]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
net: stmmac: move hardware setup for stmmac_open to new function
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53
54 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
55 #define JUMBO_LEN 9000
56
57 /* Module parameters */
58 #define TX_TIMEO 5000
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
62
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
66
67 static int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
70
71 #define DMA_TX_SIZE 256
72 static int dma_txsize = DMA_TX_SIZE;
73 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
74 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
75
76 #define DMA_RX_SIZE 256
77 static int dma_rxsize = DMA_RX_SIZE;
78 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
80
81 static int flow_ctrl = FLOW_OFF;
82 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
84
85 static int pause = PAUSE_TIME;
86 module_param(pause, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
88
89 #define TC_DEFAULT 64
90 static int tc = TC_DEFAULT;
91 module_param(tc, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(tc, "DMA threshold control value");
93
94 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
95 static int buf_sz = DMA_BUFFER_SIZE;
96 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
98
99 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
100 NETIF_MSG_LINK | NETIF_MSG_IFUP |
101 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
102
103 #define STMMAC_DEFAULT_LPI_TIMER 1000
104 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
105 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
107 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
108
109 /* By default the driver will use the ring mode to manage tx and rx descriptors
110 * but passing this value so user can force to use the chain instead of the ring
111 */
112 static unsigned int chain_mode;
113 module_param(chain_mode, int, S_IRUGO);
114 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
115
116 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
117
118 #ifdef CONFIG_STMMAC_DEBUG_FS
119 static int stmmac_init_fs(struct net_device *dev);
120 static void stmmac_exit_fs(void);
121 #endif
122
123 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124
125 /**
126 * stmmac_verify_args - verify the driver parameters.
127 * Description: it verifies if some wrong parameter is passed to the driver.
128 * Note that wrong parameters are replaced with the default values.
129 */
130 static void stmmac_verify_args(void)
131 {
132 if (unlikely(watchdog < 0))
133 watchdog = TX_TIMEO;
134 if (unlikely(dma_rxsize < 0))
135 dma_rxsize = DMA_RX_SIZE;
136 if (unlikely(dma_txsize < 0))
137 dma_txsize = DMA_TX_SIZE;
138 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
139 buf_sz = DMA_BUFFER_SIZE;
140 if (unlikely(flow_ctrl > 1))
141 flow_ctrl = FLOW_AUTO;
142 else if (likely(flow_ctrl < 0))
143 flow_ctrl = FLOW_OFF;
144 if (unlikely((pause < 0) || (pause > 0xffff)))
145 pause = PAUSE_TIME;
146 if (eee_timer < 0)
147 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
148 }
149
150 /**
151 * stmmac_clk_csr_set - dynamically set the MDC clock
152 * @priv: driver private structure
153 * Description: this is to dynamically set the MDC clock according to the csr
154 * clock input.
155 * Note:
156 * If a specific clk_csr value is passed from the platform
157 * this means that the CSR Clock Range selection cannot be
158 * changed at run-time and it is fixed (as reported in the driver
159 * documentation). Viceversa the driver will try to set the MDC
160 * clock dynamically according to the actual clock input.
161 */
162 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
163 {
164 u32 clk_rate;
165
166 clk_rate = clk_get_rate(priv->stmmac_clk);
167
168 /* Platform provided default clk_csr would be assumed valid
169 * for all other cases except for the below mentioned ones.
170 * For values higher than the IEEE 802.3 specified frequency
171 * we can not estimate the proper divider as it is not known
172 * the frequency of clk_csr_i. So we do not change the default
173 * divider.
174 */
175 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176 if (clk_rate < CSR_F_35M)
177 priv->clk_csr = STMMAC_CSR_20_35M;
178 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179 priv->clk_csr = STMMAC_CSR_35_60M;
180 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181 priv->clk_csr = STMMAC_CSR_60_100M;
182 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183 priv->clk_csr = STMMAC_CSR_100_150M;
184 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185 priv->clk_csr = STMMAC_CSR_150_250M;
186 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187 priv->clk_csr = STMMAC_CSR_250_300M;
188 }
189 }
190
191 static void print_pkt(unsigned char *buf, int len)
192 {
193 int j;
194 pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
195 for (j = 0; j < len; j++) {
196 if ((j % 16) == 0)
197 pr_debug("\n %03x:", j);
198 pr_debug(" %02x", buf[j]);
199 }
200 pr_debug("\n");
201 }
202
203 /* minimum number of free TX descriptors required to wake up TX process */
204 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
205
206 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
207 {
208 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
209 }
210
211 /**
212 * stmmac_hw_fix_mac_speed: callback for speed selection
213 * @priv: driver private structure
214 * Description: on some platforms (e.g. ST), some HW system configuraton
215 * registers have to be set according to the link speed negotiated.
216 */
217 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
218 {
219 struct phy_device *phydev = priv->phydev;
220
221 if (likely(priv->plat->fix_mac_speed))
222 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
223 }
224
225 /**
226 * stmmac_enable_eee_mode: Check and enter in LPI mode
227 * @priv: driver private structure
228 * Description: this function is to verify and enter in LPI mode for EEE.
229 */
230 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
231 {
232 /* Check and enter in LPI mode */
233 if ((priv->dirty_tx == priv->cur_tx) &&
234 (priv->tx_path_in_lpi_mode == false))
235 priv->hw->mac->set_eee_mode(priv->ioaddr);
236 }
237
238 /**
239 * stmmac_disable_eee_mode: disable/exit from EEE
240 * @priv: driver private structure
241 * Description: this function is to exit and disable EEE in case of
242 * LPI state is true. This is called by the xmit.
243 */
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246 priv->hw->mac->reset_eee_mode(priv->ioaddr);
247 del_timer_sync(&priv->eee_ctrl_timer);
248 priv->tx_path_in_lpi_mode = false;
249 }
250
251 /**
252 * stmmac_eee_ctrl_timer: EEE TX SW timer.
253 * @arg : data hook
254 * Description:
255 * if there is no data transfer and if we are not in LPI state,
256 * then MAC Transmitter can be moved to LPI state.
257 */
258 static void stmmac_eee_ctrl_timer(unsigned long arg)
259 {
260 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
261
262 stmmac_enable_eee_mode(priv);
263 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
264 }
265
266 /**
267 * stmmac_eee_init: init EEE
268 * @priv: driver private structure
269 * Description:
270 * If the EEE support has been enabled while configuring the driver,
271 * if the GMAC actually supports the EEE (from the HW cap reg) and the
272 * phy can also manage EEE, so enable the LPI state and start the timer
273 * to verify if the tx path can enter in LPI state.
274 */
275 bool stmmac_eee_init(struct stmmac_priv *priv)
276 {
277 bool ret = false;
278
279 /* Using PCS we cannot dial with the phy registers at this stage
280 * so we do not support extra feature like EEE.
281 */
282 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
283 (priv->pcs == STMMAC_PCS_RTBI))
284 goto out;
285
286 /* MAC core supports the EEE feature. */
287 if (priv->dma_cap.eee) {
288 /* Check if the PHY supports EEE */
289 if (phy_init_eee(priv->phydev, 1))
290 goto out;
291
292 if (!priv->eee_active) {
293 priv->eee_active = 1;
294 init_timer(&priv->eee_ctrl_timer);
295 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
296 priv->eee_ctrl_timer.data = (unsigned long)priv;
297 priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
298 add_timer(&priv->eee_ctrl_timer);
299
300 priv->hw->mac->set_eee_timer(priv->ioaddr,
301 STMMAC_DEFAULT_LIT_LS,
302 priv->tx_lpi_timer);
303 } else
304 /* Set HW EEE according to the speed */
305 priv->hw->mac->set_eee_pls(priv->ioaddr,
306 priv->phydev->link);
307
308 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
309
310 ret = true;
311 }
312 out:
313 return ret;
314 }
315
316 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
317 * @priv: driver private structure
318 * @entry : descriptor index to be used.
319 * @skb : the socket buffer
320 * Description :
321 * This function will read timestamp from the descriptor & pass it to stack.
322 * and also perform some sanity checks.
323 */
324 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
325 unsigned int entry, struct sk_buff *skb)
326 {
327 struct skb_shared_hwtstamps shhwtstamp;
328 u64 ns;
329 void *desc = NULL;
330
331 if (!priv->hwts_tx_en)
332 return;
333
334 /* exit if skb doesn't support hw tstamp */
335 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
336 return;
337
338 if (priv->adv_ts)
339 desc = (priv->dma_etx + entry);
340 else
341 desc = (priv->dma_tx + entry);
342
343 /* check tx tstamp status */
344 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
345 return;
346
347 /* get the valid tstamp */
348 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
349
350 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
351 shhwtstamp.hwtstamp = ns_to_ktime(ns);
352 /* pass tstamp to stack */
353 skb_tstamp_tx(skb, &shhwtstamp);
354
355 return;
356 }
357
358 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
359 * @priv: driver private structure
360 * @entry : descriptor index to be used.
361 * @skb : the socket buffer
362 * Description :
363 * This function will read received packet's timestamp from the descriptor
364 * and pass it to stack. It also perform some sanity checks.
365 */
366 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
367 unsigned int entry, struct sk_buff *skb)
368 {
369 struct skb_shared_hwtstamps *shhwtstamp = NULL;
370 u64 ns;
371 void *desc = NULL;
372
373 if (!priv->hwts_rx_en)
374 return;
375
376 if (priv->adv_ts)
377 desc = (priv->dma_erx + entry);
378 else
379 desc = (priv->dma_rx + entry);
380
381 /* exit if rx tstamp is not valid */
382 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
383 return;
384
385 /* get valid tstamp */
386 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
387 shhwtstamp = skb_hwtstamps(skb);
388 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
389 shhwtstamp->hwtstamp = ns_to_ktime(ns);
390 }
391
392 /**
393 * stmmac_hwtstamp_ioctl - control hardware timestamping.
394 * @dev: device pointer.
395 * @ifr: An IOCTL specefic structure, that can contain a pointer to
396 * a proprietary structure used to pass information to the driver.
397 * Description:
398 * This function configures the MAC to enable/disable both outgoing(TX)
399 * and incoming(RX) packets time stamping based on user input.
400 * Return Value:
401 * 0 on success and an appropriate -ve integer on failure.
402 */
403 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
404 {
405 struct stmmac_priv *priv = netdev_priv(dev);
406 struct hwtstamp_config config;
407 struct timespec now;
408 u64 temp = 0;
409 u32 ptp_v2 = 0;
410 u32 tstamp_all = 0;
411 u32 ptp_over_ipv4_udp = 0;
412 u32 ptp_over_ipv6_udp = 0;
413 u32 ptp_over_ethernet = 0;
414 u32 snap_type_sel = 0;
415 u32 ts_master_en = 0;
416 u32 ts_event_en = 0;
417 u32 value = 0;
418
419 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
420 netdev_alert(priv->dev, "No support for HW time stamping\n");
421 priv->hwts_tx_en = 0;
422 priv->hwts_rx_en = 0;
423
424 return -EOPNOTSUPP;
425 }
426
427 if (copy_from_user(&config, ifr->ifr_data,
428 sizeof(struct hwtstamp_config)))
429 return -EFAULT;
430
431 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
432 __func__, config.flags, config.tx_type, config.rx_filter);
433
434 /* reserved for future extensions */
435 if (config.flags)
436 return -EINVAL;
437
438 if (config.tx_type != HWTSTAMP_TX_OFF &&
439 config.tx_type != HWTSTAMP_TX_ON)
440 return -ERANGE;
441
442 if (priv->adv_ts) {
443 switch (config.rx_filter) {
444 case HWTSTAMP_FILTER_NONE:
445 /* time stamp no incoming packet at all */
446 config.rx_filter = HWTSTAMP_FILTER_NONE;
447 break;
448
449 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
450 /* PTP v1, UDP, any kind of event packet */
451 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
452 /* take time stamp for all event messages */
453 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
454
455 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
456 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
457 break;
458
459 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
460 /* PTP v1, UDP, Sync packet */
461 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
462 /* take time stamp for SYNC messages only */
463 ts_event_en = PTP_TCR_TSEVNTENA;
464
465 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
466 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
467 break;
468
469 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
470 /* PTP v1, UDP, Delay_req packet */
471 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
472 /* take time stamp for Delay_Req messages only */
473 ts_master_en = PTP_TCR_TSMSTRENA;
474 ts_event_en = PTP_TCR_TSEVNTENA;
475
476 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
477 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
478 break;
479
480 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
481 /* PTP v2, UDP, any kind of event packet */
482 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
483 ptp_v2 = PTP_TCR_TSVER2ENA;
484 /* take time stamp for all event messages */
485 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
486
487 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
488 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
489 break;
490
491 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
492 /* PTP v2, UDP, Sync packet */
493 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
494 ptp_v2 = PTP_TCR_TSVER2ENA;
495 /* take time stamp for SYNC messages only */
496 ts_event_en = PTP_TCR_TSEVNTENA;
497
498 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
499 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
500 break;
501
502 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
503 /* PTP v2, UDP, Delay_req packet */
504 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
505 ptp_v2 = PTP_TCR_TSVER2ENA;
506 /* take time stamp for Delay_Req messages only */
507 ts_master_en = PTP_TCR_TSMSTRENA;
508 ts_event_en = PTP_TCR_TSEVNTENA;
509
510 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
511 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
512 break;
513
514 case HWTSTAMP_FILTER_PTP_V2_EVENT:
515 /* PTP v2/802.AS1 any layer, any kind of event packet */
516 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
517 ptp_v2 = PTP_TCR_TSVER2ENA;
518 /* take time stamp for all event messages */
519 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
520
521 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
522 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
523 ptp_over_ethernet = PTP_TCR_TSIPENA;
524 break;
525
526 case HWTSTAMP_FILTER_PTP_V2_SYNC:
527 /* PTP v2/802.AS1, any layer, Sync packet */
528 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
529 ptp_v2 = PTP_TCR_TSVER2ENA;
530 /* take time stamp for SYNC messages only */
531 ts_event_en = PTP_TCR_TSEVNTENA;
532
533 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
534 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
535 ptp_over_ethernet = PTP_TCR_TSIPENA;
536 break;
537
538 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
539 /* PTP v2/802.AS1, any layer, Delay_req packet */
540 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
541 ptp_v2 = PTP_TCR_TSVER2ENA;
542 /* take time stamp for Delay_Req messages only */
543 ts_master_en = PTP_TCR_TSMSTRENA;
544 ts_event_en = PTP_TCR_TSEVNTENA;
545
546 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
547 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
548 ptp_over_ethernet = PTP_TCR_TSIPENA;
549 break;
550
551 case HWTSTAMP_FILTER_ALL:
552 /* time stamp any incoming packet */
553 config.rx_filter = HWTSTAMP_FILTER_ALL;
554 tstamp_all = PTP_TCR_TSENALL;
555 break;
556
557 default:
558 return -ERANGE;
559 }
560 } else {
561 switch (config.rx_filter) {
562 case HWTSTAMP_FILTER_NONE:
563 config.rx_filter = HWTSTAMP_FILTER_NONE;
564 break;
565 default:
566 /* PTP v1, UDP, any kind of event packet */
567 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
568 break;
569 }
570 }
571 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
572 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
573
574 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
575 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
576 else {
577 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
578 tstamp_all | ptp_v2 | ptp_over_ethernet |
579 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
580 ts_master_en | snap_type_sel);
581
582 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
583
584 /* program Sub Second Increment reg */
585 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
586
587 /* calculate default added value:
588 * formula is :
589 * addend = (2^32)/freq_div_ratio;
590 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
591 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
592 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
593 * achive 20ns accuracy.
594 *
595 * 2^x * y == (y << x), hence
596 * 2^32 * 50000000 ==> (50000000 << 32)
597 */
598 temp = (u64) (50000000ULL << 32);
599 priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
600 priv->hw->ptp->config_addend(priv->ioaddr,
601 priv->default_addend);
602
603 /* initialize system time */
604 getnstimeofday(&now);
605 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
606 now.tv_nsec);
607 }
608
609 return copy_to_user(ifr->ifr_data, &config,
610 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
611 }
612
613 /**
614 * stmmac_init_ptp: init PTP
615 * @priv: driver private structure
616 * Description: this is to verify if the HW supports the PTPv1 or v2.
617 * This is done by looking at the HW cap. register.
618 * Also it registers the ptp driver.
619 */
620 static int stmmac_init_ptp(struct stmmac_priv *priv)
621 {
622 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
623 return -EOPNOTSUPP;
624
625 priv->adv_ts = 0;
626 if (priv->dma_cap.atime_stamp && priv->extend_desc)
627 priv->adv_ts = 1;
628
629 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
630 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
631
632 if (netif_msg_hw(priv) && priv->adv_ts)
633 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
634
635 priv->hw->ptp = &stmmac_ptp;
636 priv->hwts_tx_en = 0;
637 priv->hwts_rx_en = 0;
638
639 return stmmac_ptp_register(priv);
640 }
641
642 static void stmmac_release_ptp(struct stmmac_priv *priv)
643 {
644 stmmac_ptp_unregister(priv);
645 }
646
647 /**
648 * stmmac_adjust_link
649 * @dev: net device structure
650 * Description: it adjusts the link parameters.
651 */
652 static void stmmac_adjust_link(struct net_device *dev)
653 {
654 struct stmmac_priv *priv = netdev_priv(dev);
655 struct phy_device *phydev = priv->phydev;
656 unsigned long flags;
657 int new_state = 0;
658 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
659
660 if (phydev == NULL)
661 return;
662
663 spin_lock_irqsave(&priv->lock, flags);
664
665 if (phydev->link) {
666 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
667
668 /* Now we make sure that we can be in full duplex mode.
669 * If not, we operate in half-duplex mode. */
670 if (phydev->duplex != priv->oldduplex) {
671 new_state = 1;
672 if (!(phydev->duplex))
673 ctrl &= ~priv->hw->link.duplex;
674 else
675 ctrl |= priv->hw->link.duplex;
676 priv->oldduplex = phydev->duplex;
677 }
678 /* Flow Control operation */
679 if (phydev->pause)
680 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
681 fc, pause_time);
682
683 if (phydev->speed != priv->speed) {
684 new_state = 1;
685 switch (phydev->speed) {
686 case 1000:
687 if (likely(priv->plat->has_gmac))
688 ctrl &= ~priv->hw->link.port;
689 stmmac_hw_fix_mac_speed(priv);
690 break;
691 case 100:
692 case 10:
693 if (priv->plat->has_gmac) {
694 ctrl |= priv->hw->link.port;
695 if (phydev->speed == SPEED_100) {
696 ctrl |= priv->hw->link.speed;
697 } else {
698 ctrl &= ~(priv->hw->link.speed);
699 }
700 } else {
701 ctrl &= ~priv->hw->link.port;
702 }
703 stmmac_hw_fix_mac_speed(priv);
704 break;
705 default:
706 if (netif_msg_link(priv))
707 pr_warn("%s: Speed (%d) not 10/100\n",
708 dev->name, phydev->speed);
709 break;
710 }
711
712 priv->speed = phydev->speed;
713 }
714
715 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
716
717 if (!priv->oldlink) {
718 new_state = 1;
719 priv->oldlink = 1;
720 }
721 } else if (priv->oldlink) {
722 new_state = 1;
723 priv->oldlink = 0;
724 priv->speed = 0;
725 priv->oldduplex = -1;
726 }
727
728 if (new_state && netif_msg_link(priv))
729 phy_print_status(phydev);
730
731 /* At this stage, it could be needed to setup the EEE or adjust some
732 * MAC related HW registers.
733 */
734 priv->eee_enabled = stmmac_eee_init(priv);
735
736 spin_unlock_irqrestore(&priv->lock, flags);
737 }
738
739 /**
740 * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
741 * @priv: driver private structure
742 * Description: this is to verify if the HW supports the PCS.
743 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
744 * configured for the TBI, RTBI, or SGMII PHY interface.
745 */
746 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
747 {
748 int interface = priv->plat->interface;
749
750 if (priv->dma_cap.pcs) {
751 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
752 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
753 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
754 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
755 pr_debug("STMMAC: PCS RGMII support enable\n");
756 priv->pcs = STMMAC_PCS_RGMII;
757 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
758 pr_debug("STMMAC: PCS SGMII support enable\n");
759 priv->pcs = STMMAC_PCS_SGMII;
760 }
761 }
762 }
763
764 /**
765 * stmmac_init_phy - PHY initialization
766 * @dev: net device structure
767 * Description: it initializes the driver's PHY state, and attaches the PHY
768 * to the mac driver.
769 * Return value:
770 * 0 on success
771 */
772 static int stmmac_init_phy(struct net_device *dev)
773 {
774 struct stmmac_priv *priv = netdev_priv(dev);
775 struct phy_device *phydev;
776 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
777 char bus_id[MII_BUS_ID_SIZE];
778 int interface = priv->plat->interface;
779 int max_speed = priv->plat->max_speed;
780 priv->oldlink = 0;
781 priv->speed = 0;
782 priv->oldduplex = -1;
783
784 if (priv->plat->phy_bus_name)
785 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
786 priv->plat->phy_bus_name, priv->plat->bus_id);
787 else
788 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
789 priv->plat->bus_id);
790
791 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
792 priv->plat->phy_addr);
793 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
794
795 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
796
797 if (IS_ERR(phydev)) {
798 pr_err("%s: Could not attach to PHY\n", dev->name);
799 return PTR_ERR(phydev);
800 }
801
802 /* Stop Advertising 1000BASE Capability if interface is not GMII */
803 if ((interface == PHY_INTERFACE_MODE_MII) ||
804 (interface == PHY_INTERFACE_MODE_RMII) ||
805 (max_speed < 1000 && max_speed > 0))
806 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
807 SUPPORTED_1000baseT_Full);
808
809 /*
810 * Broken HW is sometimes missing the pull-up resistor on the
811 * MDIO line, which results in reads to non-existent devices returning
812 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
813 * device as well.
814 * Note: phydev->phy_id is the result of reading the UID PHY registers.
815 */
816 if (phydev->phy_id == 0) {
817 phy_disconnect(phydev);
818 return -ENODEV;
819 }
820 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
821 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
822
823 priv->phydev = phydev;
824
825 return 0;
826 }
827
828 /**
829 * stmmac_display_ring: display ring
830 * @head: pointer to the head of the ring passed.
831 * @size: size of the ring.
832 * @extend_desc: to verify if extended descriptors are used.
833 * Description: display the control/status and buffer descriptors.
834 */
835 static void stmmac_display_ring(void *head, int size, int extend_desc)
836 {
837 int i;
838 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
839 struct dma_desc *p = (struct dma_desc *)head;
840
841 for (i = 0; i < size; i++) {
842 u64 x;
843 if (extend_desc) {
844 x = *(u64 *) ep;
845 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
846 i, (unsigned int)virt_to_phys(ep),
847 (unsigned int)x, (unsigned int)(x >> 32),
848 ep->basic.des2, ep->basic.des3);
849 ep++;
850 } else {
851 x = *(u64 *) p;
852 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
853 i, (unsigned int)virt_to_phys(p),
854 (unsigned int)x, (unsigned int)(x >> 32),
855 p->des2, p->des3);
856 p++;
857 }
858 pr_info("\n");
859 }
860 }
861
862 static void stmmac_display_rings(struct stmmac_priv *priv)
863 {
864 unsigned int txsize = priv->dma_tx_size;
865 unsigned int rxsize = priv->dma_rx_size;
866
867 if (priv->extend_desc) {
868 pr_info("Extended RX descriptor ring:\n");
869 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
870 pr_info("Extended TX descriptor ring:\n");
871 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
872 } else {
873 pr_info("RX descriptor ring:\n");
874 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
875 pr_info("TX descriptor ring:\n");
876 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
877 }
878 }
879
880 static int stmmac_set_bfsize(int mtu, int bufsize)
881 {
882 int ret = bufsize;
883
884 if (mtu >= BUF_SIZE_4KiB)
885 ret = BUF_SIZE_8KiB;
886 else if (mtu >= BUF_SIZE_2KiB)
887 ret = BUF_SIZE_4KiB;
888 else if (mtu >= DMA_BUFFER_SIZE)
889 ret = BUF_SIZE_2KiB;
890 else
891 ret = DMA_BUFFER_SIZE;
892
893 return ret;
894 }
895
896 /**
897 * stmmac_clear_descriptors: clear descriptors
898 * @priv: driver private structure
899 * Description: this function is called to clear the tx and rx descriptors
900 * in case of both basic and extended descriptors are used.
901 */
902 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
903 {
904 int i;
905 unsigned int txsize = priv->dma_tx_size;
906 unsigned int rxsize = priv->dma_rx_size;
907
908 /* Clear the Rx/Tx descriptors */
909 for (i = 0; i < rxsize; i++)
910 if (priv->extend_desc)
911 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
912 priv->use_riwt, priv->mode,
913 (i == rxsize - 1));
914 else
915 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
916 priv->use_riwt, priv->mode,
917 (i == rxsize - 1));
918 for (i = 0; i < txsize; i++)
919 if (priv->extend_desc)
920 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
921 priv->mode,
922 (i == txsize - 1));
923 else
924 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
925 priv->mode,
926 (i == txsize - 1));
927 }
928
929 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
930 int i)
931 {
932 struct sk_buff *skb;
933
934 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
935 GFP_KERNEL);
936 if (!skb) {
937 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
938 return -ENOMEM;
939 }
940 skb_reserve(skb, NET_IP_ALIGN);
941 priv->rx_skbuff[i] = skb;
942 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
943 priv->dma_buf_sz,
944 DMA_FROM_DEVICE);
945 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
946 pr_err("%s: DMA mapping error\n", __func__);
947 dev_kfree_skb_any(skb);
948 return -EINVAL;
949 }
950
951 p->des2 = priv->rx_skbuff_dma[i];
952
953 if ((priv->mode == STMMAC_RING_MODE) &&
954 (priv->dma_buf_sz == BUF_SIZE_16KiB))
955 priv->hw->ring->init_desc3(p);
956
957 return 0;
958 }
959
960 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
961 {
962 if (priv->rx_skbuff[i]) {
963 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
964 priv->dma_buf_sz, DMA_FROM_DEVICE);
965 dev_kfree_skb_any(priv->rx_skbuff[i]);
966 }
967 priv->rx_skbuff[i] = NULL;
968 }
969
970 /**
971 * init_dma_desc_rings - init the RX/TX descriptor rings
972 * @dev: net device structure
973 * Description: this function initializes the DMA RX/TX descriptors
974 * and allocates the socket buffers. It suppors the chained and ring
975 * modes.
976 */
977 static int init_dma_desc_rings(struct net_device *dev)
978 {
979 int i;
980 struct stmmac_priv *priv = netdev_priv(dev);
981 unsigned int txsize = priv->dma_tx_size;
982 unsigned int rxsize = priv->dma_rx_size;
983 unsigned int bfsize = 0;
984 int ret = -ENOMEM;
985
986 /* Set the max buffer size according to the DESC mode
987 * and the MTU. Note that RING mode allows 16KiB bsize.
988 */
989 if (priv->mode == STMMAC_RING_MODE)
990 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
991
992 if (bfsize < BUF_SIZE_16KiB)
993 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
994
995 if (netif_msg_probe(priv))
996 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
997 txsize, rxsize, bfsize);
998
999 if (netif_msg_probe(priv)) {
1000 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1001 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1002
1003 /* RX INITIALIZATION */
1004 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1005 }
1006 for (i = 0; i < rxsize; i++) {
1007 struct dma_desc *p;
1008 if (priv->extend_desc)
1009 p = &((priv->dma_erx + i)->basic);
1010 else
1011 p = priv->dma_rx + i;
1012
1013 ret = stmmac_init_rx_buffers(priv, p, i);
1014 if (ret)
1015 goto err_init_rx_buffers;
1016
1017 if (netif_msg_probe(priv))
1018 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1019 priv->rx_skbuff[i]->data,
1020 (unsigned int)priv->rx_skbuff_dma[i]);
1021 }
1022 priv->cur_rx = 0;
1023 priv->dirty_rx = (unsigned int)(i - rxsize);
1024 priv->dma_buf_sz = bfsize;
1025 buf_sz = bfsize;
1026
1027 /* Setup the chained descriptor addresses */
1028 if (priv->mode == STMMAC_CHAIN_MODE) {
1029 if (priv->extend_desc) {
1030 priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1031 rxsize, 1);
1032 priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1033 txsize, 1);
1034 } else {
1035 priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1036 rxsize, 0);
1037 priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1038 txsize, 0);
1039 }
1040 }
1041
1042 /* TX INITIALIZATION */
1043 for (i = 0; i < txsize; i++) {
1044 struct dma_desc *p;
1045 if (priv->extend_desc)
1046 p = &((priv->dma_etx + i)->basic);
1047 else
1048 p = priv->dma_tx + i;
1049 p->des2 = 0;
1050 priv->tx_skbuff_dma[i] = 0;
1051 priv->tx_skbuff[i] = NULL;
1052 }
1053
1054 priv->dirty_tx = 0;
1055 priv->cur_tx = 0;
1056
1057 stmmac_clear_descriptors(priv);
1058
1059 if (netif_msg_hw(priv))
1060 stmmac_display_rings(priv);
1061
1062 return 0;
1063 err_init_rx_buffers:
1064 while (--i >= 0)
1065 stmmac_free_rx_buffers(priv, i);
1066 return ret;
1067 }
1068
1069 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1070 {
1071 int i;
1072
1073 for (i = 0; i < priv->dma_rx_size; i++)
1074 stmmac_free_rx_buffers(priv, i);
1075 }
1076
1077 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1078 {
1079 int i;
1080
1081 for (i = 0; i < priv->dma_tx_size; i++) {
1082 if (priv->tx_skbuff[i] != NULL) {
1083 struct dma_desc *p;
1084 if (priv->extend_desc)
1085 p = &((priv->dma_etx + i)->basic);
1086 else
1087 p = priv->dma_tx + i;
1088
1089 if (priv->tx_skbuff_dma[i])
1090 dma_unmap_single(priv->device,
1091 priv->tx_skbuff_dma[i],
1092 priv->hw->desc->get_tx_len(p),
1093 DMA_TO_DEVICE);
1094 dev_kfree_skb_any(priv->tx_skbuff[i]);
1095 priv->tx_skbuff[i] = NULL;
1096 priv->tx_skbuff_dma[i] = 0;
1097 }
1098 }
1099 }
1100
1101 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1102 {
1103 unsigned int txsize = priv->dma_tx_size;
1104 unsigned int rxsize = priv->dma_rx_size;
1105 int ret = -ENOMEM;
1106
1107 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1108 GFP_KERNEL);
1109 if (!priv->rx_skbuff_dma)
1110 return -ENOMEM;
1111
1112 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1113 GFP_KERNEL);
1114 if (!priv->rx_skbuff)
1115 goto err_rx_skbuff;
1116
1117 priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1118 GFP_KERNEL);
1119 if (!priv->tx_skbuff_dma)
1120 goto err_tx_skbuff_dma;
1121
1122 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1123 GFP_KERNEL);
1124 if (!priv->tx_skbuff)
1125 goto err_tx_skbuff;
1126
1127 if (priv->extend_desc) {
1128 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1129 sizeof(struct
1130 dma_extended_desc),
1131 &priv->dma_rx_phy,
1132 GFP_KERNEL);
1133 if (!priv->dma_erx)
1134 goto err_dma;
1135
1136 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1137 sizeof(struct
1138 dma_extended_desc),
1139 &priv->dma_tx_phy,
1140 GFP_KERNEL);
1141 if (!priv->dma_etx) {
1142 dma_free_coherent(priv->device, priv->dma_rx_size *
1143 sizeof(struct dma_extended_desc),
1144 priv->dma_erx, priv->dma_rx_phy);
1145 goto err_dma;
1146 }
1147 } else {
1148 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1149 sizeof(struct dma_desc),
1150 &priv->dma_rx_phy,
1151 GFP_KERNEL);
1152 if (!priv->dma_rx)
1153 goto err_dma;
1154
1155 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1156 sizeof(struct dma_desc),
1157 &priv->dma_tx_phy,
1158 GFP_KERNEL);
1159 if (!priv->dma_tx) {
1160 dma_free_coherent(priv->device, priv->dma_rx_size *
1161 sizeof(struct dma_desc),
1162 priv->dma_rx, priv->dma_rx_phy);
1163 goto err_dma;
1164 }
1165 }
1166
1167 return 0;
1168
1169 err_dma:
1170 kfree(priv->tx_skbuff);
1171 err_tx_skbuff:
1172 kfree(priv->tx_skbuff_dma);
1173 err_tx_skbuff_dma:
1174 kfree(priv->rx_skbuff);
1175 err_rx_skbuff:
1176 kfree(priv->rx_skbuff_dma);
1177 return ret;
1178 }
1179
1180 static void free_dma_desc_resources(struct stmmac_priv *priv)
1181 {
1182 /* Release the DMA TX/RX socket buffers */
1183 dma_free_rx_skbufs(priv);
1184 dma_free_tx_skbufs(priv);
1185
1186 /* Free DMA regions of consistent memory previously allocated */
1187 if (!priv->extend_desc) {
1188 dma_free_coherent(priv->device,
1189 priv->dma_tx_size * sizeof(struct dma_desc),
1190 priv->dma_tx, priv->dma_tx_phy);
1191 dma_free_coherent(priv->device,
1192 priv->dma_rx_size * sizeof(struct dma_desc),
1193 priv->dma_rx, priv->dma_rx_phy);
1194 } else {
1195 dma_free_coherent(priv->device, priv->dma_tx_size *
1196 sizeof(struct dma_extended_desc),
1197 priv->dma_etx, priv->dma_tx_phy);
1198 dma_free_coherent(priv->device, priv->dma_rx_size *
1199 sizeof(struct dma_extended_desc),
1200 priv->dma_erx, priv->dma_rx_phy);
1201 }
1202 kfree(priv->rx_skbuff_dma);
1203 kfree(priv->rx_skbuff);
1204 kfree(priv->tx_skbuff_dma);
1205 kfree(priv->tx_skbuff);
1206 }
1207
1208 /**
1209 * stmmac_dma_operation_mode - HW DMA operation mode
1210 * @priv: driver private structure
1211 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
1212 * or Store-And-Forward capability.
1213 */
1214 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1215 {
1216 if (priv->plat->force_thresh_dma_mode)
1217 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1218 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1219 /*
1220 * In case of GMAC, SF mode can be enabled
1221 * to perform the TX COE in HW. This depends on:
1222 * 1) TX COE if actually supported
1223 * 2) There is no bugged Jumbo frame support
1224 * that needs to not insert csum in the TDES.
1225 */
1226 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1227 tc = SF_DMA_MODE;
1228 } else
1229 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1230 }
1231
1232 /**
1233 * stmmac_tx_clean:
1234 * @priv: driver private structure
1235 * Description: it reclaims resources after transmission completes.
1236 */
1237 static void stmmac_tx_clean(struct stmmac_priv *priv)
1238 {
1239 unsigned int txsize = priv->dma_tx_size;
1240
1241 spin_lock(&priv->tx_lock);
1242
1243 priv->xstats.tx_clean++;
1244
1245 while (priv->dirty_tx != priv->cur_tx) {
1246 int last;
1247 unsigned int entry = priv->dirty_tx % txsize;
1248 struct sk_buff *skb = priv->tx_skbuff[entry];
1249 struct dma_desc *p;
1250
1251 if (priv->extend_desc)
1252 p = (struct dma_desc *)(priv->dma_etx + entry);
1253 else
1254 p = priv->dma_tx + entry;
1255
1256 /* Check if the descriptor is owned by the DMA. */
1257 if (priv->hw->desc->get_tx_owner(p))
1258 break;
1259
1260 /* Verify tx error by looking at the last segment. */
1261 last = priv->hw->desc->get_tx_ls(p);
1262 if (likely(last)) {
1263 int tx_error =
1264 priv->hw->desc->tx_status(&priv->dev->stats,
1265 &priv->xstats, p,
1266 priv->ioaddr);
1267 if (likely(tx_error == 0)) {
1268 priv->dev->stats.tx_packets++;
1269 priv->xstats.tx_pkt_n++;
1270 } else
1271 priv->dev->stats.tx_errors++;
1272
1273 stmmac_get_tx_hwtstamp(priv, entry, skb);
1274 }
1275 if (netif_msg_tx_done(priv))
1276 pr_debug("%s: curr %d, dirty %d\n", __func__,
1277 priv->cur_tx, priv->dirty_tx);
1278
1279 if (likely(priv->tx_skbuff_dma[entry])) {
1280 dma_unmap_single(priv->device,
1281 priv->tx_skbuff_dma[entry],
1282 priv->hw->desc->get_tx_len(p),
1283 DMA_TO_DEVICE);
1284 priv->tx_skbuff_dma[entry] = 0;
1285 }
1286 priv->hw->ring->clean_desc3(priv, p);
1287
1288 if (likely(skb != NULL)) {
1289 dev_kfree_skb(skb);
1290 priv->tx_skbuff[entry] = NULL;
1291 }
1292
1293 priv->hw->desc->release_tx_desc(p, priv->mode);
1294
1295 priv->dirty_tx++;
1296 }
1297 if (unlikely(netif_queue_stopped(priv->dev) &&
1298 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1299 netif_tx_lock(priv->dev);
1300 if (netif_queue_stopped(priv->dev) &&
1301 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1302 if (netif_msg_tx_done(priv))
1303 pr_debug("%s: restart transmit\n", __func__);
1304 netif_wake_queue(priv->dev);
1305 }
1306 netif_tx_unlock(priv->dev);
1307 }
1308
1309 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1310 stmmac_enable_eee_mode(priv);
1311 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1312 }
1313 spin_unlock(&priv->tx_lock);
1314 }
1315
1316 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1317 {
1318 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1319 }
1320
1321 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1322 {
1323 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1324 }
1325
1326 /**
1327 * stmmac_tx_err: irq tx error mng function
1328 * @priv: driver private structure
1329 * Description: it cleans the descriptors and restarts the transmission
1330 * in case of errors.
1331 */
1332 static void stmmac_tx_err(struct stmmac_priv *priv)
1333 {
1334 int i;
1335 int txsize = priv->dma_tx_size;
1336 netif_stop_queue(priv->dev);
1337
1338 priv->hw->dma->stop_tx(priv->ioaddr);
1339 dma_free_tx_skbufs(priv);
1340 for (i = 0; i < txsize; i++)
1341 if (priv->extend_desc)
1342 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1343 priv->mode,
1344 (i == txsize - 1));
1345 else
1346 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1347 priv->mode,
1348 (i == txsize - 1));
1349 priv->dirty_tx = 0;
1350 priv->cur_tx = 0;
1351 priv->hw->dma->start_tx(priv->ioaddr);
1352
1353 priv->dev->stats.tx_errors++;
1354 netif_wake_queue(priv->dev);
1355 }
1356
1357 /**
1358 * stmmac_dma_interrupt: DMA ISR
1359 * @priv: driver private structure
1360 * Description: this is the DMA ISR. It is called by the main ISR.
1361 * It calls the dwmac dma routine to understand which type of interrupt
1362 * happened. In case of there is a Normal interrupt and either TX or RX
1363 * interrupt happened so the NAPI is scheduled.
1364 */
1365 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1366 {
1367 int status;
1368
1369 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1370 if (likely((status & handle_rx)) || (status & handle_tx)) {
1371 if (likely(napi_schedule_prep(&priv->napi))) {
1372 stmmac_disable_dma_irq(priv);
1373 __napi_schedule(&priv->napi);
1374 }
1375 }
1376 if (unlikely(status & tx_hard_error_bump_tc)) {
1377 /* Try to bump up the dma threshold on this failure */
1378 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1379 tc += 64;
1380 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1381 priv->xstats.threshold = tc;
1382 }
1383 } else if (unlikely(status == tx_hard_error))
1384 stmmac_tx_err(priv);
1385 }
1386
1387 /**
1388 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1389 * @priv: driver private structure
1390 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1391 */
1392 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1393 {
1394 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1395 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1396
1397 dwmac_mmc_intr_all_mask(priv->ioaddr);
1398
1399 if (priv->dma_cap.rmon) {
1400 dwmac_mmc_ctrl(priv->ioaddr, mode);
1401 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1402 } else
1403 pr_info(" No MAC Management Counters available\n");
1404 }
1405
1406 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1407 {
1408 u32 hwid = priv->hw->synopsys_uid;
1409
1410 /* Check Synopsys Id (not available on old chips) */
1411 if (likely(hwid)) {
1412 u32 uid = ((hwid & 0x0000ff00) >> 8);
1413 u32 synid = (hwid & 0x000000ff);
1414
1415 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1416 uid, synid);
1417
1418 return synid;
1419 }
1420 return 0;
1421 }
1422
1423 /**
1424 * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1425 * @priv: driver private structure
1426 * Description: select the Enhanced/Alternate or Normal descriptors.
1427 * In case of Enhanced/Alternate, it looks at the extended descriptors are
1428 * supported by the HW cap. register.
1429 */
1430 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1431 {
1432 if (priv->plat->enh_desc) {
1433 pr_info(" Enhanced/Alternate descriptors\n");
1434
1435 /* GMAC older than 3.50 has no extended descriptors */
1436 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1437 pr_info("\tEnabled extended descriptors\n");
1438 priv->extend_desc = 1;
1439 } else
1440 pr_warn("Extended descriptors not supported\n");
1441
1442 priv->hw->desc = &enh_desc_ops;
1443 } else {
1444 pr_info(" Normal descriptors\n");
1445 priv->hw->desc = &ndesc_ops;
1446 }
1447 }
1448
1449 /**
1450 * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1451 * @priv: driver private structure
1452 * Description:
1453 * new GMAC chip generations have a new register to indicate the
1454 * presence of the optional feature/functions.
1455 * This can be also used to override the value passed through the
1456 * platform and necessary for old MAC10/100 and GMAC chips.
1457 */
1458 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1459 {
1460 u32 hw_cap = 0;
1461
1462 if (priv->hw->dma->get_hw_feature) {
1463 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1464
1465 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1466 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1467 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1468 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1469 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1470 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1471 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1472 priv->dma_cap.pmt_remote_wake_up =
1473 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1474 priv->dma_cap.pmt_magic_frame =
1475 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1476 /* MMC */
1477 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1478 /* IEEE 1588-2002 */
1479 priv->dma_cap.time_stamp =
1480 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1481 /* IEEE 1588-2008 */
1482 priv->dma_cap.atime_stamp =
1483 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1484 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1485 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1486 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1487 /* TX and RX csum */
1488 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1489 priv->dma_cap.rx_coe_type1 =
1490 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1491 priv->dma_cap.rx_coe_type2 =
1492 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1493 priv->dma_cap.rxfifo_over_2048 =
1494 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1495 /* TX and RX number of channels */
1496 priv->dma_cap.number_rx_channel =
1497 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1498 priv->dma_cap.number_tx_channel =
1499 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1500 /* Alternate (enhanced) DESC mode */
1501 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1502 }
1503
1504 return hw_cap;
1505 }
1506
1507 /**
1508 * stmmac_check_ether_addr: check if the MAC addr is valid
1509 * @priv: driver private structure
1510 * Description:
1511 * it is to verify if the MAC address is valid, in case of failures it
1512 * generates a random MAC address
1513 */
1514 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1515 {
1516 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1517 priv->hw->mac->get_umac_addr((void __iomem *)
1518 priv->dev->base_addr,
1519 priv->dev->dev_addr, 0);
1520 if (!is_valid_ether_addr(priv->dev->dev_addr))
1521 eth_hw_addr_random(priv->dev);
1522 }
1523 pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1524 priv->dev->dev_addr);
1525 }
1526
1527 /**
1528 * stmmac_init_dma_engine: DMA init.
1529 * @priv: driver private structure
1530 * Description:
1531 * It inits the DMA invoking the specific MAC/GMAC callback.
1532 * Some DMA parameters can be passed from the platform;
1533 * in case of these are not passed a default is kept for the MAC or GMAC.
1534 */
1535 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1536 {
1537 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1538 int mixed_burst = 0;
1539 int atds = 0;
1540
1541 if (priv->plat->dma_cfg) {
1542 pbl = priv->plat->dma_cfg->pbl;
1543 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1544 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1545 burst_len = priv->plat->dma_cfg->burst_len;
1546 }
1547
1548 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1549 atds = 1;
1550
1551 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1552 burst_len, priv->dma_tx_phy,
1553 priv->dma_rx_phy, atds);
1554 }
1555
1556 /**
1557 * stmmac_tx_timer: mitigation sw timer for tx.
1558 * @data: data pointer
1559 * Description:
1560 * This is the timer handler to directly invoke the stmmac_tx_clean.
1561 */
1562 static void stmmac_tx_timer(unsigned long data)
1563 {
1564 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1565
1566 stmmac_tx_clean(priv);
1567 }
1568
1569 /**
1570 * stmmac_init_tx_coalesce: init tx mitigation options.
1571 * @priv: driver private structure
1572 * Description:
1573 * This inits the transmit coalesce parameters: i.e. timer rate,
1574 * timer handler and default threshold used for enabling the
1575 * interrupt on completion bit.
1576 */
1577 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1578 {
1579 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1580 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1581 init_timer(&priv->txtimer);
1582 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1583 priv->txtimer.data = (unsigned long)priv;
1584 priv->txtimer.function = stmmac_tx_timer;
1585 add_timer(&priv->txtimer);
1586 }
1587
1588 /**
1589 * stmmac_hw_setup: setup mac in a usable state.
1590 * @dev : pointer to the device structure.
1591 * Description:
1592 * This function sets up the ip in a usable state.
1593 * Return value:
1594 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1595 * file on failure.
1596 */
1597 static int stmmac_hw_setup(struct net_device *dev)
1598 {
1599 struct stmmac_priv *priv = netdev_priv(dev);
1600 int ret;
1601
1602 ret = init_dma_desc_rings(dev);
1603 if (ret < 0) {
1604 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1605 return ret;
1606 }
1607 /* DMA initialization and SW reset */
1608 ret = stmmac_init_dma_engine(priv);
1609 if (ret < 0) {
1610 pr_err("%s: DMA engine initialization failed\n", __func__);
1611 return ret;
1612 }
1613
1614 /* Copy the MAC addr into the HW */
1615 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1616
1617 /* If required, perform hw setup of the bus. */
1618 if (priv->plat->bus_setup)
1619 priv->plat->bus_setup(priv->ioaddr);
1620
1621 /* Initialize the MAC Core */
1622 priv->hw->mac->core_init(priv->ioaddr);
1623
1624 /* Enable the MAC Rx/Tx */
1625 stmmac_set_mac(priv->ioaddr, true);
1626
1627 /* Set the HW DMA mode and the COE */
1628 stmmac_dma_operation_mode(priv);
1629
1630 stmmac_mmc_setup(priv);
1631
1632 ret = stmmac_init_ptp(priv);
1633 if (ret)
1634 pr_warn("%s: failed PTP initialisation\n", __func__);
1635
1636 #ifdef CONFIG_STMMAC_DEBUG_FS
1637 ret = stmmac_init_fs(dev);
1638 if (ret < 0)
1639 pr_warn("%s: failed debugFS registration\n", __func__);
1640 #endif
1641 /* Start the ball rolling... */
1642 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1643 priv->hw->dma->start_tx(priv->ioaddr);
1644 priv->hw->dma->start_rx(priv->ioaddr);
1645
1646 /* Dump DMA/MAC registers */
1647 if (netif_msg_hw(priv)) {
1648 priv->hw->mac->dump_regs(priv->ioaddr);
1649 priv->hw->dma->dump_regs(priv->ioaddr);
1650 }
1651 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1652
1653 priv->eee_enabled = stmmac_eee_init(priv);
1654
1655 stmmac_init_tx_coalesce(priv);
1656
1657 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1658 priv->rx_riwt = MAX_DMA_RIWT;
1659 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1660 }
1661
1662 if (priv->pcs && priv->hw->mac->ctrl_ane)
1663 priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1664
1665 return 0;
1666 }
1667
1668 /**
1669 * stmmac_open - open entry point of the driver
1670 * @dev : pointer to the device structure.
1671 * Description:
1672 * This function is the open entry point of the driver.
1673 * Return value:
1674 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1675 * file on failure.
1676 */
1677 static int stmmac_open(struct net_device *dev)
1678 {
1679 struct stmmac_priv *priv = netdev_priv(dev);
1680 int ret;
1681
1682 clk_prepare_enable(priv->stmmac_clk);
1683
1684 stmmac_check_ether_addr(priv);
1685
1686 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1687 priv->pcs != STMMAC_PCS_RTBI) {
1688 ret = stmmac_init_phy(dev);
1689 if (ret) {
1690 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1691 __func__, ret);
1692 goto phy_error;
1693 }
1694 }
1695
1696 /* Extra statistics */
1697 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1698 priv->xstats.threshold = tc;
1699
1700 /* Create and initialize the TX/RX descriptors chains. */
1701 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1702 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1703 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1704
1705 alloc_dma_desc_resources(priv);
1706 if (ret < 0) {
1707 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1708 goto dma_desc_error;
1709 }
1710
1711 ret = stmmac_hw_setup(dev);
1712 if (ret < 0) {
1713 pr_err("%s: Hw setup failed\n", __func__);
1714 goto init_error;
1715 }
1716
1717 if (priv->phydev)
1718 phy_start(priv->phydev);
1719
1720 /* Request the IRQ lines */
1721 ret = request_irq(dev->irq, stmmac_interrupt,
1722 IRQF_SHARED, dev->name, dev);
1723 if (unlikely(ret < 0)) {
1724 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1725 __func__, dev->irq, ret);
1726 goto init_error;
1727 }
1728
1729 /* Request the Wake IRQ in case of another line is used for WoL */
1730 if (priv->wol_irq != dev->irq) {
1731 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1732 IRQF_SHARED, dev->name, dev);
1733 if (unlikely(ret < 0)) {
1734 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1735 __func__, priv->wol_irq, ret);
1736 goto wolirq_error;
1737 }
1738 }
1739
1740 /* Request the IRQ lines */
1741 if (priv->lpi_irq != -ENXIO) {
1742 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1743 dev->name, dev);
1744 if (unlikely(ret < 0)) {
1745 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1746 __func__, priv->lpi_irq, ret);
1747 goto lpiirq_error;
1748 }
1749 }
1750
1751 napi_enable(&priv->napi);
1752 netif_start_queue(dev);
1753
1754 return 0;
1755
1756 lpiirq_error:
1757 if (priv->wol_irq != dev->irq)
1758 free_irq(priv->wol_irq, dev);
1759 wolirq_error:
1760 free_irq(dev->irq, dev);
1761
1762 init_error:
1763 free_dma_desc_resources(priv);
1764 dma_desc_error:
1765 if (priv->phydev)
1766 phy_disconnect(priv->phydev);
1767 phy_error:
1768 clk_disable_unprepare(priv->stmmac_clk);
1769
1770 return ret;
1771 }
1772
1773 /**
1774 * stmmac_release - close entry point of the driver
1775 * @dev : device pointer.
1776 * Description:
1777 * This is the stop entry point of the driver.
1778 */
1779 static int stmmac_release(struct net_device *dev)
1780 {
1781 struct stmmac_priv *priv = netdev_priv(dev);
1782
1783 if (priv->eee_enabled)
1784 del_timer_sync(&priv->eee_ctrl_timer);
1785
1786 /* Stop and disconnect the PHY */
1787 if (priv->phydev) {
1788 phy_stop(priv->phydev);
1789 phy_disconnect(priv->phydev);
1790 priv->phydev = NULL;
1791 }
1792
1793 netif_stop_queue(dev);
1794
1795 napi_disable(&priv->napi);
1796
1797 del_timer_sync(&priv->txtimer);
1798
1799 /* Free the IRQ lines */
1800 free_irq(dev->irq, dev);
1801 if (priv->wol_irq != dev->irq)
1802 free_irq(priv->wol_irq, dev);
1803 if (priv->lpi_irq != -ENXIO)
1804 free_irq(priv->lpi_irq, dev);
1805
1806 /* Stop TX/RX DMA and clear the descriptors */
1807 priv->hw->dma->stop_tx(priv->ioaddr);
1808 priv->hw->dma->stop_rx(priv->ioaddr);
1809
1810 /* Release and free the Rx/Tx resources */
1811 free_dma_desc_resources(priv);
1812
1813 /* Disable the MAC Rx/Tx */
1814 stmmac_set_mac(priv->ioaddr, false);
1815
1816 netif_carrier_off(dev);
1817
1818 #ifdef CONFIG_STMMAC_DEBUG_FS
1819 stmmac_exit_fs();
1820 #endif
1821 clk_disable_unprepare(priv->stmmac_clk);
1822
1823 stmmac_release_ptp(priv);
1824
1825 return 0;
1826 }
1827
1828 /**
1829 * stmmac_xmit: Tx entry point of the driver
1830 * @skb : the socket buffer
1831 * @dev : device pointer
1832 * Description : this is the tx entry point of the driver.
1833 * It programs the chain or the ring and supports oversized frames
1834 * and SG feature.
1835 */
1836 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1837 {
1838 struct stmmac_priv *priv = netdev_priv(dev);
1839 unsigned int txsize = priv->dma_tx_size;
1840 unsigned int entry;
1841 int i, csum_insertion = 0, is_jumbo = 0;
1842 int nfrags = skb_shinfo(skb)->nr_frags;
1843 struct dma_desc *desc, *first;
1844 unsigned int nopaged_len = skb_headlen(skb);
1845
1846 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1847 if (!netif_queue_stopped(dev)) {
1848 netif_stop_queue(dev);
1849 /* This is a hard error, log it. */
1850 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1851 }
1852 return NETDEV_TX_BUSY;
1853 }
1854
1855 spin_lock(&priv->tx_lock);
1856
1857 if (priv->tx_path_in_lpi_mode)
1858 stmmac_disable_eee_mode(priv);
1859
1860 entry = priv->cur_tx % txsize;
1861
1862 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1863
1864 if (priv->extend_desc)
1865 desc = (struct dma_desc *)(priv->dma_etx + entry);
1866 else
1867 desc = priv->dma_tx + entry;
1868
1869 first = desc;
1870
1871 priv->tx_skbuff[entry] = skb;
1872
1873 /* To program the descriptors according to the size of the frame */
1874 if (priv->mode == STMMAC_RING_MODE) {
1875 is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1876 priv->plat->enh_desc);
1877 if (unlikely(is_jumbo))
1878 entry = priv->hw->ring->jumbo_frm(priv, skb,
1879 csum_insertion);
1880 } else {
1881 is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1882 priv->plat->enh_desc);
1883 if (unlikely(is_jumbo))
1884 entry = priv->hw->chain->jumbo_frm(priv, skb,
1885 csum_insertion);
1886 }
1887 if (likely(!is_jumbo)) {
1888 desc->des2 = dma_map_single(priv->device, skb->data,
1889 nopaged_len, DMA_TO_DEVICE);
1890 priv->tx_skbuff_dma[entry] = desc->des2;
1891 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1892 csum_insertion, priv->mode);
1893 } else
1894 desc = first;
1895
1896 for (i = 0; i < nfrags; i++) {
1897 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1898 int len = skb_frag_size(frag);
1899
1900 entry = (++priv->cur_tx) % txsize;
1901 if (priv->extend_desc)
1902 desc = (struct dma_desc *)(priv->dma_etx + entry);
1903 else
1904 desc = priv->dma_tx + entry;
1905
1906 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1907 DMA_TO_DEVICE);
1908 priv->tx_skbuff_dma[entry] = desc->des2;
1909 priv->tx_skbuff[entry] = NULL;
1910 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1911 priv->mode);
1912 wmb();
1913 priv->hw->desc->set_tx_owner(desc);
1914 wmb();
1915 }
1916
1917 /* Finalize the latest segment. */
1918 priv->hw->desc->close_tx_desc(desc);
1919
1920 wmb();
1921 /* According to the coalesce parameter the IC bit for the latest
1922 * segment could be reset and the timer re-started to invoke the
1923 * stmmac_tx function. This approach takes care about the fragments.
1924 */
1925 priv->tx_count_frames += nfrags + 1;
1926 if (priv->tx_coal_frames > priv->tx_count_frames) {
1927 priv->hw->desc->clear_tx_ic(desc);
1928 priv->xstats.tx_reset_ic_bit++;
1929 mod_timer(&priv->txtimer,
1930 STMMAC_COAL_TIMER(priv->tx_coal_timer));
1931 } else
1932 priv->tx_count_frames = 0;
1933
1934 /* To avoid raise condition */
1935 priv->hw->desc->set_tx_owner(first);
1936 wmb();
1937
1938 priv->cur_tx++;
1939
1940 if (netif_msg_pktdata(priv)) {
1941 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1942 __func__, (priv->cur_tx % txsize),
1943 (priv->dirty_tx % txsize), entry, first, nfrags);
1944
1945 if (priv->extend_desc)
1946 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1947 else
1948 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1949
1950 pr_debug(">>> frame to be transmitted: ");
1951 print_pkt(skb->data, skb->len);
1952 }
1953 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1954 if (netif_msg_hw(priv))
1955 pr_debug("%s: stop transmitted packets\n", __func__);
1956 netif_stop_queue(dev);
1957 }
1958
1959 dev->stats.tx_bytes += skb->len;
1960
1961 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1962 priv->hwts_tx_en)) {
1963 /* declare that device is doing timestamping */
1964 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1965 priv->hw->desc->enable_tx_timestamp(first);
1966 }
1967
1968 if (!priv->hwts_tx_en)
1969 skb_tx_timestamp(skb);
1970
1971 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1972
1973 spin_unlock(&priv->tx_lock);
1974
1975 return NETDEV_TX_OK;
1976 }
1977
1978 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
1979 {
1980 struct ethhdr *ehdr;
1981 u16 vlanid;
1982
1983 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
1984 NETIF_F_HW_VLAN_CTAG_RX &&
1985 !__vlan_get_tag(skb, &vlanid)) {
1986 /* pop the vlan tag */
1987 ehdr = (struct ethhdr *)skb->data;
1988 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
1989 skb_pull(skb, VLAN_HLEN);
1990 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
1991 }
1992 }
1993
1994
1995 /**
1996 * stmmac_rx_refill: refill used skb preallocated buffers
1997 * @priv: driver private structure
1998 * Description : this is to reallocate the skb for the reception process
1999 * that is based on zero-copy.
2000 */
2001 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2002 {
2003 unsigned int rxsize = priv->dma_rx_size;
2004 int bfsize = priv->dma_buf_sz;
2005
2006 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2007 unsigned int entry = priv->dirty_rx % rxsize;
2008 struct dma_desc *p;
2009
2010 if (priv->extend_desc)
2011 p = (struct dma_desc *)(priv->dma_erx + entry);
2012 else
2013 p = priv->dma_rx + entry;
2014
2015 if (likely(priv->rx_skbuff[entry] == NULL)) {
2016 struct sk_buff *skb;
2017
2018 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2019
2020 if (unlikely(skb == NULL))
2021 break;
2022
2023 priv->rx_skbuff[entry] = skb;
2024 priv->rx_skbuff_dma[entry] =
2025 dma_map_single(priv->device, skb->data, bfsize,
2026 DMA_FROM_DEVICE);
2027
2028 p->des2 = priv->rx_skbuff_dma[entry];
2029
2030 priv->hw->ring->refill_desc3(priv, p);
2031
2032 if (netif_msg_rx_status(priv))
2033 pr_debug("\trefill entry #%d\n", entry);
2034 }
2035 wmb();
2036 priv->hw->desc->set_rx_owner(p);
2037 wmb();
2038 }
2039 }
2040
2041 /**
2042 * stmmac_rx_refill: refill used skb preallocated buffers
2043 * @priv: driver private structure
2044 * @limit: napi bugget.
2045 * Description : this the function called by the napi poll method.
2046 * It gets all the frames inside the ring.
2047 */
2048 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2049 {
2050 unsigned int rxsize = priv->dma_rx_size;
2051 unsigned int entry = priv->cur_rx % rxsize;
2052 unsigned int next_entry;
2053 unsigned int count = 0;
2054 int coe = priv->plat->rx_coe;
2055
2056 if (netif_msg_rx_status(priv)) {
2057 pr_debug("%s: descriptor ring:\n", __func__);
2058 if (priv->extend_desc)
2059 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2060 else
2061 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2062 }
2063 while (count < limit) {
2064 int status;
2065 struct dma_desc *p;
2066
2067 if (priv->extend_desc)
2068 p = (struct dma_desc *)(priv->dma_erx + entry);
2069 else
2070 p = priv->dma_rx + entry;
2071
2072 if (priv->hw->desc->get_rx_owner(p))
2073 break;
2074
2075 count++;
2076
2077 next_entry = (++priv->cur_rx) % rxsize;
2078 if (priv->extend_desc)
2079 prefetch(priv->dma_erx + next_entry);
2080 else
2081 prefetch(priv->dma_rx + next_entry);
2082
2083 /* read the status of the incoming frame */
2084 status = priv->hw->desc->rx_status(&priv->dev->stats,
2085 &priv->xstats, p);
2086 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2087 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2088 &priv->xstats,
2089 priv->dma_erx +
2090 entry);
2091 if (unlikely(status == discard_frame)) {
2092 priv->dev->stats.rx_errors++;
2093 if (priv->hwts_rx_en && !priv->extend_desc) {
2094 /* DESC2 & DESC3 will be overwitten by device
2095 * with timestamp value, hence reinitialize
2096 * them in stmmac_rx_refill() function so that
2097 * device can reuse it.
2098 */
2099 priv->rx_skbuff[entry] = NULL;
2100 dma_unmap_single(priv->device,
2101 priv->rx_skbuff_dma[entry],
2102 priv->dma_buf_sz,
2103 DMA_FROM_DEVICE);
2104 }
2105 } else {
2106 struct sk_buff *skb;
2107 int frame_len;
2108
2109 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2110
2111 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2112 * Type frames (LLC/LLC-SNAP)
2113 */
2114 if (unlikely(status != llc_snap))
2115 frame_len -= ETH_FCS_LEN;
2116
2117 if (netif_msg_rx_status(priv)) {
2118 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2119 p, entry, p->des2);
2120 if (frame_len > ETH_FRAME_LEN)
2121 pr_debug("\tframe size %d, COE: %d\n",
2122 frame_len, status);
2123 }
2124 skb = priv->rx_skbuff[entry];
2125 if (unlikely(!skb)) {
2126 pr_err("%s: Inconsistent Rx descriptor chain\n",
2127 priv->dev->name);
2128 priv->dev->stats.rx_dropped++;
2129 break;
2130 }
2131 prefetch(skb->data - NET_IP_ALIGN);
2132 priv->rx_skbuff[entry] = NULL;
2133
2134 stmmac_get_rx_hwtstamp(priv, entry, skb);
2135
2136 skb_put(skb, frame_len);
2137 dma_unmap_single(priv->device,
2138 priv->rx_skbuff_dma[entry],
2139 priv->dma_buf_sz, DMA_FROM_DEVICE);
2140
2141 if (netif_msg_pktdata(priv)) {
2142 pr_debug("frame received (%dbytes)", frame_len);
2143 print_pkt(skb->data, frame_len);
2144 }
2145
2146 stmmac_rx_vlan(priv->dev, skb);
2147
2148 skb->protocol = eth_type_trans(skb, priv->dev);
2149
2150 if (unlikely(!coe))
2151 skb_checksum_none_assert(skb);
2152 else
2153 skb->ip_summed = CHECKSUM_UNNECESSARY;
2154
2155 napi_gro_receive(&priv->napi, skb);
2156
2157 priv->dev->stats.rx_packets++;
2158 priv->dev->stats.rx_bytes += frame_len;
2159 }
2160 entry = next_entry;
2161 }
2162
2163 stmmac_rx_refill(priv);
2164
2165 priv->xstats.rx_pkt_n += count;
2166
2167 return count;
2168 }
2169
2170 /**
2171 * stmmac_poll - stmmac poll method (NAPI)
2172 * @napi : pointer to the napi structure.
2173 * @budget : maximum number of packets that the current CPU can receive from
2174 * all interfaces.
2175 * Description :
2176 * To look at the incoming frames and clear the tx resources.
2177 */
2178 static int stmmac_poll(struct napi_struct *napi, int budget)
2179 {
2180 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2181 int work_done = 0;
2182
2183 priv->xstats.napi_poll++;
2184 stmmac_tx_clean(priv);
2185
2186 work_done = stmmac_rx(priv, budget);
2187 if (work_done < budget) {
2188 napi_complete(napi);
2189 stmmac_enable_dma_irq(priv);
2190 }
2191 return work_done;
2192 }
2193
2194 /**
2195 * stmmac_tx_timeout
2196 * @dev : Pointer to net device structure
2197 * Description: this function is called when a packet transmission fails to
2198 * complete within a reasonable time. The driver will mark the error in the
2199 * netdev structure and arrange for the device to be reset to a sane state
2200 * in order to transmit a new packet.
2201 */
2202 static void stmmac_tx_timeout(struct net_device *dev)
2203 {
2204 struct stmmac_priv *priv = netdev_priv(dev);
2205
2206 /* Clear Tx resources and restart transmitting again */
2207 stmmac_tx_err(priv);
2208 }
2209
2210 /* Configuration changes (passed on by ifconfig) */
2211 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2212 {
2213 if (dev->flags & IFF_UP) /* can't act on a running interface */
2214 return -EBUSY;
2215
2216 /* Don't allow changing the I/O address */
2217 if (map->base_addr != dev->base_addr) {
2218 pr_warn("%s: can't change I/O address\n", dev->name);
2219 return -EOPNOTSUPP;
2220 }
2221
2222 /* Don't allow changing the IRQ */
2223 if (map->irq != dev->irq) {
2224 pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2225 return -EOPNOTSUPP;
2226 }
2227
2228 return 0;
2229 }
2230
2231 /**
2232 * stmmac_set_rx_mode - entry point for multicast addressing
2233 * @dev : pointer to the device structure
2234 * Description:
2235 * This function is a driver entry point which gets called by the kernel
2236 * whenever multicast addresses must be enabled/disabled.
2237 * Return value:
2238 * void.
2239 */
2240 static void stmmac_set_rx_mode(struct net_device *dev)
2241 {
2242 struct stmmac_priv *priv = netdev_priv(dev);
2243
2244 spin_lock(&priv->lock);
2245 priv->hw->mac->set_filter(dev, priv->synopsys_id);
2246 spin_unlock(&priv->lock);
2247 }
2248
2249 /**
2250 * stmmac_change_mtu - entry point to change MTU size for the device.
2251 * @dev : device pointer.
2252 * @new_mtu : the new MTU size for the device.
2253 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2254 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2255 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2256 * Return value:
2257 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2258 * file on failure.
2259 */
2260 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2261 {
2262 struct stmmac_priv *priv = netdev_priv(dev);
2263 int max_mtu;
2264
2265 if (netif_running(dev)) {
2266 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2267 return -EBUSY;
2268 }
2269
2270 if (priv->plat->enh_desc)
2271 max_mtu = JUMBO_LEN;
2272 else
2273 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2274
2275 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2276 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2277 return -EINVAL;
2278 }
2279
2280 dev->mtu = new_mtu;
2281 netdev_update_features(dev);
2282
2283 return 0;
2284 }
2285
2286 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2287 netdev_features_t features)
2288 {
2289 struct stmmac_priv *priv = netdev_priv(dev);
2290
2291 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2292 features &= ~NETIF_F_RXCSUM;
2293 else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2294 features &= ~NETIF_F_IPV6_CSUM;
2295 if (!priv->plat->tx_coe)
2296 features &= ~NETIF_F_ALL_CSUM;
2297
2298 /* Some GMAC devices have a bugged Jumbo frame support that
2299 * needs to have the Tx COE disabled for oversized frames
2300 * (due to limited buffer sizes). In this case we disable
2301 * the TX csum insertionin the TDES and not use SF.
2302 */
2303 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2304 features &= ~NETIF_F_ALL_CSUM;
2305
2306 return features;
2307 }
2308
2309 /**
2310 * stmmac_interrupt - main ISR
2311 * @irq: interrupt number.
2312 * @dev_id: to pass the net device pointer.
2313 * Description: this is the main driver interrupt service routine.
2314 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2315 * interrupts.
2316 */
2317 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2318 {
2319 struct net_device *dev = (struct net_device *)dev_id;
2320 struct stmmac_priv *priv = netdev_priv(dev);
2321
2322 if (unlikely(!dev)) {
2323 pr_err("%s: invalid dev pointer\n", __func__);
2324 return IRQ_NONE;
2325 }
2326
2327 /* To handle GMAC own interrupts */
2328 if (priv->plat->has_gmac) {
2329 int status = priv->hw->mac->host_irq_status((void __iomem *)
2330 dev->base_addr,
2331 &priv->xstats);
2332 if (unlikely(status)) {
2333 /* For LPI we need to save the tx status */
2334 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2335 priv->tx_path_in_lpi_mode = true;
2336 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2337 priv->tx_path_in_lpi_mode = false;
2338 }
2339 }
2340
2341 /* To handle DMA interrupts */
2342 stmmac_dma_interrupt(priv);
2343
2344 return IRQ_HANDLED;
2345 }
2346
2347 #ifdef CONFIG_NET_POLL_CONTROLLER
2348 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2349 * to allow network I/O with interrupts disabled.
2350 */
2351 static void stmmac_poll_controller(struct net_device *dev)
2352 {
2353 disable_irq(dev->irq);
2354 stmmac_interrupt(dev->irq, dev);
2355 enable_irq(dev->irq);
2356 }
2357 #endif
2358
2359 /**
2360 * stmmac_ioctl - Entry point for the Ioctl
2361 * @dev: Device pointer.
2362 * @rq: An IOCTL specefic structure, that can contain a pointer to
2363 * a proprietary structure used to pass information to the driver.
2364 * @cmd: IOCTL command
2365 * Description:
2366 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2367 */
2368 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2369 {
2370 struct stmmac_priv *priv = netdev_priv(dev);
2371 int ret = -EOPNOTSUPP;
2372
2373 if (!netif_running(dev))
2374 return -EINVAL;
2375
2376 switch (cmd) {
2377 case SIOCGMIIPHY:
2378 case SIOCGMIIREG:
2379 case SIOCSMIIREG:
2380 if (!priv->phydev)
2381 return -EINVAL;
2382 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2383 break;
2384 case SIOCSHWTSTAMP:
2385 ret = stmmac_hwtstamp_ioctl(dev, rq);
2386 break;
2387 default:
2388 break;
2389 }
2390
2391 return ret;
2392 }
2393
2394 #ifdef CONFIG_STMMAC_DEBUG_FS
2395 static struct dentry *stmmac_fs_dir;
2396 static struct dentry *stmmac_rings_status;
2397 static struct dentry *stmmac_dma_cap;
2398
2399 static void sysfs_display_ring(void *head, int size, int extend_desc,
2400 struct seq_file *seq)
2401 {
2402 int i;
2403 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2404 struct dma_desc *p = (struct dma_desc *)head;
2405
2406 for (i = 0; i < size; i++) {
2407 u64 x;
2408 if (extend_desc) {
2409 x = *(u64 *) ep;
2410 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2411 i, (unsigned int)virt_to_phys(ep),
2412 (unsigned int)x, (unsigned int)(x >> 32),
2413 ep->basic.des2, ep->basic.des3);
2414 ep++;
2415 } else {
2416 x = *(u64 *) p;
2417 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2418 i, (unsigned int)virt_to_phys(ep),
2419 (unsigned int)x, (unsigned int)(x >> 32),
2420 p->des2, p->des3);
2421 p++;
2422 }
2423 seq_printf(seq, "\n");
2424 }
2425 }
2426
2427 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2428 {
2429 struct net_device *dev = seq->private;
2430 struct stmmac_priv *priv = netdev_priv(dev);
2431 unsigned int txsize = priv->dma_tx_size;
2432 unsigned int rxsize = priv->dma_rx_size;
2433
2434 if (priv->extend_desc) {
2435 seq_printf(seq, "Extended RX descriptor ring:\n");
2436 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2437 seq_printf(seq, "Extended TX descriptor ring:\n");
2438 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2439 } else {
2440 seq_printf(seq, "RX descriptor ring:\n");
2441 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2442 seq_printf(seq, "TX descriptor ring:\n");
2443 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2444 }
2445
2446 return 0;
2447 }
2448
2449 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2450 {
2451 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2452 }
2453
2454 static const struct file_operations stmmac_rings_status_fops = {
2455 .owner = THIS_MODULE,
2456 .open = stmmac_sysfs_ring_open,
2457 .read = seq_read,
2458 .llseek = seq_lseek,
2459 .release = single_release,
2460 };
2461
2462 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2463 {
2464 struct net_device *dev = seq->private;
2465 struct stmmac_priv *priv = netdev_priv(dev);
2466
2467 if (!priv->hw_cap_support) {
2468 seq_printf(seq, "DMA HW features not supported\n");
2469 return 0;
2470 }
2471
2472 seq_printf(seq, "==============================\n");
2473 seq_printf(seq, "\tDMA HW features\n");
2474 seq_printf(seq, "==============================\n");
2475
2476 seq_printf(seq, "\t10/100 Mbps %s\n",
2477 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2478 seq_printf(seq, "\t1000 Mbps %s\n",
2479 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2480 seq_printf(seq, "\tHalf duple %s\n",
2481 (priv->dma_cap.half_duplex) ? "Y" : "N");
2482 seq_printf(seq, "\tHash Filter: %s\n",
2483 (priv->dma_cap.hash_filter) ? "Y" : "N");
2484 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2485 (priv->dma_cap.multi_addr) ? "Y" : "N");
2486 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2487 (priv->dma_cap.pcs) ? "Y" : "N");
2488 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2489 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2490 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2491 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2492 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2493 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2494 seq_printf(seq, "\tRMON module: %s\n",
2495 (priv->dma_cap.rmon) ? "Y" : "N");
2496 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2497 (priv->dma_cap.time_stamp) ? "Y" : "N");
2498 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2499 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2500 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2501 (priv->dma_cap.eee) ? "Y" : "N");
2502 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2503 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2504 (priv->dma_cap.tx_coe) ? "Y" : "N");
2505 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2506 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2507 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2508 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2509 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2510 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2511 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2512 priv->dma_cap.number_rx_channel);
2513 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2514 priv->dma_cap.number_tx_channel);
2515 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2516 (priv->dma_cap.enh_desc) ? "Y" : "N");
2517
2518 return 0;
2519 }
2520
2521 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2522 {
2523 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2524 }
2525
2526 static const struct file_operations stmmac_dma_cap_fops = {
2527 .owner = THIS_MODULE,
2528 .open = stmmac_sysfs_dma_cap_open,
2529 .read = seq_read,
2530 .llseek = seq_lseek,
2531 .release = single_release,
2532 };
2533
2534 static int stmmac_init_fs(struct net_device *dev)
2535 {
2536 /* Create debugfs entries */
2537 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2538
2539 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2540 pr_err("ERROR %s, debugfs create directory failed\n",
2541 STMMAC_RESOURCE_NAME);
2542
2543 return -ENOMEM;
2544 }
2545
2546 /* Entry to report DMA RX/TX rings */
2547 stmmac_rings_status = debugfs_create_file("descriptors_status",
2548 S_IRUGO, stmmac_fs_dir, dev,
2549 &stmmac_rings_status_fops);
2550
2551 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2552 pr_info("ERROR creating stmmac ring debugfs file\n");
2553 debugfs_remove(stmmac_fs_dir);
2554
2555 return -ENOMEM;
2556 }
2557
2558 /* Entry to report the DMA HW features */
2559 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2560 dev, &stmmac_dma_cap_fops);
2561
2562 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2563 pr_info("ERROR creating stmmac MMC debugfs file\n");
2564 debugfs_remove(stmmac_rings_status);
2565 debugfs_remove(stmmac_fs_dir);
2566
2567 return -ENOMEM;
2568 }
2569
2570 return 0;
2571 }
2572
2573 static void stmmac_exit_fs(void)
2574 {
2575 debugfs_remove(stmmac_rings_status);
2576 debugfs_remove(stmmac_dma_cap);
2577 debugfs_remove(stmmac_fs_dir);
2578 }
2579 #endif /* CONFIG_STMMAC_DEBUG_FS */
2580
2581 static const struct net_device_ops stmmac_netdev_ops = {
2582 .ndo_open = stmmac_open,
2583 .ndo_start_xmit = stmmac_xmit,
2584 .ndo_stop = stmmac_release,
2585 .ndo_change_mtu = stmmac_change_mtu,
2586 .ndo_fix_features = stmmac_fix_features,
2587 .ndo_set_rx_mode = stmmac_set_rx_mode,
2588 .ndo_tx_timeout = stmmac_tx_timeout,
2589 .ndo_do_ioctl = stmmac_ioctl,
2590 .ndo_set_config = stmmac_config,
2591 #ifdef CONFIG_NET_POLL_CONTROLLER
2592 .ndo_poll_controller = stmmac_poll_controller,
2593 #endif
2594 .ndo_set_mac_address = eth_mac_addr,
2595 };
2596
2597 /**
2598 * stmmac_hw_init - Init the MAC device
2599 * @priv: driver private structure
2600 * Description: this function detects which MAC device
2601 * (GMAC/MAC10-100) has to attached, checks the HW capability
2602 * (if supported) and sets the driver's features (for example
2603 * to use the ring or chaine mode or support the normal/enh
2604 * descriptor structure).
2605 */
2606 static int stmmac_hw_init(struct stmmac_priv *priv)
2607 {
2608 int ret;
2609 struct mac_device_info *mac;
2610
2611 /* Identify the MAC HW device */
2612 if (priv->plat->has_gmac) {
2613 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2614 mac = dwmac1000_setup(priv->ioaddr);
2615 } else {
2616 mac = dwmac100_setup(priv->ioaddr);
2617 }
2618 if (!mac)
2619 return -ENOMEM;
2620
2621 priv->hw = mac;
2622
2623 /* Get and dump the chip ID */
2624 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2625
2626 /* To use the chained or ring mode */
2627 if (chain_mode) {
2628 priv->hw->chain = &chain_mode_ops;
2629 pr_info(" Chain mode enabled\n");
2630 priv->mode = STMMAC_CHAIN_MODE;
2631 } else {
2632 priv->hw->ring = &ring_mode_ops;
2633 pr_info(" Ring mode enabled\n");
2634 priv->mode = STMMAC_RING_MODE;
2635 }
2636
2637 /* Get the HW capability (new GMAC newer than 3.50a) */
2638 priv->hw_cap_support = stmmac_get_hw_features(priv);
2639 if (priv->hw_cap_support) {
2640 pr_info(" DMA HW capability register supported");
2641
2642 /* We can override some gmac/dma configuration fields: e.g.
2643 * enh_desc, tx_coe (e.g. that are passed through the
2644 * platform) with the values from the HW capability
2645 * register (if supported).
2646 */
2647 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2648 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2649
2650 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2651
2652 if (priv->dma_cap.rx_coe_type2)
2653 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2654 else if (priv->dma_cap.rx_coe_type1)
2655 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2656
2657 } else
2658 pr_info(" No HW DMA feature register supported");
2659
2660 /* To use alternate (extended) or normal descriptor structures */
2661 stmmac_selec_desc_mode(priv);
2662
2663 ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2664 if (!ret) {
2665 pr_warn(" RX IPC Checksum Offload not configured.\n");
2666 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2667 }
2668
2669 if (priv->plat->rx_coe)
2670 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2671 priv->plat->rx_coe);
2672 if (priv->plat->tx_coe)
2673 pr_info(" TX Checksum insertion supported\n");
2674
2675 if (priv->plat->pmt) {
2676 pr_info(" Wake-Up On Lan supported\n");
2677 device_set_wakeup_capable(priv->device, 1);
2678 }
2679
2680 return 0;
2681 }
2682
2683 /**
2684 * stmmac_dvr_probe
2685 * @device: device pointer
2686 * @plat_dat: platform data pointer
2687 * @addr: iobase memory address
2688 * Description: this is the main probe function used to
2689 * call the alloc_etherdev, allocate the priv structure.
2690 */
2691 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2692 struct plat_stmmacenet_data *plat_dat,
2693 void __iomem *addr)
2694 {
2695 int ret = 0;
2696 struct net_device *ndev = NULL;
2697 struct stmmac_priv *priv;
2698
2699 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2700 if (!ndev)
2701 return NULL;
2702
2703 SET_NETDEV_DEV(ndev, device);
2704
2705 priv = netdev_priv(ndev);
2706 priv->device = device;
2707 priv->dev = ndev;
2708
2709 ether_setup(ndev);
2710
2711 stmmac_set_ethtool_ops(ndev);
2712 priv->pause = pause;
2713 priv->plat = plat_dat;
2714 priv->ioaddr = addr;
2715 priv->dev->base_addr = (unsigned long)addr;
2716
2717 /* Verify driver arguments */
2718 stmmac_verify_args();
2719
2720 /* Override with kernel parameters if supplied XXX CRS XXX
2721 * this needs to have multiple instances
2722 */
2723 if ((phyaddr >= 0) && (phyaddr <= 31))
2724 priv->plat->phy_addr = phyaddr;
2725
2726 /* Init MAC and get the capabilities */
2727 ret = stmmac_hw_init(priv);
2728 if (ret)
2729 goto error_free_netdev;
2730
2731 ndev->netdev_ops = &stmmac_netdev_ops;
2732
2733 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2734 NETIF_F_RXCSUM;
2735 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2736 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2737 #ifdef STMMAC_VLAN_TAG_USED
2738 /* Both mac100 and gmac support receive VLAN tag detection */
2739 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2740 #endif
2741 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2742
2743 if (flow_ctrl)
2744 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2745
2746 /* Rx Watchdog is available in the COREs newer than the 3.40.
2747 * In some case, for example on bugged HW this feature
2748 * has to be disable and this can be done by passing the
2749 * riwt_off field from the platform.
2750 */
2751 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2752 priv->use_riwt = 1;
2753 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2754 }
2755
2756 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2757
2758 spin_lock_init(&priv->lock);
2759 spin_lock_init(&priv->tx_lock);
2760
2761 ret = register_netdev(ndev);
2762 if (ret) {
2763 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2764 goto error_netdev_register;
2765 }
2766
2767 priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2768 if (IS_ERR(priv->stmmac_clk)) {
2769 pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2770 goto error_clk_get;
2771 }
2772
2773 /* If a specific clk_csr value is passed from the platform
2774 * this means that the CSR Clock Range selection cannot be
2775 * changed at run-time and it is fixed. Viceversa the driver'll try to
2776 * set the MDC clock dynamically according to the csr actual
2777 * clock input.
2778 */
2779 if (!priv->plat->clk_csr)
2780 stmmac_clk_csr_set(priv);
2781 else
2782 priv->clk_csr = priv->plat->clk_csr;
2783
2784 stmmac_check_pcs_mode(priv);
2785
2786 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2787 priv->pcs != STMMAC_PCS_RTBI) {
2788 /* MDIO bus Registration */
2789 ret = stmmac_mdio_register(ndev);
2790 if (ret < 0) {
2791 pr_debug("%s: MDIO bus (id: %d) registration failed",
2792 __func__, priv->plat->bus_id);
2793 goto error_mdio_register;
2794 }
2795 }
2796
2797 return priv;
2798
2799 error_mdio_register:
2800 clk_put(priv->stmmac_clk);
2801 error_clk_get:
2802 unregister_netdev(ndev);
2803 error_netdev_register:
2804 netif_napi_del(&priv->napi);
2805 error_free_netdev:
2806 free_netdev(ndev);
2807
2808 return NULL;
2809 }
2810
2811 /**
2812 * stmmac_dvr_remove
2813 * @ndev: net device pointer
2814 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2815 * changes the link status, releases the DMA descriptor rings.
2816 */
2817 int stmmac_dvr_remove(struct net_device *ndev)
2818 {
2819 struct stmmac_priv *priv = netdev_priv(ndev);
2820
2821 pr_info("%s:\n\tremoving driver", __func__);
2822
2823 priv->hw->dma->stop_rx(priv->ioaddr);
2824 priv->hw->dma->stop_tx(priv->ioaddr);
2825
2826 stmmac_set_mac(priv->ioaddr, false);
2827 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2828 priv->pcs != STMMAC_PCS_RTBI)
2829 stmmac_mdio_unregister(ndev);
2830 netif_carrier_off(ndev);
2831 unregister_netdev(ndev);
2832 free_netdev(ndev);
2833
2834 return 0;
2835 }
2836
2837 #ifdef CONFIG_PM
2838 int stmmac_suspend(struct net_device *ndev)
2839 {
2840 struct stmmac_priv *priv = netdev_priv(ndev);
2841 unsigned long flags;
2842
2843 if (!ndev || !netif_running(ndev))
2844 return 0;
2845
2846 if (priv->phydev)
2847 phy_stop(priv->phydev);
2848
2849 spin_lock_irqsave(&priv->lock, flags);
2850
2851 netif_device_detach(ndev);
2852 netif_stop_queue(ndev);
2853
2854 napi_disable(&priv->napi);
2855
2856 /* Stop TX/RX DMA */
2857 priv->hw->dma->stop_tx(priv->ioaddr);
2858 priv->hw->dma->stop_rx(priv->ioaddr);
2859
2860 stmmac_clear_descriptors(priv);
2861
2862 /* Enable Power down mode by programming the PMT regs */
2863 if (device_may_wakeup(priv->device))
2864 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2865 else {
2866 stmmac_set_mac(priv->ioaddr, false);
2867 /* Disable clock in case of PWM is off */
2868 clk_disable_unprepare(priv->stmmac_clk);
2869 }
2870 spin_unlock_irqrestore(&priv->lock, flags);
2871 return 0;
2872 }
2873
2874 int stmmac_resume(struct net_device *ndev)
2875 {
2876 struct stmmac_priv *priv = netdev_priv(ndev);
2877 unsigned long flags;
2878
2879 if (!netif_running(ndev))
2880 return 0;
2881
2882 spin_lock_irqsave(&priv->lock, flags);
2883
2884 /* Power Down bit, into the PM register, is cleared
2885 * automatically as soon as a magic packet or a Wake-up frame
2886 * is received. Anyway, it's better to manually clear
2887 * this bit because it can generate problems while resuming
2888 * from another devices (e.g. serial console).
2889 */
2890 if (device_may_wakeup(priv->device))
2891 priv->hw->mac->pmt(priv->ioaddr, 0);
2892 else
2893 /* enable the clk prevously disabled */
2894 clk_prepare_enable(priv->stmmac_clk);
2895
2896 netif_device_attach(ndev);
2897
2898 /* Enable the MAC and DMA */
2899 stmmac_set_mac(priv->ioaddr, true);
2900 priv->hw->dma->start_tx(priv->ioaddr);
2901 priv->hw->dma->start_rx(priv->ioaddr);
2902
2903 napi_enable(&priv->napi);
2904
2905 netif_start_queue(ndev);
2906
2907 spin_unlock_irqrestore(&priv->lock, flags);
2908
2909 if (priv->phydev)
2910 phy_start(priv->phydev);
2911
2912 return 0;
2913 }
2914
2915 int stmmac_freeze(struct net_device *ndev)
2916 {
2917 if (!ndev || !netif_running(ndev))
2918 return 0;
2919
2920 return stmmac_release(ndev);
2921 }
2922
2923 int stmmac_restore(struct net_device *ndev)
2924 {
2925 if (!ndev || !netif_running(ndev))
2926 return 0;
2927
2928 return stmmac_open(ndev);
2929 }
2930 #endif /* CONFIG_PM */
2931
2932 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2933 * depending on the configuration selected.
2934 */
2935 static int __init stmmac_init(void)
2936 {
2937 int ret;
2938
2939 ret = stmmac_register_platform();
2940 if (ret)
2941 goto err;
2942 ret = stmmac_register_pci();
2943 if (ret)
2944 goto err_pci;
2945 return 0;
2946 err_pci:
2947 stmmac_unregister_platform();
2948 err:
2949 pr_err("stmmac: driver registration failed\n");
2950 return ret;
2951 }
2952
2953 static void __exit stmmac_exit(void)
2954 {
2955 stmmac_unregister_platform();
2956 stmmac_unregister_pci();
2957 }
2958
2959 module_init(stmmac_init);
2960 module_exit(stmmac_exit);
2961
2962 #ifndef MODULE
2963 static int __init stmmac_cmdline_opt(char *str)
2964 {
2965 char *opt;
2966
2967 if (!str || !*str)
2968 return -EINVAL;
2969 while ((opt = strsep(&str, ",")) != NULL) {
2970 if (!strncmp(opt, "debug:", 6)) {
2971 if (kstrtoint(opt + 6, 0, &debug))
2972 goto err;
2973 } else if (!strncmp(opt, "phyaddr:", 8)) {
2974 if (kstrtoint(opt + 8, 0, &phyaddr))
2975 goto err;
2976 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2977 if (kstrtoint(opt + 11, 0, &dma_txsize))
2978 goto err;
2979 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2980 if (kstrtoint(opt + 11, 0, &dma_rxsize))
2981 goto err;
2982 } else if (!strncmp(opt, "buf_sz:", 7)) {
2983 if (kstrtoint(opt + 7, 0, &buf_sz))
2984 goto err;
2985 } else if (!strncmp(opt, "tc:", 3)) {
2986 if (kstrtoint(opt + 3, 0, &tc))
2987 goto err;
2988 } else if (!strncmp(opt, "watchdog:", 9)) {
2989 if (kstrtoint(opt + 9, 0, &watchdog))
2990 goto err;
2991 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2992 if (kstrtoint(opt + 10, 0, &flow_ctrl))
2993 goto err;
2994 } else if (!strncmp(opt, "pause:", 6)) {
2995 if (kstrtoint(opt + 6, 0, &pause))
2996 goto err;
2997 } else if (!strncmp(opt, "eee_timer:", 10)) {
2998 if (kstrtoint(opt + 10, 0, &eee_timer))
2999 goto err;
3000 } else if (!strncmp(opt, "chain_mode:", 11)) {
3001 if (kstrtoint(opt + 11, 0, &chain_mode))
3002 goto err;
3003 }
3004 }
3005 return 0;
3006
3007 err:
3008 pr_err("%s: ERROR broken module parameter conversion", __func__);
3009 return -EINVAL;
3010 }
3011
3012 __setup("stmmaceth=", stmmac_cmdline_opt);
3013 #endif /* MODULE */
3014
3015 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3016 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3017 MODULE_LICENSE("GPL");