]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
Merge tag 'kvm-s390-master-4.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
59
60 /* Module parameters */
61 #define TX_TIMEO 5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, S_IRUGO | S_IWUSR);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69
70 static int phyaddr = -1;
71 module_param(phyaddr, int, S_IRUGO);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73
74 #define DMA_TX_SIZE 256
75 static int dma_txsize = DMA_TX_SIZE;
76 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
77 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
78
79 #define DMA_RX_SIZE 256
80 static int dma_rxsize = DMA_RX_SIZE;
81 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
83
84 static int flow_ctrl = FLOW_OFF;
85 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
87
88 static int pause = PAUSE_TIME;
89 module_param(pause, int, S_IRUGO | S_IWUSR);
90 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
91
92 #define TC_DEFAULT 64
93 static int tc = TC_DEFAULT;
94 module_param(tc, int, S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(tc, "DMA threshold control value");
96
97 #define DEFAULT_BUFSIZE 1536
98 static int buf_sz = DEFAULT_BUFSIZE;
99 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
101
102 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
103 NETIF_MSG_LINK | NETIF_MSG_IFUP |
104 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
105
106 #define STMMAC_DEFAULT_LPI_TIMER 1000
107 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
108 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
110 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
111
112 /* By default the driver will use the ring mode to manage tx and rx descriptors
113 * but passing this value so user can force to use the chain instead of the ring
114 */
115 static unsigned int chain_mode;
116 module_param(chain_mode, int, S_IRUGO);
117 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
118
119 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
120
121 #ifdef CONFIG_DEBUG_FS
122 static int stmmac_init_fs(struct net_device *dev);
123 static void stmmac_exit_fs(struct net_device *dev);
124 #endif
125
126 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
127
128 /**
129 * stmmac_verify_args - verify the driver parameters.
130 * Description: it checks the driver parameters and set a default in case of
131 * errors.
132 */
133 static void stmmac_verify_args(void)
134 {
135 if (unlikely(watchdog < 0))
136 watchdog = TX_TIMEO;
137 if (unlikely(dma_rxsize < 0))
138 dma_rxsize = DMA_RX_SIZE;
139 if (unlikely(dma_txsize < 0))
140 dma_txsize = DMA_TX_SIZE;
141 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
142 buf_sz = DEFAULT_BUFSIZE;
143 if (unlikely(flow_ctrl > 1))
144 flow_ctrl = FLOW_AUTO;
145 else if (likely(flow_ctrl < 0))
146 flow_ctrl = FLOW_OFF;
147 if (unlikely((pause < 0) || (pause > 0xffff)))
148 pause = PAUSE_TIME;
149 if (eee_timer < 0)
150 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
151 }
152
153 /**
154 * stmmac_clk_csr_set - dynamically set the MDC clock
155 * @priv: driver private structure
156 * Description: this is to dynamically set the MDC clock according to the csr
157 * clock input.
158 * Note:
159 * If a specific clk_csr value is passed from the platform
160 * this means that the CSR Clock Range selection cannot be
161 * changed at run-time and it is fixed (as reported in the driver
162 * documentation). Viceversa the driver will try to set the MDC
163 * clock dynamically according to the actual clock input.
164 */
165 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
166 {
167 u32 clk_rate;
168
169 clk_rate = clk_get_rate(priv->stmmac_clk);
170
171 /* Platform provided default clk_csr would be assumed valid
172 * for all other cases except for the below mentioned ones.
173 * For values higher than the IEEE 802.3 specified frequency
174 * we can not estimate the proper divider as it is not known
175 * the frequency of clk_csr_i. So we do not change the default
176 * divider.
177 */
178 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
179 if (clk_rate < CSR_F_35M)
180 priv->clk_csr = STMMAC_CSR_20_35M;
181 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
182 priv->clk_csr = STMMAC_CSR_35_60M;
183 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
184 priv->clk_csr = STMMAC_CSR_60_100M;
185 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
186 priv->clk_csr = STMMAC_CSR_100_150M;
187 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
188 priv->clk_csr = STMMAC_CSR_150_250M;
189 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
190 priv->clk_csr = STMMAC_CSR_250_300M;
191 }
192 }
193
194 static void print_pkt(unsigned char *buf, int len)
195 {
196 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
197 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
198 }
199
200 /* minimum number of free TX descriptors required to wake up TX process */
201 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
202
203 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
204 {
205 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
206 }
207
208 /**
209 * stmmac_hw_fix_mac_speed - callback for speed selection
210 * @priv: driver private structure
211 * Description: on some platforms (e.g. ST), some HW system configuraton
212 * registers have to be set according to the link speed negotiated.
213 */
214 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
215 {
216 struct phy_device *phydev = priv->phydev;
217
218 if (likely(priv->plat->fix_mac_speed))
219 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
220 }
221
222 /**
223 * stmmac_enable_eee_mode - check and enter in LPI mode
224 * @priv: driver private structure
225 * Description: this function is to verify and enter in LPI mode in case of
226 * EEE.
227 */
228 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
229 {
230 /* Check and enter in LPI mode */
231 if ((priv->dirty_tx == priv->cur_tx) &&
232 (priv->tx_path_in_lpi_mode == false))
233 priv->hw->mac->set_eee_mode(priv->hw);
234 }
235
236 /**
237 * stmmac_disable_eee_mode - disable and exit from LPI mode
238 * @priv: driver private structure
239 * Description: this function is to exit and disable EEE in case of
240 * LPI state is true. This is called by the xmit.
241 */
242 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
243 {
244 priv->hw->mac->reset_eee_mode(priv->hw);
245 del_timer_sync(&priv->eee_ctrl_timer);
246 priv->tx_path_in_lpi_mode = false;
247 }
248
249 /**
250 * stmmac_eee_ctrl_timer - EEE TX SW timer.
251 * @arg : data hook
252 * Description:
253 * if there is no data transfer and if we are not in LPI state,
254 * then MAC Transmitter can be moved to LPI state.
255 */
256 static void stmmac_eee_ctrl_timer(unsigned long arg)
257 {
258 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
259
260 stmmac_enable_eee_mode(priv);
261 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
262 }
263
264 /**
265 * stmmac_eee_init - init EEE
266 * @priv: driver private structure
267 * Description:
268 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
269 * can also manage EEE, this function enable the LPI state and start related
270 * timer.
271 */
272 bool stmmac_eee_init(struct stmmac_priv *priv)
273 {
274 char *phy_bus_name = priv->plat->phy_bus_name;
275 unsigned long flags;
276 bool ret = false;
277
278 /* Using PCS we cannot dial with the phy registers at this stage
279 * so we do not support extra feature like EEE.
280 */
281 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
282 (priv->pcs == STMMAC_PCS_RTBI))
283 goto out;
284
285 /* Never init EEE in case of a switch is attached */
286 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
287 goto out;
288
289 /* MAC core supports the EEE feature. */
290 if (priv->dma_cap.eee) {
291 int tx_lpi_timer = priv->tx_lpi_timer;
292
293 /* Check if the PHY supports EEE */
294 if (phy_init_eee(priv->phydev, 1)) {
295 /* To manage at run-time if the EEE cannot be supported
296 * anymore (for example because the lp caps have been
297 * changed).
298 * In that case the driver disable own timers.
299 */
300 spin_lock_irqsave(&priv->lock, flags);
301 if (priv->eee_active) {
302 pr_debug("stmmac: disable EEE\n");
303 del_timer_sync(&priv->eee_ctrl_timer);
304 priv->hw->mac->set_eee_timer(priv->hw, 0,
305 tx_lpi_timer);
306 }
307 priv->eee_active = 0;
308 spin_unlock_irqrestore(&priv->lock, flags);
309 goto out;
310 }
311 /* Activate the EEE and start timers */
312 spin_lock_irqsave(&priv->lock, flags);
313 if (!priv->eee_active) {
314 priv->eee_active = 1;
315 setup_timer(&priv->eee_ctrl_timer,
316 stmmac_eee_ctrl_timer,
317 (unsigned long)priv);
318 mod_timer(&priv->eee_ctrl_timer,
319 STMMAC_LPI_T(eee_timer));
320
321 priv->hw->mac->set_eee_timer(priv->hw,
322 STMMAC_DEFAULT_LIT_LS,
323 tx_lpi_timer);
324 }
325 /* Set HW EEE according to the speed */
326 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
327
328 ret = true;
329 spin_unlock_irqrestore(&priv->lock, flags);
330
331 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
332 }
333 out:
334 return ret;
335 }
336
337 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
338 * @priv: driver private structure
339 * @entry : descriptor index to be used.
340 * @skb : the socket buffer
341 * Description :
342 * This function will read timestamp from the descriptor & pass it to stack.
343 * and also perform some sanity checks.
344 */
345 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
346 unsigned int entry, struct sk_buff *skb)
347 {
348 struct skb_shared_hwtstamps shhwtstamp;
349 u64 ns;
350 void *desc = NULL;
351
352 if (!priv->hwts_tx_en)
353 return;
354
355 /* exit if skb doesn't support hw tstamp */
356 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
357 return;
358
359 if (priv->adv_ts)
360 desc = (priv->dma_etx + entry);
361 else
362 desc = (priv->dma_tx + entry);
363
364 /* check tx tstamp status */
365 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
366 return;
367
368 /* get the valid tstamp */
369 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
370
371 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
372 shhwtstamp.hwtstamp = ns_to_ktime(ns);
373 /* pass tstamp to stack */
374 skb_tstamp_tx(skb, &shhwtstamp);
375
376 return;
377 }
378
379 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
380 * @priv: driver private structure
381 * @entry : descriptor index to be used.
382 * @skb : the socket buffer
383 * Description :
384 * This function will read received packet's timestamp from the descriptor
385 * and pass it to stack. It also perform some sanity checks.
386 */
387 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
388 unsigned int entry, struct sk_buff *skb)
389 {
390 struct skb_shared_hwtstamps *shhwtstamp = NULL;
391 u64 ns;
392 void *desc = NULL;
393
394 if (!priv->hwts_rx_en)
395 return;
396
397 if (priv->adv_ts)
398 desc = (priv->dma_erx + entry);
399 else
400 desc = (priv->dma_rx + entry);
401
402 /* exit if rx tstamp is not valid */
403 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
404 return;
405
406 /* get valid tstamp */
407 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
408 shhwtstamp = skb_hwtstamps(skb);
409 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
410 shhwtstamp->hwtstamp = ns_to_ktime(ns);
411 }
412
413 /**
414 * stmmac_hwtstamp_ioctl - control hardware timestamping.
415 * @dev: device pointer.
416 * @ifr: An IOCTL specefic structure, that can contain a pointer to
417 * a proprietary structure used to pass information to the driver.
418 * Description:
419 * This function configures the MAC to enable/disable both outgoing(TX)
420 * and incoming(RX) packets time stamping based on user input.
421 * Return Value:
422 * 0 on success and an appropriate -ve integer on failure.
423 */
424 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
425 {
426 struct stmmac_priv *priv = netdev_priv(dev);
427 struct hwtstamp_config config;
428 struct timespec64 now;
429 u64 temp = 0;
430 u32 ptp_v2 = 0;
431 u32 tstamp_all = 0;
432 u32 ptp_over_ipv4_udp = 0;
433 u32 ptp_over_ipv6_udp = 0;
434 u32 ptp_over_ethernet = 0;
435 u32 snap_type_sel = 0;
436 u32 ts_master_en = 0;
437 u32 ts_event_en = 0;
438 u32 value = 0;
439 u32 sec_inc;
440
441 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
442 netdev_alert(priv->dev, "No support for HW time stamping\n");
443 priv->hwts_tx_en = 0;
444 priv->hwts_rx_en = 0;
445
446 return -EOPNOTSUPP;
447 }
448
449 if (copy_from_user(&config, ifr->ifr_data,
450 sizeof(struct hwtstamp_config)))
451 return -EFAULT;
452
453 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
454 __func__, config.flags, config.tx_type, config.rx_filter);
455
456 /* reserved for future extensions */
457 if (config.flags)
458 return -EINVAL;
459
460 if (config.tx_type != HWTSTAMP_TX_OFF &&
461 config.tx_type != HWTSTAMP_TX_ON)
462 return -ERANGE;
463
464 if (priv->adv_ts) {
465 switch (config.rx_filter) {
466 case HWTSTAMP_FILTER_NONE:
467 /* time stamp no incoming packet at all */
468 config.rx_filter = HWTSTAMP_FILTER_NONE;
469 break;
470
471 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
472 /* PTP v1, UDP, any kind of event packet */
473 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
474 /* take time stamp for all event messages */
475 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
476
477 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
478 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
479 break;
480
481 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
482 /* PTP v1, UDP, Sync packet */
483 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
484 /* take time stamp for SYNC messages only */
485 ts_event_en = PTP_TCR_TSEVNTENA;
486
487 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
488 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
489 break;
490
491 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
492 /* PTP v1, UDP, Delay_req packet */
493 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
494 /* take time stamp for Delay_Req messages only */
495 ts_master_en = PTP_TCR_TSMSTRENA;
496 ts_event_en = PTP_TCR_TSEVNTENA;
497
498 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
499 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
500 break;
501
502 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
503 /* PTP v2, UDP, any kind of event packet */
504 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
505 ptp_v2 = PTP_TCR_TSVER2ENA;
506 /* take time stamp for all event messages */
507 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
508
509 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
510 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
511 break;
512
513 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
514 /* PTP v2, UDP, Sync packet */
515 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
516 ptp_v2 = PTP_TCR_TSVER2ENA;
517 /* take time stamp for SYNC messages only */
518 ts_event_en = PTP_TCR_TSEVNTENA;
519
520 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
521 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
522 break;
523
524 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
525 /* PTP v2, UDP, Delay_req packet */
526 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
527 ptp_v2 = PTP_TCR_TSVER2ENA;
528 /* take time stamp for Delay_Req messages only */
529 ts_master_en = PTP_TCR_TSMSTRENA;
530 ts_event_en = PTP_TCR_TSEVNTENA;
531
532 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
533 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
534 break;
535
536 case HWTSTAMP_FILTER_PTP_V2_EVENT:
537 /* PTP v2/802.AS1 any layer, any kind of event packet */
538 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
539 ptp_v2 = PTP_TCR_TSVER2ENA;
540 /* take time stamp for all event messages */
541 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
542
543 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
544 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
545 ptp_over_ethernet = PTP_TCR_TSIPENA;
546 break;
547
548 case HWTSTAMP_FILTER_PTP_V2_SYNC:
549 /* PTP v2/802.AS1, any layer, Sync packet */
550 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
551 ptp_v2 = PTP_TCR_TSVER2ENA;
552 /* take time stamp for SYNC messages only */
553 ts_event_en = PTP_TCR_TSEVNTENA;
554
555 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
556 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
557 ptp_over_ethernet = PTP_TCR_TSIPENA;
558 break;
559
560 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
561 /* PTP v2/802.AS1, any layer, Delay_req packet */
562 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
563 ptp_v2 = PTP_TCR_TSVER2ENA;
564 /* take time stamp for Delay_Req messages only */
565 ts_master_en = PTP_TCR_TSMSTRENA;
566 ts_event_en = PTP_TCR_TSEVNTENA;
567
568 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 ptp_over_ethernet = PTP_TCR_TSIPENA;
571 break;
572
573 case HWTSTAMP_FILTER_ALL:
574 /* time stamp any incoming packet */
575 config.rx_filter = HWTSTAMP_FILTER_ALL;
576 tstamp_all = PTP_TCR_TSENALL;
577 break;
578
579 default:
580 return -ERANGE;
581 }
582 } else {
583 switch (config.rx_filter) {
584 case HWTSTAMP_FILTER_NONE:
585 config.rx_filter = HWTSTAMP_FILTER_NONE;
586 break;
587 default:
588 /* PTP v1, UDP, any kind of event packet */
589 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
590 break;
591 }
592 }
593 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
594 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
595
596 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
597 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
598 else {
599 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
600 tstamp_all | ptp_v2 | ptp_over_ethernet |
601 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
602 ts_master_en | snap_type_sel);
603 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
604
605 /* program Sub Second Increment reg */
606 sec_inc = priv->hw->ptp->config_sub_second_increment(
607 priv->ioaddr, priv->clk_ptp_rate);
608 temp = div_u64(1000000000ULL, sec_inc);
609
610 /* calculate default added value:
611 * formula is :
612 * addend = (2^32)/freq_div_ratio;
613 * where, freq_div_ratio = 1e9ns/sec_inc
614 */
615 temp = (u64)(temp << 32);
616 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
617 priv->hw->ptp->config_addend(priv->ioaddr,
618 priv->default_addend);
619
620 /* initialize system time */
621 ktime_get_real_ts64(&now);
622
623 /* lower 32 bits of tv_sec are safe until y2106 */
624 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
625 now.tv_nsec);
626 }
627
628 return copy_to_user(ifr->ifr_data, &config,
629 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631
632 /**
633 * stmmac_init_ptp - init PTP
634 * @priv: driver private structure
635 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636 * This is done by looking at the HW cap. register.
637 * This function also registers the ptp driver.
638 */
639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642 return -EOPNOTSUPP;
643
644 /* Fall-back to main clock in case of no PTP ref is passed */
645 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646 if (IS_ERR(priv->clk_ptp_ref)) {
647 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648 priv->clk_ptp_ref = NULL;
649 } else {
650 clk_prepare_enable(priv->clk_ptp_ref);
651 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652 }
653
654 priv->adv_ts = 0;
655 if (priv->dma_cap.atime_stamp && priv->extend_desc)
656 priv->adv_ts = 1;
657
658 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660
661 if (netif_msg_hw(priv) && priv->adv_ts)
662 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663
664 priv->hw->ptp = &stmmac_ptp;
665 priv->hwts_tx_en = 0;
666 priv->hwts_rx_en = 0;
667
668 return stmmac_ptp_register(priv);
669 }
670
671 static void stmmac_release_ptp(struct stmmac_priv *priv)
672 {
673 if (priv->clk_ptp_ref)
674 clk_disable_unprepare(priv->clk_ptp_ref);
675 stmmac_ptp_unregister(priv);
676 }
677
678 /**
679 * stmmac_adjust_link - adjusts the link parameters
680 * @dev: net device structure
681 * Description: this is the helper called by the physical abstraction layer
682 * drivers to communicate the phy link status. According the speed and duplex
683 * this driver can invoke registered glue-logic as well.
684 * It also invoke the eee initialization because it could happen when switch
685 * on different networks (that are eee capable).
686 */
687 static void stmmac_adjust_link(struct net_device *dev)
688 {
689 struct stmmac_priv *priv = netdev_priv(dev);
690 struct phy_device *phydev = priv->phydev;
691 unsigned long flags;
692 int new_state = 0;
693 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
694
695 if (phydev == NULL)
696 return;
697
698 spin_lock_irqsave(&priv->lock, flags);
699
700 if (phydev->link) {
701 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
702
703 /* Now we make sure that we can be in full duplex mode.
704 * If not, we operate in half-duplex mode. */
705 if (phydev->duplex != priv->oldduplex) {
706 new_state = 1;
707 if (!(phydev->duplex))
708 ctrl &= ~priv->hw->link.duplex;
709 else
710 ctrl |= priv->hw->link.duplex;
711 priv->oldduplex = phydev->duplex;
712 }
713 /* Flow Control operation */
714 if (phydev->pause)
715 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
716 fc, pause_time);
717
718 if (phydev->speed != priv->speed) {
719 new_state = 1;
720 switch (phydev->speed) {
721 case 1000:
722 if (likely(priv->plat->has_gmac))
723 ctrl &= ~priv->hw->link.port;
724 stmmac_hw_fix_mac_speed(priv);
725 break;
726 case 100:
727 case 10:
728 if (priv->plat->has_gmac) {
729 ctrl |= priv->hw->link.port;
730 if (phydev->speed == SPEED_100) {
731 ctrl |= priv->hw->link.speed;
732 } else {
733 ctrl &= ~(priv->hw->link.speed);
734 }
735 } else {
736 ctrl &= ~priv->hw->link.port;
737 }
738 stmmac_hw_fix_mac_speed(priv);
739 break;
740 default:
741 if (netif_msg_link(priv))
742 pr_warn("%s: Speed (%d) not 10/100\n",
743 dev->name, phydev->speed);
744 break;
745 }
746
747 priv->speed = phydev->speed;
748 }
749
750 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
751
752 if (!priv->oldlink) {
753 new_state = 1;
754 priv->oldlink = 1;
755 }
756 } else if (priv->oldlink) {
757 new_state = 1;
758 priv->oldlink = 0;
759 priv->speed = 0;
760 priv->oldduplex = -1;
761 }
762
763 if (new_state && netif_msg_link(priv))
764 phy_print_status(phydev);
765
766 spin_unlock_irqrestore(&priv->lock, flags);
767
768 /* At this stage, it could be needed to setup the EEE or adjust some
769 * MAC related HW registers.
770 */
771 priv->eee_enabled = stmmac_eee_init(priv);
772 }
773
774 /**
775 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
776 * @priv: driver private structure
777 * Description: this is to verify if the HW supports the PCS.
778 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
779 * configured for the TBI, RTBI, or SGMII PHY interface.
780 */
781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
782 {
783 int interface = priv->plat->interface;
784
785 if (priv->dma_cap.pcs) {
786 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
787 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
788 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
789 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
790 pr_debug("STMMAC: PCS RGMII support enable\n");
791 priv->pcs = STMMAC_PCS_RGMII;
792 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
793 pr_debug("STMMAC: PCS SGMII support enable\n");
794 priv->pcs = STMMAC_PCS_SGMII;
795 }
796 }
797 }
798
799 /**
800 * stmmac_init_phy - PHY initialization
801 * @dev: net device structure
802 * Description: it initializes the driver's PHY state, and attaches the PHY
803 * to the mac driver.
804 * Return value:
805 * 0 on success
806 */
807 static int stmmac_init_phy(struct net_device *dev)
808 {
809 struct stmmac_priv *priv = netdev_priv(dev);
810 struct phy_device *phydev;
811 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
812 char bus_id[MII_BUS_ID_SIZE];
813 int interface = priv->plat->interface;
814 int max_speed = priv->plat->max_speed;
815 priv->oldlink = 0;
816 priv->speed = 0;
817 priv->oldduplex = -1;
818
819 if (priv->plat->phy_node) {
820 phydev = of_phy_connect(dev, priv->plat->phy_node,
821 &stmmac_adjust_link, 0, interface);
822 } else {
823 if (priv->plat->phy_bus_name)
824 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
825 priv->plat->phy_bus_name, priv->plat->bus_id);
826 else
827 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
828 priv->plat->bus_id);
829
830 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
831 priv->plat->phy_addr);
832 pr_debug("stmmac_init_phy: trying to attach to %s\n",
833 phy_id_fmt);
834
835 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
836 interface);
837 }
838
839 if (IS_ERR_OR_NULL(phydev)) {
840 pr_err("%s: Could not attach to PHY\n", dev->name);
841 if (!phydev)
842 return -ENODEV;
843
844 return PTR_ERR(phydev);
845 }
846
847 /* Stop Advertising 1000BASE Capability if interface is not GMII */
848 if ((interface == PHY_INTERFACE_MODE_MII) ||
849 (interface == PHY_INTERFACE_MODE_RMII) ||
850 (max_speed < 1000 && max_speed > 0))
851 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
852 SUPPORTED_1000baseT_Full);
853
854 /*
855 * Broken HW is sometimes missing the pull-up resistor on the
856 * MDIO line, which results in reads to non-existent devices returning
857 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
858 * device as well.
859 * Note: phydev->phy_id is the result of reading the UID PHY registers.
860 */
861 if (!priv->plat->phy_node && phydev->phy_id == 0) {
862 phy_disconnect(phydev);
863 return -ENODEV;
864 }
865 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
866 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
867
868 priv->phydev = phydev;
869
870 return 0;
871 }
872
873 /**
874 * stmmac_display_ring - display ring
875 * @head: pointer to the head of the ring passed.
876 * @size: size of the ring.
877 * @extend_desc: to verify if extended descriptors are used.
878 * Description: display the control/status and buffer descriptors.
879 */
880 static void stmmac_display_ring(void *head, int size, int extend_desc)
881 {
882 int i;
883 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
884 struct dma_desc *p = (struct dma_desc *)head;
885
886 for (i = 0; i < size; i++) {
887 u64 x;
888 if (extend_desc) {
889 x = *(u64 *) ep;
890 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
891 i, (unsigned int)virt_to_phys(ep),
892 (unsigned int)x, (unsigned int)(x >> 32),
893 ep->basic.des2, ep->basic.des3);
894 ep++;
895 } else {
896 x = *(u64 *) p;
897 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
898 i, (unsigned int)virt_to_phys(p),
899 (unsigned int)x, (unsigned int)(x >> 32),
900 p->des2, p->des3);
901 p++;
902 }
903 pr_info("\n");
904 }
905 }
906
907 static void stmmac_display_rings(struct stmmac_priv *priv)
908 {
909 unsigned int txsize = priv->dma_tx_size;
910 unsigned int rxsize = priv->dma_rx_size;
911
912 if (priv->extend_desc) {
913 pr_info("Extended RX descriptor ring:\n");
914 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
915 pr_info("Extended TX descriptor ring:\n");
916 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
917 } else {
918 pr_info("RX descriptor ring:\n");
919 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
920 pr_info("TX descriptor ring:\n");
921 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
922 }
923 }
924
925 static int stmmac_set_bfsize(int mtu, int bufsize)
926 {
927 int ret = bufsize;
928
929 if (mtu >= BUF_SIZE_4KiB)
930 ret = BUF_SIZE_8KiB;
931 else if (mtu >= BUF_SIZE_2KiB)
932 ret = BUF_SIZE_4KiB;
933 else if (mtu > DEFAULT_BUFSIZE)
934 ret = BUF_SIZE_2KiB;
935 else
936 ret = DEFAULT_BUFSIZE;
937
938 return ret;
939 }
940
941 /**
942 * stmmac_clear_descriptors - clear descriptors
943 * @priv: driver private structure
944 * Description: this function is called to clear the tx and rx descriptors
945 * in case of both basic and extended descriptors are used.
946 */
947 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
948 {
949 int i;
950 unsigned int txsize = priv->dma_tx_size;
951 unsigned int rxsize = priv->dma_rx_size;
952
953 /* Clear the Rx/Tx descriptors */
954 for (i = 0; i < rxsize; i++)
955 if (priv->extend_desc)
956 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
957 priv->use_riwt, priv->mode,
958 (i == rxsize - 1));
959 else
960 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
961 priv->use_riwt, priv->mode,
962 (i == rxsize - 1));
963 for (i = 0; i < txsize; i++)
964 if (priv->extend_desc)
965 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
966 priv->mode,
967 (i == txsize - 1));
968 else
969 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
970 priv->mode,
971 (i == txsize - 1));
972 }
973
974 /**
975 * stmmac_init_rx_buffers - init the RX descriptor buffer.
976 * @priv: driver private structure
977 * @p: descriptor pointer
978 * @i: descriptor index
979 * @flags: gfp flag.
980 * Description: this function is called to allocate a receive buffer, perform
981 * the DMA mapping and init the descriptor.
982 */
983 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
984 int i, gfp_t flags)
985 {
986 struct sk_buff *skb;
987
988 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
989 if (!skb) {
990 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
991 return -ENOMEM;
992 }
993 priv->rx_skbuff[i] = skb;
994 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
995 priv->dma_buf_sz,
996 DMA_FROM_DEVICE);
997 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
998 pr_err("%s: DMA mapping error\n", __func__);
999 dev_kfree_skb_any(skb);
1000 return -EINVAL;
1001 }
1002
1003 p->des2 = priv->rx_skbuff_dma[i];
1004
1005 if ((priv->hw->mode->init_desc3) &&
1006 (priv->dma_buf_sz == BUF_SIZE_16KiB))
1007 priv->hw->mode->init_desc3(p);
1008
1009 return 0;
1010 }
1011
1012 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1013 {
1014 if (priv->rx_skbuff[i]) {
1015 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1016 priv->dma_buf_sz, DMA_FROM_DEVICE);
1017 dev_kfree_skb_any(priv->rx_skbuff[i]);
1018 }
1019 priv->rx_skbuff[i] = NULL;
1020 }
1021
1022 /**
1023 * init_dma_desc_rings - init the RX/TX descriptor rings
1024 * @dev: net device structure
1025 * @flags: gfp flag.
1026 * Description: this function initializes the DMA RX/TX descriptors
1027 * and allocates the socket buffers. It suppors the chained and ring
1028 * modes.
1029 */
1030 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1031 {
1032 int i;
1033 struct stmmac_priv *priv = netdev_priv(dev);
1034 unsigned int txsize = priv->dma_tx_size;
1035 unsigned int rxsize = priv->dma_rx_size;
1036 unsigned int bfsize = 0;
1037 int ret = -ENOMEM;
1038
1039 if (priv->hw->mode->set_16kib_bfsize)
1040 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1041
1042 if (bfsize < BUF_SIZE_16KiB)
1043 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1044
1045 priv->dma_buf_sz = bfsize;
1046
1047 if (netif_msg_probe(priv))
1048 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1049 txsize, rxsize, bfsize);
1050
1051 if (netif_msg_probe(priv)) {
1052 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1053 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1054
1055 /* RX INITIALIZATION */
1056 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1057 }
1058 for (i = 0; i < rxsize; i++) {
1059 struct dma_desc *p;
1060 if (priv->extend_desc)
1061 p = &((priv->dma_erx + i)->basic);
1062 else
1063 p = priv->dma_rx + i;
1064
1065 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1066 if (ret)
1067 goto err_init_rx_buffers;
1068
1069 if (netif_msg_probe(priv))
1070 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1071 priv->rx_skbuff[i]->data,
1072 (unsigned int)priv->rx_skbuff_dma[i]);
1073 }
1074 priv->cur_rx = 0;
1075 priv->dirty_rx = (unsigned int)(i - rxsize);
1076 buf_sz = bfsize;
1077
1078 /* Setup the chained descriptor addresses */
1079 if (priv->mode == STMMAC_CHAIN_MODE) {
1080 if (priv->extend_desc) {
1081 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1082 rxsize, 1);
1083 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1084 txsize, 1);
1085 } else {
1086 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1087 rxsize, 0);
1088 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1089 txsize, 0);
1090 }
1091 }
1092
1093 /* TX INITIALIZATION */
1094 for (i = 0; i < txsize; i++) {
1095 struct dma_desc *p;
1096 if (priv->extend_desc)
1097 p = &((priv->dma_etx + i)->basic);
1098 else
1099 p = priv->dma_tx + i;
1100 p->des2 = 0;
1101 priv->tx_skbuff_dma[i].buf = 0;
1102 priv->tx_skbuff_dma[i].map_as_page = false;
1103 priv->tx_skbuff[i] = NULL;
1104 }
1105
1106 priv->dirty_tx = 0;
1107 priv->cur_tx = 0;
1108 netdev_reset_queue(priv->dev);
1109
1110 stmmac_clear_descriptors(priv);
1111
1112 if (netif_msg_hw(priv))
1113 stmmac_display_rings(priv);
1114
1115 return 0;
1116 err_init_rx_buffers:
1117 while (--i >= 0)
1118 stmmac_free_rx_buffers(priv, i);
1119 return ret;
1120 }
1121
1122 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1123 {
1124 int i;
1125
1126 for (i = 0; i < priv->dma_rx_size; i++)
1127 stmmac_free_rx_buffers(priv, i);
1128 }
1129
1130 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1131 {
1132 int i;
1133
1134 for (i = 0; i < priv->dma_tx_size; i++) {
1135 struct dma_desc *p;
1136
1137 if (priv->extend_desc)
1138 p = &((priv->dma_etx + i)->basic);
1139 else
1140 p = priv->dma_tx + i;
1141
1142 if (priv->tx_skbuff_dma[i].buf) {
1143 if (priv->tx_skbuff_dma[i].map_as_page)
1144 dma_unmap_page(priv->device,
1145 priv->tx_skbuff_dma[i].buf,
1146 priv->hw->desc->get_tx_len(p),
1147 DMA_TO_DEVICE);
1148 else
1149 dma_unmap_single(priv->device,
1150 priv->tx_skbuff_dma[i].buf,
1151 priv->hw->desc->get_tx_len(p),
1152 DMA_TO_DEVICE);
1153 }
1154
1155 if (priv->tx_skbuff[i] != NULL) {
1156 dev_kfree_skb_any(priv->tx_skbuff[i]);
1157 priv->tx_skbuff[i] = NULL;
1158 priv->tx_skbuff_dma[i].buf = 0;
1159 priv->tx_skbuff_dma[i].map_as_page = false;
1160 }
1161 }
1162 }
1163
1164 /**
1165 * alloc_dma_desc_resources - alloc TX/RX resources.
1166 * @priv: private structure
1167 * Description: according to which descriptor can be used (extend or basic)
1168 * this function allocates the resources for TX and RX paths. In case of
1169 * reception, for example, it pre-allocated the RX socket buffer in order to
1170 * allow zero-copy mechanism.
1171 */
1172 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1173 {
1174 unsigned int txsize = priv->dma_tx_size;
1175 unsigned int rxsize = priv->dma_rx_size;
1176 int ret = -ENOMEM;
1177
1178 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1179 GFP_KERNEL);
1180 if (!priv->rx_skbuff_dma)
1181 return -ENOMEM;
1182
1183 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1184 GFP_KERNEL);
1185 if (!priv->rx_skbuff)
1186 goto err_rx_skbuff;
1187
1188 priv->tx_skbuff_dma = kmalloc_array(txsize,
1189 sizeof(*priv->tx_skbuff_dma),
1190 GFP_KERNEL);
1191 if (!priv->tx_skbuff_dma)
1192 goto err_tx_skbuff_dma;
1193
1194 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1195 GFP_KERNEL);
1196 if (!priv->tx_skbuff)
1197 goto err_tx_skbuff;
1198
1199 if (priv->extend_desc) {
1200 priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1201 sizeof(struct
1202 dma_extended_desc),
1203 &priv->dma_rx_phy,
1204 GFP_KERNEL);
1205 if (!priv->dma_erx)
1206 goto err_dma;
1207
1208 priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1209 sizeof(struct
1210 dma_extended_desc),
1211 &priv->dma_tx_phy,
1212 GFP_KERNEL);
1213 if (!priv->dma_etx) {
1214 dma_free_coherent(priv->device, priv->dma_rx_size *
1215 sizeof(struct dma_extended_desc),
1216 priv->dma_erx, priv->dma_rx_phy);
1217 goto err_dma;
1218 }
1219 } else {
1220 priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1221 sizeof(struct dma_desc),
1222 &priv->dma_rx_phy,
1223 GFP_KERNEL);
1224 if (!priv->dma_rx)
1225 goto err_dma;
1226
1227 priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1228 sizeof(struct dma_desc),
1229 &priv->dma_tx_phy,
1230 GFP_KERNEL);
1231 if (!priv->dma_tx) {
1232 dma_free_coherent(priv->device, priv->dma_rx_size *
1233 sizeof(struct dma_desc),
1234 priv->dma_rx, priv->dma_rx_phy);
1235 goto err_dma;
1236 }
1237 }
1238
1239 return 0;
1240
1241 err_dma:
1242 kfree(priv->tx_skbuff);
1243 err_tx_skbuff:
1244 kfree(priv->tx_skbuff_dma);
1245 err_tx_skbuff_dma:
1246 kfree(priv->rx_skbuff);
1247 err_rx_skbuff:
1248 kfree(priv->rx_skbuff_dma);
1249 return ret;
1250 }
1251
1252 static void free_dma_desc_resources(struct stmmac_priv *priv)
1253 {
1254 /* Release the DMA TX/RX socket buffers */
1255 dma_free_rx_skbufs(priv);
1256 dma_free_tx_skbufs(priv);
1257
1258 /* Free DMA regions of consistent memory previously allocated */
1259 if (!priv->extend_desc) {
1260 dma_free_coherent(priv->device,
1261 priv->dma_tx_size * sizeof(struct dma_desc),
1262 priv->dma_tx, priv->dma_tx_phy);
1263 dma_free_coherent(priv->device,
1264 priv->dma_rx_size * sizeof(struct dma_desc),
1265 priv->dma_rx, priv->dma_rx_phy);
1266 } else {
1267 dma_free_coherent(priv->device, priv->dma_tx_size *
1268 sizeof(struct dma_extended_desc),
1269 priv->dma_etx, priv->dma_tx_phy);
1270 dma_free_coherent(priv->device, priv->dma_rx_size *
1271 sizeof(struct dma_extended_desc),
1272 priv->dma_erx, priv->dma_rx_phy);
1273 }
1274 kfree(priv->rx_skbuff_dma);
1275 kfree(priv->rx_skbuff);
1276 kfree(priv->tx_skbuff_dma);
1277 kfree(priv->tx_skbuff);
1278 }
1279
1280 /**
1281 * stmmac_dma_operation_mode - HW DMA operation mode
1282 * @priv: driver private structure
1283 * Description: it is used for configuring the DMA operation mode register in
1284 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1285 */
1286 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1287 {
1288 int rxfifosz = priv->plat->rx_fifo_size;
1289
1290 if (priv->plat->force_thresh_dma_mode)
1291 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1292 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1293 /*
1294 * In case of GMAC, SF mode can be enabled
1295 * to perform the TX COE in HW. This depends on:
1296 * 1) TX COE if actually supported
1297 * 2) There is no bugged Jumbo frame support
1298 * that needs to not insert csum in the TDES.
1299 */
1300 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1301 rxfifosz);
1302 priv->xstats.threshold = SF_DMA_MODE;
1303 } else
1304 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1305 rxfifosz);
1306 }
1307
1308 /**
1309 * stmmac_tx_clean - to manage the transmission completion
1310 * @priv: driver private structure
1311 * Description: it reclaims the transmit resources after transmission completes.
1312 */
1313 static void stmmac_tx_clean(struct stmmac_priv *priv)
1314 {
1315 unsigned int txsize = priv->dma_tx_size;
1316 unsigned int bytes_compl = 0, pkts_compl = 0;
1317
1318 spin_lock(&priv->tx_lock);
1319
1320 priv->xstats.tx_clean++;
1321
1322 while (priv->dirty_tx != priv->cur_tx) {
1323 int last;
1324 unsigned int entry = priv->dirty_tx % txsize;
1325 struct sk_buff *skb = priv->tx_skbuff[entry];
1326 struct dma_desc *p;
1327
1328 if (priv->extend_desc)
1329 p = (struct dma_desc *)(priv->dma_etx + entry);
1330 else
1331 p = priv->dma_tx + entry;
1332
1333 /* Check if the descriptor is owned by the DMA. */
1334 if (priv->hw->desc->get_tx_owner(p))
1335 break;
1336
1337 /* Verify tx error by looking at the last segment. */
1338 last = priv->hw->desc->get_tx_ls(p);
1339 if (likely(last)) {
1340 int tx_error =
1341 priv->hw->desc->tx_status(&priv->dev->stats,
1342 &priv->xstats, p,
1343 priv->ioaddr);
1344 if (likely(tx_error == 0)) {
1345 priv->dev->stats.tx_packets++;
1346 priv->xstats.tx_pkt_n++;
1347 } else
1348 priv->dev->stats.tx_errors++;
1349
1350 stmmac_get_tx_hwtstamp(priv, entry, skb);
1351 }
1352 if (netif_msg_tx_done(priv))
1353 pr_debug("%s: curr %d, dirty %d\n", __func__,
1354 priv->cur_tx, priv->dirty_tx);
1355
1356 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1357 if (priv->tx_skbuff_dma[entry].map_as_page)
1358 dma_unmap_page(priv->device,
1359 priv->tx_skbuff_dma[entry].buf,
1360 priv->hw->desc->get_tx_len(p),
1361 DMA_TO_DEVICE);
1362 else
1363 dma_unmap_single(priv->device,
1364 priv->tx_skbuff_dma[entry].buf,
1365 priv->hw->desc->get_tx_len(p),
1366 DMA_TO_DEVICE);
1367 priv->tx_skbuff_dma[entry].buf = 0;
1368 priv->tx_skbuff_dma[entry].map_as_page = false;
1369 }
1370 priv->hw->mode->clean_desc3(priv, p);
1371
1372 if (likely(skb != NULL)) {
1373 pkts_compl++;
1374 bytes_compl += skb->len;
1375 dev_consume_skb_any(skb);
1376 priv->tx_skbuff[entry] = NULL;
1377 }
1378
1379 priv->hw->desc->release_tx_desc(p, priv->mode);
1380
1381 priv->dirty_tx++;
1382 }
1383
1384 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1385
1386 if (unlikely(netif_queue_stopped(priv->dev) &&
1387 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1388 netif_tx_lock(priv->dev);
1389 if (netif_queue_stopped(priv->dev) &&
1390 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1391 if (netif_msg_tx_done(priv))
1392 pr_debug("%s: restart transmit\n", __func__);
1393 netif_wake_queue(priv->dev);
1394 }
1395 netif_tx_unlock(priv->dev);
1396 }
1397
1398 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1399 stmmac_enable_eee_mode(priv);
1400 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1401 }
1402 spin_unlock(&priv->tx_lock);
1403 }
1404
1405 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1406 {
1407 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1408 }
1409
1410 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1411 {
1412 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1413 }
1414
1415 /**
1416 * stmmac_tx_err - to manage the tx error
1417 * @priv: driver private structure
1418 * Description: it cleans the descriptors and restarts the transmission
1419 * in case of transmission errors.
1420 */
1421 static void stmmac_tx_err(struct stmmac_priv *priv)
1422 {
1423 int i;
1424 int txsize = priv->dma_tx_size;
1425 netif_stop_queue(priv->dev);
1426
1427 priv->hw->dma->stop_tx(priv->ioaddr);
1428 dma_free_tx_skbufs(priv);
1429 for (i = 0; i < txsize; i++)
1430 if (priv->extend_desc)
1431 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1432 priv->mode,
1433 (i == txsize - 1));
1434 else
1435 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1436 priv->mode,
1437 (i == txsize - 1));
1438 priv->dirty_tx = 0;
1439 priv->cur_tx = 0;
1440 netdev_reset_queue(priv->dev);
1441 priv->hw->dma->start_tx(priv->ioaddr);
1442
1443 priv->dev->stats.tx_errors++;
1444 netif_wake_queue(priv->dev);
1445 }
1446
1447 /**
1448 * stmmac_dma_interrupt - DMA ISR
1449 * @priv: driver private structure
1450 * Description: this is the DMA ISR. It is called by the main ISR.
1451 * It calls the dwmac dma routine and schedule poll method in case of some
1452 * work can be done.
1453 */
1454 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1455 {
1456 int status;
1457 int rxfifosz = priv->plat->rx_fifo_size;
1458
1459 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1460 if (likely((status & handle_rx)) || (status & handle_tx)) {
1461 if (likely(napi_schedule_prep(&priv->napi))) {
1462 stmmac_disable_dma_irq(priv);
1463 __napi_schedule(&priv->napi);
1464 }
1465 }
1466 if (unlikely(status & tx_hard_error_bump_tc)) {
1467 /* Try to bump up the dma threshold on this failure */
1468 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1469 (tc <= 256)) {
1470 tc += 64;
1471 if (priv->plat->force_thresh_dma_mode)
1472 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1473 rxfifosz);
1474 else
1475 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1476 SF_DMA_MODE, rxfifosz);
1477 priv->xstats.threshold = tc;
1478 }
1479 } else if (unlikely(status == tx_hard_error))
1480 stmmac_tx_err(priv);
1481 }
1482
1483 /**
1484 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1485 * @priv: driver private structure
1486 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1487 */
1488 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1489 {
1490 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1491 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1492
1493 dwmac_mmc_intr_all_mask(priv->ioaddr);
1494
1495 if (priv->dma_cap.rmon) {
1496 dwmac_mmc_ctrl(priv->ioaddr, mode);
1497 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1498 } else
1499 pr_info(" No MAC Management Counters available\n");
1500 }
1501
1502 /**
1503 * stmmac_get_synopsys_id - return the SYINID.
1504 * @priv: driver private structure
1505 * Description: this simple function is to decode and return the SYINID
1506 * starting from the HW core register.
1507 */
1508 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1509 {
1510 u32 hwid = priv->hw->synopsys_uid;
1511
1512 /* Check Synopsys Id (not available on old chips) */
1513 if (likely(hwid)) {
1514 u32 uid = ((hwid & 0x0000ff00) >> 8);
1515 u32 synid = (hwid & 0x000000ff);
1516
1517 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1518 uid, synid);
1519
1520 return synid;
1521 }
1522 return 0;
1523 }
1524
1525 /**
1526 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1527 * @priv: driver private structure
1528 * Description: select the Enhanced/Alternate or Normal descriptors.
1529 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1530 * supported by the HW capability register.
1531 */
1532 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1533 {
1534 if (priv->plat->enh_desc) {
1535 pr_info(" Enhanced/Alternate descriptors\n");
1536
1537 /* GMAC older than 3.50 has no extended descriptors */
1538 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1539 pr_info("\tEnabled extended descriptors\n");
1540 priv->extend_desc = 1;
1541 } else
1542 pr_warn("Extended descriptors not supported\n");
1543
1544 priv->hw->desc = &enh_desc_ops;
1545 } else {
1546 pr_info(" Normal descriptors\n");
1547 priv->hw->desc = &ndesc_ops;
1548 }
1549 }
1550
1551 /**
1552 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1553 * @priv: driver private structure
1554 * Description:
1555 * new GMAC chip generations have a new register to indicate the
1556 * presence of the optional feature/functions.
1557 * This can be also used to override the value passed through the
1558 * platform and necessary for old MAC10/100 and GMAC chips.
1559 */
1560 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1561 {
1562 u32 hw_cap = 0;
1563
1564 if (priv->hw->dma->get_hw_feature) {
1565 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1566
1567 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1568 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1569 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1570 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1571 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1572 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1573 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1574 priv->dma_cap.pmt_remote_wake_up =
1575 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1576 priv->dma_cap.pmt_magic_frame =
1577 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1578 /* MMC */
1579 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1580 /* IEEE 1588-2002 */
1581 priv->dma_cap.time_stamp =
1582 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1583 /* IEEE 1588-2008 */
1584 priv->dma_cap.atime_stamp =
1585 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1586 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1587 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1588 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1589 /* TX and RX csum */
1590 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1591 priv->dma_cap.rx_coe_type1 =
1592 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1593 priv->dma_cap.rx_coe_type2 =
1594 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1595 priv->dma_cap.rxfifo_over_2048 =
1596 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1597 /* TX and RX number of channels */
1598 priv->dma_cap.number_rx_channel =
1599 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1600 priv->dma_cap.number_tx_channel =
1601 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1602 /* Alternate (enhanced) DESC mode */
1603 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1604 }
1605
1606 return hw_cap;
1607 }
1608
1609 /**
1610 * stmmac_check_ether_addr - check if the MAC addr is valid
1611 * @priv: driver private structure
1612 * Description:
1613 * it is to verify if the MAC address is valid, in case of failures it
1614 * generates a random MAC address
1615 */
1616 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1617 {
1618 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1619 priv->hw->mac->get_umac_addr(priv->hw,
1620 priv->dev->dev_addr, 0);
1621 if (!is_valid_ether_addr(priv->dev->dev_addr))
1622 eth_hw_addr_random(priv->dev);
1623 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1624 priv->dev->dev_addr);
1625 }
1626 }
1627
1628 /**
1629 * stmmac_init_dma_engine - DMA init.
1630 * @priv: driver private structure
1631 * Description:
1632 * It inits the DMA invoking the specific MAC/GMAC callback.
1633 * Some DMA parameters can be passed from the platform;
1634 * in case of these are not passed a default is kept for the MAC or GMAC.
1635 */
1636 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1637 {
1638 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1639 int mixed_burst = 0;
1640 int atds = 0;
1641
1642 if (priv->plat->dma_cfg) {
1643 pbl = priv->plat->dma_cfg->pbl;
1644 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1645 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1646 burst_len = priv->plat->dma_cfg->burst_len;
1647 }
1648
1649 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1650 atds = 1;
1651
1652 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1653 burst_len, priv->dma_tx_phy,
1654 priv->dma_rx_phy, atds);
1655 }
1656
1657 /**
1658 * stmmac_tx_timer - mitigation sw timer for tx.
1659 * @data: data pointer
1660 * Description:
1661 * This is the timer handler to directly invoke the stmmac_tx_clean.
1662 */
1663 static void stmmac_tx_timer(unsigned long data)
1664 {
1665 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1666
1667 stmmac_tx_clean(priv);
1668 }
1669
1670 /**
1671 * stmmac_init_tx_coalesce - init tx mitigation options.
1672 * @priv: driver private structure
1673 * Description:
1674 * This inits the transmit coalesce parameters: i.e. timer rate,
1675 * timer handler and default threshold used for enabling the
1676 * interrupt on completion bit.
1677 */
1678 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1679 {
1680 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1681 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1682 init_timer(&priv->txtimer);
1683 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1684 priv->txtimer.data = (unsigned long)priv;
1685 priv->txtimer.function = stmmac_tx_timer;
1686 add_timer(&priv->txtimer);
1687 }
1688
1689 /**
1690 * stmmac_hw_setup - setup mac in a usable state.
1691 * @dev : pointer to the device structure.
1692 * Description:
1693 * this is the main function to setup the HW in a usable state because the
1694 * dma engine is reset, the core registers are configured (e.g. AXI,
1695 * Checksum features, timers). The DMA is ready to start receiving and
1696 * transmitting.
1697 * Return value:
1698 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1699 * file on failure.
1700 */
1701 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1702 {
1703 struct stmmac_priv *priv = netdev_priv(dev);
1704 int ret;
1705
1706 /* DMA initialization and SW reset */
1707 ret = stmmac_init_dma_engine(priv);
1708 if (ret < 0) {
1709 pr_err("%s: DMA engine initialization failed\n", __func__);
1710 return ret;
1711 }
1712
1713 /* Copy the MAC addr into the HW */
1714 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1715
1716 /* If required, perform hw setup of the bus. */
1717 if (priv->plat->bus_setup)
1718 priv->plat->bus_setup(priv->ioaddr);
1719
1720 /* Initialize the MAC Core */
1721 priv->hw->mac->core_init(priv->hw, dev->mtu);
1722
1723 ret = priv->hw->mac->rx_ipc(priv->hw);
1724 if (!ret) {
1725 pr_warn(" RX IPC Checksum Offload disabled\n");
1726 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1727 priv->hw->rx_csum = 0;
1728 }
1729
1730 /* Enable the MAC Rx/Tx */
1731 stmmac_set_mac(priv->ioaddr, true);
1732
1733 /* Set the HW DMA mode and the COE */
1734 stmmac_dma_operation_mode(priv);
1735
1736 stmmac_mmc_setup(priv);
1737
1738 if (init_ptp) {
1739 ret = stmmac_init_ptp(priv);
1740 if (ret && ret != -EOPNOTSUPP)
1741 pr_warn("%s: failed PTP initialisation\n", __func__);
1742 }
1743
1744 #ifdef CONFIG_DEBUG_FS
1745 ret = stmmac_init_fs(dev);
1746 if (ret < 0)
1747 pr_warn("%s: failed debugFS registration\n", __func__);
1748 #endif
1749 /* Start the ball rolling... */
1750 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1751 priv->hw->dma->start_tx(priv->ioaddr);
1752 priv->hw->dma->start_rx(priv->ioaddr);
1753
1754 /* Dump DMA/MAC registers */
1755 if (netif_msg_hw(priv)) {
1756 priv->hw->mac->dump_regs(priv->hw);
1757 priv->hw->dma->dump_regs(priv->ioaddr);
1758 }
1759 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1760
1761 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1762 priv->rx_riwt = MAX_DMA_RIWT;
1763 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1764 }
1765
1766 if (priv->pcs && priv->hw->mac->ctrl_ane)
1767 priv->hw->mac->ctrl_ane(priv->hw, 0);
1768
1769 return 0;
1770 }
1771
1772 /**
1773 * stmmac_open - open entry point of the driver
1774 * @dev : pointer to the device structure.
1775 * Description:
1776 * This function is the open entry point of the driver.
1777 * Return value:
1778 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1779 * file on failure.
1780 */
1781 static int stmmac_open(struct net_device *dev)
1782 {
1783 struct stmmac_priv *priv = netdev_priv(dev);
1784 int ret;
1785
1786 stmmac_check_ether_addr(priv);
1787
1788 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1789 priv->pcs != STMMAC_PCS_RTBI) {
1790 ret = stmmac_init_phy(dev);
1791 if (ret) {
1792 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1793 __func__, ret);
1794 return ret;
1795 }
1796 }
1797
1798 /* Extra statistics */
1799 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1800 priv->xstats.threshold = tc;
1801
1802 /* Create and initialize the TX/RX descriptors chains. */
1803 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1804 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1805 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1806
1807 ret = alloc_dma_desc_resources(priv);
1808 if (ret < 0) {
1809 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1810 goto dma_desc_error;
1811 }
1812
1813 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1814 if (ret < 0) {
1815 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1816 goto init_error;
1817 }
1818
1819 ret = stmmac_hw_setup(dev, true);
1820 if (ret < 0) {
1821 pr_err("%s: Hw setup failed\n", __func__);
1822 goto init_error;
1823 }
1824
1825 stmmac_init_tx_coalesce(priv);
1826
1827 if (priv->phydev)
1828 phy_start(priv->phydev);
1829
1830 /* Request the IRQ lines */
1831 ret = request_irq(dev->irq, stmmac_interrupt,
1832 IRQF_SHARED, dev->name, dev);
1833 if (unlikely(ret < 0)) {
1834 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1835 __func__, dev->irq, ret);
1836 goto init_error;
1837 }
1838
1839 /* Request the Wake IRQ in case of another line is used for WoL */
1840 if (priv->wol_irq != dev->irq) {
1841 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1842 IRQF_SHARED, dev->name, dev);
1843 if (unlikely(ret < 0)) {
1844 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1845 __func__, priv->wol_irq, ret);
1846 goto wolirq_error;
1847 }
1848 }
1849
1850 /* Request the IRQ lines */
1851 if (priv->lpi_irq > 0) {
1852 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1853 dev->name, dev);
1854 if (unlikely(ret < 0)) {
1855 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1856 __func__, priv->lpi_irq, ret);
1857 goto lpiirq_error;
1858 }
1859 }
1860
1861 napi_enable(&priv->napi);
1862 netif_start_queue(dev);
1863
1864 return 0;
1865
1866 lpiirq_error:
1867 if (priv->wol_irq != dev->irq)
1868 free_irq(priv->wol_irq, dev);
1869 wolirq_error:
1870 free_irq(dev->irq, dev);
1871
1872 init_error:
1873 free_dma_desc_resources(priv);
1874 dma_desc_error:
1875 if (priv->phydev)
1876 phy_disconnect(priv->phydev);
1877
1878 return ret;
1879 }
1880
1881 /**
1882 * stmmac_release - close entry point of the driver
1883 * @dev : device pointer.
1884 * Description:
1885 * This is the stop entry point of the driver.
1886 */
1887 static int stmmac_release(struct net_device *dev)
1888 {
1889 struct stmmac_priv *priv = netdev_priv(dev);
1890
1891 if (priv->eee_enabled)
1892 del_timer_sync(&priv->eee_ctrl_timer);
1893
1894 /* Stop and disconnect the PHY */
1895 if (priv->phydev) {
1896 phy_stop(priv->phydev);
1897 phy_disconnect(priv->phydev);
1898 priv->phydev = NULL;
1899 }
1900
1901 netif_stop_queue(dev);
1902
1903 napi_disable(&priv->napi);
1904
1905 del_timer_sync(&priv->txtimer);
1906
1907 /* Free the IRQ lines */
1908 free_irq(dev->irq, dev);
1909 if (priv->wol_irq != dev->irq)
1910 free_irq(priv->wol_irq, dev);
1911 if (priv->lpi_irq > 0)
1912 free_irq(priv->lpi_irq, dev);
1913
1914 /* Stop TX/RX DMA and clear the descriptors */
1915 priv->hw->dma->stop_tx(priv->ioaddr);
1916 priv->hw->dma->stop_rx(priv->ioaddr);
1917
1918 /* Release and free the Rx/Tx resources */
1919 free_dma_desc_resources(priv);
1920
1921 /* Disable the MAC Rx/Tx */
1922 stmmac_set_mac(priv->ioaddr, false);
1923
1924 netif_carrier_off(dev);
1925
1926 #ifdef CONFIG_DEBUG_FS
1927 stmmac_exit_fs(dev);
1928 #endif
1929
1930 stmmac_release_ptp(priv);
1931
1932 return 0;
1933 }
1934
1935 /**
1936 * stmmac_xmit - Tx entry point of the driver
1937 * @skb : the socket buffer
1938 * @dev : device pointer
1939 * Description : this is the tx entry point of the driver.
1940 * It programs the chain or the ring and supports oversized frames
1941 * and SG feature.
1942 */
1943 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1944 {
1945 struct stmmac_priv *priv = netdev_priv(dev);
1946 unsigned int txsize = priv->dma_tx_size;
1947 int entry;
1948 int i, csum_insertion = 0, is_jumbo = 0;
1949 int nfrags = skb_shinfo(skb)->nr_frags;
1950 struct dma_desc *desc, *first;
1951 unsigned int nopaged_len = skb_headlen(skb);
1952 unsigned int enh_desc = priv->plat->enh_desc;
1953
1954 spin_lock(&priv->tx_lock);
1955
1956 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1957 spin_unlock(&priv->tx_lock);
1958 if (!netif_queue_stopped(dev)) {
1959 netif_stop_queue(dev);
1960 /* This is a hard error, log it. */
1961 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1962 }
1963 return NETDEV_TX_BUSY;
1964 }
1965
1966 if (priv->tx_path_in_lpi_mode)
1967 stmmac_disable_eee_mode(priv);
1968
1969 entry = priv->cur_tx % txsize;
1970
1971 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1972
1973 if (priv->extend_desc)
1974 desc = (struct dma_desc *)(priv->dma_etx + entry);
1975 else
1976 desc = priv->dma_tx + entry;
1977
1978 first = desc;
1979
1980 /* To program the descriptors according to the size of the frame */
1981 if (enh_desc)
1982 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1983
1984 if (likely(!is_jumbo)) {
1985 desc->des2 = dma_map_single(priv->device, skb->data,
1986 nopaged_len, DMA_TO_DEVICE);
1987 if (dma_mapping_error(priv->device, desc->des2))
1988 goto dma_map_err;
1989 priv->tx_skbuff_dma[entry].buf = desc->des2;
1990 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1991 csum_insertion, priv->mode);
1992 } else {
1993 desc = first;
1994 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1995 if (unlikely(entry < 0))
1996 goto dma_map_err;
1997 }
1998
1999 for (i = 0; i < nfrags; i++) {
2000 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2001 int len = skb_frag_size(frag);
2002
2003 priv->tx_skbuff[entry] = NULL;
2004 entry = (++priv->cur_tx) % txsize;
2005 if (priv->extend_desc)
2006 desc = (struct dma_desc *)(priv->dma_etx + entry);
2007 else
2008 desc = priv->dma_tx + entry;
2009
2010 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2011 DMA_TO_DEVICE);
2012 if (dma_mapping_error(priv->device, desc->des2))
2013 goto dma_map_err; /* should reuse desc w/o issues */
2014
2015 priv->tx_skbuff_dma[entry].buf = desc->des2;
2016 priv->tx_skbuff_dma[entry].map_as_page = true;
2017 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2018 priv->mode);
2019 wmb();
2020 priv->hw->desc->set_tx_owner(desc);
2021 wmb();
2022 }
2023
2024 priv->tx_skbuff[entry] = skb;
2025
2026 /* Finalize the latest segment. */
2027 priv->hw->desc->close_tx_desc(desc);
2028
2029 wmb();
2030 /* According to the coalesce parameter the IC bit for the latest
2031 * segment could be reset and the timer re-started to invoke the
2032 * stmmac_tx function. This approach takes care about the fragments.
2033 */
2034 priv->tx_count_frames += nfrags + 1;
2035 if (priv->tx_coal_frames > priv->tx_count_frames) {
2036 priv->hw->desc->clear_tx_ic(desc);
2037 priv->xstats.tx_reset_ic_bit++;
2038 mod_timer(&priv->txtimer,
2039 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2040 } else
2041 priv->tx_count_frames = 0;
2042
2043 /* To avoid raise condition */
2044 priv->hw->desc->set_tx_owner(first);
2045 wmb();
2046
2047 priv->cur_tx++;
2048
2049 if (netif_msg_pktdata(priv)) {
2050 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2051 __func__, (priv->cur_tx % txsize),
2052 (priv->dirty_tx % txsize), entry, first, nfrags);
2053
2054 if (priv->extend_desc)
2055 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2056 else
2057 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2058
2059 pr_debug(">>> frame to be transmitted: ");
2060 print_pkt(skb->data, skb->len);
2061 }
2062 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2063 if (netif_msg_hw(priv))
2064 pr_debug("%s: stop transmitted packets\n", __func__);
2065 netif_stop_queue(dev);
2066 }
2067
2068 dev->stats.tx_bytes += skb->len;
2069
2070 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2071 priv->hwts_tx_en)) {
2072 /* declare that device is doing timestamping */
2073 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2074 priv->hw->desc->enable_tx_timestamp(first);
2075 }
2076
2077 if (!priv->hwts_tx_en)
2078 skb_tx_timestamp(skb);
2079
2080 netdev_sent_queue(dev, skb->len);
2081 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2082
2083 spin_unlock(&priv->tx_lock);
2084 return NETDEV_TX_OK;
2085
2086 dma_map_err:
2087 spin_unlock(&priv->tx_lock);
2088 dev_err(priv->device, "Tx dma map failed\n");
2089 dev_kfree_skb(skb);
2090 priv->dev->stats.tx_dropped++;
2091 return NETDEV_TX_OK;
2092 }
2093
2094 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2095 {
2096 struct ethhdr *ehdr;
2097 u16 vlanid;
2098
2099 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2100 NETIF_F_HW_VLAN_CTAG_RX &&
2101 !__vlan_get_tag(skb, &vlanid)) {
2102 /* pop the vlan tag */
2103 ehdr = (struct ethhdr *)skb->data;
2104 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2105 skb_pull(skb, VLAN_HLEN);
2106 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2107 }
2108 }
2109
2110
2111 /**
2112 * stmmac_rx_refill - refill used skb preallocated buffers
2113 * @priv: driver private structure
2114 * Description : this is to reallocate the skb for the reception process
2115 * that is based on zero-copy.
2116 */
2117 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2118 {
2119 unsigned int rxsize = priv->dma_rx_size;
2120 int bfsize = priv->dma_buf_sz;
2121
2122 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2123 unsigned int entry = priv->dirty_rx % rxsize;
2124 struct dma_desc *p;
2125
2126 if (priv->extend_desc)
2127 p = (struct dma_desc *)(priv->dma_erx + entry);
2128 else
2129 p = priv->dma_rx + entry;
2130
2131 if (likely(priv->rx_skbuff[entry] == NULL)) {
2132 struct sk_buff *skb;
2133
2134 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2135
2136 if (unlikely(skb == NULL))
2137 break;
2138
2139 priv->rx_skbuff[entry] = skb;
2140 priv->rx_skbuff_dma[entry] =
2141 dma_map_single(priv->device, skb->data, bfsize,
2142 DMA_FROM_DEVICE);
2143 if (dma_mapping_error(priv->device,
2144 priv->rx_skbuff_dma[entry])) {
2145 dev_err(priv->device, "Rx dma map failed\n");
2146 dev_kfree_skb(skb);
2147 break;
2148 }
2149 p->des2 = priv->rx_skbuff_dma[entry];
2150
2151 priv->hw->mode->refill_desc3(priv, p);
2152
2153 if (netif_msg_rx_status(priv))
2154 pr_debug("\trefill entry #%d\n", entry);
2155 }
2156 wmb();
2157 priv->hw->desc->set_rx_owner(p);
2158 wmb();
2159 }
2160 }
2161
2162 /**
2163 * stmmac_rx - manage the receive process
2164 * @priv: driver private structure
2165 * @limit: napi bugget.
2166 * Description : this the function called by the napi poll method.
2167 * It gets all the frames inside the ring.
2168 */
2169 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2170 {
2171 unsigned int rxsize = priv->dma_rx_size;
2172 unsigned int entry = priv->cur_rx % rxsize;
2173 unsigned int next_entry;
2174 unsigned int count = 0;
2175 int coe = priv->hw->rx_csum;
2176
2177 if (netif_msg_rx_status(priv)) {
2178 pr_debug("%s: descriptor ring:\n", __func__);
2179 if (priv->extend_desc)
2180 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2181 else
2182 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2183 }
2184 while (count < limit) {
2185 int status;
2186 struct dma_desc *p;
2187
2188 if (priv->extend_desc)
2189 p = (struct dma_desc *)(priv->dma_erx + entry);
2190 else
2191 p = priv->dma_rx + entry;
2192
2193 if (priv->hw->desc->get_rx_owner(p))
2194 break;
2195
2196 count++;
2197
2198 next_entry = (++priv->cur_rx) % rxsize;
2199 if (priv->extend_desc)
2200 prefetch(priv->dma_erx + next_entry);
2201 else
2202 prefetch(priv->dma_rx + next_entry);
2203
2204 /* read the status of the incoming frame */
2205 status = priv->hw->desc->rx_status(&priv->dev->stats,
2206 &priv->xstats, p);
2207 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2208 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2209 &priv->xstats,
2210 priv->dma_erx +
2211 entry);
2212 if (unlikely(status == discard_frame)) {
2213 priv->dev->stats.rx_errors++;
2214 if (priv->hwts_rx_en && !priv->extend_desc) {
2215 /* DESC2 & DESC3 will be overwitten by device
2216 * with timestamp value, hence reinitialize
2217 * them in stmmac_rx_refill() function so that
2218 * device can reuse it.
2219 */
2220 priv->rx_skbuff[entry] = NULL;
2221 dma_unmap_single(priv->device,
2222 priv->rx_skbuff_dma[entry],
2223 priv->dma_buf_sz,
2224 DMA_FROM_DEVICE);
2225 }
2226 } else {
2227 struct sk_buff *skb;
2228 int frame_len;
2229
2230 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2231
2232 /* check if frame_len fits the preallocated memory */
2233 if (frame_len > priv->dma_buf_sz) {
2234 priv->dev->stats.rx_length_errors++;
2235 break;
2236 }
2237
2238 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2239 * Type frames (LLC/LLC-SNAP)
2240 */
2241 if (unlikely(status != llc_snap))
2242 frame_len -= ETH_FCS_LEN;
2243
2244 if (netif_msg_rx_status(priv)) {
2245 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2246 p, entry, p->des2);
2247 if (frame_len > ETH_FRAME_LEN)
2248 pr_debug("\tframe size %d, COE: %d\n",
2249 frame_len, status);
2250 }
2251 skb = priv->rx_skbuff[entry];
2252 if (unlikely(!skb)) {
2253 pr_err("%s: Inconsistent Rx descriptor chain\n",
2254 priv->dev->name);
2255 priv->dev->stats.rx_dropped++;
2256 break;
2257 }
2258 prefetch(skb->data - NET_IP_ALIGN);
2259 priv->rx_skbuff[entry] = NULL;
2260
2261 stmmac_get_rx_hwtstamp(priv, entry, skb);
2262
2263 skb_put(skb, frame_len);
2264 dma_unmap_single(priv->device,
2265 priv->rx_skbuff_dma[entry],
2266 priv->dma_buf_sz, DMA_FROM_DEVICE);
2267
2268 if (netif_msg_pktdata(priv)) {
2269 pr_debug("frame received (%dbytes)", frame_len);
2270 print_pkt(skb->data, frame_len);
2271 }
2272
2273 stmmac_rx_vlan(priv->dev, skb);
2274
2275 skb->protocol = eth_type_trans(skb, priv->dev);
2276
2277 if (unlikely(!coe))
2278 skb_checksum_none_assert(skb);
2279 else
2280 skb->ip_summed = CHECKSUM_UNNECESSARY;
2281
2282 napi_gro_receive(&priv->napi, skb);
2283
2284 priv->dev->stats.rx_packets++;
2285 priv->dev->stats.rx_bytes += frame_len;
2286 }
2287 entry = next_entry;
2288 }
2289
2290 stmmac_rx_refill(priv);
2291
2292 priv->xstats.rx_pkt_n += count;
2293
2294 return count;
2295 }
2296
2297 /**
2298 * stmmac_poll - stmmac poll method (NAPI)
2299 * @napi : pointer to the napi structure.
2300 * @budget : maximum number of packets that the current CPU can receive from
2301 * all interfaces.
2302 * Description :
2303 * To look at the incoming frames and clear the tx resources.
2304 */
2305 static int stmmac_poll(struct napi_struct *napi, int budget)
2306 {
2307 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2308 int work_done = 0;
2309
2310 priv->xstats.napi_poll++;
2311 stmmac_tx_clean(priv);
2312
2313 work_done = stmmac_rx(priv, budget);
2314 if (work_done < budget) {
2315 napi_complete(napi);
2316 stmmac_enable_dma_irq(priv);
2317 }
2318 return work_done;
2319 }
2320
2321 /**
2322 * stmmac_tx_timeout
2323 * @dev : Pointer to net device structure
2324 * Description: this function is called when a packet transmission fails to
2325 * complete within a reasonable time. The driver will mark the error in the
2326 * netdev structure and arrange for the device to be reset to a sane state
2327 * in order to transmit a new packet.
2328 */
2329 static void stmmac_tx_timeout(struct net_device *dev)
2330 {
2331 struct stmmac_priv *priv = netdev_priv(dev);
2332
2333 /* Clear Tx resources and restart transmitting again */
2334 stmmac_tx_err(priv);
2335 }
2336
2337 /**
2338 * stmmac_set_rx_mode - entry point for multicast addressing
2339 * @dev : pointer to the device structure
2340 * Description:
2341 * This function is a driver entry point which gets called by the kernel
2342 * whenever multicast addresses must be enabled/disabled.
2343 * Return value:
2344 * void.
2345 */
2346 static void stmmac_set_rx_mode(struct net_device *dev)
2347 {
2348 struct stmmac_priv *priv = netdev_priv(dev);
2349
2350 priv->hw->mac->set_filter(priv->hw, dev);
2351 }
2352
2353 /**
2354 * stmmac_change_mtu - entry point to change MTU size for the device.
2355 * @dev : device pointer.
2356 * @new_mtu : the new MTU size for the device.
2357 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2358 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2359 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2360 * Return value:
2361 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2362 * file on failure.
2363 */
2364 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2365 {
2366 struct stmmac_priv *priv = netdev_priv(dev);
2367 int max_mtu;
2368
2369 if (netif_running(dev)) {
2370 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2371 return -EBUSY;
2372 }
2373
2374 if (priv->plat->enh_desc)
2375 max_mtu = JUMBO_LEN;
2376 else
2377 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2378
2379 if (priv->plat->maxmtu < max_mtu)
2380 max_mtu = priv->plat->maxmtu;
2381
2382 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2383 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2384 return -EINVAL;
2385 }
2386
2387 dev->mtu = new_mtu;
2388 netdev_update_features(dev);
2389
2390 return 0;
2391 }
2392
2393 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2394 netdev_features_t features)
2395 {
2396 struct stmmac_priv *priv = netdev_priv(dev);
2397
2398 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2399 features &= ~NETIF_F_RXCSUM;
2400
2401 if (!priv->plat->tx_coe)
2402 features &= ~NETIF_F_CSUM_MASK;
2403
2404 /* Some GMAC devices have a bugged Jumbo frame support that
2405 * needs to have the Tx COE disabled for oversized frames
2406 * (due to limited buffer sizes). In this case we disable
2407 * the TX csum insertionin the TDES and not use SF.
2408 */
2409 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2410 features &= ~NETIF_F_CSUM_MASK;
2411
2412 return features;
2413 }
2414
2415 static int stmmac_set_features(struct net_device *netdev,
2416 netdev_features_t features)
2417 {
2418 struct stmmac_priv *priv = netdev_priv(netdev);
2419
2420 /* Keep the COE Type in case of csum is supporting */
2421 if (features & NETIF_F_RXCSUM)
2422 priv->hw->rx_csum = priv->plat->rx_coe;
2423 else
2424 priv->hw->rx_csum = 0;
2425 /* No check needed because rx_coe has been set before and it will be
2426 * fixed in case of issue.
2427 */
2428 priv->hw->mac->rx_ipc(priv->hw);
2429
2430 return 0;
2431 }
2432
2433 /**
2434 * stmmac_interrupt - main ISR
2435 * @irq: interrupt number.
2436 * @dev_id: to pass the net device pointer.
2437 * Description: this is the main driver interrupt service routine.
2438 * It can call:
2439 * o DMA service routine (to manage incoming frame reception and transmission
2440 * status)
2441 * o Core interrupts to manage: remote wake-up, management counter, LPI
2442 * interrupts.
2443 */
2444 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2445 {
2446 struct net_device *dev = (struct net_device *)dev_id;
2447 struct stmmac_priv *priv = netdev_priv(dev);
2448
2449 if (priv->irq_wake)
2450 pm_wakeup_event(priv->device, 0);
2451
2452 if (unlikely(!dev)) {
2453 pr_err("%s: invalid dev pointer\n", __func__);
2454 return IRQ_NONE;
2455 }
2456
2457 /* To handle GMAC own interrupts */
2458 if (priv->plat->has_gmac) {
2459 int status = priv->hw->mac->host_irq_status(priv->hw,
2460 &priv->xstats);
2461 if (unlikely(status)) {
2462 /* For LPI we need to save the tx status */
2463 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2464 priv->tx_path_in_lpi_mode = true;
2465 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2466 priv->tx_path_in_lpi_mode = false;
2467 }
2468 }
2469
2470 /* To handle DMA interrupts */
2471 stmmac_dma_interrupt(priv);
2472
2473 return IRQ_HANDLED;
2474 }
2475
2476 #ifdef CONFIG_NET_POLL_CONTROLLER
2477 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2478 * to allow network I/O with interrupts disabled.
2479 */
2480 static void stmmac_poll_controller(struct net_device *dev)
2481 {
2482 disable_irq(dev->irq);
2483 stmmac_interrupt(dev->irq, dev);
2484 enable_irq(dev->irq);
2485 }
2486 #endif
2487
2488 /**
2489 * stmmac_ioctl - Entry point for the Ioctl
2490 * @dev: Device pointer.
2491 * @rq: An IOCTL specefic structure, that can contain a pointer to
2492 * a proprietary structure used to pass information to the driver.
2493 * @cmd: IOCTL command
2494 * Description:
2495 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2496 */
2497 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2498 {
2499 struct stmmac_priv *priv = netdev_priv(dev);
2500 int ret = -EOPNOTSUPP;
2501
2502 if (!netif_running(dev))
2503 return -EINVAL;
2504
2505 switch (cmd) {
2506 case SIOCGMIIPHY:
2507 case SIOCGMIIREG:
2508 case SIOCSMIIREG:
2509 if (!priv->phydev)
2510 return -EINVAL;
2511 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2512 break;
2513 case SIOCSHWTSTAMP:
2514 ret = stmmac_hwtstamp_ioctl(dev, rq);
2515 break;
2516 default:
2517 break;
2518 }
2519
2520 return ret;
2521 }
2522
2523 #ifdef CONFIG_DEBUG_FS
2524 static struct dentry *stmmac_fs_dir;
2525
2526 static void sysfs_display_ring(void *head, int size, int extend_desc,
2527 struct seq_file *seq)
2528 {
2529 int i;
2530 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2531 struct dma_desc *p = (struct dma_desc *)head;
2532
2533 for (i = 0; i < size; i++) {
2534 u64 x;
2535 if (extend_desc) {
2536 x = *(u64 *) ep;
2537 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2538 i, (unsigned int)virt_to_phys(ep),
2539 (unsigned int)x, (unsigned int)(x >> 32),
2540 ep->basic.des2, ep->basic.des3);
2541 ep++;
2542 } else {
2543 x = *(u64 *) p;
2544 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2545 i, (unsigned int)virt_to_phys(ep),
2546 (unsigned int)x, (unsigned int)(x >> 32),
2547 p->des2, p->des3);
2548 p++;
2549 }
2550 seq_printf(seq, "\n");
2551 }
2552 }
2553
2554 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2555 {
2556 struct net_device *dev = seq->private;
2557 struct stmmac_priv *priv = netdev_priv(dev);
2558 unsigned int txsize = priv->dma_tx_size;
2559 unsigned int rxsize = priv->dma_rx_size;
2560
2561 if (priv->extend_desc) {
2562 seq_printf(seq, "Extended RX descriptor ring:\n");
2563 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2564 seq_printf(seq, "Extended TX descriptor ring:\n");
2565 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2566 } else {
2567 seq_printf(seq, "RX descriptor ring:\n");
2568 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2569 seq_printf(seq, "TX descriptor ring:\n");
2570 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2571 }
2572
2573 return 0;
2574 }
2575
2576 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2577 {
2578 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2579 }
2580
2581 static const struct file_operations stmmac_rings_status_fops = {
2582 .owner = THIS_MODULE,
2583 .open = stmmac_sysfs_ring_open,
2584 .read = seq_read,
2585 .llseek = seq_lseek,
2586 .release = single_release,
2587 };
2588
2589 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2590 {
2591 struct net_device *dev = seq->private;
2592 struct stmmac_priv *priv = netdev_priv(dev);
2593
2594 if (!priv->hw_cap_support) {
2595 seq_printf(seq, "DMA HW features not supported\n");
2596 return 0;
2597 }
2598
2599 seq_printf(seq, "==============================\n");
2600 seq_printf(seq, "\tDMA HW features\n");
2601 seq_printf(seq, "==============================\n");
2602
2603 seq_printf(seq, "\t10/100 Mbps %s\n",
2604 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2605 seq_printf(seq, "\t1000 Mbps %s\n",
2606 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2607 seq_printf(seq, "\tHalf duple %s\n",
2608 (priv->dma_cap.half_duplex) ? "Y" : "N");
2609 seq_printf(seq, "\tHash Filter: %s\n",
2610 (priv->dma_cap.hash_filter) ? "Y" : "N");
2611 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2612 (priv->dma_cap.multi_addr) ? "Y" : "N");
2613 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2614 (priv->dma_cap.pcs) ? "Y" : "N");
2615 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2616 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2617 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2618 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2619 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2620 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2621 seq_printf(seq, "\tRMON module: %s\n",
2622 (priv->dma_cap.rmon) ? "Y" : "N");
2623 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2624 (priv->dma_cap.time_stamp) ? "Y" : "N");
2625 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2626 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2627 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2628 (priv->dma_cap.eee) ? "Y" : "N");
2629 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2630 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2631 (priv->dma_cap.tx_coe) ? "Y" : "N");
2632 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2633 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2634 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2635 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2636 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2637 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2638 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2639 priv->dma_cap.number_rx_channel);
2640 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2641 priv->dma_cap.number_tx_channel);
2642 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2643 (priv->dma_cap.enh_desc) ? "Y" : "N");
2644
2645 return 0;
2646 }
2647
2648 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2649 {
2650 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2651 }
2652
2653 static const struct file_operations stmmac_dma_cap_fops = {
2654 .owner = THIS_MODULE,
2655 .open = stmmac_sysfs_dma_cap_open,
2656 .read = seq_read,
2657 .llseek = seq_lseek,
2658 .release = single_release,
2659 };
2660
2661 static int stmmac_init_fs(struct net_device *dev)
2662 {
2663 struct stmmac_priv *priv = netdev_priv(dev);
2664
2665 /* Create per netdev entries */
2666 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2667
2668 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2669 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2670 STMMAC_RESOURCE_NAME, dev->name);
2671
2672 return -ENOMEM;
2673 }
2674
2675 /* Entry to report DMA RX/TX rings */
2676 priv->dbgfs_rings_status =
2677 debugfs_create_file("descriptors_status", S_IRUGO,
2678 priv->dbgfs_dir, dev,
2679 &stmmac_rings_status_fops);
2680
2681 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2682 pr_info("ERROR creating stmmac ring debugfs file\n");
2683 debugfs_remove_recursive(priv->dbgfs_dir);
2684
2685 return -ENOMEM;
2686 }
2687
2688 /* Entry to report the DMA HW features */
2689 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2690 priv->dbgfs_dir,
2691 dev, &stmmac_dma_cap_fops);
2692
2693 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2694 pr_info("ERROR creating stmmac MMC debugfs file\n");
2695 debugfs_remove_recursive(priv->dbgfs_dir);
2696
2697 return -ENOMEM;
2698 }
2699
2700 return 0;
2701 }
2702
2703 static void stmmac_exit_fs(struct net_device *dev)
2704 {
2705 struct stmmac_priv *priv = netdev_priv(dev);
2706
2707 debugfs_remove_recursive(priv->dbgfs_dir);
2708 }
2709 #endif /* CONFIG_DEBUG_FS */
2710
2711 static const struct net_device_ops stmmac_netdev_ops = {
2712 .ndo_open = stmmac_open,
2713 .ndo_start_xmit = stmmac_xmit,
2714 .ndo_stop = stmmac_release,
2715 .ndo_change_mtu = stmmac_change_mtu,
2716 .ndo_fix_features = stmmac_fix_features,
2717 .ndo_set_features = stmmac_set_features,
2718 .ndo_set_rx_mode = stmmac_set_rx_mode,
2719 .ndo_tx_timeout = stmmac_tx_timeout,
2720 .ndo_do_ioctl = stmmac_ioctl,
2721 #ifdef CONFIG_NET_POLL_CONTROLLER
2722 .ndo_poll_controller = stmmac_poll_controller,
2723 #endif
2724 .ndo_set_mac_address = eth_mac_addr,
2725 };
2726
2727 /**
2728 * stmmac_hw_init - Init the MAC device
2729 * @priv: driver private structure
2730 * Description: this function is to configure the MAC device according to
2731 * some platform parameters or the HW capability register. It prepares the
2732 * driver to use either ring or chain modes and to setup either enhanced or
2733 * normal descriptors.
2734 */
2735 static int stmmac_hw_init(struct stmmac_priv *priv)
2736 {
2737 struct mac_device_info *mac;
2738
2739 /* Identify the MAC HW device */
2740 if (priv->plat->has_gmac) {
2741 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2742 mac = dwmac1000_setup(priv->ioaddr,
2743 priv->plat->multicast_filter_bins,
2744 priv->plat->unicast_filter_entries);
2745 } else {
2746 mac = dwmac100_setup(priv->ioaddr);
2747 }
2748 if (!mac)
2749 return -ENOMEM;
2750
2751 priv->hw = mac;
2752
2753 /* Get and dump the chip ID */
2754 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2755
2756 /* To use the chained or ring mode */
2757 if (chain_mode) {
2758 priv->hw->mode = &chain_mode_ops;
2759 pr_info(" Chain mode enabled\n");
2760 priv->mode = STMMAC_CHAIN_MODE;
2761 } else {
2762 priv->hw->mode = &ring_mode_ops;
2763 pr_info(" Ring mode enabled\n");
2764 priv->mode = STMMAC_RING_MODE;
2765 }
2766
2767 /* Get the HW capability (new GMAC newer than 3.50a) */
2768 priv->hw_cap_support = stmmac_get_hw_features(priv);
2769 if (priv->hw_cap_support) {
2770 pr_info(" DMA HW capability register supported");
2771
2772 /* We can override some gmac/dma configuration fields: e.g.
2773 * enh_desc, tx_coe (e.g. that are passed through the
2774 * platform) with the values from the HW capability
2775 * register (if supported).
2776 */
2777 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2778 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2779
2780 /* TXCOE doesn't work in thresh DMA mode */
2781 if (priv->plat->force_thresh_dma_mode)
2782 priv->plat->tx_coe = 0;
2783 else
2784 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2785
2786 if (priv->dma_cap.rx_coe_type2)
2787 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2788 else if (priv->dma_cap.rx_coe_type1)
2789 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2790
2791 } else
2792 pr_info(" No HW DMA feature register supported");
2793
2794 /* To use alternate (extended) or normal descriptor structures */
2795 stmmac_selec_desc_mode(priv);
2796
2797 if (priv->plat->rx_coe) {
2798 priv->hw->rx_csum = priv->plat->rx_coe;
2799 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2800 priv->plat->rx_coe);
2801 }
2802 if (priv->plat->tx_coe)
2803 pr_info(" TX Checksum insertion supported\n");
2804
2805 if (priv->plat->pmt) {
2806 pr_info(" Wake-Up On Lan supported\n");
2807 device_set_wakeup_capable(priv->device, 1);
2808 }
2809
2810 return 0;
2811 }
2812
2813 /**
2814 * stmmac_dvr_probe
2815 * @device: device pointer
2816 * @plat_dat: platform data pointer
2817 * @res: stmmac resource pointer
2818 * Description: this is the main probe function used to
2819 * call the alloc_etherdev, allocate the priv structure.
2820 * Return:
2821 * returns 0 on success, otherwise errno.
2822 */
2823 int stmmac_dvr_probe(struct device *device,
2824 struct plat_stmmacenet_data *plat_dat,
2825 struct stmmac_resources *res)
2826 {
2827 int ret = 0;
2828 struct net_device *ndev = NULL;
2829 struct stmmac_priv *priv;
2830
2831 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2832 if (!ndev)
2833 return -ENOMEM;
2834
2835 SET_NETDEV_DEV(ndev, device);
2836
2837 priv = netdev_priv(ndev);
2838 priv->device = device;
2839 priv->dev = ndev;
2840
2841 stmmac_set_ethtool_ops(ndev);
2842 priv->pause = pause;
2843 priv->plat = plat_dat;
2844 priv->ioaddr = res->addr;
2845 priv->dev->base_addr = (unsigned long)res->addr;
2846
2847 priv->dev->irq = res->irq;
2848 priv->wol_irq = res->wol_irq;
2849 priv->lpi_irq = res->lpi_irq;
2850
2851 if (res->mac)
2852 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2853
2854 dev_set_drvdata(device, priv->dev);
2855
2856 /* Verify driver arguments */
2857 stmmac_verify_args();
2858
2859 /* Override with kernel parameters if supplied XXX CRS XXX
2860 * this needs to have multiple instances
2861 */
2862 if ((phyaddr >= 0) && (phyaddr <= 31))
2863 priv->plat->phy_addr = phyaddr;
2864
2865 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2866 if (IS_ERR(priv->stmmac_clk)) {
2867 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2868 __func__);
2869 /* If failed to obtain stmmac_clk and specific clk_csr value
2870 * is NOT passed from the platform, probe fail.
2871 */
2872 if (!priv->plat->clk_csr) {
2873 ret = PTR_ERR(priv->stmmac_clk);
2874 goto error_clk_get;
2875 } else {
2876 priv->stmmac_clk = NULL;
2877 }
2878 }
2879 clk_prepare_enable(priv->stmmac_clk);
2880
2881 priv->pclk = devm_clk_get(priv->device, "pclk");
2882 if (IS_ERR(priv->pclk)) {
2883 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2884 ret = -EPROBE_DEFER;
2885 goto error_pclk_get;
2886 }
2887 priv->pclk = NULL;
2888 }
2889 clk_prepare_enable(priv->pclk);
2890
2891 priv->stmmac_rst = devm_reset_control_get(priv->device,
2892 STMMAC_RESOURCE_NAME);
2893 if (IS_ERR(priv->stmmac_rst)) {
2894 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2895 ret = -EPROBE_DEFER;
2896 goto error_hw_init;
2897 }
2898 dev_info(priv->device, "no reset control found\n");
2899 priv->stmmac_rst = NULL;
2900 }
2901 if (priv->stmmac_rst)
2902 reset_control_deassert(priv->stmmac_rst);
2903
2904 /* Init MAC and get the capabilities */
2905 ret = stmmac_hw_init(priv);
2906 if (ret)
2907 goto error_hw_init;
2908
2909 ndev->netdev_ops = &stmmac_netdev_ops;
2910
2911 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2912 NETIF_F_RXCSUM;
2913 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2914 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2915 #ifdef STMMAC_VLAN_TAG_USED
2916 /* Both mac100 and gmac support receive VLAN tag detection */
2917 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2918 #endif
2919 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2920
2921 if (flow_ctrl)
2922 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2923
2924 /* Rx Watchdog is available in the COREs newer than the 3.40.
2925 * In some case, for example on bugged HW this feature
2926 * has to be disable and this can be done by passing the
2927 * riwt_off field from the platform.
2928 */
2929 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2930 priv->use_riwt = 1;
2931 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2932 }
2933
2934 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2935
2936 spin_lock_init(&priv->lock);
2937 spin_lock_init(&priv->tx_lock);
2938
2939 ret = register_netdev(ndev);
2940 if (ret) {
2941 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2942 goto error_netdev_register;
2943 }
2944
2945 /* If a specific clk_csr value is passed from the platform
2946 * this means that the CSR Clock Range selection cannot be
2947 * changed at run-time and it is fixed. Viceversa the driver'll try to
2948 * set the MDC clock dynamically according to the csr actual
2949 * clock input.
2950 */
2951 if (!priv->plat->clk_csr)
2952 stmmac_clk_csr_set(priv);
2953 else
2954 priv->clk_csr = priv->plat->clk_csr;
2955
2956 stmmac_check_pcs_mode(priv);
2957
2958 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2959 priv->pcs != STMMAC_PCS_RTBI) {
2960 /* MDIO bus Registration */
2961 ret = stmmac_mdio_register(ndev);
2962 if (ret < 0) {
2963 pr_debug("%s: MDIO bus (id: %d) registration failed",
2964 __func__, priv->plat->bus_id);
2965 goto error_mdio_register;
2966 }
2967 }
2968
2969 return 0;
2970
2971 error_mdio_register:
2972 unregister_netdev(ndev);
2973 error_netdev_register:
2974 netif_napi_del(&priv->napi);
2975 error_hw_init:
2976 clk_disable_unprepare(priv->pclk);
2977 error_pclk_get:
2978 clk_disable_unprepare(priv->stmmac_clk);
2979 error_clk_get:
2980 free_netdev(ndev);
2981
2982 return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2985
2986 /**
2987 * stmmac_dvr_remove
2988 * @ndev: net device pointer
2989 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2990 * changes the link status, releases the DMA descriptor rings.
2991 */
2992 int stmmac_dvr_remove(struct net_device *ndev)
2993 {
2994 struct stmmac_priv *priv = netdev_priv(ndev);
2995
2996 pr_info("%s:\n\tremoving driver", __func__);
2997
2998 priv->hw->dma->stop_rx(priv->ioaddr);
2999 priv->hw->dma->stop_tx(priv->ioaddr);
3000
3001 stmmac_set_mac(priv->ioaddr, false);
3002 netif_carrier_off(ndev);
3003 unregister_netdev(ndev);
3004 if (priv->stmmac_rst)
3005 reset_control_assert(priv->stmmac_rst);
3006 clk_disable_unprepare(priv->pclk);
3007 clk_disable_unprepare(priv->stmmac_clk);
3008 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3009 priv->pcs != STMMAC_PCS_RTBI)
3010 stmmac_mdio_unregister(ndev);
3011 free_netdev(ndev);
3012
3013 return 0;
3014 }
3015 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3016
3017 /**
3018 * stmmac_suspend - suspend callback
3019 * @ndev: net device pointer
3020 * Description: this is the function to suspend the device and it is called
3021 * by the platform driver to stop the network queue, release the resources,
3022 * program the PMT register (for WoL), clean and release driver resources.
3023 */
3024 int stmmac_suspend(struct net_device *ndev)
3025 {
3026 struct stmmac_priv *priv = netdev_priv(ndev);
3027 unsigned long flags;
3028
3029 if (!ndev || !netif_running(ndev))
3030 return 0;
3031
3032 if (priv->phydev)
3033 phy_stop(priv->phydev);
3034
3035 spin_lock_irqsave(&priv->lock, flags);
3036
3037 netif_device_detach(ndev);
3038 netif_stop_queue(ndev);
3039
3040 napi_disable(&priv->napi);
3041
3042 /* Stop TX/RX DMA */
3043 priv->hw->dma->stop_tx(priv->ioaddr);
3044 priv->hw->dma->stop_rx(priv->ioaddr);
3045
3046 /* Enable Power down mode by programming the PMT regs */
3047 if (device_may_wakeup(priv->device)) {
3048 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3049 priv->irq_wake = 1;
3050 } else {
3051 stmmac_set_mac(priv->ioaddr, false);
3052 pinctrl_pm_select_sleep_state(priv->device);
3053 /* Disable clock in case of PWM is off */
3054 clk_disable(priv->pclk);
3055 clk_disable(priv->stmmac_clk);
3056 }
3057 spin_unlock_irqrestore(&priv->lock, flags);
3058
3059 priv->oldlink = 0;
3060 priv->speed = 0;
3061 priv->oldduplex = -1;
3062 return 0;
3063 }
3064 EXPORT_SYMBOL_GPL(stmmac_suspend);
3065
3066 /**
3067 * stmmac_resume - resume callback
3068 * @ndev: net device pointer
3069 * Description: when resume this function is invoked to setup the DMA and CORE
3070 * in a usable state.
3071 */
3072 int stmmac_resume(struct net_device *ndev)
3073 {
3074 struct stmmac_priv *priv = netdev_priv(ndev);
3075 unsigned long flags;
3076
3077 if (!netif_running(ndev))
3078 return 0;
3079
3080 spin_lock_irqsave(&priv->lock, flags);
3081
3082 /* Power Down bit, into the PM register, is cleared
3083 * automatically as soon as a magic packet or a Wake-up frame
3084 * is received. Anyway, it's better to manually clear
3085 * this bit because it can generate problems while resuming
3086 * from another devices (e.g. serial console).
3087 */
3088 if (device_may_wakeup(priv->device)) {
3089 priv->hw->mac->pmt(priv->hw, 0);
3090 priv->irq_wake = 0;
3091 } else {
3092 pinctrl_pm_select_default_state(priv->device);
3093 /* enable the clk prevously disabled */
3094 clk_enable(priv->stmmac_clk);
3095 clk_enable(priv->pclk);
3096 /* reset the phy so that it's ready */
3097 if (priv->mii)
3098 stmmac_mdio_reset(priv->mii);
3099 }
3100
3101 netif_device_attach(ndev);
3102
3103 priv->cur_rx = 0;
3104 priv->dirty_rx = 0;
3105 priv->dirty_tx = 0;
3106 priv->cur_tx = 0;
3107 stmmac_clear_descriptors(priv);
3108
3109 stmmac_hw_setup(ndev, false);
3110 stmmac_init_tx_coalesce(priv);
3111 stmmac_set_rx_mode(ndev);
3112
3113 napi_enable(&priv->napi);
3114
3115 netif_start_queue(ndev);
3116
3117 spin_unlock_irqrestore(&priv->lock, flags);
3118
3119 if (priv->phydev)
3120 phy_start(priv->phydev);
3121
3122 return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(stmmac_resume);
3125
3126 #ifndef MODULE
3127 static int __init stmmac_cmdline_opt(char *str)
3128 {
3129 char *opt;
3130
3131 if (!str || !*str)
3132 return -EINVAL;
3133 while ((opt = strsep(&str, ",")) != NULL) {
3134 if (!strncmp(opt, "debug:", 6)) {
3135 if (kstrtoint(opt + 6, 0, &debug))
3136 goto err;
3137 } else if (!strncmp(opt, "phyaddr:", 8)) {
3138 if (kstrtoint(opt + 8, 0, &phyaddr))
3139 goto err;
3140 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3141 if (kstrtoint(opt + 11, 0, &dma_txsize))
3142 goto err;
3143 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3144 if (kstrtoint(opt + 11, 0, &dma_rxsize))
3145 goto err;
3146 } else if (!strncmp(opt, "buf_sz:", 7)) {
3147 if (kstrtoint(opt + 7, 0, &buf_sz))
3148 goto err;
3149 } else if (!strncmp(opt, "tc:", 3)) {
3150 if (kstrtoint(opt + 3, 0, &tc))
3151 goto err;
3152 } else if (!strncmp(opt, "watchdog:", 9)) {
3153 if (kstrtoint(opt + 9, 0, &watchdog))
3154 goto err;
3155 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3156 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3157 goto err;
3158 } else if (!strncmp(opt, "pause:", 6)) {
3159 if (kstrtoint(opt + 6, 0, &pause))
3160 goto err;
3161 } else if (!strncmp(opt, "eee_timer:", 10)) {
3162 if (kstrtoint(opt + 10, 0, &eee_timer))
3163 goto err;
3164 } else if (!strncmp(opt, "chain_mode:", 11)) {
3165 if (kstrtoint(opt + 11, 0, &chain_mode))
3166 goto err;
3167 }
3168 }
3169 return 0;
3170
3171 err:
3172 pr_err("%s: ERROR broken module parameter conversion", __func__);
3173 return -EINVAL;
3174 }
3175
3176 __setup("stmmaceth=", stmmac_cmdline_opt);
3177 #endif /* MODULE */
3178
3179 static int __init stmmac_init(void)
3180 {
3181 #ifdef CONFIG_DEBUG_FS
3182 /* Create debugfs main directory if it doesn't exist yet */
3183 if (!stmmac_fs_dir) {
3184 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3185
3186 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3187 pr_err("ERROR %s, debugfs create directory failed\n",
3188 STMMAC_RESOURCE_NAME);
3189
3190 return -ENOMEM;
3191 }
3192 }
3193 #endif
3194
3195 return 0;
3196 }
3197
3198 static void __exit stmmac_exit(void)
3199 {
3200 #ifdef CONFIG_DEBUG_FS
3201 debugfs_remove_recursive(stmmac_fs_dir);
3202 #endif
3203 }
3204
3205 module_init(stmmac_init)
3206 module_exit(stmmac_exit)
3207
3208 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3209 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3210 MODULE_LICENSE("GPL");