver private structure
1527 * Description:
1528 * new GMAC chip generations have a new register to indicate the
1529 * presence of the optional feature/functions.
1530 * This can be also used to override the value passed through the
1531 * platform and necessary for old MAC10/100 and GMAC chips.
1532 */
1533 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1534 {
1535 u32 hw_cap = 0;
1536
1537 if (priv->hw->dma->get_hw_feature) {
1538 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1539
1540 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1541 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1542 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1543 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1544 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1545 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1546 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1547 priv->dma_cap.pmt_remote_wake_up =
1548 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1549 priv->dma_cap.pmt_magic_frame =
1550 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1551 /* MMC */
1552 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1553 /* IEEE 1588-2002 */
1554 priv->dma_cap.time_stamp =
1555 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1556 /* IEEE 1588-2008 */
1557 priv->dma_cap.atime_stamp =
1558 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1559 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1560 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1561 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1562 /* TX and RX csum */
1563 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1564 priv->dma_cap.rx_coe_type1 =
1565 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1566 priv->dma_cap.rx_coe_type2 =
1567 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1568 priv->dma_cap.rxfifo_over_2048 =
1569 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1570 /* TX and RX number of channels */
1571 priv->dma_cap.number_rx_channel =
1572 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1573 priv->dma_cap.number_tx_channel =
1574 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1575 /* Alternate (enhanced) DESC mode */
1576 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1577 }
1578
1579 return hw_cap;
1580 }
1581
1582 /**
1583 * stmmac_check_ether_addr - check if the MAC addr is valid
1584 * @priv: driver private structure
1585 * Description:
1586 * it is to verify if the MAC address is valid, in case of failures it
1587 * generates a random MAC address
1588 */
1589 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1590 {
1591 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1592 priv->hw->mac->get_umac_addr(priv->hw,
1593 priv->dev->dev_addr, 0);
1594 if (!is_valid_ether_addr(priv->dev->dev_addr))
1595 eth_hw_addr_random(priv->dev);
1596 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1597 priv->dev->dev_addr);
1598 }
1599 }
1600
1601 /**
1602 * stmmac_init_dma_engine - DMA init.
1603 * @priv: driver private structure
1604 * Description:
1605 * It inits the DMA invoking the specific MAC/GMAC callback.
1606 * Some DMA parameters can be passed from the platform;
1607 * in case of these are not passed a default is kept for the MAC or GMAC.
1608 */
1609 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1610 {
1611 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1612 int mixed_burst = 0;
1613 int atds = 0;
1614
1615 if (priv->plat->dma_cfg) {
1616 pbl = priv->plat->dma_cfg->pbl;
1617 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1618 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1619 burst_len = priv->plat->dma_cfg->burst_len;
1620 }
1621
1622 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1623 atds = 1;
1624
1625 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1626 burst_len, priv->dma_tx_phy,
1627 priv->dma_rx_phy, atds);
1628 }
1629
1630 /**
1631 * stmmac_tx_timer - mitigation sw timer for tx.
1632 * @data: data pointer
1633 * Description:
1634 * This is the timer handler to directly invoke the stmmac_tx_clean.
1635 */
1636 static void stmmac_tx_timer(unsigned long data)
1637 {
1638 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1639
1640 stmmac_tx_clean(priv);
1641 }
1642
1643 /**
1644 * stmmac_init_tx_coalesce - init tx mitigation options.
1645 * @priv: driver private structure
1646 * Description:
1647 * This inits the transmit coalesce parameters: i.e. timer rate,
1648 * timer handler and default threshold used for enabling the
1649 * interrupt on completion bit.
1650 */
1651 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1652 {
1653 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1654 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1655 init_timer(&priv->txtimer);
1656 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1657 priv->txtimer.data = (unsigned long)priv;
1658 priv->txtimer.function = stmmac_tx_timer;
1659 add_timer(&priv->txtimer);
1660 }
1661
1662 /**
1663 * stmmac_hw_setup - setup mac in a usable state.
1664 * @dev : pointer to the device structure.
1665 * Description:
1666 * this is the main function to setup the HW in a usable state because the
1667 * dma engine is reset, the core registers are configured (e.g. AXI,
1668 * Checksum features, timers). The DMA is ready to start receiving and
1669 * transmitting.
1670 * Return value:
1671 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1672 * file on failure.
1673 */
1674 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1675 {
1676 struct stmmac_priv *priv = netdev_priv(dev);
1677 int ret;
1678
1679 /* DMA initialization and SW reset */
1680 ret = stmmac_init_dma_engine(priv);
1681 if (ret < 0) {
1682 pr_err("%s: DMA engine initialization failed\n", __func__);
1683 return ret;
1684 }
1685
1686 /* Copy the MAC addr into the HW */
1687 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1688
1689 /* If required, perform hw setup of the bus. */
1690 if (priv->plat->bus_setup)
1691 priv->plat->bus_setup(priv->ioaddr);
1692
1693 /* Initialize the MAC Core */
1694 priv->hw->mac->core_init(priv->hw, dev->mtu);
1695
1696 ret = priv->hw->mac->rx_ipc(priv->hw);
1697 if (!ret) {
1698 pr_warn(" RX IPC Checksum Offload disabled\n");
1699 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1700 priv->hw->rx_csum = 0;
1701 }
1702
1703 /* Enable the MAC Rx/Tx */
1704 stmmac_set_mac(priv->ioaddr, true);
1705
1706 /* Set the HW DMA mode and the COE */
1707 stmmac_dma_operation_mode(priv);
1708
1709 stmmac_mmc_setup(priv);
1710
1711 if (init_ptp) {
1712 ret = stmmac_init_ptp(priv);
1713 if (ret && ret != -EOPNOTSUPP)
1714 pr_warn("%s: failed PTP initialisation\n", __func__);
1715 }
1716
1717 #ifdef CONFIG_DEBUG_FS
1718 ret = stmmac_init_fs(dev);
1719 if (ret < 0)
1720 pr_warn("%s: failed debugFS registration\n", __func__);
1721 #endif
1722 /* Start the ball rolling... */
1723 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1724 priv->hw->dma->start_tx(priv->ioaddr);
1725 priv->hw->dma->start_rx(priv->ioaddr);
1726
1727 /* Dump DMA/MAC registers */
1728 if (netif_msg_hw(priv)) {
1729 priv->hw->mac->dump_regs(priv->hw);
1730 priv->hw->dma->dump_regs(priv->ioaddr);
1731 }
1732 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1733
1734 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1735 priv->rx_riwt = MAX_DMA_RIWT;
1736 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1737 }
1738
1739 if (priv->pcs && priv->hw->mac->ctrl_ane)
1740 priv->hw->mac->ctrl_ane(priv->hw, 0);
1741
1742 return 0;
1743 }
1744
1745 /**
1746 * stmmac_open - open entry point of the driver
1747 * @dev : pointer to the device structure.
1748 * Description:
1749 * This function is the open entry point of the driver.
1750 * Return value:
1751 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1752 * file on failure.
1753 */
1754 static int stmmac_open(struct net_device *dev)
1755 {
1756 struct stmmac_priv *priv = netdev_priv(dev);
1757 int ret;
1758
1759 stmmac_check_ether_addr(priv);
1760
1761 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1762 priv->pcs != STMMAC_PCS_RTBI) {
1763 ret = stmmac_init_phy(dev);
1764 if (ret) {
1765 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1766 __func__, ret);
1767 return ret;
1768 }
1769 }
1770
1771 /* Extra statistics */
1772 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1773 priv->xstats.threshold = tc;
1774
1775 /* Create and initialize the TX/RX descriptors chains. */
1776 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1777 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1778 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1779
1780 ret = alloc_dma_desc_resources(priv);
1781 if (ret < 0) {
1782 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1783 goto dma_desc_error;
1784 }
1785
1786 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1787 if (ret < 0) {
1788 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1789 goto init_error;
1790 }
1791
1792 ret = stmmac_hw_setup(dev, true);
1793 if (ret < 0) {
1794 pr_err("%s: Hw setup failed\n", __func__);
1795 goto init_error;
1796 }
1797
1798 stmmac_init_tx_coalesce(priv);
1799
1800 if (priv->phydev)
1801 phy_start(priv->phydev);
1802
1803 /* Request the IRQ lines */
1804 ret = request_irq(dev->irq, stmmac_interrupt,
1805 IRQF_SHARED, dev->name, dev);
1806 if (unlikely(ret < 0)) {
1807 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1808 __func__, dev->irq, ret);
1809 goto init_error;
1810 }
1811
1812 /* Request the Wake IRQ in case of another line is used for WoL */
1813 if (priv->wol_irq != dev->irq) {
1814 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1815 IRQF_SHARED, dev->name, dev);
1816 if (unlikely(ret < 0)) {
1817 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1818 __func__, priv->wol_irq, ret);
1819 goto wolirq_error;
1820 }
1821 }
1822
1823 /* Request the IRQ lines */
1824 if (priv->lpi_irq > 0) {
1825 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1826 dev->name, dev);
1827 if (unlikely(ret < 0)) {
1828 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1829 __func__, priv->lpi_irq, ret);
1830 goto lpiirq_error;
1831 }
1832 }
1833
1834 napi_enable(&priv->napi);
1835 netif_start_queue(dev);
1836
1837 return 0;
1838
1839 lpiirq_error:
1840 if (priv->wol_irq != dev->irq)
1841 free_irq(priv->wol_irq, dev);
1842 wolirq_error:
1843 free_irq(dev->irq, dev);
1844
1845 init_error:
1846 free_dma_desc_resources(priv);
1847 dma_desc_error:
1848 if (priv->phydev)
1849 phy_disconnect(priv->phydev);
1850
1851 return ret;
1852 }
1853
1854 /**
1855 * stmmac_release - close entry point of the driver
1856 * @dev : device pointer.
1857 * Description:
1858 * This is the stop entry point of the driver.
1859 */
1860 static int stmmac_release(struct net_device *dev)
1861 {
1862 struct stmmac_priv *priv = netdev_priv(dev);
1863
1864 if (priv->eee_enabled)
1865 del_timer_sync(&priv->eee_ctrl_timer);
1866
1867 /* Stop and disconnect the PHY */
1868 if (priv->phydev) {
1869 phy_stop(priv->phydev);
1870 phy_disconnect(priv->phydev);
1871 priv->phydev = NULL;
1872 }
1873
1874 netif_stop_queue(dev);
1875
1876 napi_disable(&priv->napi);
1877
1878 del_timer_sync(&priv->txtimer);
1879
1880 /* Free the IRQ lines */
1881 free_irq(dev->irq, dev);
1882 if (priv->wol_irq != dev->irq)
1883 free_irq(priv->wol_irq, dev);
1884 if (priv->lpi_irq > 0)
1885 free_irq(priv->lpi_irq, dev);
1886
1887 /* Stop TX/RX DMA and clear the descriptors */
1888 priv->hw->dma->stop_tx(priv->ioaddr);
1889 priv->hw->dma->stop_rx(priv->ioaddr);
1890
1891 /* Release and free the Rx/Tx resources */
1892 free_dma_desc_resources(priv);
1893
1894 /* Disable the MAC Rx/Tx */
1895 stmmac_set_mac(priv->ioaddr, false);
1896
1897 netif_carrier_off(dev);
1898
1899 #ifdef CONFIG_DEBUG_FS
1900 stmmac_exit_fs();
1901 #endif
1902
1903 stmmac_release_ptp(priv);
1904
1905 return 0;
1906 }
1907
1908 /**
1909 * stmmac_xmit - Tx entry point of the driver
1910 * @skb : the socket buffer
1911 * @dev : device pointer
1912 * Description : this is the tx entry point of the driver.
1913 * It programs the chain or the ring and supports oversized frames
1914 * and SG feature.
1915 */
1916 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1917 {
1918 struct stmmac_priv *priv = netdev_priv(dev);
1919 unsigned int txsize = priv->dma_tx_size;
1920 unsigned int entry;
1921 int i, csum_insertion = 0, is_jumbo = 0;
1922 int nfrags = skb_shinfo(skb)->nr_frags;
1923 struct dma_desc *desc, *first;
1924 unsigned int nopaged_len = skb_headlen(skb);
1925 unsigned int enh_desc = priv->plat->enh_desc;
1926
1927 spin_lock(&priv->tx_lock);
1928
1929 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1930 spin_unlock(&priv->tx_lock);
1931 if (!netif_queue_stopped(dev)) {
1932 netif_stop_queue(dev);
1933 /* This is a hard error, log it. */
1934 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1935 }
1936 return NETDEV_TX_BUSY;
1937 }
1938
1939 if (priv->tx_path_in_lpi_mode)
1940 stmmac_disable_eee_mode(priv);
1941
1942 entry = priv->cur_tx % txsize;
1943
1944 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1945
1946 if (priv->extend_desc)
1947 desc = (struct dma_desc *)(priv->dma_etx + entry);
1948 else
1949 desc = priv->dma_tx + entry;
1950
1951 first = desc;
1952
1953 /* To program the descriptors according to the size of the frame */
1954 if (enh_desc)
1955 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1956
1957 if (likely(!is_jumbo)) {
1958 desc->des2 = dma_map_single(priv->device, skb->data,
1959 nopaged_len, DMA_TO_DEVICE);
1960 if (dma_mapping_error(priv->device, desc->des2))
1961 goto dma_map_err;
1962 priv->tx_skbuff_dma[entry].buf = desc->des2;
1963 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1964 csum_insertion, priv->mode);
1965 } else {
1966 desc = first;
1967 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1968 if (unlikely(entry < 0))
1969 goto dma_map_err;
1970 }
1971
1972 for (i = 0; i < nfrags; i++) {
1973 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1974 int len = skb_frag_size(frag);
1975
1976 priv->tx_skbuff[entry] = NULL;
1977 entry = (++priv->cur_tx) % txsize;
1978 if (priv->extend_desc)
1979 desc = (struct dma_desc *)(priv->dma_etx + entry);
1980 else
1981 desc = priv->dma_tx + entry;
1982
1983 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1984 DMA_TO_DEVICE);
1985 if (dma_mapping_error(priv->device, desc->des2))
1986 goto dma_map_err; /* should reuse desc w/o issues */
1987
1988 priv->tx_skbuff_dma[entry].buf = desc->des2;
1989 priv->tx_skbuff_dma[entry].map_as_page = true;
1990 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1991 priv->mode);
1992 wmb();
1993 priv->hw->desc->set_tx_owner(desc);
1994 wmb();
1995 }
1996
1997 priv->tx_skbuff[entry] = skb;
1998
1999 /* Finalize the latest segment. */
2000 priv->hw->desc->close_tx_desc(desc);
2001
2002 wmb();
2003 /* According to the coalesce parameter the IC bit for the latest
2004 * segment could be reset and the timer re-started to invoke the
2005 * stmmac_tx function. This approach takes care about the fragments.
2006 */
2007 priv->tx_count_frames += nfrags + 1;
2008 if (priv->tx_coal_frames > priv->tx_count_frames) {
2009 priv->hw->desc->clear_tx_ic(desc);
2010 priv->xstats.tx_reset_ic_bit++;
2011 mod_timer(&priv->txtimer,
2012 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2013 } else
2014 priv->tx_count_frames = 0;
2015
2016 /* To avoid raise condition */
2017 priv->hw->desc->set_tx_owner(first);
2018 wmb();
2019
2020 priv->cur_tx++;
2021
2022 if (netif_msg_pktdata(priv)) {
2023 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2024 __func__, (priv->cur_tx % txsize),
2025 (priv->dirty_tx % txsize), entry, first, nfrags);
2026
2027 if (priv->extend_desc)
2028 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2029 else
2030 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2031
2032 pr_debug(">>> frame to be transmitted: ");
2033 print_pkt(skb->data, skb->len);
2034 }
2035 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2036 if (netif_msg_hw(priv))
2037 pr_debug("%s: stop transmitted packets\n", __func__);
2038 netif_stop_queue(dev);
2039 }
2040
2041 dev->stats.tx_bytes += skb->len;
2042
2043 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2044 priv->hwts_tx_en)) {
2045 /* declare that device is doing timestamping */
2046 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2047 priv->hw->desc->enable_tx_timestamp(first);
2048 }
2049
2050 if (!priv->hwts_tx_en)
2051 skb_tx_timestamp(skb);
2052
2053 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2054
2055 spin_unlock(&priv->tx_lock);
2056 return NETDEV_TX_OK;
2057
2058 dma_map_err:
2059 spin_unlock(&priv->tx_lock);
2060 dev_err(priv->device, "Tx dma map failed\n");
2061 dev_kfree_skb(skb);
2062 priv->dev->stats.tx_dropped++;
2063 return NETDEV_TX_OK;
2064 }
2065
2066 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 struct ethhdr *ehdr;
2069 u16 vlanid;
2070
2071 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2072 NETIF_F_HW_VLAN_CTAG_RX &&
2073 !__vlan_get_tag(skb, &vlanid)) {
2074 /* pop the vlan tag */
2075 ehdr = (struct ethhdr *)skb->data;
2076 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2077 skb_pull(skb, VLAN_HLEN);
2078 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2079 }
2080 }
2081
2082
2083 /**
2084 * stmmac_rx_refill - refill used skb preallocated buffers
2085 * @priv: driver private structure
2086 * Description : this is to reallocate the skb for the reception process
2087 * that is based on zero-copy.
2088 */
2089 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2090 {
2091 unsigned int rxsize = priv->dma_rx_size;
2092 int bfsize = priv->dma_buf_sz;
2093
2094 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2095 unsigned int entry = priv->dirty_rx % rxsize;
2096 struct dma_desc *p;
2097
2098 if (priv->extend_desc)
2099 p = (struct dma_desc *)(priv->dma_erx + entry);
2100 else
2101 p = priv->dma_rx + entry;
2102
2103 if (likely(priv->rx_skbuff[entry] == NULL)) {
2104 struct sk_buff *skb;
2105
2106 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2107
2108 if (unlikely(skb == NULL))
2109 break;
2110
2111 priv->rx_skbuff[entry] = skb;
2112 priv->rx_skbuff_dma[entry] =
2113 dma_map_single(priv->device, skb->data, bfsize,
2114 DMA_FROM_DEVICE);
2115 if (dma_mapping_error(priv->device,
2116 priv->rx_skbuff_dma[entry])) {
2117 dev_err(priv->device, "Rx dma map failed\n");
2118 dev_kfree_skb(skb);
2119 break;
2120 }
2121 p->des2 = priv->rx_skbuff_dma[entry];
2122
2123 priv->hw->mode->refill_desc3(priv, p);
2124
2125 if (netif_msg_rx_status(priv))
2126 pr_debug("\trefill entry #%d\n", entry);
2127 }
2128 wmb();
2129 priv->hw->desc->set_rx_owner(p);
2130 wmb();
2131 }
2132 }
2133
2134 /**
2135 * stmmac_rx - manage the receive process
2136 * @priv: driver private structure
2137 * @limit: napi bugget.
2138 * Description : this the function called by the napi poll method.
2139 * It gets all the frames inside the ring.
2140 */
2141 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2142 {
2143 unsigned int rxsize = priv->dma_rx_size;
2144 unsigned int entry = priv->cur_rx % rxsize;
2145 unsigned int next_entry;
2146 unsigned int count = 0;
2147 int coe = priv->hw->rx_csum;
2148
2149 if (netif_msg_rx_status(priv)) {
2150 pr_debug("%s: descriptor ring:\n", __func__);
2151 if (priv->extend_desc)
2152 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2153 else
2154 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2155 }
2156 while (count < limit) {
2157 int status;
2158 struct dma_desc *p;
2159
2160 if (priv->extend_desc)
2161 p = (struct dma_desc *)(priv->dma_erx + entry);
2162 else
2163 p = priv->dma_rx + entry;
2164
2165 if (priv->hw->desc->get_rx_owner(p))
2166 break;
2167
2168 count++;
2169
2170 next_entry = (++priv->cur_rx) % rxsize;
2171 if (priv->extend_desc)
2172 prefetch(priv->dma_erx + next_entry);
2173 else
2174 prefetch(priv->dma_rx + next_entry);
2175
2176 /* read the status of the incoming frame */
2177 status = priv->hw->desc->rx_status(&priv->dev->stats,
2178 &priv->xstats, p);
2179 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2180 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2181 &priv->xstats,
2182 priv->dma_erx +
2183 entry);
2184 if (unlikely(status == discard_frame)) {
2185 priv->dev->stats.rx_errors++;
2186 if (priv->hwts_rx_en && !priv->extend_desc) {
2187 /* DESC2 & DESC3 will be overwitten by device
2188 * with timestamp value, hence reinitialize
2189 * them in stmmac_rx_refill() function so that
2190 * device can reuse it.
2191 */
2192 priv->rx_skbuff[entry] = NULL;
2193 dma_unmap_single(priv->device,
2194 priv->rx_skbuff_dma[entry],
2195 priv->dma_buf_sz,
2196 DMA_FROM_DEVICE);
2197 }
2198 } else {
2199 struct sk_buff *skb;
2200 int frame_len;
2201
2202 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2203
2204 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2205 * Type frames (LLC/LLC-SNAP)
2206 */
2207 if (unlikely(status != llc_snap))
2208 frame_len -= ETH_FCS_LEN;
2209
2210 if (netif_msg_rx_status(priv)) {
2211 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2212 p, entry, p->des2);
2213 if (frame_len > ETH_FRAME_LEN)
2214 pr_debug("\tframe size %d, COE: %d\n",
2215 frame_len, status);
2216 }
2217 skb = priv->rx_skbuff[entry];
2218 if (unlikely(!skb)) {
2219 pr_err("%s: Inconsistent Rx descriptor chain\n",
2220 priv->dev->name);
2221 priv->dev->stats.rx_dropped++;
2222 break;
2223 }
2224 prefetch(skb->data - NET_IP_ALIGN);
2225 priv->rx_skbuff[entry] = NULL;
2226
2227 stmmac_get_rx_hwtstamp(priv, entry, skb);
2228
2229 skb_put(skb, frame_len);
2230 dma_unmap_single(priv->device,
2231 priv->rx_skbuff_dma[entry],
2232 priv->dma_buf_sz, DMA_FROM_DEVICE);
2233
2234 if (netif_msg_pktdata(priv)) {
2235 pr_debug("frame received (%dbytes)", frame_len);
2236 print_pkt(skb->data, frame_len);
2237 }
2238
2239 stmmac_rx_vlan(priv->dev, skb);
2240
2241 skb->protocol = eth_type_trans(skb, priv->dev);
2242
2243 if (unlikely(!coe))
2244 skb_checksum_none_assert(skb);
2245 else
2246 skb->ip_summed = CHECKSUM_UNNECESSARY;
2247
2248 napi_gro_receive(&priv->napi, skb);
2249
2250 priv->dev->stats.rx_packets++;
2251 priv->dev->stats.rx_bytes += frame_len;
2252 }
2253 entry = next_entry;
2254 }
2255
2256 stmmac_rx_refill(priv);
2257
2258 priv->xstats.rx_pkt_n += count;
2259
2260 return count;
2261 }
2262
2263 /**
2264 * stmmac_poll - stmmac poll method (NAPI)
2265 * @napi : pointer to the napi structure.
2266 * @budget : maximum number of packets that the current CPU can receive from
2267 * all interfaces.
2268 * Description :
2269 * To look at the incoming frames and clear the tx resources.
2270 */
2271 static int stmmac_poll(struct napi_struct *napi, int budget)
2272 {
2273 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2274 int work_done = 0;
2275
2276 priv->xstats.napi_poll++;
2277 stmmac_tx_clean(priv);
2278
2279 work_done = stmmac_rx(priv, budget);
2280 if (work_done < budget) {
2281 napi_complete(napi);
2282 stmmac_enable_dma_irq(priv);
2283 }
2284 return work_done;
2285 }
2286
2287 /**
2288 * stmmac_tx_timeout
2289 * @dev : Pointer to net device structure
2290 * Description: this function is called when a packet transmission fails to
2291 * complete within a reasonable time. The driver will mark the error in the
2292 * netdev structure and arrange for the device to be reset to a sane state
2293 * in order to transmit a new packet.
2294 */
2295 static void stmmac_tx_timeout(struct net_device *dev)
2296 {
2297 struct stmmac_priv *priv = netdev_priv(dev);
2298
2299 /* Clear Tx resources and restart transmitting again */
2300 stmmac_tx_err(priv);
2301 }
2302
2303 /**
2304 * stmmac_set_rx_mode - entry point for multicast addressing
2305 * @dev : pointer to the device structure
2306 * Description:
2307 * This function is a driver entry point which gets called by the kernel
2308 * whenever multicast addresses must be enabled/disabled.
2309 * Return value:
2310 * void.
2311 */
2312 static void stmmac_set_rx_mode(struct net_device *dev)
2313 {
2314 struct stmmac_priv *priv = netdev_priv(dev);
2315
2316 priv->hw->mac->set_filter(priv->hw, dev);
2317 }
2318
2319 /**
2320 * stmmac_change_mtu - entry point to change MTU size for the device.
2321 * @dev : device pointer.
2322 * @new_mtu : the new MTU size for the device.
2323 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2324 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2325 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2326 * Return value:
2327 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2328 * file on failure.
2329 */
2330 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2331 {
2332 struct stmmac_priv *priv = netdev_priv(dev);
2333 int max_mtu;
2334
2335 if (netif_running(dev)) {
2336 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2337 return -EBUSY;
2338 }
2339
2340 if (priv->plat->enh_desc)
2341 max_mtu = JUMBO_LEN;
2342 else
2343 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2344
2345 if (priv->plat->maxmtu < max_mtu)
2346 max_mtu = priv->plat->maxmtu;
2347
2348 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2349 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2350 return -EINVAL;
2351 }
2352
2353 dev->mtu = new_mtu;
2354 netdev_update_features(dev);
2355
2356 return 0;
2357 }
2358
2359 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2360 netdev_features_t features)
2361 {
2362 struct stmmac_priv *priv = netdev_priv(dev);
2363
2364 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2365 features &= ~NETIF_F_RXCSUM;
2366
2367 if (!priv->plat->tx_coe)
2368 features &= ~NETIF_F_ALL_CSUM;
2369
2370 /* Some GMAC devices have a bugged Jumbo frame support that
2371 * needs to have the Tx COE disabled for oversized frames
2372 * (due to limited buffer sizes). In this case we disable
2373 * the TX csum insertionin the TDES and not use SF.
2374 */
2375 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2376 features &= ~NETIF_F_ALL_CSUM;
2377
2378 return features;
2379 }
2380
2381 static int stmmac_set_features(struct net_device *netdev,
2382 netdev_features_t features)
2383 {
2384 struct stmmac_priv *priv = netdev_priv(netdev);
2385
2386 /* Keep the COE Type in case of csum is supporting */
2387 if (features & NETIF_F_RXCSUM)
2388 priv->hw->rx_csum = priv->plat->rx_coe;
2389 else
2390 priv->hw->rx_csum = 0;
2391 /* No check needed because rx_coe has been set before and it will be
2392 * fixed in case of issue.
2393 */
2394 priv->hw->mac->rx_ipc(priv->hw);
2395
2396 return 0;
2397 }
2398
2399 /**
2400 * stmmac_interrupt - main ISR
2401 * @irq: interrupt number.
2402 * @dev_id: to pass the net device pointer.
2403 * Description: this is the main driver interrupt service routine.
2404 * It can call:
2405 * o DMA service routine (to manage incoming frame reception and transmission
2406 * status)
2407 * o Core interrupts to manage: remote wake-up, management counter, LPI
2408 * interrupts.
2409 */
2410 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2411 {
2412 struct net_device *dev = (struct net_device *)dev_id;
2413 struct stmmac_priv *priv = netdev_priv(dev);
2414
2415 if (priv->irq_wake)
2416 pm_wakeup_event(priv->device, 0);
2417
2418 if (unlikely(!dev)) {
2419 pr_err("%s: invalid dev pointer\n", __func__);
2420 return IRQ_NONE;
2421 }
2422
2423 /* To handle GMAC own interrupts */
2424 if (priv->plat->has_gmac) {
2425 int status = priv->hw->mac->host_irq_status(priv->hw,
2426 &priv->xstats);
2427 if (unlikely(status)) {
2428 /* For LPI we need to save the tx status */
2429 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2430 priv->tx_path_in_lpi_mode = true;
2431 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2432 priv->tx_path_in_lpi_mode = false;
2433 }
2434 }
2435
2436 /* To handle DMA interrupts */
2437 stmmac_dma_interrupt(priv);
2438
2439 return IRQ_HANDLED;
2440 }
2441
2442 #ifdef CONFIG_NET_POLL_CONTROLLER
2443 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2444 * to allow network I/O with interrupts disabled.
2445 */
2446 static void stmmac_poll_controller(struct net_device *dev)
2447 {
2448 disable_irq(dev->irq);
2449 stmmac_interrupt(dev->irq, dev);
2450 enable_irq(dev->irq);
2451 }
2452 #endif
2453
2454 /**
2455 * stmmac_ioctl - Entry point for the Ioctl
2456 * @dev: Device pointer.
2457 * @rq: An IOCTL specefic structure, that can contain a pointer to
2458 * a proprietary structure used to pass information to the driver.
2459 * @cmd: IOCTL command
2460 * Description:
2461 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2462 */
2463 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2464 {
2465 struct stmmac_priv *priv = netdev_priv(dev);
2466 int ret = -EOPNOTSUPP;
2467
2468 if (!netif_running(dev))
2469 return -EINVAL;
2470
2471 switch (cmd) {
2472 case SIOCGMIIPHY:
2473 case SIOCGMIIREG:
2474 case SIOCSMIIREG:
2475 if (!priv->phydev)
2476 return -EINVAL;
2477 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2478 break;
2479 case SIOCSHWTSTAMP:
2480 ret = stmmac_hwtstamp_ioctl(dev, rq);
2481 break;
2482 default:
2483 break;
2484 }
2485
2486 return ret;
2487 }
2488
2489 #ifdef CONFIG_DEBUG_FS
2490 static struct dentry *stmmac_fs_dir;
2491 static struct dentry *stmmac_rings_status;
2492 static struct dentry *stmmac_dma_cap;
2493
2494 static void sysfs_display_ring(void *head, int size, int extend_desc,
2495 struct seq_file *seq)
2496 {
2497 int i;
2498 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2499 struct dma_desc *p = (struct dma_desc *)head;
2500
2501 for (i = 0; i < size; i++) {
2502 u64 x;
2503 if (extend_desc) {
2504 x = *(u64 *) ep;
2505 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2506 i, (unsigned int)virt_to_phys(ep),
2507 (unsigned int)x, (unsigned int)(x >> 32),
2508 ep->basic.des2, ep->basic.des3);
2509 ep++;
2510 } else {
2511 x = *(u64 *) p;
2512 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2513 i, (unsigned int)virt_to_phys(ep),
2514 (unsigned int)x, (unsigned int)(x >> 32),
2515 p->des2, p->des3);
2516 p++;
2517 }
2518 seq_printf(seq, "\n");
2519 }
2520 }
2521
2522 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2523 {
2524 struct net_device *dev = seq->private;
2525 struct stmmac_priv *priv = netdev_priv(dev);
2526 unsigned int txsize = priv->dma_tx_size;
2527 unsigned int rxsize = priv->dma_rx_size;
2528
2529 if (priv->extend_desc) {
2530 seq_printf(seq, "Extended RX descriptor ring:\n");
2531 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2532 seq_printf(seq, "Extended TX descriptor ring:\n");
2533 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2534 } else {
2535 seq_printf(seq, "RX descriptor ring:\n");
2536 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2537 seq_printf(seq, "TX descriptor ring:\n");
2538 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2539 }
2540
2541 return 0;
2542 }
2543
2544 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2545 {
2546 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2547 }
2548
2549 static const struct file_operations stmmac_rings_status_fops = {
2550 .owner = THIS_MODULE,
2551 .open = stmmac_sysfs_ring_open,
2552 .read = seq_read,
2553 .llseek = seq_lseek,
2554 .release = single_release,
2555 };
2556
2557 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2558 {
2559 struct net_device *dev = seq->private;
2560 struct stmmac_priv *priv = netdev_priv(dev);
2561
2562 if (!priv->hw_cap_support) {
2563 seq_printf(seq, "DMA HW features not supported\n");
2564 return 0;
2565 }
2566
2567 seq_printf(seq, "==============================\n");
2568 seq_printf(seq, "\tDMA HW features\n");
2569 seq_printf(seq, "==============================\n");
2570
2571 seq_printf(seq, "\t10/100 Mbps %s\n",
2572 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2573 seq_printf(seq, "\t1000 Mbps %s\n",
2574 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2575 seq_printf(seq, "\tHalf duple %s\n",
2576 (priv->dma_cap.half_duplex) ? "Y" : "N");
2577 seq_printf(seq, "\tHash Filter: %s\n",
2578 (priv->dma_cap.hash_filter) ? "Y" : "N");
2579 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2580 (priv->dma_cap.multi_addr) ? "Y" : "N");
2581 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2582 (priv->dma_cap.pcs) ? "Y" : "N");
2583 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2584 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2585 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2586 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2587 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2588 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2589 seq_printf(seq, "\tRMON module: %s\n",
2590 (priv->dma_cap.rmon) ? "Y" : "N");
2591 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2592 (priv->dma_cap.time_stamp) ? "Y" : "N");
2593 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2594 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2595 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2596 (priv->dma_cap.eee) ? "Y" : "N");
2597 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2598 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2599 (priv->dma_cap.tx_coe) ? "Y" : "N");
2600 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2601 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2602 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2603 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2604 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2605 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2606 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2607 priv->dma_cap.number_rx_channel);
2608 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2609 priv->dma_cap.number_tx_channel);
2610 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2611 (priv->dma_cap.enh_desc) ? "Y" : "N");
2612
2613 return 0;
2614 }
2615
2616 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2617 {
2618 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2619 }
2620
2621 static const struct file_operations stmmac_dma_cap_fops = {
2622 .owner = THIS_MODULE,
2623 .open = stmmac_sysfs_dma_cap_open,
2624 .read = seq_read,
2625 .llseek = seq_lseek,
2626 .release = single_release,
2627 };
2628
2629 static int stmmac_init_fs(struct net_device *dev)
2630 {
2631 /* Create debugfs entries */
2632 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2633
2634 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2635 pr_err("ERROR %s, debugfs create directory failed\n",
2636 STMMAC_RESOURCE_NAME);
2637
2638 return -ENOMEM;
2639 }
2640
2641 /* Entry to report DMA RX/TX rings */
2642 stmmac_rings_status = debugfs_create_file("descriptors_status",
2643 S_IRUGO, stmmac_fs_dir, dev,
2644 &stmmac_rings_status_fops);
2645
2646 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2647 pr_info("ERROR creating stmmac ring debugfs file\n");
2648 debugfs_remove(stmmac_fs_dir);
2649
2650 return -ENOMEM;
2651 }
2652
2653 /* Entry to report the DMA HW features */
2654 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2655 dev, &stmmac_dma_cap_fops);
2656
2657 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2658 pr_info("ERROR creating stmmac MMC debugfs file\n");
2659 debugfs_remove(stmmac_rings_status);
2660 debugfs_remove(stmmac_fs_dir);
2661
2662 return -ENOMEM;
2663 }
2664
2665 return 0;
2666 }
2667
2668 static void stmmac_exit_fs(void)
2669 {
2670 debugfs_remove(stmmac_rings_status);
2671 debugfs_remove(stmmac_dma_cap);
2672 debugfs_remove(stmmac_fs_dir);
2673 }
2674 #endif /* CONFIG_DEBUG_FS */
2675
2676 static const struct net_device_ops stmmac_netdev_ops = {
2677 .ndo_open = stmmac_open,
2678 .ndo_start_xmit = stmmac_xmit,
2679 .ndo_stop = stmmac_release,
2680 .ndo_change_mtu = stmmac_change_mtu,
2681 .ndo_fix_features = stmmac_fix_features,
2682 .ndo_set_features = stmmac_set_features,
2683 .ndo_set_rx_mode = stmmac_set_rx_mode,
2684 .ndo_tx_timeout = stmmac_tx_timeout,
2685 .ndo_do_ioctl = stmmac_ioctl,
2686 #ifdef CONFIG_NET_POLL_CONTROLLER
2687 .ndo_poll_controller = stmmac_poll_controller,
2688 #endif
2689 .ndo_set_mac_address = eth_mac_addr,
2690 };
2691
2692 /**
2693 * stmmac_hw_init - Init the MAC device
2694 * @priv: driver private structure
2695 * Description: this function is to configure the MAC device according to
2696 * some platform parameters or the HW capability register. It prepares the
2697 * driver to use either ring or chain modes and to setup either enhanced or
2698 * normal descriptors.
2699 */
2700 static int stmmac_hw_init(struct stmmac_priv *priv)
2701 {
2702 struct mac_device_info *mac;
2703
2704 /* Identify the MAC HW device */
2705 if (priv->plat->has_gmac) {
2706 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2707 mac = dwmac1000_setup(priv->ioaddr,
2708 priv->plat->multicast_filter_bins,
2709 priv->plat->unicast_filter_entries);
2710 } else {
2711 mac = dwmac100_setup(priv->ioaddr);
2712 }
2713 if (!mac)
2714 return -ENOMEM;
2715
2716 priv->hw = mac;
2717
2718 /* Get and dump the chip ID */
2719 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2720
2721 /* To use the chained or ring mode */
2722 if (chain_mode) {
2723 priv->hw->mode = &chain_mode_ops;
2724 pr_info(" Chain mode enabled\n");
2725 priv->mode = STMMAC_CHAIN_MODE;
2726 } else {
2727 priv->hw->mode = &ring_mode_ops;
2728 pr_info(" Ring mode enabled\n");
2729 priv->mode = STMMAC_RING_MODE;
2730 }
2731
2732 /* Get the HW capability (new GMAC newer than 3.50a) */
2733 priv->hw_cap_support = stmmac_get_hw_features(priv);
2734 if (priv->hw_cap_support) {
2735 pr_info(" DMA HW capability register supported");
2736
2737 /* We can override some gmac/dma configuration fields: e.g.
2738 * enh_desc, tx_coe (e.g. that are passed through the
2739 * platform) with the values from the HW capability
2740 * register (if supported).
2741 */
2742 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2743 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2744
2745 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2746
2747 if (priv->dma_cap.rx_coe_type2)
2748 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2749 else if (priv->dma_cap.rx_coe_type1)
2750 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2751
2752 } else
2753 pr_info(" No HW DMA feature register supported");
2754
2755 /* To use alternate (extended) or normal descriptor structures */
2756 stmmac_selec_desc_mode(priv);
2757
2758 if (priv->plat->rx_coe) {
2759 priv->hw->rx_csum = priv->plat->rx_coe;
2760 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2761 priv->plat->rx_coe);
2762 }
2763 if (priv->plat->tx_coe)
2764 pr_info(" TX Checksum insertion supported\n");
2765
2766 if (priv->plat->pmt) {
2767 pr_info(" Wake-Up On Lan supported\n");
2768 device_set_wakeup_capable(priv->device, 1);
2769 }
2770
2771 return 0;
2772 }
2773
2774 /**
2775 * stmmac_dvr_probe
2776 * @device: device pointer
2777 * @plat_dat: platform data pointer
2778 * @addr: iobase memory address
2779 * Description: this is the main probe function used to
2780 * call the alloc_etherdev, allocate the priv structure.
2781 * Return:
2782 * on success the new private structure is returned, otherwise the error
2783 * pointer.
2784 */
2785 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2786 struct plat_stmmacenet_data *plat_dat,
2787 void __iomem *addr)
2788 {
2789 int ret = 0;
2790 struct net_device *ndev = NULL;
2791 struct stmmac_priv *priv;
2792
2793 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2794 if (!ndev)
2795 return ERR_PTR(-ENOMEM);
2796
2797 SET_NETDEV_DEV(ndev, device);
2798
2799 priv = netdev_priv(ndev);
2800 priv->device = device;
2801 priv->dev = ndev;
2802
2803 stmmac_set_ethtool_ops(ndev);
2804 priv->pause = pause;
2805 priv->plat = plat_dat;
2806 priv->ioaddr = addr;
2807 priv->dev->base_addr = (unsigned long)addr;
2808
2809 /* Verify driver arguments */
2810 stmmac_verify_args();
2811
2812 /* Override with kernel parameters if supplied XXX CRS XXX
2813 * this needs to have multiple instances
2814 */
2815 if ((phyaddr >= 0) && (phyaddr <= 31))
2816 priv->plat->phy_addr = phyaddr;
2817
2818 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2819 if (IS_ERR(priv->stmmac_clk)) {
2820 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2821 __func__);
2822 /* If failed to obtain stmmac_clk and specific clk_csr value
2823 * is NOT passed from the platform, probe fail.
2824 */
2825 if (!priv->plat->clk_csr) {
2826 ret = PTR_ERR(priv->stmmac_clk);
2827 goto error_clk_get;
2828 } else {
2829 priv->stmmac_clk = NULL;
2830 }
2831 }
2832 clk_prepare_enable(priv->stmmac_clk);
2833
2834 priv->stmmac_rst = devm_reset_control_get(priv->device,
2835 STMMAC_RESOURCE_NAME);
2836 if (IS_ERR(priv->stmmac_rst)) {
2837 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2838 ret = -EPROBE_DEFER;
2839 goto error_hw_init;
2840 }
2841 dev_info(priv->device, "no reset control found\n");
2842 priv->stmmac_rst = NULL;
2843 }
2844 if (priv->stmmac_rst)
2845 reset_control_deassert(priv->stmmac_rst);
2846
2847 /* Init MAC and get the capabilities */
2848 ret = stmmac_hw_init(priv);
2849 if (ret)
2850 goto error_hw_init;
2851
2852 ndev->netdev_ops = &stmmac_netdev_ops;
2853
2854 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2855 NETIF_F_RXCSUM;
2856 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2857 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2858 #ifdef STMMAC_VLAN_TAG_USED
2859 /* Both mac100 and gmac support receive VLAN tag detection */
2860 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2861 #endif
2862 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2863
2864 if (flow_ctrl)
2865 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2866
2867 /* Rx Watchdog is available in the COREs newer than the 3.40.
2868 * In some case, for example on bugged HW this feature
2869 * has to be disable and this can be done by passing the
2870 * riwt_off field from the platform.
2871 */
2872 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2873 priv->use_riwt = 1;
2874 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2875 }
2876
2877 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2878
2879 spin_lock_init(&priv->lock);
2880 spin_lock_init(&priv->tx_lock);
2881
2882 ret = register_netdev(ndev);
2883 if (ret) {
2884 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2885 goto error_netdev_register;
2886 }
2887
2888 /* If a specific clk_csr value is passed from the platform
2889 * this means that the CSR Clock Range selection cannot be
2890 * changed at run-time and it is fixed. Viceversa the driver'll try to
2891 * set the MDC clock dynamically according to the csr actual
2892 * clock input.
2893 */
2894 if (!priv->plat->clk_csr)
2895 stmmac_clk_csr_set(priv);
2896 else
2897 priv->clk_csr = priv->plat->clk_csr;
2898
2899 stmmac_check_pcs_mode(priv);
2900
2901 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2902 priv->pcs != STMMAC_PCS_RTBI) {
2903 /* MDIO bus Registration */
2904 ret = stmmac_mdio_register(ndev);
2905 if (ret < 0) {
2906 pr_debug("%s: MDIO bus (id: %d) registration failed",
2907 __func__, priv->plat->bus_id);
2908 goto error_mdio_register;
2909 }
2910 }
2911
2912 return priv;
2913
2914 error_mdio_register:
2915 unregister_netdev(ndev);
2916 error_netdev_register:
2917 netif_napi_del(&priv->napi);
2918 error_hw_init:
2919 clk_disable_unprepare(priv->stmmac_clk);
2920 error_clk_get:
2921 free_netdev(ndev);
2922
2923 return ERR_PTR(ret);
2924 }
2925 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2926
2927 /**
2928 * stmmac_dvr_remove
2929 * @ndev: net device pointer
2930 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2931 * changes the link status, releases the DMA descriptor rings.
2932 */
2933 int stmmac_dvr_remove(struct net_device *ndev)
2934 {
2935 struct stmmac_priv *priv = netdev_priv(ndev);
2936
2937 pr_info("%s:\n\tremoving driver", __func__);
2938
2939 priv->hw->dma->stop_rx(priv->ioaddr);
2940 priv->hw->dma->stop_tx(priv->ioaddr);
2941
2942 stmmac_set_mac(priv->ioaddr, false);
2943 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2944 priv->pcs != STMMAC_PCS_RTBI)
2945 stmmac_mdio_unregister(ndev);
2946 netif_carrier_off(ndev);
2947 unregister_netdev(ndev);
2948 if (priv->stmmac_rst)
2949 reset_control_assert(priv->stmmac_rst);
2950 clk_disable_unprepare(priv->stmmac_clk);
2951 free_netdev(ndev);
2952
2953 return 0;
2954 }
2955 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
2956
2957 /**
2958 * stmmac_suspend - suspend callback
2959 * @ndev: net device pointer
2960 * Description: this is the function to suspend the device and it is called
2961 * by the platform driver to stop the network queue, release the resources,
2962 * program the PMT register (for WoL), clean and release driver resources.
2963 */
2964 int stmmac_suspend(struct net_device *ndev)
2965 {
2966 struct stmmac_priv *priv = netdev_priv(ndev);
2967 unsigned long flags;
2968
2969 if (!ndev || !netif_running(ndev))
2970 return 0;
2971
2972 if (priv->phydev)
2973 phy_stop(priv->phydev);
2974
2975 spin_lock_irqsave(&priv->lock, flags);
2976
2977 netif_device_detach(ndev);
2978 netif_stop_queue(ndev);
2979
2980 napi_disable(&priv->napi);
2981
2982 /* Stop TX/RX DMA */
2983 priv->hw->dma->stop_tx(priv->ioaddr);
2984 priv->hw->dma->stop_rx(priv->ioaddr);
2985
2986 stmmac_clear_descriptors(priv);
2987
2988 /* Enable Power down mode by programming the PMT regs */
2989 if (device_may_wakeup(priv->device)) {
2990 priv->hw->mac->pmt(priv->hw, priv->wolopts);
2991 priv->irq_wake = 1;
2992 } else {
2993 stmmac_set_mac(priv->ioaddr, false);
2994 pinctrl_pm_select_sleep_state(priv->device);
2995 /* Disable clock in case of PWM is off */
2996 clk_disable(priv->stmmac_clk);
2997 }
2998 spin_unlock_irqrestore(&priv->lock, flags);
2999
3000 priv->oldlink = 0;
3001 priv->speed = 0;
3002 priv->oldduplex = -1;
3003 return 0;
3004 }
3005 EXPORT_SYMBOL_GPL(stmmac_suspend);
3006
3007 /**
3008 * stmmac_resume - resume callback
3009 * @ndev: net device pointer
3010 * Description: when resume this function is invoked to setup the DMA and CORE
3011 * in a usable state.
3012 */
3013 int stmmac_resume(struct net_device *ndev)
3014 {
3015 struct stmmac_priv *priv = netdev_priv(ndev);
3016 unsigned long flags;
3017
3018 if (!netif_running(ndev))
3019 return 0;
3020
3021 spin_lock_irqsave(&priv->lock, flags);
3022
3023 /* Power Down bit, into the PM register, is cleared
3024 * automatically as soon as a magic packet or a Wake-up frame
3025 * is received. Anyway, it's better to manually clear
3026 * this bit because it can generate problems while resuming
3027 * from another devices (e.g. serial console).
3028 */
3029 if (device_may_wakeup(priv->device)) {
3030 priv->hw->mac->pmt(priv->hw, 0);
3031 priv->irq_wake = 0;
3032 } else {
3033 pinctrl_pm_select_default_state(priv->device);
3034 /* enable the clk prevously disabled */
3035 clk_enable(priv->stmmac_clk);
3036 /* reset the phy so that it's ready */
3037 if (priv->mii)
3038 stmmac_mdio_reset(priv->mii);
3039 }
3040
3041 netif_device_attach(ndev);
3042
3043 init_dma_desc_rings(ndev, GFP_ATOMIC);
3044 stmmac_hw_setup(ndev, false);
3045 stmmac_init_tx_coalesce(priv);
3046
3047 napi_enable(&priv->napi);
3048
3049 netif_start_queue(ndev);
3050
3051 spin_unlock_irqrestore(&priv->lock, flags);
3052
3053 if (priv->phydev)
3054 phy_start(priv->phydev);
3055
3056 return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(stmmac_resume);
3059
3060 #ifndef MODULE
3061 static int __init stmmac_cmdline_opt(char *str)
3062 {
3063 char *opt;
3064
3065 if (!str || !*str)
3066 return -EINVAL;
3067 while ((opt = strsep(&str, ",")) != NULL) {
3068 if (!strncmp(opt, "debug:", 6)) {
3069 if (kstrtoint(opt + 6, 0, &debug))
3070 goto err;
3071 } else if (!strncmp(opt, "phyaddr:", 8)) {
3072 if (kstrtoint(opt + 8, 0, &phyaddr))
3073 goto err;
3074 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3075 if (kstrtoint(opt + 11, 0, &dma_txsize))
3076 goto err;
3077 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3078 if (kstrtoint(opt + 11, 0, &dma_rxsize))
3079 goto err;
3080 } else if (!strncmp(opt, "buf_sz:", 7)) {
3081 if (kstrtoint(opt + 7, 0, &buf_sz))
3082 goto err;
3083 } else if (!strncmp(opt, "tc:", 3)) {
3084 if (kstrtoint(opt + 3, 0, &tc))
3085 goto err;
3086 } else if (!strncmp(opt, "watchdog:", 9)) {
3087 if (kstrtoint(opt + 9, 0, &watchdog))
3088 goto err;
3089 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3090 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3091 goto err;
3092 } else if (!strncmp(opt, "pause:", 6)) {
3093 if (kstrtoint(opt + 6, 0, &pause))
3094 goto err;
3095 } else if (!strncmp(opt, "eee_timer:", 10)) {
3096 if (kstrtoint(opt + 10, 0, &eee_timer))
3097 goto err;
3098 } else if (!strncmp(opt, "chain_mode:", 11)) {
3099 if (kstrtoint(opt + 11, 0, &chain_mode))
3100 goto err;
3101 }
3102 }
3103 return 0;
3104
3105 err:
3106 pr_err("%s: ERROR broken module parameter conversion", __func__);
3107 return -EINVAL;
3108 }
3109
3110 __setup("stmmaceth=", stmmac_cmdline_opt);
3111 #endif /* MODULE */
3112
3113 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3114 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3115 MODULE_LICENSE("GPL");