]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
Merge tag 'sound-4.9-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
59 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
60
61 /* Module parameters */
62 #define TX_TIMEO 5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66
67 static int debug = -1;
68 module_param(debug, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70
71 static int phyaddr = -1;
72 module_param(phyaddr, int, S_IRUGO);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74
75 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
77
78 static int flow_ctrl = FLOW_OFF;
79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90
91 #define DEFAULT_BUFSIZE 1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95
96 #define STMMAC_RX_COPYBREAK 256
97
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99 NETIF_MSG_LINK | NETIF_MSG_IFUP |
100 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101
102 #define STMMAC_DEFAULT_LPI_TIMER 1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107
108 /* By default the driver will use the ring mode to manage tx and rx descriptors
109 * but passing this value so user can force to use the chain instead of the ring
110 */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
124 /**
125 * stmmac_verify_args - verify the driver parameters.
126 * Description: it checks the driver parameters and set a default in case of
127 * errors.
128 */
129 static void stmmac_verify_args(void)
130 {
131 if (unlikely(watchdog < 0))
132 watchdog = TX_TIMEO;
133 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134 buf_sz = DEFAULT_BUFSIZE;
135 if (unlikely(flow_ctrl > 1))
136 flow_ctrl = FLOW_AUTO;
137 else if (likely(flow_ctrl < 0))
138 flow_ctrl = FLOW_OFF;
139 if (unlikely((pause < 0) || (pause > 0xffff)))
140 pause = PAUSE_TIME;
141 if (eee_timer < 0)
142 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144
145 /**
146 * stmmac_clk_csr_set - dynamically set the MDC clock
147 * @priv: driver private structure
148 * Description: this is to dynamically set the MDC clock according to the csr
149 * clock input.
150 * Note:
151 * If a specific clk_csr value is passed from the platform
152 * this means that the CSR Clock Range selection cannot be
153 * changed at run-time and it is fixed (as reported in the driver
154 * documentation). Viceversa the driver will try to set the MDC
155 * clock dynamically according to the actual clock input.
156 */
157 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 {
159 u32 clk_rate;
160
161 clk_rate = clk_get_rate(priv->stmmac_clk);
162
163 /* Platform provided default clk_csr would be assumed valid
164 * for all other cases except for the below mentioned ones.
165 * For values higher than the IEEE 802.3 specified frequency
166 * we can not estimate the proper divider as it is not known
167 * the frequency of clk_csr_i. So we do not change the default
168 * divider.
169 */
170 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171 if (clk_rate < CSR_F_35M)
172 priv->clk_csr = STMMAC_CSR_20_35M;
173 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174 priv->clk_csr = STMMAC_CSR_35_60M;
175 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176 priv->clk_csr = STMMAC_CSR_60_100M;
177 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178 priv->clk_csr = STMMAC_CSR_100_150M;
179 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180 priv->clk_csr = STMMAC_CSR_150_250M;
181 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
182 priv->clk_csr = STMMAC_CSR_250_300M;
183 }
184 }
185
186 static void print_pkt(unsigned char *buf, int len)
187 {
188 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
190 }
191
192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 {
194 unsigned avail;
195
196 if (priv->dirty_tx > priv->cur_tx)
197 avail = priv->dirty_tx - priv->cur_tx - 1;
198 else
199 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200
201 return avail;
202 }
203
204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 {
206 unsigned dirty;
207
208 if (priv->dirty_rx <= priv->cur_rx)
209 dirty = priv->cur_rx - priv->dirty_rx;
210 else
211 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212
213 return dirty;
214 }
215
216 /**
217 * stmmac_hw_fix_mac_speed - callback for speed selection
218 * @priv: driver private structure
219 * Description: on some platforms (e.g. ST), some HW system configuraton
220 * registers have to be set according to the link speed negotiated.
221 */
222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 {
224 struct phy_device *phydev = priv->phydev;
225
226 if (likely(priv->plat->fix_mac_speed))
227 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
228 }
229
230 /**
231 * stmmac_enable_eee_mode - check and enter in LPI mode
232 * @priv: driver private structure
233 * Description: this function is to verify and enter in LPI mode in case of
234 * EEE.
235 */
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 /* Check and enter in LPI mode */
239 if ((priv->dirty_tx == priv->cur_tx) &&
240 (priv->tx_path_in_lpi_mode == false))
241 priv->hw->mac->set_eee_mode(priv->hw);
242 }
243
244 /**
245 * stmmac_disable_eee_mode - disable and exit from LPI mode
246 * @priv: driver private structure
247 * Description: this function is to exit and disable EEE in case of
248 * LPI state is true. This is called by the xmit.
249 */
250 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251 {
252 priv->hw->mac->reset_eee_mode(priv->hw);
253 del_timer_sync(&priv->eee_ctrl_timer);
254 priv->tx_path_in_lpi_mode = false;
255 }
256
257 /**
258 * stmmac_eee_ctrl_timer - EEE TX SW timer.
259 * @arg : data hook
260 * Description:
261 * if there is no data transfer and if we are not in LPI state,
262 * then MAC Transmitter can be moved to LPI state.
263 */
264 static void stmmac_eee_ctrl_timer(unsigned long arg)
265 {
266 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267
268 stmmac_enable_eee_mode(priv);
269 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
270 }
271
272 /**
273 * stmmac_eee_init - init EEE
274 * @priv: driver private structure
275 * Description:
276 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
277 * can also manage EEE, this function enable the LPI state and start related
278 * timer.
279 */
280 bool stmmac_eee_init(struct stmmac_priv *priv)
281 {
282 unsigned long flags;
283 bool ret = false;
284
285 /* Using PCS we cannot dial with the phy registers at this stage
286 * so we do not support extra feature like EEE.
287 */
288 if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
289 (priv->hw->pcs == STMMAC_PCS_TBI) ||
290 (priv->hw->pcs == STMMAC_PCS_RTBI))
291 goto out;
292
293 /* MAC core supports the EEE feature. */
294 if (priv->dma_cap.eee) {
295 int tx_lpi_timer = priv->tx_lpi_timer;
296
297 /* Check if the PHY supports EEE */
298 if (phy_init_eee(priv->phydev, 1)) {
299 /* To manage at run-time if the EEE cannot be supported
300 * anymore (for example because the lp caps have been
301 * changed).
302 * In that case the driver disable own timers.
303 */
304 spin_lock_irqsave(&priv->lock, flags);
305 if (priv->eee_active) {
306 pr_debug("stmmac: disable EEE\n");
307 del_timer_sync(&priv->eee_ctrl_timer);
308 priv->hw->mac->set_eee_timer(priv->hw, 0,
309 tx_lpi_timer);
310 }
311 priv->eee_active = 0;
312 spin_unlock_irqrestore(&priv->lock, flags);
313 goto out;
314 }
315 /* Activate the EEE and start timers */
316 spin_lock_irqsave(&priv->lock, flags);
317 if (!priv->eee_active) {
318 priv->eee_active = 1;
319 setup_timer(&priv->eee_ctrl_timer,
320 stmmac_eee_ctrl_timer,
321 (unsigned long)priv);
322 mod_timer(&priv->eee_ctrl_timer,
323 STMMAC_LPI_T(eee_timer));
324
325 priv->hw->mac->set_eee_timer(priv->hw,
326 STMMAC_DEFAULT_LIT_LS,
327 tx_lpi_timer);
328 }
329 /* Set HW EEE according to the speed */
330 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331
332 ret = true;
333 spin_unlock_irqrestore(&priv->lock, flags);
334
335 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336 }
337 out:
338 return ret;
339 }
340
341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
342 * @priv: driver private structure
343 * @entry : descriptor index to be used.
344 * @skb : the socket buffer
345 * Description :
346 * This function will read timestamp from the descriptor & pass it to stack.
347 * and also perform some sanity checks.
348 */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350 unsigned int entry, struct sk_buff *skb)
351 {
352 struct skb_shared_hwtstamps shhwtstamp;
353 u64 ns;
354 void *desc = NULL;
355
356 if (!priv->hwts_tx_en)
357 return;
358
359 /* exit if skb doesn't support hw tstamp */
360 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
361 return;
362
363 if (priv->adv_ts)
364 desc = (priv->dma_etx + entry);
365 else
366 desc = (priv->dma_tx + entry);
367
368 /* check tx tstamp status */
369 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
370 return;
371
372 /* get the valid tstamp */
373 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
374
375 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
376 shhwtstamp.hwtstamp = ns_to_ktime(ns);
377 /* pass tstamp to stack */
378 skb_tstamp_tx(skb, &shhwtstamp);
379
380 return;
381 }
382
383 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
384 * @priv: driver private structure
385 * @entry : descriptor index to be used.
386 * @skb : the socket buffer
387 * Description :
388 * This function will read received packet's timestamp from the descriptor
389 * and pass it to stack. It also perform some sanity checks.
390 */
391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
392 unsigned int entry, struct sk_buff *skb)
393 {
394 struct skb_shared_hwtstamps *shhwtstamp = NULL;
395 u64 ns;
396 void *desc = NULL;
397
398 if (!priv->hwts_rx_en)
399 return;
400
401 if (priv->adv_ts)
402 desc = (priv->dma_erx + entry);
403 else
404 desc = (priv->dma_rx + entry);
405
406 /* exit if rx tstamp is not valid */
407 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
408 return;
409
410 /* get valid tstamp */
411 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
412 shhwtstamp = skb_hwtstamps(skb);
413 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
414 shhwtstamp->hwtstamp = ns_to_ktime(ns);
415 }
416
417 /**
418 * stmmac_hwtstamp_ioctl - control hardware timestamping.
419 * @dev: device pointer.
420 * @ifr: An IOCTL specefic structure, that can contain a pointer to
421 * a proprietary structure used to pass information to the driver.
422 * Description:
423 * This function configures the MAC to enable/disable both outgoing(TX)
424 * and incoming(RX) packets time stamping based on user input.
425 * Return Value:
426 * 0 on success and an appropriate -ve integer on failure.
427 */
428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
429 {
430 struct stmmac_priv *priv = netdev_priv(dev);
431 struct hwtstamp_config config;
432 struct timespec64 now;
433 u64 temp = 0;
434 u32 ptp_v2 = 0;
435 u32 tstamp_all = 0;
436 u32 ptp_over_ipv4_udp = 0;
437 u32 ptp_over_ipv6_udp = 0;
438 u32 ptp_over_ethernet = 0;
439 u32 snap_type_sel = 0;
440 u32 ts_master_en = 0;
441 u32 ts_event_en = 0;
442 u32 value = 0;
443 u32 sec_inc;
444
445 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
446 netdev_alert(priv->dev, "No support for HW time stamping\n");
447 priv->hwts_tx_en = 0;
448 priv->hwts_rx_en = 0;
449
450 return -EOPNOTSUPP;
451 }
452
453 if (copy_from_user(&config, ifr->ifr_data,
454 sizeof(struct hwtstamp_config)))
455 return -EFAULT;
456
457 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
458 __func__, config.flags, config.tx_type, config.rx_filter);
459
460 /* reserved for future extensions */
461 if (config.flags)
462 return -EINVAL;
463
464 if (config.tx_type != HWTSTAMP_TX_OFF &&
465 config.tx_type != HWTSTAMP_TX_ON)
466 return -ERANGE;
467
468 if (priv->adv_ts) {
469 switch (config.rx_filter) {
470 case HWTSTAMP_FILTER_NONE:
471 /* time stamp no incoming packet at all */
472 config.rx_filter = HWTSTAMP_FILTER_NONE;
473 break;
474
475 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
476 /* PTP v1, UDP, any kind of event packet */
477 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
478 /* take time stamp for all event messages */
479 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
480
481 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483 break;
484
485 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
486 /* PTP v1, UDP, Sync packet */
487 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
488 /* take time stamp for SYNC messages only */
489 ts_event_en = PTP_TCR_TSEVNTENA;
490
491 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
492 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
493 break;
494
495 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
496 /* PTP v1, UDP, Delay_req packet */
497 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
498 /* take time stamp for Delay_Req messages only */
499 ts_master_en = PTP_TCR_TSMSTRENA;
500 ts_event_en = PTP_TCR_TSEVNTENA;
501
502 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504 break;
505
506 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
507 /* PTP v2, UDP, any kind of event packet */
508 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
509 ptp_v2 = PTP_TCR_TSVER2ENA;
510 /* take time stamp for all event messages */
511 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
512
513 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515 break;
516
517 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
518 /* PTP v2, UDP, Sync packet */
519 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
520 ptp_v2 = PTP_TCR_TSVER2ENA;
521 /* take time stamp for SYNC messages only */
522 ts_event_en = PTP_TCR_TSEVNTENA;
523
524 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526 break;
527
528 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
529 /* PTP v2, UDP, Delay_req packet */
530 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
531 ptp_v2 = PTP_TCR_TSVER2ENA;
532 /* take time stamp for Delay_Req messages only */
533 ts_master_en = PTP_TCR_TSMSTRENA;
534 ts_event_en = PTP_TCR_TSEVNTENA;
535
536 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
537 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
538 break;
539
540 case HWTSTAMP_FILTER_PTP_V2_EVENT:
541 /* PTP v2/802.AS1 any layer, any kind of event packet */
542 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
543 ptp_v2 = PTP_TCR_TSVER2ENA;
544 /* take time stamp for all event messages */
545 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
546
547 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549 ptp_over_ethernet = PTP_TCR_TSIPENA;
550 break;
551
552 case HWTSTAMP_FILTER_PTP_V2_SYNC:
553 /* PTP v2/802.AS1, any layer, Sync packet */
554 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
555 ptp_v2 = PTP_TCR_TSVER2ENA;
556 /* take time stamp for SYNC messages only */
557 ts_event_en = PTP_TCR_TSEVNTENA;
558
559 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
560 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
561 ptp_over_ethernet = PTP_TCR_TSIPENA;
562 break;
563
564 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
565 /* PTP v2/802.AS1, any layer, Delay_req packet */
566 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
567 ptp_v2 = PTP_TCR_TSVER2ENA;
568 /* take time stamp for Delay_Req messages only */
569 ts_master_en = PTP_TCR_TSMSTRENA;
570 ts_event_en = PTP_TCR_TSEVNTENA;
571
572 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574 ptp_over_ethernet = PTP_TCR_TSIPENA;
575 break;
576
577 case HWTSTAMP_FILTER_ALL:
578 /* time stamp any incoming packet */
579 config.rx_filter = HWTSTAMP_FILTER_ALL;
580 tstamp_all = PTP_TCR_TSENALL;
581 break;
582
583 default:
584 return -ERANGE;
585 }
586 } else {
587 switch (config.rx_filter) {
588 case HWTSTAMP_FILTER_NONE:
589 config.rx_filter = HWTSTAMP_FILTER_NONE;
590 break;
591 default:
592 /* PTP v1, UDP, any kind of event packet */
593 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
594 break;
595 }
596 }
597 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
598 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
599
600 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
602 else {
603 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
604 tstamp_all | ptp_v2 | ptp_over_ethernet |
605 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
606 ts_master_en | snap_type_sel);
607 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
608
609 /* program Sub Second Increment reg */
610 sec_inc = priv->hw->ptp->config_sub_second_increment(
611 priv->ioaddr, priv->clk_ptp_rate);
612 temp = div_u64(1000000000ULL, sec_inc);
613
614 /* calculate default added value:
615 * formula is :
616 * addend = (2^32)/freq_div_ratio;
617 * where, freq_div_ratio = 1e9ns/sec_inc
618 */
619 temp = (u64)(temp << 32);
620 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
621 priv->hw->ptp->config_addend(priv->ioaddr,
622 priv->default_addend);
623
624 /* initialize system time */
625 ktime_get_real_ts64(&now);
626
627 /* lower 32 bits of tv_sec are safe until y2106 */
628 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
629 now.tv_nsec);
630 }
631
632 return copy_to_user(ifr->ifr_data, &config,
633 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
634 }
635
636 /**
637 * stmmac_init_ptp - init PTP
638 * @priv: driver private structure
639 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
640 * This is done by looking at the HW cap. register.
641 * This function also registers the ptp driver.
642 */
643 static int stmmac_init_ptp(struct stmmac_priv *priv)
644 {
645 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
646 return -EOPNOTSUPP;
647
648 /* Fall-back to main clock in case of no PTP ref is passed */
649 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
650 if (IS_ERR(priv->clk_ptp_ref)) {
651 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
652 priv->clk_ptp_ref = NULL;
653 netdev_dbg(priv->dev, "PTP uses main clock\n");
654 } else {
655 clk_prepare_enable(priv->clk_ptp_ref);
656 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
657 netdev_dbg(priv->dev, "PTP rate %d\n", priv->clk_ptp_rate);
658 }
659
660 priv->adv_ts = 0;
661 /* Check if adv_ts can be enabled for dwmac 4.x core */
662 if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
663 priv->adv_ts = 1;
664 /* Dwmac 3.x core with extend_desc can support adv_ts */
665 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
666 priv->adv_ts = 1;
667
668 if (priv->dma_cap.time_stamp)
669 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
670
671 if (priv->adv_ts)
672 netdev_info(priv->dev,
673 "IEEE 1588-2008 Advanced Timestamp supported\n");
674
675 priv->hw->ptp = &stmmac_ptp;
676 priv->hwts_tx_en = 0;
677 priv->hwts_rx_en = 0;
678
679 stmmac_ptp_register(priv);
680
681 return 0;
682 }
683
684 static void stmmac_release_ptp(struct stmmac_priv *priv)
685 {
686 if (priv->clk_ptp_ref)
687 clk_disable_unprepare(priv->clk_ptp_ref);
688 stmmac_ptp_unregister(priv);
689 }
690
691 /**
692 * stmmac_adjust_link - adjusts the link parameters
693 * @dev: net device structure
694 * Description: this is the helper called by the physical abstraction layer
695 * drivers to communicate the phy link status. According the speed and duplex
696 * this driver can invoke registered glue-logic as well.
697 * It also invoke the eee initialization because it could happen when switch
698 * on different networks (that are eee capable).
699 */
700 static void stmmac_adjust_link(struct net_device *dev)
701 {
702 struct stmmac_priv *priv = netdev_priv(dev);
703 struct phy_device *phydev = priv->phydev;
704 unsigned long flags;
705 int new_state = 0;
706 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
707
708 if (phydev == NULL)
709 return;
710
711 spin_lock_irqsave(&priv->lock, flags);
712
713 if (phydev->link) {
714 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
715
716 /* Now we make sure that we can be in full duplex mode.
717 * If not, we operate in half-duplex mode. */
718 if (phydev->duplex != priv->oldduplex) {
719 new_state = 1;
720 if (!(phydev->duplex))
721 ctrl &= ~priv->hw->link.duplex;
722 else
723 ctrl |= priv->hw->link.duplex;
724 priv->oldduplex = phydev->duplex;
725 }
726 /* Flow Control operation */
727 if (phydev->pause)
728 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
729 fc, pause_time);
730
731 if (phydev->speed != priv->speed) {
732 new_state = 1;
733 switch (phydev->speed) {
734 case 1000:
735 if (likely((priv->plat->has_gmac) ||
736 (priv->plat->has_gmac4)))
737 ctrl &= ~priv->hw->link.port;
738 stmmac_hw_fix_mac_speed(priv);
739 break;
740 case 100:
741 case 10:
742 if (likely((priv->plat->has_gmac) ||
743 (priv->plat->has_gmac4))) {
744 ctrl |= priv->hw->link.port;
745 if (phydev->speed == SPEED_100) {
746 ctrl |= priv->hw->link.speed;
747 } else {
748 ctrl &= ~(priv->hw->link.speed);
749 }
750 } else {
751 ctrl &= ~priv->hw->link.port;
752 }
753 stmmac_hw_fix_mac_speed(priv);
754 break;
755 default:
756 if (netif_msg_link(priv))
757 pr_warn("%s: Speed (%d) not 10/100\n",
758 dev->name, phydev->speed);
759 break;
760 }
761
762 priv->speed = phydev->speed;
763 }
764
765 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
766
767 if (!priv->oldlink) {
768 new_state = 1;
769 priv->oldlink = 1;
770 }
771 } else if (priv->oldlink) {
772 new_state = 1;
773 priv->oldlink = 0;
774 priv->speed = 0;
775 priv->oldduplex = -1;
776 }
777
778 if (new_state && netif_msg_link(priv))
779 phy_print_status(phydev);
780
781 spin_unlock_irqrestore(&priv->lock, flags);
782
783 if (phydev->is_pseudo_fixed_link)
784 /* Stop PHY layer to call the hook to adjust the link in case
785 * of a switch is attached to the stmmac driver.
786 */
787 phydev->irq = PHY_IGNORE_INTERRUPT;
788 else
789 /* At this stage, init the EEE if supported.
790 * Never called in case of fixed_link.
791 */
792 priv->eee_enabled = stmmac_eee_init(priv);
793 }
794
795 /**
796 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
797 * @priv: driver private structure
798 * Description: this is to verify if the HW supports the PCS.
799 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
800 * configured for the TBI, RTBI, or SGMII PHY interface.
801 */
802 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
803 {
804 int interface = priv->plat->interface;
805
806 if (priv->dma_cap.pcs) {
807 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
808 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
809 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
810 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
811 pr_debug("STMMAC: PCS RGMII support enable\n");
812 priv->hw->pcs = STMMAC_PCS_RGMII;
813 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
814 pr_debug("STMMAC: PCS SGMII support enable\n");
815 priv->hw->pcs = STMMAC_PCS_SGMII;
816 }
817 }
818 }
819
820 /**
821 * stmmac_init_phy - PHY initialization
822 * @dev: net device structure
823 * Description: it initializes the driver's PHY state, and attaches the PHY
824 * to the mac driver.
825 * Return value:
826 * 0 on success
827 */
828 static int stmmac_init_phy(struct net_device *dev)
829 {
830 struct stmmac_priv *priv = netdev_priv(dev);
831 struct phy_device *phydev;
832 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
833 char bus_id[MII_BUS_ID_SIZE];
834 int interface = priv->plat->interface;
835 int max_speed = priv->plat->max_speed;
836 priv->oldlink = 0;
837 priv->speed = 0;
838 priv->oldduplex = -1;
839
840 if (priv->plat->phy_node) {
841 phydev = of_phy_connect(dev, priv->plat->phy_node,
842 &stmmac_adjust_link, 0, interface);
843 } else {
844 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
845 priv->plat->bus_id);
846
847 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
848 priv->plat->phy_addr);
849 pr_debug("stmmac_init_phy: trying to attach to %s\n",
850 phy_id_fmt);
851
852 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
853 interface);
854 }
855
856 if (IS_ERR_OR_NULL(phydev)) {
857 pr_err("%s: Could not attach to PHY\n", dev->name);
858 if (!phydev)
859 return -ENODEV;
860
861 return PTR_ERR(phydev);
862 }
863
864 /* Stop Advertising 1000BASE Capability if interface is not GMII */
865 if ((interface == PHY_INTERFACE_MODE_MII) ||
866 (interface == PHY_INTERFACE_MODE_RMII) ||
867 (max_speed < 1000 && max_speed > 0))
868 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
869 SUPPORTED_1000baseT_Full);
870
871 /*
872 * Broken HW is sometimes missing the pull-up resistor on the
873 * MDIO line, which results in reads to non-existent devices returning
874 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
875 * device as well.
876 * Note: phydev->phy_id is the result of reading the UID PHY registers.
877 */
878 if (!priv->plat->phy_node && phydev->phy_id == 0) {
879 phy_disconnect(phydev);
880 return -ENODEV;
881 }
882
883 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
884 * subsequent PHY polling, make sure we force a link transition if
885 * we have a UP/DOWN/UP transition
886 */
887 if (phydev->is_pseudo_fixed_link)
888 phydev->irq = PHY_POLL;
889
890 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
891 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
892
893 priv->phydev = phydev;
894
895 return 0;
896 }
897
898 static void stmmac_display_rings(struct stmmac_priv *priv)
899 {
900 void *head_rx, *head_tx;
901
902 if (priv->extend_desc) {
903 head_rx = (void *)priv->dma_erx;
904 head_tx = (void *)priv->dma_etx;
905 } else {
906 head_rx = (void *)priv->dma_rx;
907 head_tx = (void *)priv->dma_tx;
908 }
909
910 /* Display Rx ring */
911 priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
912 /* Display Tx ring */
913 priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
914 }
915
916 static int stmmac_set_bfsize(int mtu, int bufsize)
917 {
918 int ret = bufsize;
919
920 if (mtu >= BUF_SIZE_4KiB)
921 ret = BUF_SIZE_8KiB;
922 else if (mtu >= BUF_SIZE_2KiB)
923 ret = BUF_SIZE_4KiB;
924 else if (mtu > DEFAULT_BUFSIZE)
925 ret = BUF_SIZE_2KiB;
926 else
927 ret = DEFAULT_BUFSIZE;
928
929 return ret;
930 }
931
932 /**
933 * stmmac_clear_descriptors - clear descriptors
934 * @priv: driver private structure
935 * Description: this function is called to clear the tx and rx descriptors
936 * in case of both basic and extended descriptors are used.
937 */
938 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
939 {
940 int i;
941
942 /* Clear the Rx/Tx descriptors */
943 for (i = 0; i < DMA_RX_SIZE; i++)
944 if (priv->extend_desc)
945 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
946 priv->use_riwt, priv->mode,
947 (i == DMA_RX_SIZE - 1));
948 else
949 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
950 priv->use_riwt, priv->mode,
951 (i == DMA_RX_SIZE - 1));
952 for (i = 0; i < DMA_TX_SIZE; i++)
953 if (priv->extend_desc)
954 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
955 priv->mode,
956 (i == DMA_TX_SIZE - 1));
957 else
958 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
959 priv->mode,
960 (i == DMA_TX_SIZE - 1));
961 }
962
963 /**
964 * stmmac_init_rx_buffers - init the RX descriptor buffer.
965 * @priv: driver private structure
966 * @p: descriptor pointer
967 * @i: descriptor index
968 * @flags: gfp flag.
969 * Description: this function is called to allocate a receive buffer, perform
970 * the DMA mapping and init the descriptor.
971 */
972 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
973 int i, gfp_t flags)
974 {
975 struct sk_buff *skb;
976
977 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
978 if (!skb) {
979 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
980 return -ENOMEM;
981 }
982 priv->rx_skbuff[i] = skb;
983 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
984 priv->dma_buf_sz,
985 DMA_FROM_DEVICE);
986 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
987 pr_err("%s: DMA mapping error\n", __func__);
988 dev_kfree_skb_any(skb);
989 return -EINVAL;
990 }
991
992 if (priv->synopsys_id >= DWMAC_CORE_4_00)
993 p->des0 = priv->rx_skbuff_dma[i];
994 else
995 p->des2 = priv->rx_skbuff_dma[i];
996
997 if ((priv->hw->mode->init_desc3) &&
998 (priv->dma_buf_sz == BUF_SIZE_16KiB))
999 priv->hw->mode->init_desc3(p);
1000
1001 return 0;
1002 }
1003
1004 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1005 {
1006 if (priv->rx_skbuff[i]) {
1007 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1008 priv->dma_buf_sz, DMA_FROM_DEVICE);
1009 dev_kfree_skb_any(priv->rx_skbuff[i]);
1010 }
1011 priv->rx_skbuff[i] = NULL;
1012 }
1013
1014 /**
1015 * init_dma_desc_rings - init the RX/TX descriptor rings
1016 * @dev: net device structure
1017 * @flags: gfp flag.
1018 * Description: this function initializes the DMA RX/TX descriptors
1019 * and allocates the socket buffers. It suppors the chained and ring
1020 * modes.
1021 */
1022 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1023 {
1024 int i;
1025 struct stmmac_priv *priv = netdev_priv(dev);
1026 unsigned int bfsize = 0;
1027 int ret = -ENOMEM;
1028
1029 if (priv->hw->mode->set_16kib_bfsize)
1030 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1031
1032 if (bfsize < BUF_SIZE_16KiB)
1033 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1034
1035 priv->dma_buf_sz = bfsize;
1036
1037 if (netif_msg_probe(priv)) {
1038 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1039 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1040
1041 /* RX INITIALIZATION */
1042 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1043 }
1044 for (i = 0; i < DMA_RX_SIZE; i++) {
1045 struct dma_desc *p;
1046 if (priv->extend_desc)
1047 p = &((priv->dma_erx + i)->basic);
1048 else
1049 p = priv->dma_rx + i;
1050
1051 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1052 if (ret)
1053 goto err_init_rx_buffers;
1054
1055 if (netif_msg_probe(priv))
1056 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1057 priv->rx_skbuff[i]->data,
1058 (unsigned int)priv->rx_skbuff_dma[i]);
1059 }
1060 priv->cur_rx = 0;
1061 priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1062 buf_sz = bfsize;
1063
1064 /* Setup the chained descriptor addresses */
1065 if (priv->mode == STMMAC_CHAIN_MODE) {
1066 if (priv->extend_desc) {
1067 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1068 DMA_RX_SIZE, 1);
1069 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1070 DMA_TX_SIZE, 1);
1071 } else {
1072 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1073 DMA_RX_SIZE, 0);
1074 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1075 DMA_TX_SIZE, 0);
1076 }
1077 }
1078
1079 /* TX INITIALIZATION */
1080 for (i = 0; i < DMA_TX_SIZE; i++) {
1081 struct dma_desc *p;
1082 if (priv->extend_desc)
1083 p = &((priv->dma_etx + i)->basic);
1084 else
1085 p = priv->dma_tx + i;
1086
1087 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1088 p->des0 = 0;
1089 p->des1 = 0;
1090 p->des2 = 0;
1091 p->des3 = 0;
1092 } else {
1093 p->des2 = 0;
1094 }
1095
1096 priv->tx_skbuff_dma[i].buf = 0;
1097 priv->tx_skbuff_dma[i].map_as_page = false;
1098 priv->tx_skbuff_dma[i].len = 0;
1099 priv->tx_skbuff_dma[i].last_segment = false;
1100 priv->tx_skbuff[i] = NULL;
1101 }
1102
1103 priv->dirty_tx = 0;
1104 priv->cur_tx = 0;
1105 netdev_reset_queue(priv->dev);
1106
1107 stmmac_clear_descriptors(priv);
1108
1109 if (netif_msg_hw(priv))
1110 stmmac_display_rings(priv);
1111
1112 return 0;
1113 err_init_rx_buffers:
1114 while (--i >= 0)
1115 stmmac_free_rx_buffers(priv, i);
1116 return ret;
1117 }
1118
1119 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1120 {
1121 int i;
1122
1123 for (i = 0; i < DMA_RX_SIZE; i++)
1124 stmmac_free_rx_buffers(priv, i);
1125 }
1126
1127 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1128 {
1129 int i;
1130
1131 for (i = 0; i < DMA_TX_SIZE; i++) {
1132 struct dma_desc *p;
1133
1134 if (priv->extend_desc)
1135 p = &((priv->dma_etx + i)->basic);
1136 else
1137 p = priv->dma_tx + i;
1138
1139 if (priv->tx_skbuff_dma[i].buf) {
1140 if (priv->tx_skbuff_dma[i].map_as_page)
1141 dma_unmap_page(priv->device,
1142 priv->tx_skbuff_dma[i].buf,
1143 priv->tx_skbuff_dma[i].len,
1144 DMA_TO_DEVICE);
1145 else
1146 dma_unmap_single(priv->device,
1147 priv->tx_skbuff_dma[i].buf,
1148 priv->tx_skbuff_dma[i].len,
1149 DMA_TO_DEVICE);
1150 }
1151
1152 if (priv->tx_skbuff[i] != NULL) {
1153 dev_kfree_skb_any(priv->tx_skbuff[i]);
1154 priv->tx_skbuff[i] = NULL;
1155 priv->tx_skbuff_dma[i].buf = 0;
1156 priv->tx_skbuff_dma[i].map_as_page = false;
1157 }
1158 }
1159 }
1160
1161 /**
1162 * alloc_dma_desc_resources - alloc TX/RX resources.
1163 * @priv: private structure
1164 * Description: according to which descriptor can be used (extend or basic)
1165 * this function allocates the resources for TX and RX paths. In case of
1166 * reception, for example, it pre-allocated the RX socket buffer in order to
1167 * allow zero-copy mechanism.
1168 */
1169 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1170 {
1171 int ret = -ENOMEM;
1172
1173 priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1174 GFP_KERNEL);
1175 if (!priv->rx_skbuff_dma)
1176 return -ENOMEM;
1177
1178 priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1179 GFP_KERNEL);
1180 if (!priv->rx_skbuff)
1181 goto err_rx_skbuff;
1182
1183 priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1184 sizeof(*priv->tx_skbuff_dma),
1185 GFP_KERNEL);
1186 if (!priv->tx_skbuff_dma)
1187 goto err_tx_skbuff_dma;
1188
1189 priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1190 GFP_KERNEL);
1191 if (!priv->tx_skbuff)
1192 goto err_tx_skbuff;
1193
1194 if (priv->extend_desc) {
1195 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1196 sizeof(struct
1197 dma_extended_desc),
1198 &priv->dma_rx_phy,
1199 GFP_KERNEL);
1200 if (!priv->dma_erx)
1201 goto err_dma;
1202
1203 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1204 sizeof(struct
1205 dma_extended_desc),
1206 &priv->dma_tx_phy,
1207 GFP_KERNEL);
1208 if (!priv->dma_etx) {
1209 dma_free_coherent(priv->device, DMA_RX_SIZE *
1210 sizeof(struct dma_extended_desc),
1211 priv->dma_erx, priv->dma_rx_phy);
1212 goto err_dma;
1213 }
1214 } else {
1215 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1216 sizeof(struct dma_desc),
1217 &priv->dma_rx_phy,
1218 GFP_KERNEL);
1219 if (!priv->dma_rx)
1220 goto err_dma;
1221
1222 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1223 sizeof(struct dma_desc),
1224 &priv->dma_tx_phy,
1225 GFP_KERNEL);
1226 if (!priv->dma_tx) {
1227 dma_free_coherent(priv->device, DMA_RX_SIZE *
1228 sizeof(struct dma_desc),
1229 priv->dma_rx, priv->dma_rx_phy);
1230 goto err_dma;
1231 }
1232 }
1233
1234 return 0;
1235
1236 err_dma:
1237 kfree(priv->tx_skbuff);
1238 err_tx_skbuff:
1239 kfree(priv->tx_skbuff_dma);
1240 err_tx_skbuff_dma:
1241 kfree(priv->rx_skbuff);
1242 err_rx_skbuff:
1243 kfree(priv->rx_skbuff_dma);
1244 return ret;
1245 }
1246
1247 static void free_dma_desc_resources(struct stmmac_priv *priv)
1248 {
1249 /* Release the DMA TX/RX socket buffers */
1250 dma_free_rx_skbufs(priv);
1251 dma_free_tx_skbufs(priv);
1252
1253 /* Free DMA regions of consistent memory previously allocated */
1254 if (!priv->extend_desc) {
1255 dma_free_coherent(priv->device,
1256 DMA_TX_SIZE * sizeof(struct dma_desc),
1257 priv->dma_tx, priv->dma_tx_phy);
1258 dma_free_coherent(priv->device,
1259 DMA_RX_SIZE * sizeof(struct dma_desc),
1260 priv->dma_rx, priv->dma_rx_phy);
1261 } else {
1262 dma_free_coherent(priv->device, DMA_TX_SIZE *
1263 sizeof(struct dma_extended_desc),
1264 priv->dma_etx, priv->dma_tx_phy);
1265 dma_free_coherent(priv->device, DMA_RX_SIZE *
1266 sizeof(struct dma_extended_desc),
1267 priv->dma_erx, priv->dma_rx_phy);
1268 }
1269 kfree(priv->rx_skbuff_dma);
1270 kfree(priv->rx_skbuff);
1271 kfree(priv->tx_skbuff_dma);
1272 kfree(priv->tx_skbuff);
1273 }
1274
1275 /**
1276 * stmmac_dma_operation_mode - HW DMA operation mode
1277 * @priv: driver private structure
1278 * Description: it is used for configuring the DMA operation mode register in
1279 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1280 */
1281 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1282 {
1283 int rxfifosz = priv->plat->rx_fifo_size;
1284
1285 if (priv->plat->force_thresh_dma_mode)
1286 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1287 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1288 /*
1289 * In case of GMAC, SF mode can be enabled
1290 * to perform the TX COE in HW. This depends on:
1291 * 1) TX COE if actually supported
1292 * 2) There is no bugged Jumbo frame support
1293 * that needs to not insert csum in the TDES.
1294 */
1295 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1296 rxfifosz);
1297 priv->xstats.threshold = SF_DMA_MODE;
1298 } else
1299 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1300 rxfifosz);
1301 }
1302
1303 /**
1304 * stmmac_tx_clean - to manage the transmission completion
1305 * @priv: driver private structure
1306 * Description: it reclaims the transmit resources after transmission completes.
1307 */
1308 static void stmmac_tx_clean(struct stmmac_priv *priv)
1309 {
1310 unsigned int bytes_compl = 0, pkts_compl = 0;
1311 unsigned int entry = priv->dirty_tx;
1312
1313 spin_lock(&priv->tx_lock);
1314
1315 priv->xstats.tx_clean++;
1316
1317 while (entry != priv->cur_tx) {
1318 struct sk_buff *skb = priv->tx_skbuff[entry];
1319 struct dma_desc *p;
1320 int status;
1321
1322 if (priv->extend_desc)
1323 p = (struct dma_desc *)(priv->dma_etx + entry);
1324 else
1325 p = priv->dma_tx + entry;
1326
1327 status = priv->hw->desc->tx_status(&priv->dev->stats,
1328 &priv->xstats, p,
1329 priv->ioaddr);
1330 /* Check if the descriptor is owned by the DMA */
1331 if (unlikely(status & tx_dma_own))
1332 break;
1333
1334 /* Just consider the last segment and ...*/
1335 if (likely(!(status & tx_not_ls))) {
1336 /* ... verify the status error condition */
1337 if (unlikely(status & tx_err)) {
1338 priv->dev->stats.tx_errors++;
1339 } else {
1340 priv->dev->stats.tx_packets++;
1341 priv->xstats.tx_pkt_n++;
1342 }
1343 stmmac_get_tx_hwtstamp(priv, entry, skb);
1344 }
1345
1346 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1347 if (priv->tx_skbuff_dma[entry].map_as_page)
1348 dma_unmap_page(priv->device,
1349 priv->tx_skbuff_dma[entry].buf,
1350 priv->tx_skbuff_dma[entry].len,
1351 DMA_TO_DEVICE);
1352 else
1353 dma_unmap_single(priv->device,
1354 priv->tx_skbuff_dma[entry].buf,
1355 priv->tx_skbuff_dma[entry].len,
1356 DMA_TO_DEVICE);
1357 priv->tx_skbuff_dma[entry].buf = 0;
1358 priv->tx_skbuff_dma[entry].len = 0;
1359 priv->tx_skbuff_dma[entry].map_as_page = false;
1360 }
1361
1362 if (priv->hw->mode->clean_desc3)
1363 priv->hw->mode->clean_desc3(priv, p);
1364
1365 priv->tx_skbuff_dma[entry].last_segment = false;
1366 priv->tx_skbuff_dma[entry].is_jumbo = false;
1367
1368 if (likely(skb != NULL)) {
1369 pkts_compl++;
1370 bytes_compl += skb->len;
1371 dev_consume_skb_any(skb);
1372 priv->tx_skbuff[entry] = NULL;
1373 }
1374
1375 priv->hw->desc->release_tx_desc(p, priv->mode);
1376
1377 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1378 }
1379 priv->dirty_tx = entry;
1380
1381 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1382
1383 if (unlikely(netif_queue_stopped(priv->dev) &&
1384 stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1385 netif_tx_lock(priv->dev);
1386 if (netif_queue_stopped(priv->dev) &&
1387 stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1388 if (netif_msg_tx_done(priv))
1389 pr_debug("%s: restart transmit\n", __func__);
1390 netif_wake_queue(priv->dev);
1391 }
1392 netif_tx_unlock(priv->dev);
1393 }
1394
1395 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1396 stmmac_enable_eee_mode(priv);
1397 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1398 }
1399 spin_unlock(&priv->tx_lock);
1400 }
1401
1402 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1403 {
1404 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1405 }
1406
1407 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1408 {
1409 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1410 }
1411
1412 /**
1413 * stmmac_tx_err - to manage the tx error
1414 * @priv: driver private structure
1415 * Description: it cleans the descriptors and restarts the transmission
1416 * in case of transmission errors.
1417 */
1418 static void stmmac_tx_err(struct stmmac_priv *priv)
1419 {
1420 int i;
1421 netif_stop_queue(priv->dev);
1422
1423 priv->hw->dma->stop_tx(priv->ioaddr);
1424 dma_free_tx_skbufs(priv);
1425 for (i = 0; i < DMA_TX_SIZE; i++)
1426 if (priv->extend_desc)
1427 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1428 priv->mode,
1429 (i == DMA_TX_SIZE - 1));
1430 else
1431 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1432 priv->mode,
1433 (i == DMA_TX_SIZE - 1));
1434 priv->dirty_tx = 0;
1435 priv->cur_tx = 0;
1436 netdev_reset_queue(priv->dev);
1437 priv->hw->dma->start_tx(priv->ioaddr);
1438
1439 priv->dev->stats.tx_errors++;
1440 netif_wake_queue(priv->dev);
1441 }
1442
1443 /**
1444 * stmmac_dma_interrupt - DMA ISR
1445 * @priv: driver private structure
1446 * Description: this is the DMA ISR. It is called by the main ISR.
1447 * It calls the dwmac dma routine and schedule poll method in case of some
1448 * work can be done.
1449 */
1450 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1451 {
1452 int status;
1453 int rxfifosz = priv->plat->rx_fifo_size;
1454
1455 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1456 if (likely((status & handle_rx)) || (status & handle_tx)) {
1457 if (likely(napi_schedule_prep(&priv->napi))) {
1458 stmmac_disable_dma_irq(priv);
1459 __napi_schedule(&priv->napi);
1460 }
1461 }
1462 if (unlikely(status & tx_hard_error_bump_tc)) {
1463 /* Try to bump up the dma threshold on this failure */
1464 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1465 (tc <= 256)) {
1466 tc += 64;
1467 if (priv->plat->force_thresh_dma_mode)
1468 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1469 rxfifosz);
1470 else
1471 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1472 SF_DMA_MODE, rxfifosz);
1473 priv->xstats.threshold = tc;
1474 }
1475 } else if (unlikely(status == tx_hard_error))
1476 stmmac_tx_err(priv);
1477 }
1478
1479 /**
1480 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1481 * @priv: driver private structure
1482 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1483 */
1484 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1485 {
1486 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1487 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1488
1489 if (priv->synopsys_id >= DWMAC_CORE_4_00)
1490 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1491 else
1492 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1493
1494 dwmac_mmc_intr_all_mask(priv->mmcaddr);
1495
1496 if (priv->dma_cap.rmon) {
1497 dwmac_mmc_ctrl(priv->mmcaddr, mode);
1498 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1499 } else
1500 pr_info(" No MAC Management Counters available\n");
1501 }
1502
1503 /**
1504 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1505 * @priv: driver private structure
1506 * Description: select the Enhanced/Alternate or Normal descriptors.
1507 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1508 * supported by the HW capability register.
1509 */
1510 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1511 {
1512 if (priv->plat->enh_desc) {
1513 pr_info(" Enhanced/Alternate descriptors\n");
1514
1515 /* GMAC older than 3.50 has no extended descriptors */
1516 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1517 pr_info("\tEnabled extended descriptors\n");
1518 priv->extend_desc = 1;
1519 } else
1520 pr_warn("Extended descriptors not supported\n");
1521
1522 priv->hw->desc = &enh_desc_ops;
1523 } else {
1524 pr_info(" Normal descriptors\n");
1525 priv->hw->desc = &ndesc_ops;
1526 }
1527 }
1528
1529 /**
1530 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1531 * @priv: driver private structure
1532 * Description:
1533 * new GMAC chip generations have a new register to indicate the
1534 * presence of the optional feature/functions.
1535 * This can be also used to override the value passed through the
1536 * platform and necessary for old MAC10/100 and GMAC chips.
1537 */
1538 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1539 {
1540 u32 ret = 0;
1541
1542 if (priv->hw->dma->get_hw_feature) {
1543 priv->hw->dma->get_hw_feature(priv->ioaddr,
1544 &priv->dma_cap);
1545 ret = 1;
1546 }
1547
1548 return ret;
1549 }
1550
1551 /**
1552 * stmmac_check_ether_addr - check if the MAC addr is valid
1553 * @priv: driver private structure
1554 * Description:
1555 * it is to verify if the MAC address is valid, in case of failures it
1556 * generates a random MAC address
1557 */
1558 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1559 {
1560 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1561 priv->hw->mac->get_umac_addr(priv->hw,
1562 priv->dev->dev_addr, 0);
1563 if (!is_valid_ether_addr(priv->dev->dev_addr))
1564 eth_hw_addr_random(priv->dev);
1565 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1566 priv->dev->dev_addr);
1567 }
1568 }
1569
1570 /**
1571 * stmmac_init_dma_engine - DMA init.
1572 * @priv: driver private structure
1573 * Description:
1574 * It inits the DMA invoking the specific MAC/GMAC callback.
1575 * Some DMA parameters can be passed from the platform;
1576 * in case of these are not passed a default is kept for the MAC or GMAC.
1577 */
1578 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1579 {
1580 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1581 int mixed_burst = 0;
1582 int atds = 0;
1583 int ret = 0;
1584
1585 if (priv->plat->dma_cfg) {
1586 pbl = priv->plat->dma_cfg->pbl;
1587 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1588 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1589 aal = priv->plat->dma_cfg->aal;
1590 }
1591
1592 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1593 atds = 1;
1594
1595 ret = priv->hw->dma->reset(priv->ioaddr);
1596 if (ret) {
1597 dev_err(priv->device, "Failed to reset the dma\n");
1598 return ret;
1599 }
1600
1601 priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1602 aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1603
1604 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1605 priv->rx_tail_addr = priv->dma_rx_phy +
1606 (DMA_RX_SIZE * sizeof(struct dma_desc));
1607 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1608 STMMAC_CHAN0);
1609
1610 priv->tx_tail_addr = priv->dma_tx_phy +
1611 (DMA_TX_SIZE * sizeof(struct dma_desc));
1612 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1613 STMMAC_CHAN0);
1614 }
1615
1616 if (priv->plat->axi && priv->hw->dma->axi)
1617 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1618
1619 return ret;
1620 }
1621
1622 /**
1623 * stmmac_tx_timer - mitigation sw timer for tx.
1624 * @data: data pointer
1625 * Description:
1626 * This is the timer handler to directly invoke the stmmac_tx_clean.
1627 */
1628 static void stmmac_tx_timer(unsigned long data)
1629 {
1630 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1631
1632 stmmac_tx_clean(priv);
1633 }
1634
1635 /**
1636 * stmmac_init_tx_coalesce - init tx mitigation options.
1637 * @priv: driver private structure
1638 * Description:
1639 * This inits the transmit coalesce parameters: i.e. timer rate,
1640 * timer handler and default threshold used for enabling the
1641 * interrupt on completion bit.
1642 */
1643 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1644 {
1645 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1646 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1647 init_timer(&priv->txtimer);
1648 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1649 priv->txtimer.data = (unsigned long)priv;
1650 priv->txtimer.function = stmmac_tx_timer;
1651 add_timer(&priv->txtimer);
1652 }
1653
1654 /**
1655 * stmmac_hw_setup - setup mac in a usable state.
1656 * @dev : pointer to the device structure.
1657 * Description:
1658 * this is the main function to setup the HW in a usable state because the
1659 * dma engine is reset, the core registers are configured (e.g. AXI,
1660 * Checksum features, timers). The DMA is ready to start receiving and
1661 * transmitting.
1662 * Return value:
1663 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1664 * file on failure.
1665 */
1666 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1667 {
1668 struct stmmac_priv *priv = netdev_priv(dev);
1669 int ret;
1670
1671 /* DMA initialization and SW reset */
1672 ret = stmmac_init_dma_engine(priv);
1673 if (ret < 0) {
1674 pr_err("%s: DMA engine initialization failed\n", __func__);
1675 return ret;
1676 }
1677
1678 /* Copy the MAC addr into the HW */
1679 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1680
1681 /* If required, perform hw setup of the bus. */
1682 if (priv->plat->bus_setup)
1683 priv->plat->bus_setup(priv->ioaddr);
1684
1685 /* PS and related bits will be programmed according to the speed */
1686 if (priv->hw->pcs) {
1687 int speed = priv->plat->mac_port_sel_speed;
1688
1689 if ((speed == SPEED_10) || (speed == SPEED_100) ||
1690 (speed == SPEED_1000)) {
1691 priv->hw->ps = speed;
1692 } else {
1693 dev_warn(priv->device, "invalid port speed\n");
1694 priv->hw->ps = 0;
1695 }
1696 }
1697
1698 /* Initialize the MAC Core */
1699 priv->hw->mac->core_init(priv->hw, dev->mtu);
1700
1701 ret = priv->hw->mac->rx_ipc(priv->hw);
1702 if (!ret) {
1703 pr_warn(" RX IPC Checksum Offload disabled\n");
1704 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1705 priv->hw->rx_csum = 0;
1706 }
1707
1708 /* Enable the MAC Rx/Tx */
1709 if (priv->synopsys_id >= DWMAC_CORE_4_00)
1710 stmmac_dwmac4_set_mac(priv->ioaddr, true);
1711 else
1712 stmmac_set_mac(priv->ioaddr, true);
1713
1714 /* Set the HW DMA mode and the COE */
1715 stmmac_dma_operation_mode(priv);
1716
1717 stmmac_mmc_setup(priv);
1718
1719 if (init_ptp) {
1720 ret = stmmac_init_ptp(priv);
1721 if (ret)
1722 netdev_warn(priv->dev, "fail to init PTP.\n");
1723 }
1724
1725 #ifdef CONFIG_DEBUG_FS
1726 ret = stmmac_init_fs(dev);
1727 if (ret < 0)
1728 pr_warn("%s: failed debugFS registration\n", __func__);
1729 #endif
1730 /* Start the ball rolling... */
1731 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1732 priv->hw->dma->start_tx(priv->ioaddr);
1733 priv->hw->dma->start_rx(priv->ioaddr);
1734
1735 /* Dump DMA/MAC registers */
1736 if (netif_msg_hw(priv)) {
1737 priv->hw->mac->dump_regs(priv->hw);
1738 priv->hw->dma->dump_regs(priv->ioaddr);
1739 }
1740 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1741
1742 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1743 priv->rx_riwt = MAX_DMA_RIWT;
1744 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1745 }
1746
1747 if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
1748 priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
1749
1750 /* set TX ring length */
1751 if (priv->hw->dma->set_tx_ring_len)
1752 priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1753 (DMA_TX_SIZE - 1));
1754 /* set RX ring length */
1755 if (priv->hw->dma->set_rx_ring_len)
1756 priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1757 (DMA_RX_SIZE - 1));
1758 /* Enable TSO */
1759 if (priv->tso)
1760 priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1761
1762 return 0;
1763 }
1764
1765 /**
1766 * stmmac_open - open entry point of the driver
1767 * @dev : pointer to the device structure.
1768 * Description:
1769 * This function is the open entry point of the driver.
1770 * Return value:
1771 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1772 * file on failure.
1773 */
1774 static int stmmac_open(struct net_device *dev)
1775 {
1776 struct stmmac_priv *priv = netdev_priv(dev);
1777 int ret;
1778
1779 stmmac_check_ether_addr(priv);
1780
1781 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
1782 priv->hw->pcs != STMMAC_PCS_TBI &&
1783 priv->hw->pcs != STMMAC_PCS_RTBI) {
1784 ret = stmmac_init_phy(dev);
1785 if (ret) {
1786 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1787 __func__, ret);
1788 return ret;
1789 }
1790 }
1791
1792 /* Extra statistics */
1793 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1794 priv->xstats.threshold = tc;
1795
1796 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1797 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1798
1799 ret = alloc_dma_desc_resources(priv);
1800 if (ret < 0) {
1801 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1802 goto dma_desc_error;
1803 }
1804
1805 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1806 if (ret < 0) {
1807 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1808 goto init_error;
1809 }
1810
1811 ret = stmmac_hw_setup(dev, true);
1812 if (ret < 0) {
1813 pr_err("%s: Hw setup failed\n", __func__);
1814 goto init_error;
1815 }
1816
1817 stmmac_init_tx_coalesce(priv);
1818
1819 if (priv->phydev)
1820 phy_start(priv->phydev);
1821
1822 /* Request the IRQ lines */
1823 ret = request_irq(dev->irq, stmmac_interrupt,
1824 IRQF_SHARED, dev->name, dev);
1825 if (unlikely(ret < 0)) {
1826 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1827 __func__, dev->irq, ret);
1828 goto init_error;
1829 }
1830
1831 /* Request the Wake IRQ in case of another line is used for WoL */
1832 if (priv->wol_irq != dev->irq) {
1833 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1834 IRQF_SHARED, dev->name, dev);
1835 if (unlikely(ret < 0)) {
1836 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1837 __func__, priv->wol_irq, ret);
1838 goto wolirq_error;
1839 }
1840 }
1841
1842 /* Request the IRQ lines */
1843 if (priv->lpi_irq > 0) {
1844 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1845 dev->name, dev);
1846 if (unlikely(ret < 0)) {
1847 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1848 __func__, priv->lpi_irq, ret);
1849 goto lpiirq_error;
1850 }
1851 }
1852
1853 napi_enable(&priv->napi);
1854 netif_start_queue(dev);
1855
1856 return 0;
1857
1858 lpiirq_error:
1859 if (priv->wol_irq != dev->irq)
1860 free_irq(priv->wol_irq, dev);
1861 wolirq_error:
1862 free_irq(dev->irq, dev);
1863
1864 init_error:
1865 free_dma_desc_resources(priv);
1866 dma_desc_error:
1867 if (priv->phydev)
1868 phy_disconnect(priv->phydev);
1869
1870 return ret;
1871 }
1872
1873 /**
1874 * stmmac_release - close entry point of the driver
1875 * @dev : device pointer.
1876 * Description:
1877 * This is the stop entry point of the driver.
1878 */
1879 static int stmmac_release(struct net_device *dev)
1880 {
1881 struct stmmac_priv *priv = netdev_priv(dev);
1882
1883 if (priv->eee_enabled)
1884 del_timer_sync(&priv->eee_ctrl_timer);
1885
1886 /* Stop and disconnect the PHY */
1887 if (priv->phydev) {
1888 phy_stop(priv->phydev);
1889 phy_disconnect(priv->phydev);
1890 priv->phydev = NULL;
1891 }
1892
1893 netif_stop_queue(dev);
1894
1895 napi_disable(&priv->napi);
1896
1897 del_timer_sync(&priv->txtimer);
1898
1899 /* Free the IRQ lines */
1900 free_irq(dev->irq, dev);
1901 if (priv->wol_irq != dev->irq)
1902 free_irq(priv->wol_irq, dev);
1903 if (priv->lpi_irq > 0)
1904 free_irq(priv->lpi_irq, dev);
1905
1906 /* Stop TX/RX DMA and clear the descriptors */
1907 priv->hw->dma->stop_tx(priv->ioaddr);
1908 priv->hw->dma->stop_rx(priv->ioaddr);
1909
1910 /* Release and free the Rx/Tx resources */
1911 free_dma_desc_resources(priv);
1912
1913 /* Disable the MAC Rx/Tx */
1914 stmmac_set_mac(priv->ioaddr, false);
1915
1916 netif_carrier_off(dev);
1917
1918 #ifdef CONFIG_DEBUG_FS
1919 stmmac_exit_fs(dev);
1920 #endif
1921
1922 stmmac_release_ptp(priv);
1923
1924 return 0;
1925 }
1926
1927 /**
1928 * stmmac_tso_allocator - close entry point of the driver
1929 * @priv: driver private structure
1930 * @des: buffer start address
1931 * @total_len: total length to fill in descriptors
1932 * @last_segmant: condition for the last descriptor
1933 * Description:
1934 * This function fills descriptor and request new descriptors according to
1935 * buffer length to fill
1936 */
1937 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1938 int total_len, bool last_segment)
1939 {
1940 struct dma_desc *desc;
1941 int tmp_len;
1942 u32 buff_size;
1943
1944 tmp_len = total_len;
1945
1946 while (tmp_len > 0) {
1947 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1948 desc = priv->dma_tx + priv->cur_tx;
1949
1950 desc->des0 = des + (total_len - tmp_len);
1951 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1952 TSO_MAX_BUFF_SIZE : tmp_len;
1953
1954 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1955 0, 1,
1956 (last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1957 0, 0);
1958
1959 tmp_len -= TSO_MAX_BUFF_SIZE;
1960 }
1961 }
1962
1963 /**
1964 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1965 * @skb : the socket buffer
1966 * @dev : device pointer
1967 * Description: this is the transmit function that is called on TSO frames
1968 * (support available on GMAC4 and newer chips).
1969 * Diagram below show the ring programming in case of TSO frames:
1970 *
1971 * First Descriptor
1972 * --------
1973 * | DES0 |---> buffer1 = L2/L3/L4 header
1974 * | DES1 |---> TCP Payload (can continue on next descr...)
1975 * | DES2 |---> buffer 1 and 2 len
1976 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1977 * --------
1978 * |
1979 * ...
1980 * |
1981 * --------
1982 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
1983 * | DES1 | --|
1984 * | DES2 | --> buffer 1 and 2 len
1985 * | DES3 |
1986 * --------
1987 *
1988 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1989 */
1990 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1991 {
1992 u32 pay_len, mss;
1993 int tmp_pay_len = 0;
1994 struct stmmac_priv *priv = netdev_priv(dev);
1995 int nfrags = skb_shinfo(skb)->nr_frags;
1996 unsigned int first_entry, des;
1997 struct dma_desc *desc, *first, *mss_desc = NULL;
1998 u8 proto_hdr_len;
1999 int i;
2000
2001 spin_lock(&priv->tx_lock);
2002
2003 /* Compute header lengths */
2004 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2005
2006 /* Desc availability based on threshold should be enough safe */
2007 if (unlikely(stmmac_tx_avail(priv) <
2008 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2009 if (!netif_queue_stopped(dev)) {
2010 netif_stop_queue(dev);
2011 /* This is a hard error, log it. */
2012 pr_err("%s: Tx Ring full when queue awake\n", __func__);
2013 }
2014 spin_unlock(&priv->tx_lock);
2015 return NETDEV_TX_BUSY;
2016 }
2017
2018 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2019
2020 mss = skb_shinfo(skb)->gso_size;
2021
2022 /* set new MSS value if needed */
2023 if (mss != priv->mss) {
2024 mss_desc = priv->dma_tx + priv->cur_tx;
2025 priv->hw->desc->set_mss(mss_desc, mss);
2026 priv->mss = mss;
2027 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2028 }
2029
2030 if (netif_msg_tx_queued(priv)) {
2031 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2032 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2033 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2034 skb->data_len);
2035 }
2036
2037 first_entry = priv->cur_tx;
2038
2039 desc = priv->dma_tx + first_entry;
2040 first = desc;
2041
2042 /* first descriptor: fill Headers on Buf1 */
2043 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2044 DMA_TO_DEVICE);
2045 if (dma_mapping_error(priv->device, des))
2046 goto dma_map_err;
2047
2048 priv->tx_skbuff_dma[first_entry].buf = des;
2049 priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2050 priv->tx_skbuff[first_entry] = skb;
2051
2052 first->des0 = des;
2053
2054 /* Fill start of payload in buff2 of first descriptor */
2055 if (pay_len)
2056 first->des1 = des + proto_hdr_len;
2057
2058 /* If needed take extra descriptors to fill the remaining payload */
2059 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2060
2061 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2062
2063 /* Prepare fragments */
2064 for (i = 0; i < nfrags; i++) {
2065 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2066
2067 des = skb_frag_dma_map(priv->device, frag, 0,
2068 skb_frag_size(frag),
2069 DMA_TO_DEVICE);
2070
2071 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2072 (i == nfrags - 1));
2073
2074 priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2075 priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2076 priv->tx_skbuff[priv->cur_tx] = NULL;
2077 priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2078 }
2079
2080 priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2081
2082 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2083
2084 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2085 if (netif_msg_hw(priv))
2086 pr_debug("%s: stop transmitted packets\n", __func__);
2087 netif_stop_queue(dev);
2088 }
2089
2090 dev->stats.tx_bytes += skb->len;
2091 priv->xstats.tx_tso_frames++;
2092 priv->xstats.tx_tso_nfrags += nfrags;
2093
2094 /* Manage tx mitigation */
2095 priv->tx_count_frames += nfrags + 1;
2096 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2097 mod_timer(&priv->txtimer,
2098 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2099 } else {
2100 priv->tx_count_frames = 0;
2101 priv->hw->desc->set_tx_ic(desc);
2102 priv->xstats.tx_set_ic_bit++;
2103 }
2104
2105 if (!priv->hwts_tx_en)
2106 skb_tx_timestamp(skb);
2107
2108 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2109 priv->hwts_tx_en)) {
2110 /* declare that device is doing timestamping */
2111 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2112 priv->hw->desc->enable_tx_timestamp(first);
2113 }
2114
2115 /* Complete the first descriptor before granting the DMA */
2116 priv->hw->desc->prepare_tso_tx_desc(first, 1,
2117 proto_hdr_len,
2118 pay_len,
2119 1, priv->tx_skbuff_dma[first_entry].last_segment,
2120 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2121
2122 /* If context desc is used to change MSS */
2123 if (mss_desc)
2124 priv->hw->desc->set_tx_owner(mss_desc);
2125
2126 /* The own bit must be the latest setting done when prepare the
2127 * descriptor and then barrier is needed to make sure that
2128 * all is coherent before granting the DMA engine.
2129 */
2130 smp_wmb();
2131
2132 if (netif_msg_pktdata(priv)) {
2133 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2134 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2135 priv->cur_tx, first, nfrags);
2136
2137 priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2138 0);
2139
2140 pr_info(">>> frame to be transmitted: ");
2141 print_pkt(skb->data, skb_headlen(skb));
2142 }
2143
2144 netdev_sent_queue(dev, skb->len);
2145
2146 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2147 STMMAC_CHAN0);
2148
2149 spin_unlock(&priv->tx_lock);
2150 return NETDEV_TX_OK;
2151
2152 dma_map_err:
2153 spin_unlock(&priv->tx_lock);
2154 dev_err(priv->device, "Tx dma map failed\n");
2155 dev_kfree_skb(skb);
2156 priv->dev->stats.tx_dropped++;
2157 return NETDEV_TX_OK;
2158 }
2159
2160 /**
2161 * stmmac_xmit - Tx entry point of the driver
2162 * @skb : the socket buffer
2163 * @dev : device pointer
2164 * Description : this is the tx entry point of the driver.
2165 * It programs the chain or the ring and supports oversized frames
2166 * and SG feature.
2167 */
2168 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2169 {
2170 struct stmmac_priv *priv = netdev_priv(dev);
2171 unsigned int nopaged_len = skb_headlen(skb);
2172 int i, csum_insertion = 0, is_jumbo = 0;
2173 int nfrags = skb_shinfo(skb)->nr_frags;
2174 unsigned int entry, first_entry;
2175 struct dma_desc *desc, *first;
2176 unsigned int enh_desc;
2177 unsigned int des;
2178
2179 /* Manage oversized TCP frames for GMAC4 device */
2180 if (skb_is_gso(skb) && priv->tso) {
2181 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2182 return stmmac_tso_xmit(skb, dev);
2183 }
2184
2185 spin_lock(&priv->tx_lock);
2186
2187 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2188 spin_unlock(&priv->tx_lock);
2189 if (!netif_queue_stopped(dev)) {
2190 netif_stop_queue(dev);
2191 /* This is a hard error, log it. */
2192 pr_err("%s: Tx Ring full when queue awake\n", __func__);
2193 }
2194 return NETDEV_TX_BUSY;
2195 }
2196
2197 if (priv->tx_path_in_lpi_mode)
2198 stmmac_disable_eee_mode(priv);
2199
2200 entry = priv->cur_tx;
2201 first_entry = entry;
2202
2203 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2204
2205 if (likely(priv->extend_desc))
2206 desc = (struct dma_desc *)(priv->dma_etx + entry);
2207 else
2208 desc = priv->dma_tx + entry;
2209
2210 first = desc;
2211
2212 priv->tx_skbuff[first_entry] = skb;
2213
2214 enh_desc = priv->plat->enh_desc;
2215 /* To program the descriptors according to the size of the frame */
2216 if (enh_desc)
2217 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2218
2219 if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2220 DWMAC_CORE_4_00)) {
2221 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2222 if (unlikely(entry < 0))
2223 goto dma_map_err;
2224 }
2225
2226 for (i = 0; i < nfrags; i++) {
2227 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2228 int len = skb_frag_size(frag);
2229 bool last_segment = (i == (nfrags - 1));
2230
2231 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2232
2233 if (likely(priv->extend_desc))
2234 desc = (struct dma_desc *)(priv->dma_etx + entry);
2235 else
2236 desc = priv->dma_tx + entry;
2237
2238 des = skb_frag_dma_map(priv->device, frag, 0, len,
2239 DMA_TO_DEVICE);
2240 if (dma_mapping_error(priv->device, des))
2241 goto dma_map_err; /* should reuse desc w/o issues */
2242
2243 priv->tx_skbuff[entry] = NULL;
2244
2245 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2246 desc->des0 = des;
2247 priv->tx_skbuff_dma[entry].buf = desc->des0;
2248 } else {
2249 desc->des2 = des;
2250 priv->tx_skbuff_dma[entry].buf = desc->des2;
2251 }
2252
2253 priv->tx_skbuff_dma[entry].map_as_page = true;
2254 priv->tx_skbuff_dma[entry].len = len;
2255 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2256
2257 /* Prepare the descriptor and set the own bit too */
2258 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2259 priv->mode, 1, last_segment);
2260 }
2261
2262 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2263
2264 priv->cur_tx = entry;
2265
2266 if (netif_msg_pktdata(priv)) {
2267 void *tx_head;
2268
2269 pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2270 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2271 entry, first, nfrags);
2272
2273 if (priv->extend_desc)
2274 tx_head = (void *)priv->dma_etx;
2275 else
2276 tx_head = (void *)priv->dma_tx;
2277
2278 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2279
2280 pr_debug(">>> frame to be transmitted: ");
2281 print_pkt(skb->data, skb->len);
2282 }
2283
2284 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2285 if (netif_msg_hw(priv))
2286 pr_debug("%s: stop transmitted packets\n", __func__);
2287 netif_stop_queue(dev);
2288 }
2289
2290 dev->stats.tx_bytes += skb->len;
2291
2292 /* According to the coalesce parameter the IC bit for the latest
2293 * segment is reset and the timer re-started to clean the tx status.
2294 * This approach takes care about the fragments: desc is the first
2295 * element in case of no SG.
2296 */
2297 priv->tx_count_frames += nfrags + 1;
2298 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2299 mod_timer(&priv->txtimer,
2300 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2301 } else {
2302 priv->tx_count_frames = 0;
2303 priv->hw->desc->set_tx_ic(desc);
2304 priv->xstats.tx_set_ic_bit++;
2305 }
2306
2307 if (!priv->hwts_tx_en)
2308 skb_tx_timestamp(skb);
2309
2310 /* Ready to fill the first descriptor and set the OWN bit w/o any
2311 * problems because all the descriptors are actually ready to be
2312 * passed to the DMA engine.
2313 */
2314 if (likely(!is_jumbo)) {
2315 bool last_segment = (nfrags == 0);
2316
2317 des = dma_map_single(priv->device, skb->data,
2318 nopaged_len, DMA_TO_DEVICE);
2319 if (dma_mapping_error(priv->device, des))
2320 goto dma_map_err;
2321
2322 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2323 first->des0 = des;
2324 priv->tx_skbuff_dma[first_entry].buf = first->des0;
2325 } else {
2326 first->des2 = des;
2327 priv->tx_skbuff_dma[first_entry].buf = first->des2;
2328 }
2329
2330 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2331 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2332
2333 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2334 priv->hwts_tx_en)) {
2335 /* declare that device is doing timestamping */
2336 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2337 priv->hw->desc->enable_tx_timestamp(first);
2338 }
2339
2340 /* Prepare the first descriptor setting the OWN bit too */
2341 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2342 csum_insertion, priv->mode, 1,
2343 last_segment);
2344
2345 /* The own bit must be the latest setting done when prepare the
2346 * descriptor and then barrier is needed to make sure that
2347 * all is coherent before granting the DMA engine.
2348 */
2349 smp_wmb();
2350 }
2351
2352 netdev_sent_queue(dev, skb->len);
2353
2354 if (priv->synopsys_id < DWMAC_CORE_4_00)
2355 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2356 else
2357 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2358 STMMAC_CHAN0);
2359
2360 spin_unlock(&priv->tx_lock);
2361 return NETDEV_TX_OK;
2362
2363 dma_map_err:
2364 spin_unlock(&priv->tx_lock);
2365 dev_err(priv->device, "Tx dma map failed\n");
2366 dev_kfree_skb(skb);
2367 priv->dev->stats.tx_dropped++;
2368 return NETDEV_TX_OK;
2369 }
2370
2371 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2372 {
2373 struct ethhdr *ehdr;
2374 u16 vlanid;
2375
2376 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2377 NETIF_F_HW_VLAN_CTAG_RX &&
2378 !__vlan_get_tag(skb, &vlanid)) {
2379 /* pop the vlan tag */
2380 ehdr = (struct ethhdr *)skb->data;
2381 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2382 skb_pull(skb, VLAN_HLEN);
2383 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2384 }
2385 }
2386
2387
2388 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2389 {
2390 if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2391 return 0;
2392
2393 return 1;
2394 }
2395
2396 /**
2397 * stmmac_rx_refill - refill used skb preallocated buffers
2398 * @priv: driver private structure
2399 * Description : this is to reallocate the skb for the reception process
2400 * that is based on zero-copy.
2401 */
2402 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2403 {
2404 int bfsize = priv->dma_buf_sz;
2405 unsigned int entry = priv->dirty_rx;
2406 int dirty = stmmac_rx_dirty(priv);
2407
2408 while (dirty-- > 0) {
2409 struct dma_desc *p;
2410
2411 if (priv->extend_desc)
2412 p = (struct dma_desc *)(priv->dma_erx + entry);
2413 else
2414 p = priv->dma_rx + entry;
2415
2416 if (likely(priv->rx_skbuff[entry] == NULL)) {
2417 struct sk_buff *skb;
2418
2419 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2420 if (unlikely(!skb)) {
2421 /* so for a while no zero-copy! */
2422 priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2423 if (unlikely(net_ratelimit()))
2424 dev_err(priv->device,
2425 "fail to alloc skb entry %d\n",
2426 entry);
2427 break;
2428 }
2429
2430 priv->rx_skbuff[entry] = skb;
2431 priv->rx_skbuff_dma[entry] =
2432 dma_map_single(priv->device, skb->data, bfsize,
2433 DMA_FROM_DEVICE);
2434 if (dma_mapping_error(priv->device,
2435 priv->rx_skbuff_dma[entry])) {
2436 dev_err(priv->device, "Rx dma map failed\n");
2437 dev_kfree_skb(skb);
2438 break;
2439 }
2440
2441 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2442 p->des0 = priv->rx_skbuff_dma[entry];
2443 p->des1 = 0;
2444 } else {
2445 p->des2 = priv->rx_skbuff_dma[entry];
2446 }
2447 if (priv->hw->mode->refill_desc3)
2448 priv->hw->mode->refill_desc3(priv, p);
2449
2450 if (priv->rx_zeroc_thresh > 0)
2451 priv->rx_zeroc_thresh--;
2452
2453 if (netif_msg_rx_status(priv))
2454 pr_debug("\trefill entry #%d\n", entry);
2455 }
2456 wmb();
2457
2458 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2459 priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2460 else
2461 priv->hw->desc->set_rx_owner(p);
2462
2463 wmb();
2464
2465 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2466 }
2467 priv->dirty_rx = entry;
2468 }
2469
2470 /**
2471 * stmmac_rx - manage the receive process
2472 * @priv: driver private structure
2473 * @limit: napi bugget.
2474 * Description : this the function called by the napi poll method.
2475 * It gets all the frames inside the ring.
2476 */
2477 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2478 {
2479 unsigned int entry = priv->cur_rx;
2480 unsigned int next_entry;
2481 unsigned int count = 0;
2482 int coe = priv->hw->rx_csum;
2483
2484 if (netif_msg_rx_status(priv)) {
2485 void *rx_head;
2486
2487 pr_debug("%s: descriptor ring:\n", __func__);
2488 if (priv->extend_desc)
2489 rx_head = (void *)priv->dma_erx;
2490 else
2491 rx_head = (void *)priv->dma_rx;
2492
2493 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2494 }
2495 while (count < limit) {
2496 int status;
2497 struct dma_desc *p;
2498
2499 if (priv->extend_desc)
2500 p = (struct dma_desc *)(priv->dma_erx + entry);
2501 else
2502 p = priv->dma_rx + entry;
2503
2504 /* read the status of the incoming frame */
2505 status = priv->hw->desc->rx_status(&priv->dev->stats,
2506 &priv->xstats, p);
2507 /* check if managed by the DMA otherwise go ahead */
2508 if (unlikely(status & dma_own))
2509 break;
2510
2511 count++;
2512
2513 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2514 next_entry = priv->cur_rx;
2515
2516 if (priv->extend_desc)
2517 prefetch(priv->dma_erx + next_entry);
2518 else
2519 prefetch(priv->dma_rx + next_entry);
2520
2521 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2522 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2523 &priv->xstats,
2524 priv->dma_erx +
2525 entry);
2526 if (unlikely(status == discard_frame)) {
2527 priv->dev->stats.rx_errors++;
2528 if (priv->hwts_rx_en && !priv->extend_desc) {
2529 /* DESC2 & DESC3 will be overwitten by device
2530 * with timestamp value, hence reinitialize
2531 * them in stmmac_rx_refill() function so that
2532 * device can reuse it.
2533 */
2534 priv->rx_skbuff[entry] = NULL;
2535 dma_unmap_single(priv->device,
2536 priv->rx_skbuff_dma[entry],
2537 priv->dma_buf_sz,
2538 DMA_FROM_DEVICE);
2539 }
2540 } else {
2541 struct sk_buff *skb;
2542 int frame_len;
2543 unsigned int des;
2544
2545 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2546 des = p->des0;
2547 else
2548 des = p->des2;
2549
2550 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2551
2552 /* If frame length is greather than skb buffer size
2553 * (preallocated during init) then the packet is
2554 * ignored
2555 */
2556 if (frame_len > priv->dma_buf_sz) {
2557 pr_err("%s: len %d larger than size (%d)\n",
2558 priv->dev->name, frame_len,
2559 priv->dma_buf_sz);
2560 priv->dev->stats.rx_length_errors++;
2561 break;
2562 }
2563
2564 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2565 * Type frames (LLC/LLC-SNAP)
2566 */
2567 if (unlikely(status != llc_snap))
2568 frame_len -= ETH_FCS_LEN;
2569
2570 if (netif_msg_rx_status(priv)) {
2571 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2572 p, entry, des);
2573 if (frame_len > ETH_FRAME_LEN)
2574 pr_debug("\tframe size %d, COE: %d\n",
2575 frame_len, status);
2576 }
2577
2578 /* The zero-copy is always used for all the sizes
2579 * in case of GMAC4 because it needs
2580 * to refill the used descriptors, always.
2581 */
2582 if (unlikely(!priv->plat->has_gmac4 &&
2583 ((frame_len < priv->rx_copybreak) ||
2584 stmmac_rx_threshold_count(priv)))) {
2585 skb = netdev_alloc_skb_ip_align(priv->dev,
2586 frame_len);
2587 if (unlikely(!skb)) {
2588 if (net_ratelimit())
2589 dev_warn(priv->device,
2590 "packet dropped\n");
2591 priv->dev->stats.rx_dropped++;
2592 break;
2593 }
2594
2595 dma_sync_single_for_cpu(priv->device,
2596 priv->rx_skbuff_dma
2597 [entry], frame_len,
2598 DMA_FROM_DEVICE);
2599 skb_copy_to_linear_data(skb,
2600 priv->
2601 rx_skbuff[entry]->data,
2602 frame_len);
2603
2604 skb_put(skb, frame_len);
2605 dma_sync_single_for_device(priv->device,
2606 priv->rx_skbuff_dma
2607 [entry], frame_len,
2608 DMA_FROM_DEVICE);
2609 } else {
2610 skb = priv->rx_skbuff[entry];
2611 if (unlikely(!skb)) {
2612 pr_err("%s: Inconsistent Rx chain\n",
2613 priv->dev->name);
2614 priv->dev->stats.rx_dropped++;
2615 break;
2616 }
2617 prefetch(skb->data - NET_IP_ALIGN);
2618 priv->rx_skbuff[entry] = NULL;
2619 priv->rx_zeroc_thresh++;
2620
2621 skb_put(skb, frame_len);
2622 dma_unmap_single(priv->device,
2623 priv->rx_skbuff_dma[entry],
2624 priv->dma_buf_sz,
2625 DMA_FROM_DEVICE);
2626 }
2627
2628 stmmac_get_rx_hwtstamp(priv, entry, skb);
2629
2630 if (netif_msg_pktdata(priv)) {
2631 pr_debug("frame received (%dbytes)", frame_len);
2632 print_pkt(skb->data, frame_len);
2633 }
2634
2635 stmmac_rx_vlan(priv->dev, skb);
2636
2637 skb->protocol = eth_type_trans(skb, priv->dev);
2638
2639 if (unlikely(!coe))
2640 skb_checksum_none_assert(skb);
2641 else
2642 skb->ip_summed = CHECKSUM_UNNECESSARY;
2643
2644 napi_gro_receive(&priv->napi, skb);
2645
2646 priv->dev->stats.rx_packets++;
2647 priv->dev->stats.rx_bytes += frame_len;
2648 }
2649 entry = next_entry;
2650 }
2651
2652 stmmac_rx_refill(priv);
2653
2654 priv->xstats.rx_pkt_n += count;
2655
2656 return count;
2657 }
2658
2659 /**
2660 * stmmac_poll - stmmac poll method (NAPI)
2661 * @napi : pointer to the napi structure.
2662 * @budget : maximum number of packets that the current CPU can receive from
2663 * all interfaces.
2664 * Description :
2665 * To look at the incoming frames and clear the tx resources.
2666 */
2667 static int stmmac_poll(struct napi_struct *napi, int budget)
2668 {
2669 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2670 int work_done = 0;
2671
2672 priv->xstats.napi_poll++;
2673 stmmac_tx_clean(priv);
2674
2675 work_done = stmmac_rx(priv, budget);
2676 if (work_done < budget) {
2677 napi_complete(napi);
2678 stmmac_enable_dma_irq(priv);
2679 }
2680 return work_done;
2681 }
2682
2683 /**
2684 * stmmac_tx_timeout
2685 * @dev : Pointer to net device structure
2686 * Description: this function is called when a packet transmission fails to
2687 * complete within a reasonable time. The driver will mark the error in the
2688 * netdev structure and arrange for the device to be reset to a sane state
2689 * in order to transmit a new packet.
2690 */
2691 static void stmmac_tx_timeout(struct net_device *dev)
2692 {
2693 struct stmmac_priv *priv = netdev_priv(dev);
2694
2695 /* Clear Tx resources and restart transmitting again */
2696 stmmac_tx_err(priv);
2697 }
2698
2699 /**
2700 * stmmac_set_rx_mode - entry point for multicast addressing
2701 * @dev : pointer to the device structure
2702 * Description:
2703 * This function is a driver entry point which gets called by the kernel
2704 * whenever multicast addresses must be enabled/disabled.
2705 * Return value:
2706 * void.
2707 */
2708 static void stmmac_set_rx_mode(struct net_device *dev)
2709 {
2710 struct stmmac_priv *priv = netdev_priv(dev);
2711
2712 priv->hw->mac->set_filter(priv->hw, dev);
2713 }
2714
2715 /**
2716 * stmmac_change_mtu - entry point to change MTU size for the device.
2717 * @dev : device pointer.
2718 * @new_mtu : the new MTU size for the device.
2719 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2720 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2721 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2722 * Return value:
2723 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2724 * file on failure.
2725 */
2726 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2727 {
2728 struct stmmac_priv *priv = netdev_priv(dev);
2729 int max_mtu;
2730
2731 if (netif_running(dev)) {
2732 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2733 return -EBUSY;
2734 }
2735
2736 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
2737 max_mtu = JUMBO_LEN;
2738 else
2739 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2740
2741 if (priv->plat->maxmtu < max_mtu)
2742 max_mtu = priv->plat->maxmtu;
2743
2744 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2745 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2746 return -EINVAL;
2747 }
2748
2749 dev->mtu = new_mtu;
2750
2751 netdev_update_features(dev);
2752
2753 return 0;
2754 }
2755
2756 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2757 netdev_features_t features)
2758 {
2759 struct stmmac_priv *priv = netdev_priv(dev);
2760
2761 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2762 features &= ~NETIF_F_RXCSUM;
2763
2764 if (!priv->plat->tx_coe)
2765 features &= ~NETIF_F_CSUM_MASK;
2766
2767 /* Some GMAC devices have a bugged Jumbo frame support that
2768 * needs to have the Tx COE disabled for oversized frames
2769 * (due to limited buffer sizes). In this case we disable
2770 * the TX csum insertionin the TDES and not use SF.
2771 */
2772 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2773 features &= ~NETIF_F_CSUM_MASK;
2774
2775 /* Disable tso if asked by ethtool */
2776 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2777 if (features & NETIF_F_TSO)
2778 priv->tso = true;
2779 else
2780 priv->tso = false;
2781 }
2782
2783 return features;
2784 }
2785
2786 static int stmmac_set_features(struct net_device *netdev,
2787 netdev_features_t features)
2788 {
2789 struct stmmac_priv *priv = netdev_priv(netdev);
2790
2791 /* Keep the COE Type in case of csum is supporting */
2792 if (features & NETIF_F_RXCSUM)
2793 priv->hw->rx_csum = priv->plat->rx_coe;
2794 else
2795 priv->hw->rx_csum = 0;
2796 /* No check needed because rx_coe has been set before and it will be
2797 * fixed in case of issue.
2798 */
2799 priv->hw->mac->rx_ipc(priv->hw);
2800
2801 return 0;
2802 }
2803
2804 /**
2805 * stmmac_interrupt - main ISR
2806 * @irq: interrupt number.
2807 * @dev_id: to pass the net device pointer.
2808 * Description: this is the main driver interrupt service routine.
2809 * It can call:
2810 * o DMA service routine (to manage incoming frame reception and transmission
2811 * status)
2812 * o Core interrupts to manage: remote wake-up, management counter, LPI
2813 * interrupts.
2814 */
2815 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2816 {
2817 struct net_device *dev = (struct net_device *)dev_id;
2818 struct stmmac_priv *priv = netdev_priv(dev);
2819
2820 if (priv->irq_wake)
2821 pm_wakeup_event(priv->device, 0);
2822
2823 if (unlikely(!dev)) {
2824 pr_err("%s: invalid dev pointer\n", __func__);
2825 return IRQ_NONE;
2826 }
2827
2828 /* To handle GMAC own interrupts */
2829 if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
2830 int status = priv->hw->mac->host_irq_status(priv->hw,
2831 &priv->xstats);
2832 if (unlikely(status)) {
2833 /* For LPI we need to save the tx status */
2834 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2835 priv->tx_path_in_lpi_mode = true;
2836 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2837 priv->tx_path_in_lpi_mode = false;
2838 if (status & CORE_IRQ_MTL_RX_OVERFLOW && priv->hw->dma->set_rx_tail_ptr)
2839 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2840 priv->rx_tail_addr,
2841 STMMAC_CHAN0);
2842 }
2843
2844 /* PCS link status */
2845 if (priv->hw->pcs) {
2846 if (priv->xstats.pcs_link)
2847 netif_carrier_on(dev);
2848 else
2849 netif_carrier_off(dev);
2850 }
2851 }
2852
2853 /* To handle DMA interrupts */
2854 stmmac_dma_interrupt(priv);
2855
2856 return IRQ_HANDLED;
2857 }
2858
2859 #ifdef CONFIG_NET_POLL_CONTROLLER
2860 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2861 * to allow network I/O with interrupts disabled.
2862 */
2863 static void stmmac_poll_controller(struct net_device *dev)
2864 {
2865 disable_irq(dev->irq);
2866 stmmac_interrupt(dev->irq, dev);
2867 enable_irq(dev->irq);
2868 }
2869 #endif
2870
2871 /**
2872 * stmmac_ioctl - Entry point for the Ioctl
2873 * @dev: Device pointer.
2874 * @rq: An IOCTL specefic structure, that can contain a pointer to
2875 * a proprietary structure used to pass information to the driver.
2876 * @cmd: IOCTL command
2877 * Description:
2878 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2879 */
2880 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2881 {
2882 struct stmmac_priv *priv = netdev_priv(dev);
2883 int ret = -EOPNOTSUPP;
2884
2885 if (!netif_running(dev))
2886 return -EINVAL;
2887
2888 switch (cmd) {
2889 case SIOCGMIIPHY:
2890 case SIOCGMIIREG:
2891 case SIOCSMIIREG:
2892 if (!priv->phydev)
2893 return -EINVAL;
2894 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2895 break;
2896 case SIOCSHWTSTAMP:
2897 ret = stmmac_hwtstamp_ioctl(dev, rq);
2898 break;
2899 default:
2900 break;
2901 }
2902
2903 return ret;
2904 }
2905
2906 #ifdef CONFIG_DEBUG_FS
2907 static struct dentry *stmmac_fs_dir;
2908
2909 static void sysfs_display_ring(void *head, int size, int extend_desc,
2910 struct seq_file *seq)
2911 {
2912 int i;
2913 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2914 struct dma_desc *p = (struct dma_desc *)head;
2915
2916 for (i = 0; i < size; i++) {
2917 u64 x;
2918 if (extend_desc) {
2919 x = *(u64 *) ep;
2920 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2921 i, (unsigned int)virt_to_phys(ep),
2922 ep->basic.des0, ep->basic.des1,
2923 ep->basic.des2, ep->basic.des3);
2924 ep++;
2925 } else {
2926 x = *(u64 *) p;
2927 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2928 i, (unsigned int)virt_to_phys(ep),
2929 p->des0, p->des1, p->des2, p->des3);
2930 p++;
2931 }
2932 seq_printf(seq, "\n");
2933 }
2934 }
2935
2936 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2937 {
2938 struct net_device *dev = seq->private;
2939 struct stmmac_priv *priv = netdev_priv(dev);
2940
2941 if (priv->extend_desc) {
2942 seq_printf(seq, "Extended RX descriptor ring:\n");
2943 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2944 seq_printf(seq, "Extended TX descriptor ring:\n");
2945 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2946 } else {
2947 seq_printf(seq, "RX descriptor ring:\n");
2948 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2949 seq_printf(seq, "TX descriptor ring:\n");
2950 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2951 }
2952
2953 return 0;
2954 }
2955
2956 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2957 {
2958 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2959 }
2960
2961 static const struct file_operations stmmac_rings_status_fops = {
2962 .owner = THIS_MODULE,
2963 .open = stmmac_sysfs_ring_open,
2964 .read = seq_read,
2965 .llseek = seq_lseek,
2966 .release = single_release,
2967 };
2968
2969 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2970 {
2971 struct net_device *dev = seq->private;
2972 struct stmmac_priv *priv = netdev_priv(dev);
2973
2974 if (!priv->hw_cap_support) {
2975 seq_printf(seq, "DMA HW features not supported\n");
2976 return 0;
2977 }
2978
2979 seq_printf(seq, "==============================\n");
2980 seq_printf(seq, "\tDMA HW features\n");
2981 seq_printf(seq, "==============================\n");
2982
2983 seq_printf(seq, "\t10/100 Mbps %s\n",
2984 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2985 seq_printf(seq, "\t1000 Mbps %s\n",
2986 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2987 seq_printf(seq, "\tHalf duple %s\n",
2988 (priv->dma_cap.half_duplex) ? "Y" : "N");
2989 seq_printf(seq, "\tHash Filter: %s\n",
2990 (priv->dma_cap.hash_filter) ? "Y" : "N");
2991 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2992 (priv->dma_cap.multi_addr) ? "Y" : "N");
2993 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2994 (priv->dma_cap.pcs) ? "Y" : "N");
2995 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2996 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2997 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2998 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2999 seq_printf(seq, "\tPMT Magic Frame: %s\n",
3000 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3001 seq_printf(seq, "\tRMON module: %s\n",
3002 (priv->dma_cap.rmon) ? "Y" : "N");
3003 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3004 (priv->dma_cap.time_stamp) ? "Y" : "N");
3005 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
3006 (priv->dma_cap.atime_stamp) ? "Y" : "N");
3007 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
3008 (priv->dma_cap.eee) ? "Y" : "N");
3009 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3010 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3011 (priv->dma_cap.tx_coe) ? "Y" : "N");
3012 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3013 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3014 (priv->dma_cap.rx_coe) ? "Y" : "N");
3015 } else {
3016 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3017 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3018 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3019 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3020 }
3021 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3022 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3023 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3024 priv->dma_cap.number_rx_channel);
3025 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3026 priv->dma_cap.number_tx_channel);
3027 seq_printf(seq, "\tEnhanced descriptors: %s\n",
3028 (priv->dma_cap.enh_desc) ? "Y" : "N");
3029
3030 return 0;
3031 }
3032
3033 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3034 {
3035 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3036 }
3037
3038 static const struct file_operations stmmac_dma_cap_fops = {
3039 .owner = THIS_MODULE,
3040 .open = stmmac_sysfs_dma_cap_open,
3041 .read = seq_read,
3042 .llseek = seq_lseek,
3043 .release = single_release,
3044 };
3045
3046 static int stmmac_init_fs(struct net_device *dev)
3047 {
3048 struct stmmac_priv *priv = netdev_priv(dev);
3049
3050 /* Create per netdev entries */
3051 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3052
3053 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3054 pr_err("ERROR %s/%s, debugfs create directory failed\n",
3055 STMMAC_RESOURCE_NAME, dev->name);
3056
3057 return -ENOMEM;
3058 }
3059
3060 /* Entry to report DMA RX/TX rings */
3061 priv->dbgfs_rings_status =
3062 debugfs_create_file("descriptors_status", S_IRUGO,
3063 priv->dbgfs_dir, dev,
3064 &stmmac_rings_status_fops);
3065
3066 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3067 pr_info("ERROR creating stmmac ring debugfs file\n");
3068 debugfs_remove_recursive(priv->dbgfs_dir);
3069
3070 return -ENOMEM;
3071 }
3072
3073 /* Entry to report the DMA HW features */
3074 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3075 priv->dbgfs_dir,
3076 dev, &stmmac_dma_cap_fops);
3077
3078 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3079 pr_info("ERROR creating stmmac MMC debugfs file\n");
3080 debugfs_remove_recursive(priv->dbgfs_dir);
3081
3082 return -ENOMEM;
3083 }
3084
3085 return 0;
3086 }
3087
3088 static void stmmac_exit_fs(struct net_device *dev)
3089 {
3090 struct stmmac_priv *priv = netdev_priv(dev);
3091
3092 debugfs_remove_recursive(priv->dbgfs_dir);
3093 }
3094 #endif /* CONFIG_DEBUG_FS */
3095
3096 static const struct net_device_ops stmmac_netdev_ops = {
3097 .ndo_open = stmmac_open,
3098 .ndo_start_xmit = stmmac_xmit,
3099 .ndo_stop = stmmac_release,
3100 .ndo_change_mtu = stmmac_change_mtu,
3101 .ndo_fix_features = stmmac_fix_features,
3102 .ndo_set_features = stmmac_set_features,
3103 .ndo_set_rx_mode = stmmac_set_rx_mode,
3104 .ndo_tx_timeout = stmmac_tx_timeout,
3105 .ndo_do_ioctl = stmmac_ioctl,
3106 #ifdef CONFIG_NET_POLL_CONTROLLER
3107 .ndo_poll_controller = stmmac_poll_controller,
3108 #endif
3109 .ndo_set_mac_address = eth_mac_addr,
3110 };
3111
3112 /**
3113 * stmmac_hw_init - Init the MAC device
3114 * @priv: driver private structure
3115 * Description: this function is to configure the MAC device according to
3116 * some platform parameters or the HW capability register. It prepares the
3117 * driver to use either ring or chain modes and to setup either enhanced or
3118 * normal descriptors.
3119 */
3120 static int stmmac_hw_init(struct stmmac_priv *priv)
3121 {
3122 struct mac_device_info *mac;
3123
3124 /* Identify the MAC HW device */
3125 if (priv->plat->has_gmac) {
3126 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3127 mac = dwmac1000_setup(priv->ioaddr,
3128 priv->plat->multicast_filter_bins,
3129 priv->plat->unicast_filter_entries,
3130 &priv->synopsys_id);
3131 } else if (priv->plat->has_gmac4) {
3132 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3133 mac = dwmac4_setup(priv->ioaddr,
3134 priv->plat->multicast_filter_bins,
3135 priv->plat->unicast_filter_entries,
3136 &priv->synopsys_id);
3137 } else {
3138 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3139 }
3140 if (!mac)
3141 return -ENOMEM;
3142
3143 priv->hw = mac;
3144
3145 /* To use the chained or ring mode */
3146 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3147 priv->hw->mode = &dwmac4_ring_mode_ops;
3148 } else {
3149 if (chain_mode) {
3150 priv->hw->mode = &chain_mode_ops;
3151 pr_info(" Chain mode enabled\n");
3152 priv->mode = STMMAC_CHAIN_MODE;
3153 } else {
3154 priv->hw->mode = &ring_mode_ops;
3155 pr_info(" Ring mode enabled\n");
3156 priv->mode = STMMAC_RING_MODE;
3157 }
3158 }
3159
3160 /* Get the HW capability (new GMAC newer than 3.50a) */
3161 priv->hw_cap_support = stmmac_get_hw_features(priv);
3162 if (priv->hw_cap_support) {
3163 pr_info(" DMA HW capability register supported");
3164
3165 /* We can override some gmac/dma configuration fields: e.g.
3166 * enh_desc, tx_coe (e.g. that are passed through the
3167 * platform) with the values from the HW capability
3168 * register (if supported).
3169 */
3170 priv->plat->enh_desc = priv->dma_cap.enh_desc;
3171 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3172 priv->hw->pmt = priv->plat->pmt;
3173
3174 /* TXCOE doesn't work in thresh DMA mode */
3175 if (priv->plat->force_thresh_dma_mode)
3176 priv->plat->tx_coe = 0;
3177 else
3178 priv->plat->tx_coe = priv->dma_cap.tx_coe;
3179
3180 /* In case of GMAC4 rx_coe is from HW cap register. */
3181 priv->plat->rx_coe = priv->dma_cap.rx_coe;
3182
3183 if (priv->dma_cap.rx_coe_type2)
3184 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3185 else if (priv->dma_cap.rx_coe_type1)
3186 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3187
3188 } else
3189 pr_info(" No HW DMA feature register supported");
3190
3191 /* To use alternate (extended), normal or GMAC4 descriptor structures */
3192 if (priv->synopsys_id >= DWMAC_CORE_4_00)
3193 priv->hw->desc = &dwmac4_desc_ops;
3194 else
3195 stmmac_selec_desc_mode(priv);
3196
3197 if (priv->plat->rx_coe) {
3198 priv->hw->rx_csum = priv->plat->rx_coe;
3199 pr_info(" RX Checksum Offload Engine supported\n");
3200 if (priv->synopsys_id < DWMAC_CORE_4_00)
3201 pr_info("\tCOE Type %d\n", priv->hw->rx_csum);
3202 }
3203 if (priv->plat->tx_coe)
3204 pr_info(" TX Checksum insertion supported\n");
3205
3206 if (priv->plat->pmt) {
3207 pr_info(" Wake-Up On Lan supported\n");
3208 device_set_wakeup_capable(priv->device, 1);
3209 }
3210
3211 if (priv->dma_cap.tsoen)
3212 pr_info(" TSO supported\n");
3213
3214 return 0;
3215 }
3216
3217 /**
3218 * stmmac_dvr_probe
3219 * @device: device pointer
3220 * @plat_dat: platform data pointer
3221 * @res: stmmac resource pointer
3222 * Description: this is the main probe function used to
3223 * call the alloc_etherdev, allocate the priv structure.
3224 * Return:
3225 * returns 0 on success, otherwise errno.
3226 */
3227 int stmmac_dvr_probe(struct device *device,
3228 struct plat_stmmacenet_data *plat_dat,
3229 struct stmmac_resources *res)
3230 {
3231 int ret = 0;
3232 struct net_device *ndev = NULL;
3233 struct stmmac_priv *priv;
3234
3235 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3236 if (!ndev)
3237 return -ENOMEM;
3238
3239 SET_NETDEV_DEV(ndev, device);
3240
3241 priv = netdev_priv(ndev);
3242 priv->device = device;
3243 priv->dev = ndev;
3244
3245 stmmac_set_ethtool_ops(ndev);
3246 priv->pause = pause;
3247 priv->plat = plat_dat;
3248 priv->ioaddr = res->addr;
3249 priv->dev->base_addr = (unsigned long)res->addr;
3250
3251 priv->dev->irq = res->irq;
3252 priv->wol_irq = res->wol_irq;
3253 priv->lpi_irq = res->lpi_irq;
3254
3255 if (res->mac)
3256 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3257
3258 dev_set_drvdata(device, priv->dev);
3259
3260 /* Verify driver arguments */
3261 stmmac_verify_args();
3262
3263 /* Override with kernel parameters if supplied XXX CRS XXX
3264 * this needs to have multiple instances
3265 */
3266 if ((phyaddr >= 0) && (phyaddr <= 31))
3267 priv->plat->phy_addr = phyaddr;
3268
3269 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3270 if (IS_ERR(priv->stmmac_clk)) {
3271 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
3272 __func__);
3273 /* If failed to obtain stmmac_clk and specific clk_csr value
3274 * is NOT passed from the platform, probe fail.
3275 */
3276 if (!priv->plat->clk_csr) {
3277 ret = PTR_ERR(priv->stmmac_clk);
3278 goto error_clk_get;
3279 } else {
3280 priv->stmmac_clk = NULL;
3281 }
3282 }
3283 clk_prepare_enable(priv->stmmac_clk);
3284
3285 priv->pclk = devm_clk_get(priv->device, "pclk");
3286 if (IS_ERR(priv->pclk)) {
3287 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3288 ret = -EPROBE_DEFER;
3289 goto error_pclk_get;
3290 }
3291 priv->pclk = NULL;
3292 }
3293 clk_prepare_enable(priv->pclk);
3294
3295 priv->stmmac_rst = devm_reset_control_get(priv->device,
3296 STMMAC_RESOURCE_NAME);
3297 if (IS_ERR(priv->stmmac_rst)) {
3298 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3299 ret = -EPROBE_DEFER;
3300 goto error_hw_init;
3301 }
3302 dev_info(priv->device, "no reset control found\n");
3303 priv->stmmac_rst = NULL;
3304 }
3305 if (priv->stmmac_rst)
3306 reset_control_deassert(priv->stmmac_rst);
3307
3308 /* Init MAC and get the capabilities */
3309 ret = stmmac_hw_init(priv);
3310 if (ret)
3311 goto error_hw_init;
3312
3313 ndev->netdev_ops = &stmmac_netdev_ops;
3314
3315 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3316 NETIF_F_RXCSUM;
3317
3318 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3319 ndev->hw_features |= NETIF_F_TSO;
3320 priv->tso = true;
3321 pr_info(" TSO feature enabled\n");
3322 }
3323 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3324 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3325 #ifdef STMMAC_VLAN_TAG_USED
3326 /* Both mac100 and gmac support receive VLAN tag detection */
3327 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3328 #endif
3329 priv->msg_enable = netif_msg_init(debug, default_msg_level);
3330
3331 if (flow_ctrl)
3332 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
3333
3334 /* Rx Watchdog is available in the COREs newer than the 3.40.
3335 * In some case, for example on bugged HW this feature
3336 * has to be disable and this can be done by passing the
3337 * riwt_off field from the platform.
3338 */
3339 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3340 priv->use_riwt = 1;
3341 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3342 }
3343
3344 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3345
3346 spin_lock_init(&priv->lock);
3347 spin_lock_init(&priv->tx_lock);
3348
3349 ret = register_netdev(ndev);
3350 if (ret) {
3351 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3352 goto error_netdev_register;
3353 }
3354
3355 /* If a specific clk_csr value is passed from the platform
3356 * this means that the CSR Clock Range selection cannot be
3357 * changed at run-time and it is fixed. Viceversa the driver'll try to
3358 * set the MDC clock dynamically according to the csr actual
3359 * clock input.
3360 */
3361 if (!priv->plat->clk_csr)
3362 stmmac_clk_csr_set(priv);
3363 else
3364 priv->clk_csr = priv->plat->clk_csr;
3365
3366 stmmac_check_pcs_mode(priv);
3367
3368 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3369 priv->hw->pcs != STMMAC_PCS_TBI &&
3370 priv->hw->pcs != STMMAC_PCS_RTBI) {
3371 /* MDIO bus Registration */
3372 ret = stmmac_mdio_register(ndev);
3373 if (ret < 0) {
3374 pr_debug("%s: MDIO bus (id: %d) registration failed",
3375 __func__, priv->plat->bus_id);
3376 goto error_mdio_register;
3377 }
3378 }
3379
3380 return 0;
3381
3382 error_mdio_register:
3383 unregister_netdev(ndev);
3384 error_netdev_register:
3385 netif_napi_del(&priv->napi);
3386 error_hw_init:
3387 clk_disable_unprepare(priv->pclk);
3388 error_pclk_get:
3389 clk_disable_unprepare(priv->stmmac_clk);
3390 error_clk_get:
3391 free_netdev(ndev);
3392
3393 return ret;
3394 }
3395 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3396
3397 /**
3398 * stmmac_dvr_remove
3399 * @dev: device pointer
3400 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3401 * changes the link status, releases the DMA descriptor rings.
3402 */
3403 int stmmac_dvr_remove(struct device *dev)
3404 {
3405 struct net_device *ndev = dev_get_drvdata(dev);
3406 struct stmmac_priv *priv = netdev_priv(ndev);
3407
3408 pr_info("%s:\n\tremoving driver", __func__);
3409
3410 priv->hw->dma->stop_rx(priv->ioaddr);
3411 priv->hw->dma->stop_tx(priv->ioaddr);
3412
3413 stmmac_set_mac(priv->ioaddr, false);
3414 netif_carrier_off(ndev);
3415 unregister_netdev(ndev);
3416 of_node_put(priv->plat->phy_node);
3417 if (priv->stmmac_rst)
3418 reset_control_assert(priv->stmmac_rst);
3419 clk_disable_unprepare(priv->pclk);
3420 clk_disable_unprepare(priv->stmmac_clk);
3421 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3422 priv->hw->pcs != STMMAC_PCS_TBI &&
3423 priv->hw->pcs != STMMAC_PCS_RTBI)
3424 stmmac_mdio_unregister(ndev);
3425 free_netdev(ndev);
3426
3427 return 0;
3428 }
3429 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3430
3431 /**
3432 * stmmac_suspend - suspend callback
3433 * @dev: device pointer
3434 * Description: this is the function to suspend the device and it is called
3435 * by the platform driver to stop the network queue, release the resources,
3436 * program the PMT register (for WoL), clean and release driver resources.
3437 */
3438 int stmmac_suspend(struct device *dev)
3439 {
3440 struct net_device *ndev = dev_get_drvdata(dev);
3441 struct stmmac_priv *priv = netdev_priv(ndev);
3442 unsigned long flags;
3443
3444 if (!ndev || !netif_running(ndev))
3445 return 0;
3446
3447 if (priv->phydev)
3448 phy_stop(priv->phydev);
3449
3450 spin_lock_irqsave(&priv->lock, flags);
3451
3452 netif_device_detach(ndev);
3453 netif_stop_queue(ndev);
3454
3455 napi_disable(&priv->napi);
3456
3457 /* Stop TX/RX DMA */
3458 priv->hw->dma->stop_tx(priv->ioaddr);
3459 priv->hw->dma->stop_rx(priv->ioaddr);
3460
3461 /* Enable Power down mode by programming the PMT regs */
3462 if (device_may_wakeup(priv->device)) {
3463 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3464 priv->irq_wake = 1;
3465 } else {
3466 stmmac_set_mac(priv->ioaddr, false);
3467 pinctrl_pm_select_sleep_state(priv->device);
3468 /* Disable clock in case of PWM is off */
3469 clk_disable(priv->pclk);
3470 clk_disable(priv->stmmac_clk);
3471 }
3472 spin_unlock_irqrestore(&priv->lock, flags);
3473
3474 priv->oldlink = 0;
3475 priv->speed = 0;
3476 priv->oldduplex = -1;
3477 return 0;
3478 }
3479 EXPORT_SYMBOL_GPL(stmmac_suspend);
3480
3481 /**
3482 * stmmac_resume - resume callback
3483 * @dev: device pointer
3484 * Description: when resume this function is invoked to setup the DMA and CORE
3485 * in a usable state.
3486 */
3487 int stmmac_resume(struct device *dev)
3488 {
3489 struct net_device *ndev = dev_get_drvdata(dev);
3490 struct stmmac_priv *priv = netdev_priv(ndev);
3491 unsigned long flags;
3492
3493 if (!netif_running(ndev))
3494 return 0;
3495
3496 /* Power Down bit, into the PM register, is cleared
3497 * automatically as soon as a magic packet or a Wake-up frame
3498 * is received. Anyway, it's better to manually clear
3499 * this bit because it can generate problems while resuming
3500 * from another devices (e.g. serial console).
3501 */
3502 if (device_may_wakeup(priv->device)) {
3503 spin_lock_irqsave(&priv->lock, flags);
3504 priv->hw->mac->pmt(priv->hw, 0);
3505 spin_unlock_irqrestore(&priv->lock, flags);
3506 priv->irq_wake = 0;
3507 } else {
3508 pinctrl_pm_select_default_state(priv->device);
3509 /* enable the clk prevously disabled */
3510 clk_enable(priv->stmmac_clk);
3511 clk_enable(priv->pclk);
3512 /* reset the phy so that it's ready */
3513 if (priv->mii)
3514 stmmac_mdio_reset(priv->mii);
3515 }
3516
3517 netif_device_attach(ndev);
3518
3519 spin_lock_irqsave(&priv->lock, flags);
3520
3521 priv->cur_rx = 0;
3522 priv->dirty_rx = 0;
3523 priv->dirty_tx = 0;
3524 priv->cur_tx = 0;
3525 /* reset private mss value to force mss context settings at
3526 * next tso xmit (only used for gmac4).
3527 */
3528 priv->mss = 0;
3529
3530 stmmac_clear_descriptors(priv);
3531
3532 stmmac_hw_setup(ndev, false);
3533 stmmac_init_tx_coalesce(priv);
3534 stmmac_set_rx_mode(ndev);
3535
3536 napi_enable(&priv->napi);
3537
3538 netif_start_queue(ndev);
3539
3540 spin_unlock_irqrestore(&priv->lock, flags);
3541
3542 if (priv->phydev)
3543 phy_start(priv->phydev);
3544
3545 return 0;
3546 }
3547 EXPORT_SYMBOL_GPL(stmmac_resume);
3548
3549 #ifndef MODULE
3550 static int __init stmmac_cmdline_opt(char *str)
3551 {
3552 char *opt;
3553
3554 if (!str || !*str)
3555 return -EINVAL;
3556 while ((opt = strsep(&str, ",")) != NULL) {
3557 if (!strncmp(opt, "debug:", 6)) {
3558 if (kstrtoint(opt + 6, 0, &debug))
3559 goto err;
3560 } else if (!strncmp(opt, "phyaddr:", 8)) {
3561 if (kstrtoint(opt + 8, 0, &phyaddr))
3562 goto err;
3563 } else if (!strncmp(opt, "buf_sz:", 7)) {
3564 if (kstrtoint(opt + 7, 0, &buf_sz))
3565 goto err;
3566 } else if (!strncmp(opt, "tc:", 3)) {
3567 if (kstrtoint(opt + 3, 0, &tc))
3568 goto err;
3569 } else if (!strncmp(opt, "watchdog:", 9)) {
3570 if (kstrtoint(opt + 9, 0, &watchdog))
3571 goto err;
3572 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3573 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3574 goto err;
3575 } else if (!strncmp(opt, "pause:", 6)) {
3576 if (kstrtoint(opt + 6, 0, &pause))
3577 goto err;
3578 } else if (!strncmp(opt, "eee_timer:", 10)) {
3579 if (kstrtoint(opt + 10, 0, &eee_timer))
3580 goto err;
3581 } else if (!strncmp(opt, "chain_mode:", 11)) {
3582 if (kstrtoint(opt + 11, 0, &chain_mode))
3583 goto err;
3584 }
3585 }
3586 return 0;
3587
3588 err:
3589 pr_err("%s: ERROR broken module parameter conversion", __func__);
3590 return -EINVAL;
3591 }
3592
3593 __setup("stmmaceth=", stmmac_cmdline_opt);
3594 #endif /* MODULE */
3595
3596 static int __init stmmac_init(void)
3597 {
3598 #ifdef CONFIG_DEBUG_FS
3599 /* Create debugfs main directory if it doesn't exist yet */
3600 if (!stmmac_fs_dir) {
3601 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3602
3603 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3604 pr_err("ERROR %s, debugfs create directory failed\n",
3605 STMMAC_RESOURCE_NAME);
3606
3607 return -ENOMEM;
3608 }
3609 }
3610 #endif
3611
3612 return 0;
3613 }
3614
3615 static void __exit stmmac_exit(void)
3616 {
3617 #ifdef CONFIG_DEBUG_FS
3618 debugfs_remove_recursive(stmmac_fs_dir);
3619 #endif
3620 }
3621
3622 module_init(stmmac_init)
3623 module_exit(stmmac_exit)
3624
3625 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3626 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3627 MODULE_LICENSE("GPL");