]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
59 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
60
61 /* Module parameters */
62 #define TX_TIMEO 5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66
67 static int debug = -1;
68 module_param(debug, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70
71 static int phyaddr = -1;
72 module_param(phyaddr, int, S_IRUGO);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74
75 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
77
78 static int flow_ctrl = FLOW_OFF;
79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90
91 #define DEFAULT_BUFSIZE 1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95
96 #define STMMAC_RX_COPYBREAK 256
97
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99 NETIF_MSG_LINK | NETIF_MSG_IFUP |
100 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101
102 #define STMMAC_DEFAULT_LPI_TIMER 1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107
108 /* By default the driver will use the ring mode to manage tx and rx descriptors
109 * but passing this value so user can force to use the chain instead of the ring
110 */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
124 /**
125 * stmmac_verify_args - verify the driver parameters.
126 * Description: it checks the driver parameters and set a default in case of
127 * errors.
128 */
129 static void stmmac_verify_args(void)
130 {
131 if (unlikely(watchdog < 0))
132 watchdog = TX_TIMEO;
133 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134 buf_sz = DEFAULT_BUFSIZE;
135 if (unlikely(flow_ctrl > 1))
136 flow_ctrl = FLOW_AUTO;
137 else if (likely(flow_ctrl < 0))
138 flow_ctrl = FLOW_OFF;
139 if (unlikely((pause < 0) || (pause > 0xffff)))
140 pause = PAUSE_TIME;
141 if (eee_timer < 0)
142 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144
145 /**
146 * stmmac_clk_csr_set - dynamically set the MDC clock
147 * @priv: driver private structure
148 * Description: this is to dynamically set the MDC clock according to the csr
149 * clock input.
150 * Note:
151 * If a specific clk_csr value is passed from the platform
152 * this means that the CSR Clock Range selection cannot be
153 * changed at run-time and it is fixed (as reported in the driver
154 * documentation). Viceversa the driver will try to set the MDC
155 * clock dynamically according to the actual clock input.
156 */
157 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 {
159 u32 clk_rate;
160
161 clk_rate = clk_get_rate(priv->stmmac_clk);
162
163 /* Platform provided default clk_csr would be assumed valid
164 * for all other cases except for the below mentioned ones.
165 * For values higher than the IEEE 802.3 specified frequency
166 * we can not estimate the proper divider as it is not known
167 * the frequency of clk_csr_i. So we do not change the default
168 * divider.
169 */
170 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171 if (clk_rate < CSR_F_35M)
172 priv->clk_csr = STMMAC_CSR_20_35M;
173 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174 priv->clk_csr = STMMAC_CSR_35_60M;
175 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176 priv->clk_csr = STMMAC_CSR_60_100M;
177 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178 priv->clk_csr = STMMAC_CSR_100_150M;
179 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180 priv->clk_csr = STMMAC_CSR_150_250M;
181 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
182 priv->clk_csr = STMMAC_CSR_250_300M;
183 }
184 }
185
186 static void print_pkt(unsigned char *buf, int len)
187 {
188 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
190 }
191
192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 {
194 unsigned avail;
195
196 if (priv->dirty_tx > priv->cur_tx)
197 avail = priv->dirty_tx - priv->cur_tx - 1;
198 else
199 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200
201 return avail;
202 }
203
204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 {
206 unsigned dirty;
207
208 if (priv->dirty_rx <= priv->cur_rx)
209 dirty = priv->cur_rx - priv->dirty_rx;
210 else
211 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212
213 return dirty;
214 }
215
216 /**
217 * stmmac_hw_fix_mac_speed - callback for speed selection
218 * @priv: driver private structure
219 * Description: on some platforms (e.g. ST), some HW system configuraton
220 * registers have to be set according to the link speed negotiated.
221 */
222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 {
224 struct phy_device *phydev = priv->phydev;
225
226 if (likely(priv->plat->fix_mac_speed))
227 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
228 }
229
230 /**
231 * stmmac_enable_eee_mode - check and enter in LPI mode
232 * @priv: driver private structure
233 * Description: this function is to verify and enter in LPI mode in case of
234 * EEE.
235 */
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 /* Check and enter in LPI mode */
239 if ((priv->dirty_tx == priv->cur_tx) &&
240 (priv->tx_path_in_lpi_mode == false))
241 priv->hw->mac->set_eee_mode(priv->hw);
242 }
243
244 /**
245 * stmmac_disable_eee_mode - disable and exit from LPI mode
246 * @priv: driver private structure
247 * Description: this function is to exit and disable EEE in case of
248 * LPI state is true. This is called by the xmit.
249 */
250 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251 {
252 priv->hw->mac->reset_eee_mode(priv->hw);
253 del_timer_sync(&priv->eee_ctrl_timer);
254 priv->tx_path_in_lpi_mode = false;
255 }
256
257 /**
258 * stmmac_eee_ctrl_timer - EEE TX SW timer.
259 * @arg : data hook
260 * Description:
261 * if there is no data transfer and if we are not in LPI state,
262 * then MAC Transmitter can be moved to LPI state.
263 */
264 static void stmmac_eee_ctrl_timer(unsigned long arg)
265 {
266 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267
268 stmmac_enable_eee_mode(priv);
269 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
270 }
271
272 /**
273 * stmmac_eee_init - init EEE
274 * @priv: driver private structure
275 * Description:
276 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
277 * can also manage EEE, this function enable the LPI state and start related
278 * timer.
279 */
280 bool stmmac_eee_init(struct stmmac_priv *priv)
281 {
282 unsigned long flags;
283 bool ret = false;
284
285 /* Using PCS we cannot dial with the phy registers at this stage
286 * so we do not support extra feature like EEE.
287 */
288 if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
289 (priv->hw->pcs == STMMAC_PCS_TBI) ||
290 (priv->hw->pcs == STMMAC_PCS_RTBI))
291 goto out;
292
293 /* MAC core supports the EEE feature. */
294 if (priv->dma_cap.eee) {
295 int tx_lpi_timer = priv->tx_lpi_timer;
296
297 /* Check if the PHY supports EEE */
298 if (phy_init_eee(priv->phydev, 1)) {
299 /* To manage at run-time if the EEE cannot be supported
300 * anymore (for example because the lp caps have been
301 * changed).
302 * In that case the driver disable own timers.
303 */
304 spin_lock_irqsave(&priv->lock, flags);
305 if (priv->eee_active) {
306 pr_debug("stmmac: disable EEE\n");
307 del_timer_sync(&priv->eee_ctrl_timer);
308 priv->hw->mac->set_eee_timer(priv->hw, 0,
309 tx_lpi_timer);
310 }
311 priv->eee_active = 0;
312 spin_unlock_irqrestore(&priv->lock, flags);
313 goto out;
314 }
315 /* Activate the EEE and start timers */
316 spin_lock_irqsave(&priv->lock, flags);
317 if (!priv->eee_active) {
318 priv->eee_active = 1;
319 setup_timer(&priv->eee_ctrl_timer,
320 stmmac_eee_ctrl_timer,
321 (unsigned long)priv);
322 mod_timer(&priv->eee_ctrl_timer,
323 STMMAC_LPI_T(eee_timer));
324
325 priv->hw->mac->set_eee_timer(priv->hw,
326 STMMAC_DEFAULT_LIT_LS,
327 tx_lpi_timer);
328 }
329 /* Set HW EEE according to the speed */
330 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331
332 ret = true;
333 spin_unlock_irqrestore(&priv->lock, flags);
334
335 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336 }
337 out:
338 return ret;
339 }
340
341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
342 * @priv: driver private structure
343 * @p : descriptor pointer
344 * @skb : the socket buffer
345 * Description :
346 * This function will read timestamp from the descriptor & pass it to stack.
347 * and also perform some sanity checks.
348 */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350 struct dma_desc *p, struct sk_buff *skb)
351 {
352 struct skb_shared_hwtstamps shhwtstamp;
353 u64 ns;
354
355 if (!priv->hwts_tx_en)
356 return;
357
358 /* exit if skb doesn't support hw tstamp */
359 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
360 return;
361
362 /* check tx tstamp status */
363 if (!priv->hw->desc->get_tx_timestamp_status(p)) {
364 /* get the valid tstamp */
365 ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
366
367 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
368 shhwtstamp.hwtstamp = ns_to_ktime(ns);
369
370 netdev_info(priv->dev, "get valid TX hw timestamp %llu\n", ns);
371 /* pass tstamp to stack */
372 skb_tstamp_tx(skb, &shhwtstamp);
373 }
374
375 return;
376 }
377
378 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
379 * @priv: driver private structure
380 * @p : descriptor pointer
381 * @np : next descriptor pointer
382 * @skb : the socket buffer
383 * Description :
384 * This function will read received packet's timestamp from the descriptor
385 * and pass it to stack. It also perform some sanity checks.
386 */
387 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
388 struct dma_desc *np, struct sk_buff *skb)
389 {
390 struct skb_shared_hwtstamps *shhwtstamp = NULL;
391 u64 ns;
392
393 if (!priv->hwts_rx_en)
394 return;
395
396 /* Check if timestamp is available */
397 if (!priv->hw->desc->get_rx_timestamp_status(p, priv->adv_ts)) {
398 /* For GMAC4, the valid timestamp is from CTX next desc. */
399 if (priv->plat->has_gmac4)
400 ns = priv->hw->desc->get_timestamp(np, priv->adv_ts);
401 else
402 ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
403
404 netdev_info(priv->dev, "get valid RX hw timestamp %llu\n", ns);
405 shhwtstamp = skb_hwtstamps(skb);
406 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
407 shhwtstamp->hwtstamp = ns_to_ktime(ns);
408 } else {
409 netdev_err(priv->dev, "cannot get RX hw timestamp\n");
410 }
411 }
412
413 /**
414 * stmmac_hwtstamp_ioctl - control hardware timestamping.
415 * @dev: device pointer.
416 * @ifr: An IOCTL specefic structure, that can contain a pointer to
417 * a proprietary structure used to pass information to the driver.
418 * Description:
419 * This function configures the MAC to enable/disable both outgoing(TX)
420 * and incoming(RX) packets time stamping based on user input.
421 * Return Value:
422 * 0 on success and an appropriate -ve integer on failure.
423 */
424 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
425 {
426 struct stmmac_priv *priv = netdev_priv(dev);
427 struct hwtstamp_config config;
428 struct timespec64 now;
429 u64 temp = 0;
430 u32 ptp_v2 = 0;
431 u32 tstamp_all = 0;
432 u32 ptp_over_ipv4_udp = 0;
433 u32 ptp_over_ipv6_udp = 0;
434 u32 ptp_over_ethernet = 0;
435 u32 snap_type_sel = 0;
436 u32 ts_master_en = 0;
437 u32 ts_event_en = 0;
438 u32 value = 0;
439 u32 sec_inc;
440
441 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
442 netdev_alert(priv->dev, "No support for HW time stamping\n");
443 priv->hwts_tx_en = 0;
444 priv->hwts_rx_en = 0;
445
446 return -EOPNOTSUPP;
447 }
448
449 if (copy_from_user(&config, ifr->ifr_data,
450 sizeof(struct hwtstamp_config)))
451 return -EFAULT;
452
453 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
454 __func__, config.flags, config.tx_type, config.rx_filter);
455
456 /* reserved for future extensions */
457 if (config.flags)
458 return -EINVAL;
459
460 if (config.tx_type != HWTSTAMP_TX_OFF &&
461 config.tx_type != HWTSTAMP_TX_ON)
462 return -ERANGE;
463
464 if (priv->adv_ts) {
465 switch (config.rx_filter) {
466 case HWTSTAMP_FILTER_NONE:
467 /* time stamp no incoming packet at all */
468 config.rx_filter = HWTSTAMP_FILTER_NONE;
469 break;
470
471 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
472 /* PTP v1, UDP, any kind of event packet */
473 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
474 /* take time stamp for all event messages */
475 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
476
477 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
478 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
479 break;
480
481 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
482 /* PTP v1, UDP, Sync packet */
483 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
484 /* take time stamp for SYNC messages only */
485 ts_event_en = PTP_TCR_TSEVNTENA;
486
487 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
488 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
489 break;
490
491 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
492 /* PTP v1, UDP, Delay_req packet */
493 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
494 /* take time stamp for Delay_Req messages only */
495 ts_master_en = PTP_TCR_TSMSTRENA;
496 ts_event_en = PTP_TCR_TSEVNTENA;
497
498 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
499 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
500 break;
501
502 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
503 /* PTP v2, UDP, any kind of event packet */
504 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
505 ptp_v2 = PTP_TCR_TSVER2ENA;
506 /* take time stamp for all event messages */
507 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
508
509 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
510 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
511 break;
512
513 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
514 /* PTP v2, UDP, Sync packet */
515 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
516 ptp_v2 = PTP_TCR_TSVER2ENA;
517 /* take time stamp for SYNC messages only */
518 ts_event_en = PTP_TCR_TSEVNTENA;
519
520 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
521 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
522 break;
523
524 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
525 /* PTP v2, UDP, Delay_req packet */
526 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
527 ptp_v2 = PTP_TCR_TSVER2ENA;
528 /* take time stamp for Delay_Req messages only */
529 ts_master_en = PTP_TCR_TSMSTRENA;
530 ts_event_en = PTP_TCR_TSEVNTENA;
531
532 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
533 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
534 break;
535
536 case HWTSTAMP_FILTER_PTP_V2_EVENT:
537 /* PTP v2/802.AS1 any layer, any kind of event packet */
538 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
539 ptp_v2 = PTP_TCR_TSVER2ENA;
540 /* take time stamp for all event messages */
541 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
542
543 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
544 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
545 ptp_over_ethernet = PTP_TCR_TSIPENA;
546 break;
547
548 case HWTSTAMP_FILTER_PTP_V2_SYNC:
549 /* PTP v2/802.AS1, any layer, Sync packet */
550 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
551 ptp_v2 = PTP_TCR_TSVER2ENA;
552 /* take time stamp for SYNC messages only */
553 ts_event_en = PTP_TCR_TSEVNTENA;
554
555 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
556 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
557 ptp_over_ethernet = PTP_TCR_TSIPENA;
558 break;
559
560 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
561 /* PTP v2/802.AS1, any layer, Delay_req packet */
562 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
563 ptp_v2 = PTP_TCR_TSVER2ENA;
564 /* take time stamp for Delay_Req messages only */
565 ts_master_en = PTP_TCR_TSMSTRENA;
566 ts_event_en = PTP_TCR_TSEVNTENA;
567
568 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 ptp_over_ethernet = PTP_TCR_TSIPENA;
571 break;
572
573 case HWTSTAMP_FILTER_ALL:
574 /* time stamp any incoming packet */
575 config.rx_filter = HWTSTAMP_FILTER_ALL;
576 tstamp_all = PTP_TCR_TSENALL;
577 break;
578
579 default:
580 return -ERANGE;
581 }
582 } else {
583 switch (config.rx_filter) {
584 case HWTSTAMP_FILTER_NONE:
585 config.rx_filter = HWTSTAMP_FILTER_NONE;
586 break;
587 default:
588 /* PTP v1, UDP, any kind of event packet */
589 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
590 break;
591 }
592 }
593 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
594 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
595
596 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
597 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, 0);
598 else {
599 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
600 tstamp_all | ptp_v2 | ptp_over_ethernet |
601 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
602 ts_master_en | snap_type_sel);
603 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, value);
604
605 /* program Sub Second Increment reg */
606 sec_inc = priv->hw->ptp->config_sub_second_increment(
607 priv->ptpaddr, priv->clk_ptp_rate,
608 priv->plat->has_gmac4);
609 temp = div_u64(1000000000ULL, sec_inc);
610
611 /* calculate default added value:
612 * formula is :
613 * addend = (2^32)/freq_div_ratio;
614 * where, freq_div_ratio = 1e9ns/sec_inc
615 */
616 temp = (u64)(temp << 32);
617 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
618 priv->hw->ptp->config_addend(priv->ptpaddr,
619 priv->default_addend);
620
621 /* initialize system time */
622 ktime_get_real_ts64(&now);
623
624 /* lower 32 bits of tv_sec are safe until y2106 */
625 priv->hw->ptp->init_systime(priv->ptpaddr, (u32)now.tv_sec,
626 now.tv_nsec);
627 }
628
629 return copy_to_user(ifr->ifr_data, &config,
630 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
631 }
632
633 /**
634 * stmmac_init_ptp - init PTP
635 * @priv: driver private structure
636 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
637 * This is done by looking at the HW cap. register.
638 * This function also registers the ptp driver.
639 */
640 static int stmmac_init_ptp(struct stmmac_priv *priv)
641 {
642 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
643 return -EOPNOTSUPP;
644
645 /* Fall-back to main clock in case of no PTP ref is passed */
646 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
647 if (IS_ERR(priv->clk_ptp_ref)) {
648 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
649 priv->clk_ptp_ref = NULL;
650 netdev_dbg(priv->dev, "PTP uses main clock\n");
651 } else {
652 clk_prepare_enable(priv->clk_ptp_ref);
653 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
654 netdev_dbg(priv->dev, "PTP rate %d\n", priv->clk_ptp_rate);
655 }
656
657 priv->adv_ts = 0;
658 /* Check if adv_ts can be enabled for dwmac 4.x core */
659 if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
660 priv->adv_ts = 1;
661 /* Dwmac 3.x core with extend_desc can support adv_ts */
662 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
663 priv->adv_ts = 1;
664
665 if (priv->dma_cap.time_stamp)
666 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
667
668 if (priv->adv_ts)
669 netdev_info(priv->dev,
670 "IEEE 1588-2008 Advanced Timestamp supported\n");
671
672 priv->hw->ptp = &stmmac_ptp;
673 priv->hwts_tx_en = 0;
674 priv->hwts_rx_en = 0;
675
676 stmmac_ptp_register(priv);
677
678 return 0;
679 }
680
681 static void stmmac_release_ptp(struct stmmac_priv *priv)
682 {
683 if (priv->clk_ptp_ref)
684 clk_disable_unprepare(priv->clk_ptp_ref);
685 stmmac_ptp_unregister(priv);
686 }
687
688 /**
689 * stmmac_adjust_link - adjusts the link parameters
690 * @dev: net device structure
691 * Description: this is the helper called by the physical abstraction layer
692 * drivers to communicate the phy link status. According the speed and duplex
693 * this driver can invoke registered glue-logic as well.
694 * It also invoke the eee initialization because it could happen when switch
695 * on different networks (that are eee capable).
696 */
697 static void stmmac_adjust_link(struct net_device *dev)
698 {
699 struct stmmac_priv *priv = netdev_priv(dev);
700 struct phy_device *phydev = priv->phydev;
701 unsigned long flags;
702 int new_state = 0;
703 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
704
705 if (phydev == NULL)
706 return;
707
708 spin_lock_irqsave(&priv->lock, flags);
709
710 if (phydev->link) {
711 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
712
713 /* Now we make sure that we can be in full duplex mode.
714 * If not, we operate in half-duplex mode. */
715 if (phydev->duplex != priv->oldduplex) {
716 new_state = 1;
717 if (!(phydev->duplex))
718 ctrl &= ~priv->hw->link.duplex;
719 else
720 ctrl |= priv->hw->link.duplex;
721 priv->oldduplex = phydev->duplex;
722 }
723 /* Flow Control operation */
724 if (phydev->pause)
725 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
726 fc, pause_time);
727
728 if (phydev->speed != priv->speed) {
729 new_state = 1;
730 switch (phydev->speed) {
731 case 1000:
732 if (likely((priv->plat->has_gmac) ||
733 (priv->plat->has_gmac4)))
734 ctrl &= ~priv->hw->link.port;
735 stmmac_hw_fix_mac_speed(priv);
736 break;
737 case 100:
738 case 10:
739 if (likely((priv->plat->has_gmac) ||
740 (priv->plat->has_gmac4))) {
741 ctrl |= priv->hw->link.port;
742 if (phydev->speed == SPEED_100) {
743 ctrl |= priv->hw->link.speed;
744 } else {
745 ctrl &= ~(priv->hw->link.speed);
746 }
747 } else {
748 ctrl &= ~priv->hw->link.port;
749 }
750 stmmac_hw_fix_mac_speed(priv);
751 break;
752 default:
753 if (netif_msg_link(priv))
754 pr_warn("%s: Speed (%d) not 10/100\n",
755 dev->name, phydev->speed);
756 break;
757 }
758
759 priv->speed = phydev->speed;
760 }
761
762 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
763
764 if (!priv->oldlink) {
765 new_state = 1;
766 priv->oldlink = 1;
767 }
768 } else if (priv->oldlink) {
769 new_state = 1;
770 priv->oldlink = 0;
771 priv->speed = 0;
772 priv->oldduplex = -1;
773 }
774
775 if (new_state && netif_msg_link(priv))
776 phy_print_status(phydev);
777
778 spin_unlock_irqrestore(&priv->lock, flags);
779
780 if (phydev->is_pseudo_fixed_link)
781 /* Stop PHY layer to call the hook to adjust the link in case
782 * of a switch is attached to the stmmac driver.
783 */
784 phydev->irq = PHY_IGNORE_INTERRUPT;
785 else
786 /* At this stage, init the EEE if supported.
787 * Never called in case of fixed_link.
788 */
789 priv->eee_enabled = stmmac_eee_init(priv);
790 }
791
792 /**
793 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
794 * @priv: driver private structure
795 * Description: this is to verify if the HW supports the PCS.
796 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
797 * configured for the TBI, RTBI, or SGMII PHY interface.
798 */
799 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
800 {
801 int interface = priv->plat->interface;
802
803 if (priv->dma_cap.pcs) {
804 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
805 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
806 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
807 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
808 pr_debug("STMMAC: PCS RGMII support enable\n");
809 priv->hw->pcs = STMMAC_PCS_RGMII;
810 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
811 pr_debug("STMMAC: PCS SGMII support enable\n");
812 priv->hw->pcs = STMMAC_PCS_SGMII;
813 }
814 }
815 }
816
817 /**
818 * stmmac_init_phy - PHY initialization
819 * @dev: net device structure
820 * Description: it initializes the driver's PHY state, and attaches the PHY
821 * to the mac driver.
822 * Return value:
823 * 0 on success
824 */
825 static int stmmac_init_phy(struct net_device *dev)
826 {
827 struct stmmac_priv *priv = netdev_priv(dev);
828 struct phy_device *phydev;
829 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
830 char bus_id[MII_BUS_ID_SIZE];
831 int interface = priv->plat->interface;
832 int max_speed = priv->plat->max_speed;
833 priv->oldlink = 0;
834 priv->speed = 0;
835 priv->oldduplex = -1;
836
837 if (priv->plat->phy_node) {
838 phydev = of_phy_connect(dev, priv->plat->phy_node,
839 &stmmac_adjust_link, 0, interface);
840 } else {
841 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
842 priv->plat->bus_id);
843
844 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
845 priv->plat->phy_addr);
846 pr_debug("stmmac_init_phy: trying to attach to %s\n",
847 phy_id_fmt);
848
849 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
850 interface);
851 }
852
853 if (IS_ERR_OR_NULL(phydev)) {
854 pr_err("%s: Could not attach to PHY\n", dev->name);
855 if (!phydev)
856 return -ENODEV;
857
858 return PTR_ERR(phydev);
859 }
860
861 /* Stop Advertising 1000BASE Capability if interface is not GMII */
862 if ((interface == PHY_INTERFACE_MODE_MII) ||
863 (interface == PHY_INTERFACE_MODE_RMII) ||
864 (max_speed < 1000 && max_speed > 0))
865 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
866 SUPPORTED_1000baseT_Full);
867
868 /*
869 * Broken HW is sometimes missing the pull-up resistor on the
870 * MDIO line, which results in reads to non-existent devices returning
871 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
872 * device as well.
873 * Note: phydev->phy_id is the result of reading the UID PHY registers.
874 */
875 if (!priv->plat->phy_node && phydev->phy_id == 0) {
876 phy_disconnect(phydev);
877 return -ENODEV;
878 }
879
880 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
881 * subsequent PHY polling, make sure we force a link transition if
882 * we have a UP/DOWN/UP transition
883 */
884 if (phydev->is_pseudo_fixed_link)
885 phydev->irq = PHY_POLL;
886
887 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
888 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
889
890 priv->phydev = phydev;
891
892 return 0;
893 }
894
895 static void stmmac_display_rings(struct stmmac_priv *priv)
896 {
897 void *head_rx, *head_tx;
898
899 if (priv->extend_desc) {
900 head_rx = (void *)priv->dma_erx;
901 head_tx = (void *)priv->dma_etx;
902 } else {
903 head_rx = (void *)priv->dma_rx;
904 head_tx = (void *)priv->dma_tx;
905 }
906
907 /* Display Rx ring */
908 priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
909 /* Display Tx ring */
910 priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
911 }
912
913 static int stmmac_set_bfsize(int mtu, int bufsize)
914 {
915 int ret = bufsize;
916
917 if (mtu >= BUF_SIZE_4KiB)
918 ret = BUF_SIZE_8KiB;
919 else if (mtu >= BUF_SIZE_2KiB)
920 ret = BUF_SIZE_4KiB;
921 else if (mtu > DEFAULT_BUFSIZE)
922 ret = BUF_SIZE_2KiB;
923 else
924 ret = DEFAULT_BUFSIZE;
925
926 return ret;
927 }
928
929 /**
930 * stmmac_clear_descriptors - clear descriptors
931 * @priv: driver private structure
932 * Description: this function is called to clear the tx and rx descriptors
933 * in case of both basic and extended descriptors are used.
934 */
935 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
936 {
937 int i;
938
939 /* Clear the Rx/Tx descriptors */
940 for (i = 0; i < DMA_RX_SIZE; i++)
941 if (priv->extend_desc)
942 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
943 priv->use_riwt, priv->mode,
944 (i == DMA_RX_SIZE - 1));
945 else
946 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
947 priv->use_riwt, priv->mode,
948 (i == DMA_RX_SIZE - 1));
949 for (i = 0; i < DMA_TX_SIZE; i++)
950 if (priv->extend_desc)
951 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
952 priv->mode,
953 (i == DMA_TX_SIZE - 1));
954 else
955 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
956 priv->mode,
957 (i == DMA_TX_SIZE - 1));
958 }
959
960 /**
961 * stmmac_init_rx_buffers - init the RX descriptor buffer.
962 * @priv: driver private structure
963 * @p: descriptor pointer
964 * @i: descriptor index
965 * @flags: gfp flag.
966 * Description: this function is called to allocate a receive buffer, perform
967 * the DMA mapping and init the descriptor.
968 */
969 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
970 int i, gfp_t flags)
971 {
972 struct sk_buff *skb;
973
974 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
975 if (!skb) {
976 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
977 return -ENOMEM;
978 }
979 priv->rx_skbuff[i] = skb;
980 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
981 priv->dma_buf_sz,
982 DMA_FROM_DEVICE);
983 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
984 pr_err("%s: DMA mapping error\n", __func__);
985 dev_kfree_skb_any(skb);
986 return -EINVAL;
987 }
988
989 if (priv->synopsys_id >= DWMAC_CORE_4_00)
990 p->des0 = priv->rx_skbuff_dma[i];
991 else
992 p->des2 = priv->rx_skbuff_dma[i];
993
994 if ((priv->hw->mode->init_desc3) &&
995 (priv->dma_buf_sz == BUF_SIZE_16KiB))
996 priv->hw->mode->init_desc3(p);
997
998 return 0;
999 }
1000
1001 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1002 {
1003 if (priv->rx_skbuff[i]) {
1004 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1005 priv->dma_buf_sz, DMA_FROM_DEVICE);
1006 dev_kfree_skb_any(priv->rx_skbuff[i]);
1007 }
1008 priv->rx_skbuff[i] = NULL;
1009 }
1010
1011 /**
1012 * init_dma_desc_rings - init the RX/TX descriptor rings
1013 * @dev: net device structure
1014 * @flags: gfp flag.
1015 * Description: this function initializes the DMA RX/TX descriptors
1016 * and allocates the socket buffers. It suppors the chained and ring
1017 * modes.
1018 */
1019 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1020 {
1021 int i;
1022 struct stmmac_priv *priv = netdev_priv(dev);
1023 unsigned int bfsize = 0;
1024 int ret = -ENOMEM;
1025
1026 if (priv->hw->mode->set_16kib_bfsize)
1027 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1028
1029 if (bfsize < BUF_SIZE_16KiB)
1030 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1031
1032 priv->dma_buf_sz = bfsize;
1033
1034 if (netif_msg_probe(priv)) {
1035 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1036 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1037
1038 /* RX INITIALIZATION */
1039 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1040 }
1041 for (i = 0; i < DMA_RX_SIZE; i++) {
1042 struct dma_desc *p;
1043 if (priv->extend_desc)
1044 p = &((priv->dma_erx + i)->basic);
1045 else
1046 p = priv->dma_rx + i;
1047
1048 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1049 if (ret)
1050 goto err_init_rx_buffers;
1051
1052 if (netif_msg_probe(priv))
1053 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1054 priv->rx_skbuff[i]->data,
1055 (unsigned int)priv->rx_skbuff_dma[i]);
1056 }
1057 priv->cur_rx = 0;
1058 priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1059 buf_sz = bfsize;
1060
1061 /* Setup the chained descriptor addresses */
1062 if (priv->mode == STMMAC_CHAIN_MODE) {
1063 if (priv->extend_desc) {
1064 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1065 DMA_RX_SIZE, 1);
1066 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1067 DMA_TX_SIZE, 1);
1068 } else {
1069 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1070 DMA_RX_SIZE, 0);
1071 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1072 DMA_TX_SIZE, 0);
1073 }
1074 }
1075
1076 /* TX INITIALIZATION */
1077 for (i = 0; i < DMA_TX_SIZE; i++) {
1078 struct dma_desc *p;
1079 if (priv->extend_desc)
1080 p = &((priv->dma_etx + i)->basic);
1081 else
1082 p = priv->dma_tx + i;
1083
1084 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1085 p->des0 = 0;
1086 p->des1 = 0;
1087 p->des2 = 0;
1088 p->des3 = 0;
1089 } else {
1090 p->des2 = 0;
1091 }
1092
1093 priv->tx_skbuff_dma[i].buf = 0;
1094 priv->tx_skbuff_dma[i].map_as_page = false;
1095 priv->tx_skbuff_dma[i].len = 0;
1096 priv->tx_skbuff_dma[i].last_segment = false;
1097 priv->tx_skbuff[i] = NULL;
1098 }
1099
1100 priv->dirty_tx = 0;
1101 priv->cur_tx = 0;
1102 netdev_reset_queue(priv->dev);
1103
1104 stmmac_clear_descriptors(priv);
1105
1106 if (netif_msg_hw(priv))
1107 stmmac_display_rings(priv);
1108
1109 return 0;
1110 err_init_rx_buffers:
1111 while (--i >= 0)
1112 stmmac_free_rx_buffers(priv, i);
1113 return ret;
1114 }
1115
1116 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1117 {
1118 int i;
1119
1120 for (i = 0; i < DMA_RX_SIZE; i++)
1121 stmmac_free_rx_buffers(priv, i);
1122 }
1123
1124 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1125 {
1126 int i;
1127
1128 for (i = 0; i < DMA_TX_SIZE; i++) {
1129 struct dma_desc *p;
1130
1131 if (priv->extend_desc)
1132 p = &((priv->dma_etx + i)->basic);
1133 else
1134 p = priv->dma_tx + i;
1135
1136 if (priv->tx_skbuff_dma[i].buf) {
1137 if (priv->tx_skbuff_dma[i].map_as_page)
1138 dma_unmap_page(priv->device,
1139 priv->tx_skbuff_dma[i].buf,
1140 priv->tx_skbuff_dma[i].len,
1141 DMA_TO_DEVICE);
1142 else
1143 dma_unmap_single(priv->device,
1144 priv->tx_skbuff_dma[i].buf,
1145 priv->tx_skbuff_dma[i].len,
1146 DMA_TO_DEVICE);
1147 }
1148
1149 if (priv->tx_skbuff[i] != NULL) {
1150 dev_kfree_skb_any(priv->tx_skbuff[i]);
1151 priv->tx_skbuff[i] = NULL;
1152 priv->tx_skbuff_dma[i].buf = 0;
1153 priv->tx_skbuff_dma[i].map_as_page = false;
1154 }
1155 }
1156 }
1157
1158 /**
1159 * alloc_dma_desc_resources - alloc TX/RX resources.
1160 * @priv: private structure
1161 * Description: according to which descriptor can be used (extend or basic)
1162 * this function allocates the resources for TX and RX paths. In case of
1163 * reception, for example, it pre-allocated the RX socket buffer in order to
1164 * allow zero-copy mechanism.
1165 */
1166 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1167 {
1168 int ret = -ENOMEM;
1169
1170 priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1171 GFP_KERNEL);
1172 if (!priv->rx_skbuff_dma)
1173 return -ENOMEM;
1174
1175 priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1176 GFP_KERNEL);
1177 if (!priv->rx_skbuff)
1178 goto err_rx_skbuff;
1179
1180 priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1181 sizeof(*priv->tx_skbuff_dma),
1182 GFP_KERNEL);
1183 if (!priv->tx_skbuff_dma)
1184 goto err_tx_skbuff_dma;
1185
1186 priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1187 GFP_KERNEL);
1188 if (!priv->tx_skbuff)
1189 goto err_tx_skbuff;
1190
1191 if (priv->extend_desc) {
1192 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1193 sizeof(struct
1194 dma_extended_desc),
1195 &priv->dma_rx_phy,
1196 GFP_KERNEL);
1197 if (!priv->dma_erx)
1198 goto err_dma;
1199
1200 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1201 sizeof(struct
1202 dma_extended_desc),
1203 &priv->dma_tx_phy,
1204 GFP_KERNEL);
1205 if (!priv->dma_etx) {
1206 dma_free_coherent(priv->device, DMA_RX_SIZE *
1207 sizeof(struct dma_extended_desc),
1208 priv->dma_erx, priv->dma_rx_phy);
1209 goto err_dma;
1210 }
1211 } else {
1212 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1213 sizeof(struct dma_desc),
1214 &priv->dma_rx_phy,
1215 GFP_KERNEL);
1216 if (!priv->dma_rx)
1217 goto err_dma;
1218
1219 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1220 sizeof(struct dma_desc),
1221 &priv->dma_tx_phy,
1222 GFP_KERNEL);
1223 if (!priv->dma_tx) {
1224 dma_free_coherent(priv->device, DMA_RX_SIZE *
1225 sizeof(struct dma_desc),
1226 priv->dma_rx, priv->dma_rx_phy);
1227 goto err_dma;
1228 }
1229 }
1230
1231 return 0;
1232
1233 err_dma:
1234 kfree(priv->tx_skbuff);
1235 err_tx_skbuff:
1236 kfree(priv->tx_skbuff_dma);
1237 err_tx_skbuff_dma:
1238 kfree(priv->rx_skbuff);
1239 err_rx_skbuff:
1240 kfree(priv->rx_skbuff_dma);
1241 return ret;
1242 }
1243
1244 static void free_dma_desc_resources(struct stmmac_priv *priv)
1245 {
1246 /* Release the DMA TX/RX socket buffers */
1247 dma_free_rx_skbufs(priv);
1248 dma_free_tx_skbufs(priv);
1249
1250 /* Free DMA regions of consistent memory previously allocated */
1251 if (!priv->extend_desc) {
1252 dma_free_coherent(priv->device,
1253 DMA_TX_SIZE * sizeof(struct dma_desc),
1254 priv->dma_tx, priv->dma_tx_phy);
1255 dma_free_coherent(priv->device,
1256 DMA_RX_SIZE * sizeof(struct dma_desc),
1257 priv->dma_rx, priv->dma_rx_phy);
1258 } else {
1259 dma_free_coherent(priv->device, DMA_TX_SIZE *
1260 sizeof(struct dma_extended_desc),
1261 priv->dma_etx, priv->dma_tx_phy);
1262 dma_free_coherent(priv->device, DMA_RX_SIZE *
1263 sizeof(struct dma_extended_desc),
1264 priv->dma_erx, priv->dma_rx_phy);
1265 }
1266 kfree(priv->rx_skbuff_dma);
1267 kfree(priv->rx_skbuff);
1268 kfree(priv->tx_skbuff_dma);
1269 kfree(priv->tx_skbuff);
1270 }
1271
1272 /**
1273 * stmmac_dma_operation_mode - HW DMA operation mode
1274 * @priv: driver private structure
1275 * Description: it is used for configuring the DMA operation mode register in
1276 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1277 */
1278 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1279 {
1280 int rxfifosz = priv->plat->rx_fifo_size;
1281
1282 if (priv->plat->force_thresh_dma_mode)
1283 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1284 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1285 /*
1286 * In case of GMAC, SF mode can be enabled
1287 * to perform the TX COE in HW. This depends on:
1288 * 1) TX COE if actually supported
1289 * 2) There is no bugged Jumbo frame support
1290 * that needs to not insert csum in the TDES.
1291 */
1292 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1293 rxfifosz);
1294 priv->xstats.threshold = SF_DMA_MODE;
1295 } else
1296 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1297 rxfifosz);
1298 }
1299
1300 /**
1301 * stmmac_tx_clean - to manage the transmission completion
1302 * @priv: driver private structure
1303 * Description: it reclaims the transmit resources after transmission completes.
1304 */
1305 static void stmmac_tx_clean(struct stmmac_priv *priv)
1306 {
1307 unsigned int bytes_compl = 0, pkts_compl = 0;
1308 unsigned int entry = priv->dirty_tx;
1309
1310 spin_lock(&priv->tx_lock);
1311
1312 priv->xstats.tx_clean++;
1313
1314 while (entry != priv->cur_tx) {
1315 struct sk_buff *skb = priv->tx_skbuff[entry];
1316 struct dma_desc *p;
1317 int status;
1318
1319 if (priv->extend_desc)
1320 p = (struct dma_desc *)(priv->dma_etx + entry);
1321 else
1322 p = priv->dma_tx + entry;
1323
1324 status = priv->hw->desc->tx_status(&priv->dev->stats,
1325 &priv->xstats, p,
1326 priv->ioaddr);
1327 /* Check if the descriptor is owned by the DMA */
1328 if (unlikely(status & tx_dma_own))
1329 break;
1330
1331 /* Just consider the last segment and ...*/
1332 if (likely(!(status & tx_not_ls))) {
1333 /* ... verify the status error condition */
1334 if (unlikely(status & tx_err)) {
1335 priv->dev->stats.tx_errors++;
1336 } else {
1337 priv->dev->stats.tx_packets++;
1338 priv->xstats.tx_pkt_n++;
1339 }
1340 stmmac_get_tx_hwtstamp(priv, p, skb);
1341 }
1342
1343 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1344 if (priv->tx_skbuff_dma[entry].map_as_page)
1345 dma_unmap_page(priv->device,
1346 priv->tx_skbuff_dma[entry].buf,
1347 priv->tx_skbuff_dma[entry].len,
1348 DMA_TO_DEVICE);
1349 else
1350 dma_unmap_single(priv->device,
1351 priv->tx_skbuff_dma[entry].buf,
1352 priv->tx_skbuff_dma[entry].len,
1353 DMA_TO_DEVICE);
1354 priv->tx_skbuff_dma[entry].buf = 0;
1355 priv->tx_skbuff_dma[entry].len = 0;
1356 priv->tx_skbuff_dma[entry].map_as_page = false;
1357 }
1358
1359 if (priv->hw->mode->clean_desc3)
1360 priv->hw->mode->clean_desc3(priv, p);
1361
1362 priv->tx_skbuff_dma[entry].last_segment = false;
1363 priv->tx_skbuff_dma[entry].is_jumbo = false;
1364
1365 if (likely(skb != NULL)) {
1366 pkts_compl++;
1367 bytes_compl += skb->len;
1368 dev_consume_skb_any(skb);
1369 priv->tx_skbuff[entry] = NULL;
1370 }
1371
1372 priv->hw->desc->release_tx_desc(p, priv->mode);
1373
1374 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1375 }
1376 priv->dirty_tx = entry;
1377
1378 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1379
1380 if (unlikely(netif_queue_stopped(priv->dev) &&
1381 stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1382 netif_tx_lock(priv->dev);
1383 if (netif_queue_stopped(priv->dev) &&
1384 stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1385 if (netif_msg_tx_done(priv))
1386 pr_debug("%s: restart transmit\n", __func__);
1387 netif_wake_queue(priv->dev);
1388 }
1389 netif_tx_unlock(priv->dev);
1390 }
1391
1392 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1393 stmmac_enable_eee_mode(priv);
1394 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1395 }
1396 spin_unlock(&priv->tx_lock);
1397 }
1398
1399 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1400 {
1401 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1402 }
1403
1404 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1405 {
1406 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1407 }
1408
1409 /**
1410 * stmmac_tx_err - to manage the tx error
1411 * @priv: driver private structure
1412 * Description: it cleans the descriptors and restarts the transmission
1413 * in case of transmission errors.
1414 */
1415 static void stmmac_tx_err(struct stmmac_priv *priv)
1416 {
1417 int i;
1418 netif_stop_queue(priv->dev);
1419
1420 priv->hw->dma->stop_tx(priv->ioaddr);
1421 dma_free_tx_skbufs(priv);
1422 for (i = 0; i < DMA_TX_SIZE; i++)
1423 if (priv->extend_desc)
1424 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1425 priv->mode,
1426 (i == DMA_TX_SIZE - 1));
1427 else
1428 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1429 priv->mode,
1430 (i == DMA_TX_SIZE - 1));
1431 priv->dirty_tx = 0;
1432 priv->cur_tx = 0;
1433 netdev_reset_queue(priv->dev);
1434 priv->hw->dma->start_tx(priv->ioaddr);
1435
1436 priv->dev->stats.tx_errors++;
1437 netif_wake_queue(priv->dev);
1438 }
1439
1440 /**
1441 * stmmac_dma_interrupt - DMA ISR
1442 * @priv: driver private structure
1443 * Description: this is the DMA ISR. It is called by the main ISR.
1444 * It calls the dwmac dma routine and schedule poll method in case of some
1445 * work can be done.
1446 */
1447 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1448 {
1449 int status;
1450 int rxfifosz = priv->plat->rx_fifo_size;
1451
1452 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1453 if (likely((status & handle_rx)) || (status & handle_tx)) {
1454 if (likely(napi_schedule_prep(&priv->napi))) {
1455 stmmac_disable_dma_irq(priv);
1456 __napi_schedule(&priv->napi);
1457 }
1458 }
1459 if (unlikely(status & tx_hard_error_bump_tc)) {
1460 /* Try to bump up the dma threshold on this failure */
1461 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1462 (tc <= 256)) {
1463 tc += 64;
1464 if (priv->plat->force_thresh_dma_mode)
1465 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1466 rxfifosz);
1467 else
1468 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1469 SF_DMA_MODE, rxfifosz);
1470 priv->xstats.threshold = tc;
1471 }
1472 } else if (unlikely(status == tx_hard_error))
1473 stmmac_tx_err(priv);
1474 }
1475
1476 /**
1477 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1478 * @priv: driver private structure
1479 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1480 */
1481 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1482 {
1483 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1484 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1485
1486 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1487 priv->ptpaddr = priv->ioaddr + PTP_GMAC4_OFFSET;
1488 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1489 } else {
1490 priv->ptpaddr = priv->ioaddr + PTP_GMAC3_X_OFFSET;
1491 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1492 }
1493
1494 dwmac_mmc_intr_all_mask(priv->mmcaddr);
1495
1496 if (priv->dma_cap.rmon) {
1497 dwmac_mmc_ctrl(priv->mmcaddr, mode);
1498 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1499 } else
1500 pr_info(" No MAC Management Counters available\n");
1501 }
1502
1503 /**
1504 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1505 * @priv: driver private structure
1506 * Description: select the Enhanced/Alternate or Normal descriptors.
1507 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1508 * supported by the HW capability register.
1509 */
1510 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1511 {
1512 if (priv->plat->enh_desc) {
1513 pr_info(" Enhanced/Alternate descriptors\n");
1514
1515 /* GMAC older than 3.50 has no extended descriptors */
1516 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1517 pr_info("\tEnabled extended descriptors\n");
1518 priv->extend_desc = 1;
1519 } else
1520 pr_warn("Extended descriptors not supported\n");
1521
1522 priv->hw->desc = &enh_desc_ops;
1523 } else {
1524 pr_info(" Normal descriptors\n");
1525 priv->hw->desc = &ndesc_ops;
1526 }
1527 }
1528
1529 /**
1530 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1531 * @priv: driver private structure
1532 * Description:
1533 * new GMAC chip generations have a new register to indicate the
1534 * presence of the optional feature/functions.
1535 * This can be also used to override the value passed through the
1536 * platform and necessary for old MAC10/100 and GMAC chips.
1537 */
1538 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1539 {
1540 u32 ret = 0;
1541
1542 if (priv->hw->dma->get_hw_feature) {
1543 priv->hw->dma->get_hw_feature(priv->ioaddr,
1544 &priv->dma_cap);
1545 ret = 1;
1546 }
1547
1548 return ret;
1549 }
1550
1551 /**
1552 * stmmac_check_ether_addr - check if the MAC addr is valid
1553 * @priv: driver private structure
1554 * Description:
1555 * it is to verify if the MAC address is valid, in case of failures it
1556 * generates a random MAC address
1557 */
1558 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1559 {
1560 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1561 priv->hw->mac->get_umac_addr(priv->hw,
1562 priv->dev->dev_addr, 0);
1563 if (!is_valid_ether_addr(priv->dev->dev_addr))
1564 eth_hw_addr_random(priv->dev);
1565 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1566 priv->dev->dev_addr);
1567 }
1568 }
1569
1570 /**
1571 * stmmac_init_dma_engine - DMA init.
1572 * @priv: driver private structure
1573 * Description:
1574 * It inits the DMA invoking the specific MAC/GMAC callback.
1575 * Some DMA parameters can be passed from the platform;
1576 * in case of these are not passed a default is kept for the MAC or GMAC.
1577 */
1578 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1579 {
1580 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1581 int mixed_burst = 0;
1582 int atds = 0;
1583 int ret = 0;
1584
1585 if (priv->plat->dma_cfg) {
1586 pbl = priv->plat->dma_cfg->pbl;
1587 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1588 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1589 aal = priv->plat->dma_cfg->aal;
1590 }
1591
1592 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1593 atds = 1;
1594
1595 ret = priv->hw->dma->reset(priv->ioaddr);
1596 if (ret) {
1597 dev_err(priv->device, "Failed to reset the dma\n");
1598 return ret;
1599 }
1600
1601 priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1602 aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1603
1604 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1605 priv->rx_tail_addr = priv->dma_rx_phy +
1606 (DMA_RX_SIZE * sizeof(struct dma_desc));
1607 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1608 STMMAC_CHAN0);
1609
1610 priv->tx_tail_addr = priv->dma_tx_phy +
1611 (DMA_TX_SIZE * sizeof(struct dma_desc));
1612 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1613 STMMAC_CHAN0);
1614 }
1615
1616 if (priv->plat->axi && priv->hw->dma->axi)
1617 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1618
1619 return ret;
1620 }
1621
1622 /**
1623 * stmmac_tx_timer - mitigation sw timer for tx.
1624 * @data: data pointer
1625 * Description:
1626 * This is the timer handler to directly invoke the stmmac_tx_clean.
1627 */
1628 static void stmmac_tx_timer(unsigned long data)
1629 {
1630 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1631
1632 stmmac_tx_clean(priv);
1633 }
1634
1635 /**
1636 * stmmac_init_tx_coalesce - init tx mitigation options.
1637 * @priv: driver private structure
1638 * Description:
1639 * This inits the transmit coalesce parameters: i.e. timer rate,
1640 * timer handler and default threshold used for enabling the
1641 * interrupt on completion bit.
1642 */
1643 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1644 {
1645 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1646 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1647 init_timer(&priv->txtimer);
1648 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1649 priv->txtimer.data = (unsigned long)priv;
1650 priv->txtimer.function = stmmac_tx_timer;
1651 add_timer(&priv->txtimer);
1652 }
1653
1654 /**
1655 * stmmac_hw_setup - setup mac in a usable state.
1656 * @dev : pointer to the device structure.
1657 * Description:
1658 * this is the main function to setup the HW in a usable state because the
1659 * dma engine is reset, the core registers are configured (e.g. AXI,
1660 * Checksum features, timers). The DMA is ready to start receiving and
1661 * transmitting.
1662 * Return value:
1663 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1664 * file on failure.
1665 */
1666 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1667 {
1668 struct stmmac_priv *priv = netdev_priv(dev);
1669 int ret;
1670
1671 /* DMA initialization and SW reset */
1672 ret = stmmac_init_dma_engine(priv);
1673 if (ret < 0) {
1674 pr_err("%s: DMA engine initialization failed\n", __func__);
1675 return ret;
1676 }
1677
1678 /* Copy the MAC addr into the HW */
1679 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1680
1681 /* If required, perform hw setup of the bus. */
1682 if (priv->plat->bus_setup)
1683 priv->plat->bus_setup(priv->ioaddr);
1684
1685 /* PS and related bits will be programmed according to the speed */
1686 if (priv->hw->pcs) {
1687 int speed = priv->plat->mac_port_sel_speed;
1688
1689 if ((speed == SPEED_10) || (speed == SPEED_100) ||
1690 (speed == SPEED_1000)) {
1691 priv->hw->ps = speed;
1692 } else {
1693 dev_warn(priv->device, "invalid port speed\n");
1694 priv->hw->ps = 0;
1695 }
1696 }
1697
1698 /* Initialize the MAC Core */
1699 priv->hw->mac->core_init(priv->hw, dev->mtu);
1700
1701 ret = priv->hw->mac->rx_ipc(priv->hw);
1702 if (!ret) {
1703 pr_warn(" RX IPC Checksum Offload disabled\n");
1704 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1705 priv->hw->rx_csum = 0;
1706 }
1707
1708 /* Enable the MAC Rx/Tx */
1709 if (priv->synopsys_id >= DWMAC_CORE_4_00)
1710 stmmac_dwmac4_set_mac(priv->ioaddr, true);
1711 else
1712 stmmac_set_mac(priv->ioaddr, true);
1713
1714 /* Set the HW DMA mode and the COE */
1715 stmmac_dma_operation_mode(priv);
1716
1717 stmmac_mmc_setup(priv);
1718
1719 if (init_ptp) {
1720 ret = stmmac_init_ptp(priv);
1721 if (ret)
1722 netdev_warn(priv->dev, "fail to init PTP.\n");
1723 }
1724
1725 #ifdef CONFIG_DEBUG_FS
1726 ret = stmmac_init_fs(dev);
1727 if (ret < 0)
1728 pr_warn("%s: failed debugFS registration\n", __func__);
1729 #endif
1730 /* Start the ball rolling... */
1731 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1732 priv->hw->dma->start_tx(priv->ioaddr);
1733 priv->hw->dma->start_rx(priv->ioaddr);
1734
1735 /* Dump DMA/MAC registers */
1736 if (netif_msg_hw(priv)) {
1737 priv->hw->mac->dump_regs(priv->hw);
1738 priv->hw->dma->dump_regs(priv->ioaddr);
1739 }
1740 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1741
1742 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1743 priv->rx_riwt = MAX_DMA_RIWT;
1744 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1745 }
1746
1747 if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
1748 priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
1749
1750 /* set TX ring length */
1751 if (priv->hw->dma->set_tx_ring_len)
1752 priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1753 (DMA_TX_SIZE - 1));
1754 /* set RX ring length */
1755 if (priv->hw->dma->set_rx_ring_len)
1756 priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1757 (DMA_RX_SIZE - 1));
1758 /* Enable TSO */
1759 if (priv->tso)
1760 priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1761
1762 return 0;
1763 }
1764
1765 /**
1766 * stmmac_open - open entry point of the driver
1767 * @dev : pointer to the device structure.
1768 * Description:
1769 * This function is the open entry point of the driver.
1770 * Return value:
1771 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1772 * file on failure.
1773 */
1774 static int stmmac_open(struct net_device *dev)
1775 {
1776 struct stmmac_priv *priv = netdev_priv(dev);
1777 int ret;
1778
1779 stmmac_check_ether_addr(priv);
1780
1781 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
1782 priv->hw->pcs != STMMAC_PCS_TBI &&
1783 priv->hw->pcs != STMMAC_PCS_RTBI) {
1784 ret = stmmac_init_phy(dev);
1785 if (ret) {
1786 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1787 __func__, ret);
1788 return ret;
1789 }
1790 }
1791
1792 /* Extra statistics */
1793 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1794 priv->xstats.threshold = tc;
1795
1796 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1797 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1798
1799 ret = alloc_dma_desc_resources(priv);
1800 if (ret < 0) {
1801 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1802 goto dma_desc_error;
1803 }
1804
1805 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1806 if (ret < 0) {
1807 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1808 goto init_error;
1809 }
1810
1811 ret = stmmac_hw_setup(dev, true);
1812 if (ret < 0) {
1813 pr_err("%s: Hw setup failed\n", __func__);
1814 goto init_error;
1815 }
1816
1817 stmmac_init_tx_coalesce(priv);
1818
1819 if (priv->phydev)
1820 phy_start(priv->phydev);
1821
1822 /* Request the IRQ lines */
1823 ret = request_irq(dev->irq, stmmac_interrupt,
1824 IRQF_SHARED, dev->name, dev);
1825 if (unlikely(ret < 0)) {
1826 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1827 __func__, dev->irq, ret);
1828 goto init_error;
1829 }
1830
1831 /* Request the Wake IRQ in case of another line is used for WoL */
1832 if (priv->wol_irq != dev->irq) {
1833 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1834 IRQF_SHARED, dev->name, dev);
1835 if (unlikely(ret < 0)) {
1836 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1837 __func__, priv->wol_irq, ret);
1838 goto wolirq_error;
1839 }
1840 }
1841
1842 /* Request the IRQ lines */
1843 if (priv->lpi_irq > 0) {
1844 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1845 dev->name, dev);
1846 if (unlikely(ret < 0)) {
1847 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1848 __func__, priv->lpi_irq, ret);
1849 goto lpiirq_error;
1850 }
1851 }
1852
1853 napi_enable(&priv->napi);
1854 netif_start_queue(dev);
1855
1856 return 0;
1857
1858 lpiirq_error:
1859 if (priv->wol_irq != dev->irq)
1860 free_irq(priv->wol_irq, dev);
1861 wolirq_error:
1862 free_irq(dev->irq, dev);
1863
1864 init_error:
1865 free_dma_desc_resources(priv);
1866 dma_desc_error:
1867 if (priv->phydev)
1868 phy_disconnect(priv->phydev);
1869
1870 return ret;
1871 }
1872
1873 /**
1874 * stmmac_release - close entry point of the driver
1875 * @dev : device pointer.
1876 * Description:
1877 * This is the stop entry point of the driver.
1878 */
1879 static int stmmac_release(struct net_device *dev)
1880 {
1881 struct stmmac_priv *priv = netdev_priv(dev);
1882
1883 if (priv->eee_enabled)
1884 del_timer_sync(&priv->eee_ctrl_timer);
1885
1886 /* Stop and disconnect the PHY */
1887 if (priv->phydev) {
1888 phy_stop(priv->phydev);
1889 phy_disconnect(priv->phydev);
1890 priv->phydev = NULL;
1891 }
1892
1893 netif_stop_queue(dev);
1894
1895 napi_disable(&priv->napi);
1896
1897 del_timer_sync(&priv->txtimer);
1898
1899 /* Free the IRQ lines */
1900 free_irq(dev->irq, dev);
1901 if (priv->wol_irq != dev->irq)
1902 free_irq(priv->wol_irq, dev);
1903 if (priv->lpi_irq > 0)
1904 free_irq(priv->lpi_irq, dev);
1905
1906 /* Stop TX/RX DMA and clear the descriptors */
1907 priv->hw->dma->stop_tx(priv->ioaddr);
1908 priv->hw->dma->stop_rx(priv->ioaddr);
1909
1910 /* Release and free the Rx/Tx resources */
1911 free_dma_desc_resources(priv);
1912
1913 /* Disable the MAC Rx/Tx */
1914 stmmac_set_mac(priv->ioaddr, false);
1915
1916 netif_carrier_off(dev);
1917
1918 #ifdef CONFIG_DEBUG_FS
1919 stmmac_exit_fs(dev);
1920 #endif
1921
1922 stmmac_release_ptp(priv);
1923
1924 return 0;
1925 }
1926
1927 /**
1928 * stmmac_tso_allocator - close entry point of the driver
1929 * @priv: driver private structure
1930 * @des: buffer start address
1931 * @total_len: total length to fill in descriptors
1932 * @last_segmant: condition for the last descriptor
1933 * Description:
1934 * This function fills descriptor and request new descriptors according to
1935 * buffer length to fill
1936 */
1937 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1938 int total_len, bool last_segment)
1939 {
1940 struct dma_desc *desc;
1941 int tmp_len;
1942 u32 buff_size;
1943
1944 tmp_len = total_len;
1945
1946 while (tmp_len > 0) {
1947 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1948 desc = priv->dma_tx + priv->cur_tx;
1949
1950 desc->des0 = des + (total_len - tmp_len);
1951 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1952 TSO_MAX_BUFF_SIZE : tmp_len;
1953
1954 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1955 0, 1,
1956 (last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1957 0, 0);
1958
1959 tmp_len -= TSO_MAX_BUFF_SIZE;
1960 }
1961 }
1962
1963 /**
1964 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1965 * @skb : the socket buffer
1966 * @dev : device pointer
1967 * Description: this is the transmit function that is called on TSO frames
1968 * (support available on GMAC4 and newer chips).
1969 * Diagram below show the ring programming in case of TSO frames:
1970 *
1971 * First Descriptor
1972 * --------
1973 * | DES0 |---> buffer1 = L2/L3/L4 header
1974 * | DES1 |---> TCP Payload (can continue on next descr...)
1975 * | DES2 |---> buffer 1 and 2 len
1976 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1977 * --------
1978 * |
1979 * ...
1980 * |
1981 * --------
1982 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
1983 * | DES1 | --|
1984 * | DES2 | --> buffer 1 and 2 len
1985 * | DES3 |
1986 * --------
1987 *
1988 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1989 */
1990 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1991 {
1992 u32 pay_len, mss;
1993 int tmp_pay_len = 0;
1994 struct stmmac_priv *priv = netdev_priv(dev);
1995 int nfrags = skb_shinfo(skb)->nr_frags;
1996 unsigned int first_entry, des;
1997 struct dma_desc *desc, *first, *mss_desc = NULL;
1998 u8 proto_hdr_len;
1999 int i;
2000
2001 spin_lock(&priv->tx_lock);
2002
2003 /* Compute header lengths */
2004 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2005
2006 /* Desc availability based on threshold should be enough safe */
2007 if (unlikely(stmmac_tx_avail(priv) <
2008 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2009 if (!netif_queue_stopped(dev)) {
2010 netif_stop_queue(dev);
2011 /* This is a hard error, log it. */
2012 pr_err("%s: Tx Ring full when queue awake\n", __func__);
2013 }
2014 spin_unlock(&priv->tx_lock);
2015 return NETDEV_TX_BUSY;
2016 }
2017
2018 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2019
2020 mss = skb_shinfo(skb)->gso_size;
2021
2022 /* set new MSS value if needed */
2023 if (mss != priv->mss) {
2024 mss_desc = priv->dma_tx + priv->cur_tx;
2025 priv->hw->desc->set_mss(mss_desc, mss);
2026 priv->mss = mss;
2027 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2028 }
2029
2030 if (netif_msg_tx_queued(priv)) {
2031 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2032 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2033 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2034 skb->data_len);
2035 }
2036
2037 first_entry = priv->cur_tx;
2038
2039 desc = priv->dma_tx + first_entry;
2040 first = desc;
2041
2042 /* first descriptor: fill Headers on Buf1 */
2043 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2044 DMA_TO_DEVICE);
2045 if (dma_mapping_error(priv->device, des))
2046 goto dma_map_err;
2047
2048 priv->tx_skbuff_dma[first_entry].buf = des;
2049 priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2050 priv->tx_skbuff[first_entry] = skb;
2051
2052 first->des0 = des;
2053
2054 /* Fill start of payload in buff2 of first descriptor */
2055 if (pay_len)
2056 first->des1 = des + proto_hdr_len;
2057
2058 /* If needed take extra descriptors to fill the remaining payload */
2059 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2060
2061 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2062
2063 /* Prepare fragments */
2064 for (i = 0; i < nfrags; i++) {
2065 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2066
2067 des = skb_frag_dma_map(priv->device, frag, 0,
2068 skb_frag_size(frag),
2069 DMA_TO_DEVICE);
2070
2071 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2072 (i == nfrags - 1));
2073
2074 priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2075 priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2076 priv->tx_skbuff[priv->cur_tx] = NULL;
2077 priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2078 }
2079
2080 priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2081
2082 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2083
2084 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2085 if (netif_msg_hw(priv))
2086 pr_debug("%s: stop transmitted packets\n", __func__);
2087 netif_stop_queue(dev);
2088 }
2089
2090 dev->stats.tx_bytes += skb->len;
2091 priv->xstats.tx_tso_frames++;
2092 priv->xstats.tx_tso_nfrags += nfrags;
2093
2094 /* Manage tx mitigation */
2095 priv->tx_count_frames += nfrags + 1;
2096 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2097 mod_timer(&priv->txtimer,
2098 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2099 } else {
2100 priv->tx_count_frames = 0;
2101 priv->hw->desc->set_tx_ic(desc);
2102 priv->xstats.tx_set_ic_bit++;
2103 }
2104
2105 if (!priv->hwts_tx_en)
2106 skb_tx_timestamp(skb);
2107
2108 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2109 priv->hwts_tx_en)) {
2110 /* declare that device is doing timestamping */
2111 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2112 priv->hw->desc->enable_tx_timestamp(first);
2113 }
2114
2115 /* Complete the first descriptor before granting the DMA */
2116 priv->hw->desc->prepare_tso_tx_desc(first, 1,
2117 proto_hdr_len,
2118 pay_len,
2119 1, priv->tx_skbuff_dma[first_entry].last_segment,
2120 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2121
2122 /* If context desc is used to change MSS */
2123 if (mss_desc)
2124 priv->hw->desc->set_tx_owner(mss_desc);
2125
2126 /* The own bit must be the latest setting done when prepare the
2127 * descriptor and then barrier is needed to make sure that
2128 * all is coherent before granting the DMA engine.
2129 */
2130 smp_wmb();
2131
2132 if (netif_msg_pktdata(priv)) {
2133 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2134 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2135 priv->cur_tx, first, nfrags);
2136
2137 priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2138 0);
2139
2140 pr_info(">>> frame to be transmitted: ");
2141 print_pkt(skb->data, skb_headlen(skb));
2142 }
2143
2144 netdev_sent_queue(dev, skb->len);
2145
2146 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2147 STMMAC_CHAN0);
2148
2149 spin_unlock(&priv->tx_lock);
2150 return NETDEV_TX_OK;
2151
2152 dma_map_err:
2153 spin_unlock(&priv->tx_lock);
2154 dev_err(priv->device, "Tx dma map failed\n");
2155 dev_kfree_skb(skb);
2156 priv->dev->stats.tx_dropped++;
2157 return NETDEV_TX_OK;
2158 }
2159
2160 /**
2161 * stmmac_xmit - Tx entry point of the driver
2162 * @skb : the socket buffer
2163 * @dev : device pointer
2164 * Description : this is the tx entry point of the driver.
2165 * It programs the chain or the ring and supports oversized frames
2166 * and SG feature.
2167 */
2168 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2169 {
2170 struct stmmac_priv *priv = netdev_priv(dev);
2171 unsigned int nopaged_len = skb_headlen(skb);
2172 int i, csum_insertion = 0, is_jumbo = 0;
2173 int nfrags = skb_shinfo(skb)->nr_frags;
2174 unsigned int entry, first_entry;
2175 struct dma_desc *desc, *first;
2176 unsigned int enh_desc;
2177 unsigned int des;
2178
2179 /* Manage oversized TCP frames for GMAC4 device */
2180 if (skb_is_gso(skb) && priv->tso) {
2181 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2182 return stmmac_tso_xmit(skb, dev);
2183 }
2184
2185 spin_lock(&priv->tx_lock);
2186
2187 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2188 spin_unlock(&priv->tx_lock);
2189 if (!netif_queue_stopped(dev)) {
2190 netif_stop_queue(dev);
2191 /* This is a hard error, log it. */
2192 pr_err("%s: Tx Ring full when queue awake\n", __func__);
2193 }
2194 return NETDEV_TX_BUSY;
2195 }
2196
2197 if (priv->tx_path_in_lpi_mode)
2198 stmmac_disable_eee_mode(priv);
2199
2200 entry = priv->cur_tx;
2201 first_entry = entry;
2202
2203 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2204
2205 if (likely(priv->extend_desc))
2206 desc = (struct dma_desc *)(priv->dma_etx + entry);
2207 else
2208 desc = priv->dma_tx + entry;
2209
2210 first = desc;
2211
2212 priv->tx_skbuff[first_entry] = skb;
2213
2214 enh_desc = priv->plat->enh_desc;
2215 /* To program the descriptors according to the size of the frame */
2216 if (enh_desc)
2217 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2218
2219 if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2220 DWMAC_CORE_4_00)) {
2221 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2222 if (unlikely(entry < 0))
2223 goto dma_map_err;
2224 }
2225
2226 for (i = 0; i < nfrags; i++) {
2227 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2228 int len = skb_frag_size(frag);
2229 bool last_segment = (i == (nfrags - 1));
2230
2231 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2232
2233 if (likely(priv->extend_desc))
2234 desc = (struct dma_desc *)(priv->dma_etx + entry);
2235 else
2236 desc = priv->dma_tx + entry;
2237
2238 des = skb_frag_dma_map(priv->device, frag, 0, len,
2239 DMA_TO_DEVICE);
2240 if (dma_mapping_error(priv->device, des))
2241 goto dma_map_err; /* should reuse desc w/o issues */
2242
2243 priv->tx_skbuff[entry] = NULL;
2244
2245 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2246 desc->des0 = des;
2247 priv->tx_skbuff_dma[entry].buf = desc->des0;
2248 } else {
2249 desc->des2 = des;
2250 priv->tx_skbuff_dma[entry].buf = desc->des2;
2251 }
2252
2253 priv->tx_skbuff_dma[entry].map_as_page = true;
2254 priv->tx_skbuff_dma[entry].len = len;
2255 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2256
2257 /* Prepare the descriptor and set the own bit too */
2258 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2259 priv->mode, 1, last_segment);
2260 }
2261
2262 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2263
2264 priv->cur_tx = entry;
2265
2266 if (netif_msg_pktdata(priv)) {
2267 void *tx_head;
2268
2269 pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2270 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2271 entry, first, nfrags);
2272
2273 if (priv->extend_desc)
2274 tx_head = (void *)priv->dma_etx;
2275 else
2276 tx_head = (void *)priv->dma_tx;
2277
2278 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2279
2280 pr_debug(">>> frame to be transmitted: ");
2281 print_pkt(skb->data, skb->len);
2282 }
2283
2284 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2285 if (netif_msg_hw(priv))
2286 pr_debug("%s: stop transmitted packets\n", __func__);
2287 netif_stop_queue(dev);
2288 }
2289
2290 dev->stats.tx_bytes += skb->len;
2291
2292 /* According to the coalesce parameter the IC bit for the latest
2293 * segment is reset and the timer re-started to clean the tx status.
2294 * This approach takes care about the fragments: desc is the first
2295 * element in case of no SG.
2296 */
2297 priv->tx_count_frames += nfrags + 1;
2298 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2299 mod_timer(&priv->txtimer,
2300 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2301 } else {
2302 priv->tx_count_frames = 0;
2303 priv->hw->desc->set_tx_ic(desc);
2304 priv->xstats.tx_set_ic_bit++;
2305 }
2306
2307 if (!priv->hwts_tx_en)
2308 skb_tx_timestamp(skb);
2309
2310 /* Ready to fill the first descriptor and set the OWN bit w/o any
2311 * problems because all the descriptors are actually ready to be
2312 * passed to the DMA engine.
2313 */
2314 if (likely(!is_jumbo)) {
2315 bool last_segment = (nfrags == 0);
2316
2317 des = dma_map_single(priv->device, skb->data,
2318 nopaged_len, DMA_TO_DEVICE);
2319 if (dma_mapping_error(priv->device, des))
2320 goto dma_map_err;
2321
2322 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2323 first->des0 = des;
2324 priv->tx_skbuff_dma[first_entry].buf = first->des0;
2325 } else {
2326 first->des2 = des;
2327 priv->tx_skbuff_dma[first_entry].buf = first->des2;
2328 }
2329
2330 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2331 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2332
2333 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2334 priv->hwts_tx_en)) {
2335 /* declare that device is doing timestamping */
2336 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2337 priv->hw->desc->enable_tx_timestamp(first);
2338 }
2339
2340 /* Prepare the first descriptor setting the OWN bit too */
2341 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2342 csum_insertion, priv->mode, 1,
2343 last_segment);
2344
2345 /* The own bit must be the latest setting done when prepare the
2346 * descriptor and then barrier is needed to make sure that
2347 * all is coherent before granting the DMA engine.
2348 */
2349 smp_wmb();
2350 }
2351
2352 netdev_sent_queue(dev, skb->len);
2353
2354 if (priv->synopsys_id < DWMAC_CORE_4_00)
2355 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2356 else
2357 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2358 STMMAC_CHAN0);
2359
2360 spin_unlock(&priv->tx_lock);
2361 return NETDEV_TX_OK;
2362
2363 dma_map_err:
2364 spin_unlock(&priv->tx_lock);
2365 dev_err(priv->device, "Tx dma map failed\n");
2366 dev_kfree_skb(skb);
2367 priv->dev->stats.tx_dropped++;
2368 return NETDEV_TX_OK;
2369 }
2370
2371 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2372 {
2373 struct ethhdr *ehdr;
2374 u16 vlanid;
2375
2376 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2377 NETIF_F_HW_VLAN_CTAG_RX &&
2378 !__vlan_get_tag(skb, &vlanid)) {
2379 /* pop the vlan tag */
2380 ehdr = (struct ethhdr *)skb->data;
2381 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2382 skb_pull(skb, VLAN_HLEN);
2383 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2384 }
2385 }
2386
2387
2388 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2389 {
2390 if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2391 return 0;
2392
2393 return 1;
2394 }
2395
2396 /**
2397 * stmmac_rx_refill - refill used skb preallocated buffers
2398 * @priv: driver private structure
2399 * Description : this is to reallocate the skb for the reception process
2400 * that is based on zero-copy.
2401 */
2402 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2403 {
2404 int bfsize = priv->dma_buf_sz;
2405 unsigned int entry = priv->dirty_rx;
2406 int dirty = stmmac_rx_dirty(priv);
2407
2408 while (dirty-- > 0) {
2409 struct dma_desc *p;
2410
2411 if (priv->extend_desc)
2412 p = (struct dma_desc *)(priv->dma_erx + entry);
2413 else
2414 p = priv->dma_rx + entry;
2415
2416 if (likely(priv->rx_skbuff[entry] == NULL)) {
2417 struct sk_buff *skb;
2418
2419 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2420 if (unlikely(!skb)) {
2421 /* so for a while no zero-copy! */
2422 priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2423 if (unlikely(net_ratelimit()))
2424 dev_err(priv->device,
2425 "fail to alloc skb entry %d\n",
2426 entry);
2427 break;
2428 }
2429
2430 priv->rx_skbuff[entry] = skb;
2431 priv->rx_skbuff_dma[entry] =
2432 dma_map_single(priv->device, skb->data, bfsize,
2433 DMA_FROM_DEVICE);
2434 if (dma_mapping_error(priv->device,
2435 priv->rx_skbuff_dma[entry])) {
2436 dev_err(priv->device, "Rx dma map failed\n");
2437 dev_kfree_skb(skb);
2438 break;
2439 }
2440
2441 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2442 p->des0 = priv->rx_skbuff_dma[entry];
2443 p->des1 = 0;
2444 } else {
2445 p->des2 = priv->rx_skbuff_dma[entry];
2446 }
2447 if (priv->hw->mode->refill_desc3)
2448 priv->hw->mode->refill_desc3(priv, p);
2449
2450 if (priv->rx_zeroc_thresh > 0)
2451 priv->rx_zeroc_thresh--;
2452
2453 if (netif_msg_rx_status(priv))
2454 pr_debug("\trefill entry #%d\n", entry);
2455 }
2456 wmb();
2457
2458 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2459 priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2460 else
2461 priv->hw->desc->set_rx_owner(p);
2462
2463 wmb();
2464
2465 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2466 }
2467 priv->dirty_rx = entry;
2468 }
2469
2470 /**
2471 * stmmac_rx - manage the receive process
2472 * @priv: driver private structure
2473 * @limit: napi bugget.
2474 * Description : this the function called by the napi poll method.
2475 * It gets all the frames inside the ring.
2476 */
2477 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2478 {
2479 unsigned int entry = priv->cur_rx;
2480 unsigned int next_entry;
2481 unsigned int count = 0;
2482 int coe = priv->hw->rx_csum;
2483
2484 if (netif_msg_rx_status(priv)) {
2485 void *rx_head;
2486
2487 pr_info(">>>>>> %s: descriptor ring:\n", __func__);
2488 if (priv->extend_desc)
2489 rx_head = (void *)priv->dma_erx;
2490 else
2491 rx_head = (void *)priv->dma_rx;
2492
2493 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2494 }
2495 while (count < limit) {
2496 int status;
2497 struct dma_desc *p;
2498 struct dma_desc *np;
2499
2500 if (priv->extend_desc)
2501 p = (struct dma_desc *)(priv->dma_erx + entry);
2502 else
2503 p = priv->dma_rx + entry;
2504
2505 /* read the status of the incoming frame */
2506 status = priv->hw->desc->rx_status(&priv->dev->stats,
2507 &priv->xstats, p);
2508 /* check if managed by the DMA otherwise go ahead */
2509 if (unlikely(status & dma_own))
2510 break;
2511
2512 count++;
2513
2514 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2515 next_entry = priv->cur_rx;
2516
2517 if (priv->extend_desc)
2518 np = (struct dma_desc *)(priv->dma_erx + next_entry);
2519 else
2520 np = priv->dma_rx + next_entry;
2521
2522 prefetch(np);
2523
2524 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2525 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2526 &priv->xstats,
2527 priv->dma_erx +
2528 entry);
2529 if (unlikely(status == discard_frame)) {
2530 priv->dev->stats.rx_errors++;
2531 if (priv->hwts_rx_en && !priv->extend_desc) {
2532 /* DESC2 & DESC3 will be overwitten by device
2533 * with timestamp value, hence reinitialize
2534 * them in stmmac_rx_refill() function so that
2535 * device can reuse it.
2536 */
2537 priv->rx_skbuff[entry] = NULL;
2538 dma_unmap_single(priv->device,
2539 priv->rx_skbuff_dma[entry],
2540 priv->dma_buf_sz,
2541 DMA_FROM_DEVICE);
2542 }
2543 } else {
2544 struct sk_buff *skb;
2545 int frame_len;
2546 unsigned int des;
2547
2548 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2549 des = p->des0;
2550 else
2551 des = p->des2;
2552
2553 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2554
2555 /* If frame length is greather than skb buffer size
2556 * (preallocated during init) then the packet is
2557 * ignored
2558 */
2559 if (frame_len > priv->dma_buf_sz) {
2560 pr_err("%s: len %d larger than size (%d)\n",
2561 priv->dev->name, frame_len,
2562 priv->dma_buf_sz);
2563 priv->dev->stats.rx_length_errors++;
2564 break;
2565 }
2566
2567 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2568 * Type frames (LLC/LLC-SNAP)
2569 */
2570 if (unlikely(status != llc_snap))
2571 frame_len -= ETH_FCS_LEN;
2572
2573 if (netif_msg_rx_status(priv)) {
2574 pr_info("\tdesc: %p [entry %d] buff=0x%x\n",
2575 p, entry, des);
2576 if (frame_len > ETH_FRAME_LEN)
2577 pr_debug("\tframe size %d, COE: %d\n",
2578 frame_len, status);
2579 }
2580
2581 /* The zero-copy is always used for all the sizes
2582 * in case of GMAC4 because it needs
2583 * to refill the used descriptors, always.
2584 */
2585 if (unlikely(!priv->plat->has_gmac4 &&
2586 ((frame_len < priv->rx_copybreak) ||
2587 stmmac_rx_threshold_count(priv)))) {
2588 skb = netdev_alloc_skb_ip_align(priv->dev,
2589 frame_len);
2590 if (unlikely(!skb)) {
2591 if (net_ratelimit())
2592 dev_warn(priv->device,
2593 "packet dropped\n");
2594 priv->dev->stats.rx_dropped++;
2595 break;
2596 }
2597
2598 dma_sync_single_for_cpu(priv->device,
2599 priv->rx_skbuff_dma
2600 [entry], frame_len,
2601 DMA_FROM_DEVICE);
2602 skb_copy_to_linear_data(skb,
2603 priv->
2604 rx_skbuff[entry]->data,
2605 frame_len);
2606
2607 skb_put(skb, frame_len);
2608 dma_sync_single_for_device(priv->device,
2609 priv->rx_skbuff_dma
2610 [entry], frame_len,
2611 DMA_FROM_DEVICE);
2612 } else {
2613 skb = priv->rx_skbuff[entry];
2614 if (unlikely(!skb)) {
2615 pr_err("%s: Inconsistent Rx chain\n",
2616 priv->dev->name);
2617 priv->dev->stats.rx_dropped++;
2618 break;
2619 }
2620 prefetch(skb->data - NET_IP_ALIGN);
2621 priv->rx_skbuff[entry] = NULL;
2622 priv->rx_zeroc_thresh++;
2623
2624 skb_put(skb, frame_len);
2625 dma_unmap_single(priv->device,
2626 priv->rx_skbuff_dma[entry],
2627 priv->dma_buf_sz,
2628 DMA_FROM_DEVICE);
2629 }
2630
2631 if (netif_msg_pktdata(priv)) {
2632 pr_debug("frame received (%dbytes)", frame_len);
2633 print_pkt(skb->data, frame_len);
2634 }
2635
2636 stmmac_get_rx_hwtstamp(priv, p, np, skb);
2637
2638 stmmac_rx_vlan(priv->dev, skb);
2639
2640 skb->protocol = eth_type_trans(skb, priv->dev);
2641
2642 if (unlikely(!coe))
2643 skb_checksum_none_assert(skb);
2644 else
2645 skb->ip_summed = CHECKSUM_UNNECESSARY;
2646
2647 napi_gro_receive(&priv->napi, skb);
2648
2649 priv->dev->stats.rx_packets++;
2650 priv->dev->stats.rx_bytes += frame_len;
2651 }
2652 entry = next_entry;
2653 }
2654
2655 stmmac_rx_refill(priv);
2656
2657 priv->xstats.rx_pkt_n += count;
2658
2659 return count;
2660 }
2661
2662 /**
2663 * stmmac_poll - stmmac poll method (NAPI)
2664 * @napi : pointer to the napi structure.
2665 * @budget : maximum number of packets that the current CPU can receive from
2666 * all interfaces.
2667 * Description :
2668 * To look at the incoming frames and clear the tx resources.
2669 */
2670 static int stmmac_poll(struct napi_struct *napi, int budget)
2671 {
2672 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2673 int work_done = 0;
2674
2675 priv->xstats.napi_poll++;
2676 stmmac_tx_clean(priv);
2677
2678 work_done = stmmac_rx(priv, budget);
2679 if (work_done < budget) {
2680 napi_complete(napi);
2681 stmmac_enable_dma_irq(priv);
2682 }
2683 return work_done;
2684 }
2685
2686 /**
2687 * stmmac_tx_timeout
2688 * @dev : Pointer to net device structure
2689 * Description: this function is called when a packet transmission fails to
2690 * complete within a reasonable time. The driver will mark the error in the
2691 * netdev structure and arrange for the device to be reset to a sane state
2692 * in order to transmit a new packet.
2693 */
2694 static void stmmac_tx_timeout(struct net_device *dev)
2695 {
2696 struct stmmac_priv *priv = netdev_priv(dev);
2697
2698 /* Clear Tx resources and restart transmitting again */
2699 stmmac_tx_err(priv);
2700 }
2701
2702 /**
2703 * stmmac_set_rx_mode - entry point for multicast addressing
2704 * @dev : pointer to the device structure
2705 * Description:
2706 * This function is a driver entry point which gets called by the kernel
2707 * whenever multicast addresses must be enabled/disabled.
2708 * Return value:
2709 * void.
2710 */
2711 static void stmmac_set_rx_mode(struct net_device *dev)
2712 {
2713 struct stmmac_priv *priv = netdev_priv(dev);
2714
2715 priv->hw->mac->set_filter(priv->hw, dev);
2716 }
2717
2718 /**
2719 * stmmac_change_mtu - entry point to change MTU size for the device.
2720 * @dev : device pointer.
2721 * @new_mtu : the new MTU size for the device.
2722 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2723 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2724 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2725 * Return value:
2726 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2727 * file on failure.
2728 */
2729 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2730 {
2731 struct stmmac_priv *priv = netdev_priv(dev);
2732 int max_mtu;
2733
2734 if (netif_running(dev)) {
2735 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2736 return -EBUSY;
2737 }
2738
2739 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
2740 max_mtu = JUMBO_LEN;
2741 else
2742 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2743
2744 if (priv->plat->maxmtu < max_mtu)
2745 max_mtu = priv->plat->maxmtu;
2746
2747 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2748 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2749 return -EINVAL;
2750 }
2751
2752 dev->mtu = new_mtu;
2753
2754 netdev_update_features(dev);
2755
2756 return 0;
2757 }
2758
2759 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2760 netdev_features_t features)
2761 {
2762 struct stmmac_priv *priv = netdev_priv(dev);
2763
2764 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2765 features &= ~NETIF_F_RXCSUM;
2766
2767 if (!priv->plat->tx_coe)
2768 features &= ~NETIF_F_CSUM_MASK;
2769
2770 /* Some GMAC devices have a bugged Jumbo frame support that
2771 * needs to have the Tx COE disabled for oversized frames
2772 * (due to limited buffer sizes). In this case we disable
2773 * the TX csum insertionin the TDES and not use SF.
2774 */
2775 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2776 features &= ~NETIF_F_CSUM_MASK;
2777
2778 /* Disable tso if asked by ethtool */
2779 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2780 if (features & NETIF_F_TSO)
2781 priv->tso = true;
2782 else
2783 priv->tso = false;
2784 }
2785
2786 return features;
2787 }
2788
2789 static int stmmac_set_features(struct net_device *netdev,
2790 netdev_features_t features)
2791 {
2792 struct stmmac_priv *priv = netdev_priv(netdev);
2793
2794 /* Keep the COE Type in case of csum is supporting */
2795 if (features & NETIF_F_RXCSUM)
2796 priv->hw->rx_csum = priv->plat->rx_coe;
2797 else
2798 priv->hw->rx_csum = 0;
2799 /* No check needed because rx_coe has been set before and it will be
2800 * fixed in case of issue.
2801 */
2802 priv->hw->mac->rx_ipc(priv->hw);
2803
2804 return 0;
2805 }
2806
2807 /**
2808 * stmmac_interrupt - main ISR
2809 * @irq: interrupt number.
2810 * @dev_id: to pass the net device pointer.
2811 * Description: this is the main driver interrupt service routine.
2812 * It can call:
2813 * o DMA service routine (to manage incoming frame reception and transmission
2814 * status)
2815 * o Core interrupts to manage: remote wake-up, management counter, LPI
2816 * interrupts.
2817 */
2818 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2819 {
2820 struct net_device *dev = (struct net_device *)dev_id;
2821 struct stmmac_priv *priv = netdev_priv(dev);
2822
2823 if (priv->irq_wake)
2824 pm_wakeup_event(priv->device, 0);
2825
2826 if (unlikely(!dev)) {
2827 pr_err("%s: invalid dev pointer\n", __func__);
2828 return IRQ_NONE;
2829 }
2830
2831 /* To handle GMAC own interrupts */
2832 if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
2833 int status = priv->hw->mac->host_irq_status(priv->hw,
2834 &priv->xstats);
2835 if (unlikely(status)) {
2836 /* For LPI we need to save the tx status */
2837 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2838 priv->tx_path_in_lpi_mode = true;
2839 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2840 priv->tx_path_in_lpi_mode = false;
2841 if (status & CORE_IRQ_MTL_RX_OVERFLOW && priv->hw->dma->set_rx_tail_ptr)
2842 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2843 priv->rx_tail_addr,
2844 STMMAC_CHAN0);
2845 }
2846
2847 /* PCS link status */
2848 if (priv->hw->pcs) {
2849 if (priv->xstats.pcs_link)
2850 netif_carrier_on(dev);
2851 else
2852 netif_carrier_off(dev);
2853 }
2854 }
2855
2856 /* To handle DMA interrupts */
2857 stmmac_dma_interrupt(priv);
2858
2859 return IRQ_HANDLED;
2860 }
2861
2862 #ifdef CONFIG_NET_POLL_CONTROLLER
2863 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2864 * to allow network I/O with interrupts disabled.
2865 */
2866 static void stmmac_poll_controller(struct net_device *dev)
2867 {
2868 disable_irq(dev->irq);
2869 stmmac_interrupt(dev->irq, dev);
2870 enable_irq(dev->irq);
2871 }
2872 #endif
2873
2874 /**
2875 * stmmac_ioctl - Entry point for the Ioctl
2876 * @dev: Device pointer.
2877 * @rq: An IOCTL specefic structure, that can contain a pointer to
2878 * a proprietary structure used to pass information to the driver.
2879 * @cmd: IOCTL command
2880 * Description:
2881 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2882 */
2883 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2884 {
2885 struct stmmac_priv *priv = netdev_priv(dev);
2886 int ret = -EOPNOTSUPP;
2887
2888 if (!netif_running(dev))
2889 return -EINVAL;
2890
2891 switch (cmd) {
2892 case SIOCGMIIPHY:
2893 case SIOCGMIIREG:
2894 case SIOCSMIIREG:
2895 if (!priv->phydev)
2896 return -EINVAL;
2897 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2898 break;
2899 case SIOCSHWTSTAMP:
2900 ret = stmmac_hwtstamp_ioctl(dev, rq);
2901 break;
2902 default:
2903 break;
2904 }
2905
2906 return ret;
2907 }
2908
2909 #ifdef CONFIG_DEBUG_FS
2910 static struct dentry *stmmac_fs_dir;
2911
2912 static void sysfs_display_ring(void *head, int size, int extend_desc,
2913 struct seq_file *seq)
2914 {
2915 int i;
2916 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2917 struct dma_desc *p = (struct dma_desc *)head;
2918
2919 for (i = 0; i < size; i++) {
2920 u64 x;
2921 if (extend_desc) {
2922 x = *(u64 *) ep;
2923 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2924 i, (unsigned int)virt_to_phys(ep),
2925 ep->basic.des0, ep->basic.des1,
2926 ep->basic.des2, ep->basic.des3);
2927 ep++;
2928 } else {
2929 x = *(u64 *) p;
2930 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2931 i, (unsigned int)virt_to_phys(ep),
2932 p->des0, p->des1, p->des2, p->des3);
2933 p++;
2934 }
2935 seq_printf(seq, "\n");
2936 }
2937 }
2938
2939 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2940 {
2941 struct net_device *dev = seq->private;
2942 struct stmmac_priv *priv = netdev_priv(dev);
2943
2944 if (priv->extend_desc) {
2945 seq_printf(seq, "Extended RX descriptor ring:\n");
2946 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2947 seq_printf(seq, "Extended TX descriptor ring:\n");
2948 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2949 } else {
2950 seq_printf(seq, "RX descriptor ring:\n");
2951 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2952 seq_printf(seq, "TX descriptor ring:\n");
2953 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2954 }
2955
2956 return 0;
2957 }
2958
2959 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2960 {
2961 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2962 }
2963
2964 static const struct file_operations stmmac_rings_status_fops = {
2965 .owner = THIS_MODULE,
2966 .open = stmmac_sysfs_ring_open,
2967 .read = seq_read,
2968 .llseek = seq_lseek,
2969 .release = single_release,
2970 };
2971
2972 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2973 {
2974 struct net_device *dev = seq->private;
2975 struct stmmac_priv *priv = netdev_priv(dev);
2976
2977 if (!priv->hw_cap_support) {
2978 seq_printf(seq, "DMA HW features not supported\n");
2979 return 0;
2980 }
2981
2982 seq_printf(seq, "==============================\n");
2983 seq_printf(seq, "\tDMA HW features\n");
2984 seq_printf(seq, "==============================\n");
2985
2986 seq_printf(seq, "\t10/100 Mbps %s\n",
2987 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2988 seq_printf(seq, "\t1000 Mbps %s\n",
2989 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2990 seq_printf(seq, "\tHalf duple %s\n",
2991 (priv->dma_cap.half_duplex) ? "Y" : "N");
2992 seq_printf(seq, "\tHash Filter: %s\n",
2993 (priv->dma_cap.hash_filter) ? "Y" : "N");
2994 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2995 (priv->dma_cap.multi_addr) ? "Y" : "N");
2996 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2997 (priv->dma_cap.pcs) ? "Y" : "N");
2998 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2999 (priv->dma_cap.sma_mdio) ? "Y" : "N");
3000 seq_printf(seq, "\tPMT Remote wake up: %s\n",
3001 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3002 seq_printf(seq, "\tPMT Magic Frame: %s\n",
3003 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3004 seq_printf(seq, "\tRMON module: %s\n",
3005 (priv->dma_cap.rmon) ? "Y" : "N");
3006 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3007 (priv->dma_cap.time_stamp) ? "Y" : "N");
3008 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
3009 (priv->dma_cap.atime_stamp) ? "Y" : "N");
3010 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
3011 (priv->dma_cap.eee) ? "Y" : "N");
3012 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3013 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3014 (priv->dma_cap.tx_coe) ? "Y" : "N");
3015 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3016 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3017 (priv->dma_cap.rx_coe) ? "Y" : "N");
3018 } else {
3019 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3020 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3021 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3022 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3023 }
3024 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3025 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3026 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3027 priv->dma_cap.number_rx_channel);
3028 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3029 priv->dma_cap.number_tx_channel);
3030 seq_printf(seq, "\tEnhanced descriptors: %s\n",
3031 (priv->dma_cap.enh_desc) ? "Y" : "N");
3032
3033 return 0;
3034 }
3035
3036 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3037 {
3038 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3039 }
3040
3041 static const struct file_operations stmmac_dma_cap_fops = {
3042 .owner = THIS_MODULE,
3043 .open = stmmac_sysfs_dma_cap_open,
3044 .read = seq_read,
3045 .llseek = seq_lseek,
3046 .release = single_release,
3047 };
3048
3049 static int stmmac_init_fs(struct net_device *dev)
3050 {
3051 struct stmmac_priv *priv = netdev_priv(dev);
3052
3053 /* Create per netdev entries */
3054 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3055
3056 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3057 pr_err("ERROR %s/%s, debugfs create directory failed\n",
3058 STMMAC_RESOURCE_NAME, dev->name);
3059
3060 return -ENOMEM;
3061 }
3062
3063 /* Entry to report DMA RX/TX rings */
3064 priv->dbgfs_rings_status =
3065 debugfs_create_file("descriptors_status", S_IRUGO,
3066 priv->dbgfs_dir, dev,
3067 &stmmac_rings_status_fops);
3068
3069 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3070 pr_info("ERROR creating stmmac ring debugfs file\n");
3071 debugfs_remove_recursive(priv->dbgfs_dir);
3072
3073 return -ENOMEM;
3074 }
3075
3076 /* Entry to report the DMA HW features */
3077 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3078 priv->dbgfs_dir,
3079 dev, &stmmac_dma_cap_fops);
3080
3081 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3082 pr_info("ERROR creating stmmac MMC debugfs file\n");
3083 debugfs_remove_recursive(priv->dbgfs_dir);
3084
3085 return -ENOMEM;
3086 }
3087
3088 return 0;
3089 }
3090
3091 static void stmmac_exit_fs(struct net_device *dev)
3092 {
3093 struct stmmac_priv *priv = netdev_priv(dev);
3094
3095 debugfs_remove_recursive(priv->dbgfs_dir);
3096 }
3097 #endif /* CONFIG_DEBUG_FS */
3098
3099 static const struct net_device_ops stmmac_netdev_ops = {
3100 .ndo_open = stmmac_open,
3101 .ndo_start_xmit = stmmac_xmit,
3102 .ndo_stop = stmmac_release,
3103 .ndo_change_mtu = stmmac_change_mtu,
3104 .ndo_fix_features = stmmac_fix_features,
3105 .ndo_set_features = stmmac_set_features,
3106 .ndo_set_rx_mode = stmmac_set_rx_mode,
3107 .ndo_tx_timeout = stmmac_tx_timeout,
3108 .ndo_do_ioctl = stmmac_ioctl,
3109 #ifdef CONFIG_NET_POLL_CONTROLLER
3110 .ndo_poll_controller = stmmac_poll_controller,
3111 #endif
3112 .ndo_set_mac_address = eth_mac_addr,
3113 };
3114
3115 /**
3116 * stmmac_hw_init - Init the MAC device
3117 * @priv: driver private structure
3118 * Description: this function is to configure the MAC device according to
3119 * some platform parameters or the HW capability register. It prepares the
3120 * driver to use either ring or chain modes and to setup either enhanced or
3121 * normal descriptors.
3122 */
3123 static int stmmac_hw_init(struct stmmac_priv *priv)
3124 {
3125 struct mac_device_info *mac;
3126
3127 /* Identify the MAC HW device */
3128 if (priv->plat->has_gmac) {
3129 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3130 mac = dwmac1000_setup(priv->ioaddr,
3131 priv->plat->multicast_filter_bins,
3132 priv->plat->unicast_filter_entries,
3133 &priv->synopsys_id);
3134 } else if (priv->plat->has_gmac4) {
3135 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3136 mac = dwmac4_setup(priv->ioaddr,
3137 priv->plat->multicast_filter_bins,
3138 priv->plat->unicast_filter_entries,
3139 &priv->synopsys_id);
3140 } else {
3141 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3142 }
3143 if (!mac)
3144 return -ENOMEM;
3145
3146 priv->hw = mac;
3147
3148 /* To use the chained or ring mode */
3149 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3150 priv->hw->mode = &dwmac4_ring_mode_ops;
3151 } else {
3152 if (chain_mode) {
3153 priv->hw->mode = &chain_mode_ops;
3154 pr_info(" Chain mode enabled\n");
3155 priv->mode = STMMAC_CHAIN_MODE;
3156 } else {
3157 priv->hw->mode = &ring_mode_ops;
3158 pr_info(" Ring mode enabled\n");
3159 priv->mode = STMMAC_RING_MODE;
3160 }
3161 }
3162
3163 /* Get the HW capability (new GMAC newer than 3.50a) */
3164 priv->hw_cap_support = stmmac_get_hw_features(priv);
3165 if (priv->hw_cap_support) {
3166 pr_info(" DMA HW capability register supported");
3167
3168 /* We can override some gmac/dma configuration fields: e.g.
3169 * enh_desc, tx_coe (e.g. that are passed through the
3170 * platform) with the values from the HW capability
3171 * register (if supported).
3172 */
3173 priv->plat->enh_desc = priv->dma_cap.enh_desc;
3174 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3175 priv->hw->pmt = priv->plat->pmt;
3176
3177 /* TXCOE doesn't work in thresh DMA mode */
3178 if (priv->plat->force_thresh_dma_mode)
3179 priv->plat->tx_coe = 0;
3180 else
3181 priv->plat->tx_coe = priv->dma_cap.tx_coe;
3182
3183 /* In case of GMAC4 rx_coe is from HW cap register. */
3184 priv->plat->rx_coe = priv->dma_cap.rx_coe;
3185
3186 if (priv->dma_cap.rx_coe_type2)
3187 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3188 else if (priv->dma_cap.rx_coe_type1)
3189 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3190
3191 } else
3192 pr_info(" No HW DMA feature register supported");
3193
3194 /* To use alternate (extended), normal or GMAC4 descriptor structures */
3195 if (priv->synopsys_id >= DWMAC_CORE_4_00)
3196 priv->hw->desc = &dwmac4_desc_ops;
3197 else
3198 stmmac_selec_desc_mode(priv);
3199
3200 if (priv->plat->rx_coe) {
3201 priv->hw->rx_csum = priv->plat->rx_coe;
3202 pr_info(" RX Checksum Offload Engine supported\n");
3203 if (priv->synopsys_id < DWMAC_CORE_4_00)
3204 pr_info("\tCOE Type %d\n", priv->hw->rx_csum);
3205 }
3206 if (priv->plat->tx_coe)
3207 pr_info(" TX Checksum insertion supported\n");
3208
3209 if (priv->plat->pmt) {
3210 pr_info(" Wake-Up On Lan supported\n");
3211 device_set_wakeup_capable(priv->device, 1);
3212 }
3213
3214 if (priv->dma_cap.tsoen)
3215 pr_info(" TSO supported\n");
3216
3217 return 0;
3218 }
3219
3220 /**
3221 * stmmac_dvr_probe
3222 * @device: device pointer
3223 * @plat_dat: platform data pointer
3224 * @res: stmmac resource pointer
3225 * Description: this is the main probe function used to
3226 * call the alloc_etherdev, allocate the priv structure.
3227 * Return:
3228 * returns 0 on success, otherwise errno.
3229 */
3230 int stmmac_dvr_probe(struct device *device,
3231 struct plat_stmmacenet_data *plat_dat,
3232 struct stmmac_resources *res)
3233 {
3234 int ret = 0;
3235 struct net_device *ndev = NULL;
3236 struct stmmac_priv *priv;
3237
3238 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3239 if (!ndev)
3240 return -ENOMEM;
3241
3242 SET_NETDEV_DEV(ndev, device);
3243
3244 priv = netdev_priv(ndev);
3245 priv->device = device;
3246 priv->dev = ndev;
3247
3248 stmmac_set_ethtool_ops(ndev);
3249 priv->pause = pause;
3250 priv->plat = plat_dat;
3251 priv->ioaddr = res->addr;
3252 priv->dev->base_addr = (unsigned long)res->addr;
3253
3254 priv->dev->irq = res->irq;
3255 priv->wol_irq = res->wol_irq;
3256 priv->lpi_irq = res->lpi_irq;
3257
3258 if (res->mac)
3259 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3260
3261 dev_set_drvdata(device, priv->dev);
3262
3263 /* Verify driver arguments */
3264 stmmac_verify_args();
3265
3266 /* Override with kernel parameters if supplied XXX CRS XXX
3267 * this needs to have multiple instances
3268 */
3269 if ((phyaddr >= 0) && (phyaddr <= 31))
3270 priv->plat->phy_addr = phyaddr;
3271
3272 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3273 if (IS_ERR(priv->stmmac_clk)) {
3274 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
3275 __func__);
3276 /* If failed to obtain stmmac_clk and specific clk_csr value
3277 * is NOT passed from the platform, probe fail.
3278 */
3279 if (!priv->plat->clk_csr) {
3280 ret = PTR_ERR(priv->stmmac_clk);
3281 goto error_clk_get;
3282 } else {
3283 priv->stmmac_clk = NULL;
3284 }
3285 }
3286 clk_prepare_enable(priv->stmmac_clk);
3287
3288 priv->pclk = devm_clk_get(priv->device, "pclk");
3289 if (IS_ERR(priv->pclk)) {
3290 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3291 ret = -EPROBE_DEFER;
3292 goto error_pclk_get;
3293 }
3294 priv->pclk = NULL;
3295 }
3296 clk_prepare_enable(priv->pclk);
3297
3298 priv->stmmac_rst = devm_reset_control_get(priv->device,
3299 STMMAC_RESOURCE_NAME);
3300 if (IS_ERR(priv->stmmac_rst)) {
3301 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3302 ret = -EPROBE_DEFER;
3303 goto error_hw_init;
3304 }
3305 dev_info(priv->device, "no reset control found\n");
3306 priv->stmmac_rst = NULL;
3307 }
3308 if (priv->stmmac_rst)
3309 reset_control_deassert(priv->stmmac_rst);
3310
3311 /* Init MAC and get the capabilities */
3312 ret = stmmac_hw_init(priv);
3313 if (ret)
3314 goto error_hw_init;
3315
3316 ndev->netdev_ops = &stmmac_netdev_ops;
3317
3318 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3319 NETIF_F_RXCSUM;
3320
3321 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3322 ndev->hw_features |= NETIF_F_TSO;
3323 priv->tso = true;
3324 pr_info(" TSO feature enabled\n");
3325 }
3326 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3327 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3328 #ifdef STMMAC_VLAN_TAG_USED
3329 /* Both mac100 and gmac support receive VLAN tag detection */
3330 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3331 #endif
3332 priv->msg_enable = netif_msg_init(debug, default_msg_level);
3333
3334 if (flow_ctrl)
3335 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
3336
3337 /* Rx Watchdog is available in the COREs newer than the 3.40.
3338 * In some case, for example on bugged HW this feature
3339 * has to be disable and this can be done by passing the
3340 * riwt_off field from the platform.
3341 */
3342 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3343 priv->use_riwt = 1;
3344 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3345 }
3346
3347 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3348
3349 spin_lock_init(&priv->lock);
3350 spin_lock_init(&priv->tx_lock);
3351
3352 ret = register_netdev(ndev);
3353 if (ret) {
3354 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3355 goto error_netdev_register;
3356 }
3357
3358 /* If a specific clk_csr value is passed from the platform
3359 * this means that the CSR Clock Range selection cannot be
3360 * changed at run-time and it is fixed. Viceversa the driver'll try to
3361 * set the MDC clock dynamically according to the csr actual
3362 * clock input.
3363 */
3364 if (!priv->plat->clk_csr)
3365 stmmac_clk_csr_set(priv);
3366 else
3367 priv->clk_csr = priv->plat->clk_csr;
3368
3369 stmmac_check_pcs_mode(priv);
3370
3371 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3372 priv->hw->pcs != STMMAC_PCS_TBI &&
3373 priv->hw->pcs != STMMAC_PCS_RTBI) {
3374 /* MDIO bus Registration */
3375 ret = stmmac_mdio_register(ndev);
3376 if (ret < 0) {
3377 pr_debug("%s: MDIO bus (id: %d) registration failed",
3378 __func__, priv->plat->bus_id);
3379 goto error_mdio_register;
3380 }
3381 }
3382
3383 return 0;
3384
3385 error_mdio_register:
3386 unregister_netdev(ndev);
3387 error_netdev_register:
3388 netif_napi_del(&priv->napi);
3389 error_hw_init:
3390 clk_disable_unprepare(priv->pclk);
3391 error_pclk_get:
3392 clk_disable_unprepare(priv->stmmac_clk);
3393 error_clk_get:
3394 free_netdev(ndev);
3395
3396 return ret;
3397 }
3398 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3399
3400 /**
3401 * stmmac_dvr_remove
3402 * @dev: device pointer
3403 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3404 * changes the link status, releases the DMA descriptor rings.
3405 */
3406 int stmmac_dvr_remove(struct device *dev)
3407 {
3408 struct net_device *ndev = dev_get_drvdata(dev);
3409 struct stmmac_priv *priv = netdev_priv(ndev);
3410
3411 pr_info("%s:\n\tremoving driver", __func__);
3412
3413 priv->hw->dma->stop_rx(priv->ioaddr);
3414 priv->hw->dma->stop_tx(priv->ioaddr);
3415
3416 stmmac_set_mac(priv->ioaddr, false);
3417 netif_carrier_off(ndev);
3418 unregister_netdev(ndev);
3419 of_node_put(priv->plat->phy_node);
3420 if (priv->stmmac_rst)
3421 reset_control_assert(priv->stmmac_rst);
3422 clk_disable_unprepare(priv->pclk);
3423 clk_disable_unprepare(priv->stmmac_clk);
3424 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3425 priv->hw->pcs != STMMAC_PCS_TBI &&
3426 priv->hw->pcs != STMMAC_PCS_RTBI)
3427 stmmac_mdio_unregister(ndev);
3428 free_netdev(ndev);
3429
3430 return 0;
3431 }
3432 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3433
3434 /**
3435 * stmmac_suspend - suspend callback
3436 * @dev: device pointer
3437 * Description: this is the function to suspend the device and it is called
3438 * by the platform driver to stop the network queue, release the resources,
3439 * program the PMT register (for WoL), clean and release driver resources.
3440 */
3441 int stmmac_suspend(struct device *dev)
3442 {
3443 struct net_device *ndev = dev_get_drvdata(dev);
3444 struct stmmac_priv *priv = netdev_priv(ndev);
3445 unsigned long flags;
3446
3447 if (!ndev || !netif_running(ndev))
3448 return 0;
3449
3450 if (priv->phydev)
3451 phy_stop(priv->phydev);
3452
3453 spin_lock_irqsave(&priv->lock, flags);
3454
3455 netif_device_detach(ndev);
3456 netif_stop_queue(ndev);
3457
3458 napi_disable(&priv->napi);
3459
3460 /* Stop TX/RX DMA */
3461 priv->hw->dma->stop_tx(priv->ioaddr);
3462 priv->hw->dma->stop_rx(priv->ioaddr);
3463
3464 /* Enable Power down mode by programming the PMT regs */
3465 if (device_may_wakeup(priv->device)) {
3466 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3467 priv->irq_wake = 1;
3468 } else {
3469 stmmac_set_mac(priv->ioaddr, false);
3470 pinctrl_pm_select_sleep_state(priv->device);
3471 /* Disable clock in case of PWM is off */
3472 clk_disable(priv->pclk);
3473 clk_disable(priv->stmmac_clk);
3474 }
3475 spin_unlock_irqrestore(&priv->lock, flags);
3476
3477 priv->oldlink = 0;
3478 priv->speed = 0;
3479 priv->oldduplex = -1;
3480 return 0;
3481 }
3482 EXPORT_SYMBOL_GPL(stmmac_suspend);
3483
3484 /**
3485 * stmmac_resume - resume callback
3486 * @dev: device pointer
3487 * Description: when resume this function is invoked to setup the DMA and CORE
3488 * in a usable state.
3489 */
3490 int stmmac_resume(struct device *dev)
3491 {
3492 struct net_device *ndev = dev_get_drvdata(dev);
3493 struct stmmac_priv *priv = netdev_priv(ndev);
3494 unsigned long flags;
3495
3496 if (!netif_running(ndev))
3497 return 0;
3498
3499 /* Power Down bit, into the PM register, is cleared
3500 * automatically as soon as a magic packet or a Wake-up frame
3501 * is received. Anyway, it's better to manually clear
3502 * this bit because it can generate problems while resuming
3503 * from another devices (e.g. serial console).
3504 */
3505 if (device_may_wakeup(priv->device)) {
3506 spin_lock_irqsave(&priv->lock, flags);
3507 priv->hw->mac->pmt(priv->hw, 0);
3508 spin_unlock_irqrestore(&priv->lock, flags);
3509 priv->irq_wake = 0;
3510 } else {
3511 pinctrl_pm_select_default_state(priv->device);
3512 /* enable the clk prevously disabled */
3513 clk_enable(priv->stmmac_clk);
3514 clk_enable(priv->pclk);
3515 /* reset the phy so that it's ready */
3516 if (priv->mii)
3517 stmmac_mdio_reset(priv->mii);
3518 }
3519
3520 netif_device_attach(ndev);
3521
3522 spin_lock_irqsave(&priv->lock, flags);
3523
3524 priv->cur_rx = 0;
3525 priv->dirty_rx = 0;
3526 priv->dirty_tx = 0;
3527 priv->cur_tx = 0;
3528 /* reset private mss value to force mss context settings at
3529 * next tso xmit (only used for gmac4).
3530 */
3531 priv->mss = 0;
3532
3533 stmmac_clear_descriptors(priv);
3534
3535 stmmac_hw_setup(ndev, false);
3536 stmmac_init_tx_coalesce(priv);
3537 stmmac_set_rx_mode(ndev);
3538
3539 napi_enable(&priv->napi);
3540
3541 netif_start_queue(ndev);
3542
3543 spin_unlock_irqrestore(&priv->lock, flags);
3544
3545 if (priv->phydev)
3546 phy_start(priv->phydev);
3547
3548 return 0;
3549 }
3550 EXPORT_SYMBOL_GPL(stmmac_resume);
3551
3552 #ifndef MODULE
3553 static int __init stmmac_cmdline_opt(char *str)
3554 {
3555 char *opt;
3556
3557 if (!str || !*str)
3558 return -EINVAL;
3559 while ((opt = strsep(&str, ",")) != NULL) {
3560 if (!strncmp(opt, "debug:", 6)) {
3561 if (kstrtoint(opt + 6, 0, &debug))
3562 goto err;
3563 } else if (!strncmp(opt, "phyaddr:", 8)) {
3564 if (kstrtoint(opt + 8, 0, &phyaddr))
3565 goto err;
3566 } else if (!strncmp(opt, "buf_sz:", 7)) {
3567 if (kstrtoint(opt + 7, 0, &buf_sz))
3568 goto err;
3569 } else if (!strncmp(opt, "tc:", 3)) {
3570 if (kstrtoint(opt + 3, 0, &tc))
3571 goto err;
3572 } else if (!strncmp(opt, "watchdog:", 9)) {
3573 if (kstrtoint(opt + 9, 0, &watchdog))
3574 goto err;
3575 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3576 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3577 goto err;
3578 } else if (!strncmp(opt, "pause:", 6)) {
3579 if (kstrtoint(opt + 6, 0, &pause))
3580 goto err;
3581 } else if (!strncmp(opt, "eee_timer:", 10)) {
3582 if (kstrtoint(opt + 10, 0, &eee_timer))
3583 goto err;
3584 } else if (!strncmp(opt, "chain_mode:", 11)) {
3585 if (kstrtoint(opt + 11, 0, &chain_mode))
3586 goto err;
3587 }
3588 }
3589 return 0;
3590
3591 err:
3592 pr_err("%s: ERROR broken module parameter conversion", __func__);
3593 return -EINVAL;
3594 }
3595
3596 __setup("stmmaceth=", stmmac_cmdline_opt);
3597 #endif /* MODULE */
3598
3599 static int __init stmmac_init(void)
3600 {
3601 #ifdef CONFIG_DEBUG_FS
3602 /* Create debugfs main directory if it doesn't exist yet */
3603 if (!stmmac_fs_dir) {
3604 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3605
3606 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3607 pr_err("ERROR %s, debugfs create directory failed\n",
3608 STMMAC_RESOURCE_NAME);
3609
3610 return -ENOMEM;
3611 }
3612 }
3613 #endif
3614
3615 return 0;
3616 }
3617
3618 static void __exit stmmac_exit(void)
3619 {
3620 #ifdef CONFIG_DEBUG_FS
3621 debugfs_remove_recursive(stmmac_fs_dir);
3622 #endif
3623 }
3624
3625 module_init(stmmac_init)
3626 module_exit(stmmac_exit)
3627
3628 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3629 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3630 MODULE_LICENSE("GPL");