]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/sun/sungem.c
net: sungem: fix rx checksum support
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / sun / sungem.c
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
3 *
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5 *
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9 *
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12 *
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/pci.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <linux/random.h>
37 #include <linux/workqueue.h>
38 #include <linux/if_vlan.h>
39 #include <linux/bitops.h>
40 #include <linux/mm.h>
41 #include <linux/gfp.h>
42
43 #include <asm/io.h>
44 #include <asm/byteorder.h>
45 #include <linux/uaccess.h>
46 #include <asm/irq.h>
47
48 #ifdef CONFIG_SPARC
49 #include <asm/idprom.h>
50 #include <asm/prom.h>
51 #endif
52
53 #ifdef CONFIG_PPC_PMAC
54 #include <asm/prom.h>
55 #include <asm/machdep.h>
56 #include <asm/pmac_feature.h>
57 #endif
58
59 #include <linux/sungem_phy.h>
60 #include "sungem.h"
61
62 #define STRIP_FCS
63
64 #define DEFAULT_MSG (NETIF_MSG_DRV | \
65 NETIF_MSG_PROBE | \
66 NETIF_MSG_LINK)
67
68 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
69 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
70 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
71 SUPPORTED_Pause | SUPPORTED_Autoneg)
72
73 #define DRV_NAME "sungem"
74 #define DRV_VERSION "1.0"
75 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
76
77 static char version[] =
78 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
79
80 MODULE_AUTHOR(DRV_AUTHOR);
81 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
82 MODULE_LICENSE("GPL");
83
84 #define GEM_MODULE_NAME "gem"
85
86 static const struct pci_device_id gem_pci_tbl[] = {
87 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
88 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
89
90 /* These models only differ from the original GEM in
91 * that their tx/rx fifos are of a different size and
92 * they only support 10/100 speeds. -DaveM
93 *
94 * Apple's GMAC does support gigabit on machines with
95 * the BCM54xx PHYs. -BenH
96 */
97 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
98 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
99 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
100 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
101 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
106 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
108 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 {0, }
112 };
113
114 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
115
116 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
117 {
118 u32 cmd;
119 int limit = 10000;
120
121 cmd = (1 << 30);
122 cmd |= (2 << 28);
123 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
124 cmd |= (reg << 18) & MIF_FRAME_REGAD;
125 cmd |= (MIF_FRAME_TAMSB);
126 writel(cmd, gp->regs + MIF_FRAME);
127
128 while (--limit) {
129 cmd = readl(gp->regs + MIF_FRAME);
130 if (cmd & MIF_FRAME_TALSB)
131 break;
132
133 udelay(10);
134 }
135
136 if (!limit)
137 cmd = 0xffff;
138
139 return cmd & MIF_FRAME_DATA;
140 }
141
142 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
143 {
144 struct gem *gp = netdev_priv(dev);
145 return __sungem_phy_read(gp, mii_id, reg);
146 }
147
148 static inline u16 sungem_phy_read(struct gem *gp, int reg)
149 {
150 return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
151 }
152
153 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
154 {
155 u32 cmd;
156 int limit = 10000;
157
158 cmd = (1 << 30);
159 cmd |= (1 << 28);
160 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
161 cmd |= (reg << 18) & MIF_FRAME_REGAD;
162 cmd |= (MIF_FRAME_TAMSB);
163 cmd |= (val & MIF_FRAME_DATA);
164 writel(cmd, gp->regs + MIF_FRAME);
165
166 while (limit--) {
167 cmd = readl(gp->regs + MIF_FRAME);
168 if (cmd & MIF_FRAME_TALSB)
169 break;
170
171 udelay(10);
172 }
173 }
174
175 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
176 {
177 struct gem *gp = netdev_priv(dev);
178 __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
179 }
180
181 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
182 {
183 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
184 }
185
186 static inline void gem_enable_ints(struct gem *gp)
187 {
188 /* Enable all interrupts but TXDONE */
189 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
190 }
191
192 static inline void gem_disable_ints(struct gem *gp)
193 {
194 /* Disable all interrupts, including TXDONE */
195 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
196 (void)readl(gp->regs + GREG_IMASK); /* write posting */
197 }
198
199 static void gem_get_cell(struct gem *gp)
200 {
201 BUG_ON(gp->cell_enabled < 0);
202 gp->cell_enabled++;
203 #ifdef CONFIG_PPC_PMAC
204 if (gp->cell_enabled == 1) {
205 mb();
206 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
207 udelay(10);
208 }
209 #endif /* CONFIG_PPC_PMAC */
210 }
211
212 /* Turn off the chip's clock */
213 static void gem_put_cell(struct gem *gp)
214 {
215 BUG_ON(gp->cell_enabled <= 0);
216 gp->cell_enabled--;
217 #ifdef CONFIG_PPC_PMAC
218 if (gp->cell_enabled == 0) {
219 mb();
220 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
221 udelay(10);
222 }
223 #endif /* CONFIG_PPC_PMAC */
224 }
225
226 static inline void gem_netif_stop(struct gem *gp)
227 {
228 netif_trans_update(gp->dev); /* prevent tx timeout */
229 napi_disable(&gp->napi);
230 netif_tx_disable(gp->dev);
231 }
232
233 static inline void gem_netif_start(struct gem *gp)
234 {
235 /* NOTE: unconditional netif_wake_queue is only
236 * appropriate so long as all callers are assured to
237 * have free tx slots.
238 */
239 netif_wake_queue(gp->dev);
240 napi_enable(&gp->napi);
241 }
242
243 static void gem_schedule_reset(struct gem *gp)
244 {
245 gp->reset_task_pending = 1;
246 schedule_work(&gp->reset_task);
247 }
248
249 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
250 {
251 if (netif_msg_intr(gp))
252 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
253 }
254
255 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
256 {
257 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
258 u32 pcs_miistat;
259
260 if (netif_msg_intr(gp))
261 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
262 gp->dev->name, pcs_istat);
263
264 if (!(pcs_istat & PCS_ISTAT_LSC)) {
265 netdev_err(dev, "PCS irq but no link status change???\n");
266 return 0;
267 }
268
269 /* The link status bit latches on zero, so you must
270 * read it twice in such a case to see a transition
271 * to the link being up.
272 */
273 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
274 if (!(pcs_miistat & PCS_MIISTAT_LS))
275 pcs_miistat |=
276 (readl(gp->regs + PCS_MIISTAT) &
277 PCS_MIISTAT_LS);
278
279 if (pcs_miistat & PCS_MIISTAT_ANC) {
280 /* The remote-fault indication is only valid
281 * when autoneg has completed.
282 */
283 if (pcs_miistat & PCS_MIISTAT_RF)
284 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
285 else
286 netdev_info(dev, "PCS AutoNEG complete\n");
287 }
288
289 if (pcs_miistat & PCS_MIISTAT_LS) {
290 netdev_info(dev, "PCS link is now up\n");
291 netif_carrier_on(gp->dev);
292 } else {
293 netdev_info(dev, "PCS link is now down\n");
294 netif_carrier_off(gp->dev);
295 /* If this happens and the link timer is not running,
296 * reset so we re-negotiate.
297 */
298 if (!timer_pending(&gp->link_timer))
299 return 1;
300 }
301
302 return 0;
303 }
304
305 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
306 {
307 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
308
309 if (netif_msg_intr(gp))
310 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
311 gp->dev->name, txmac_stat);
312
313 /* Defer timer expiration is quite normal,
314 * don't even log the event.
315 */
316 if ((txmac_stat & MAC_TXSTAT_DTE) &&
317 !(txmac_stat & ~MAC_TXSTAT_DTE))
318 return 0;
319
320 if (txmac_stat & MAC_TXSTAT_URUN) {
321 netdev_err(dev, "TX MAC xmit underrun\n");
322 dev->stats.tx_fifo_errors++;
323 }
324
325 if (txmac_stat & MAC_TXSTAT_MPE) {
326 netdev_err(dev, "TX MAC max packet size error\n");
327 dev->stats.tx_errors++;
328 }
329
330 /* The rest are all cases of one of the 16-bit TX
331 * counters expiring.
332 */
333 if (txmac_stat & MAC_TXSTAT_NCE)
334 dev->stats.collisions += 0x10000;
335
336 if (txmac_stat & MAC_TXSTAT_ECE) {
337 dev->stats.tx_aborted_errors += 0x10000;
338 dev->stats.collisions += 0x10000;
339 }
340
341 if (txmac_stat & MAC_TXSTAT_LCE) {
342 dev->stats.tx_aborted_errors += 0x10000;
343 dev->stats.collisions += 0x10000;
344 }
345
346 /* We do not keep track of MAC_TXSTAT_FCE and
347 * MAC_TXSTAT_PCE events.
348 */
349 return 0;
350 }
351
352 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
353 * so we do the following.
354 *
355 * If any part of the reset goes wrong, we return 1 and that causes the
356 * whole chip to be reset.
357 */
358 static int gem_rxmac_reset(struct gem *gp)
359 {
360 struct net_device *dev = gp->dev;
361 int limit, i;
362 u64 desc_dma;
363 u32 val;
364
365 /* First, reset & disable MAC RX. */
366 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
367 for (limit = 0; limit < 5000; limit++) {
368 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
369 break;
370 udelay(10);
371 }
372 if (limit == 5000) {
373 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
374 return 1;
375 }
376
377 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
378 gp->regs + MAC_RXCFG);
379 for (limit = 0; limit < 5000; limit++) {
380 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
381 break;
382 udelay(10);
383 }
384 if (limit == 5000) {
385 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
386 return 1;
387 }
388
389 /* Second, disable RX DMA. */
390 writel(0, gp->regs + RXDMA_CFG);
391 for (limit = 0; limit < 5000; limit++) {
392 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
393 break;
394 udelay(10);
395 }
396 if (limit == 5000) {
397 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
398 return 1;
399 }
400
401 mdelay(5);
402
403 /* Execute RX reset command. */
404 writel(gp->swrst_base | GREG_SWRST_RXRST,
405 gp->regs + GREG_SWRST);
406 for (limit = 0; limit < 5000; limit++) {
407 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
408 break;
409 udelay(10);
410 }
411 if (limit == 5000) {
412 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
413 return 1;
414 }
415
416 /* Refresh the RX ring. */
417 for (i = 0; i < RX_RING_SIZE; i++) {
418 struct gem_rxd *rxd = &gp->init_block->rxd[i];
419
420 if (gp->rx_skbs[i] == NULL) {
421 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
422 return 1;
423 }
424
425 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
426 }
427 gp->rx_new = gp->rx_old = 0;
428
429 /* Now we must reprogram the rest of RX unit. */
430 desc_dma = (u64) gp->gblock_dvma;
431 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
432 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
433 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
434 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
435 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
436 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
437 writel(val, gp->regs + RXDMA_CFG);
438 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
439 writel(((5 & RXDMA_BLANK_IPKTS) |
440 ((8 << 12) & RXDMA_BLANK_ITIME)),
441 gp->regs + RXDMA_BLANK);
442 else
443 writel(((5 & RXDMA_BLANK_IPKTS) |
444 ((4 << 12) & RXDMA_BLANK_ITIME)),
445 gp->regs + RXDMA_BLANK);
446 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
447 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
448 writel(val, gp->regs + RXDMA_PTHRESH);
449 val = readl(gp->regs + RXDMA_CFG);
450 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
451 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
452 val = readl(gp->regs + MAC_RXCFG);
453 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
454
455 return 0;
456 }
457
458 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
459 {
460 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
461 int ret = 0;
462
463 if (netif_msg_intr(gp))
464 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
465 gp->dev->name, rxmac_stat);
466
467 if (rxmac_stat & MAC_RXSTAT_OFLW) {
468 u32 smac = readl(gp->regs + MAC_SMACHINE);
469
470 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
471 dev->stats.rx_over_errors++;
472 dev->stats.rx_fifo_errors++;
473
474 ret = gem_rxmac_reset(gp);
475 }
476
477 if (rxmac_stat & MAC_RXSTAT_ACE)
478 dev->stats.rx_frame_errors += 0x10000;
479
480 if (rxmac_stat & MAC_RXSTAT_CCE)
481 dev->stats.rx_crc_errors += 0x10000;
482
483 if (rxmac_stat & MAC_RXSTAT_LCE)
484 dev->stats.rx_length_errors += 0x10000;
485
486 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
487 * events.
488 */
489 return ret;
490 }
491
492 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
493 {
494 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
495
496 if (netif_msg_intr(gp))
497 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
498 gp->dev->name, mac_cstat);
499
500 /* This interrupt is just for pause frame and pause
501 * tracking. It is useful for diagnostics and debug
502 * but probably by default we will mask these events.
503 */
504 if (mac_cstat & MAC_CSTAT_PS)
505 gp->pause_entered++;
506
507 if (mac_cstat & MAC_CSTAT_PRCV)
508 gp->pause_last_time_recvd = (mac_cstat >> 16);
509
510 return 0;
511 }
512
513 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
514 {
515 u32 mif_status = readl(gp->regs + MIF_STATUS);
516 u32 reg_val, changed_bits;
517
518 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
519 changed_bits = (mif_status & MIF_STATUS_STAT);
520
521 gem_handle_mif_event(gp, reg_val, changed_bits);
522
523 return 0;
524 }
525
526 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
527 {
528 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
529
530 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
531 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
532 netdev_err(dev, "PCI error [%04x]", pci_estat);
533
534 if (pci_estat & GREG_PCIESTAT_BADACK)
535 pr_cont(" <No ACK64# during ABS64 cycle>");
536 if (pci_estat & GREG_PCIESTAT_DTRTO)
537 pr_cont(" <Delayed transaction timeout>");
538 if (pci_estat & GREG_PCIESTAT_OTHER)
539 pr_cont(" <other>");
540 pr_cont("\n");
541 } else {
542 pci_estat |= GREG_PCIESTAT_OTHER;
543 netdev_err(dev, "PCI error\n");
544 }
545
546 if (pci_estat & GREG_PCIESTAT_OTHER) {
547 u16 pci_cfg_stat;
548
549 /* Interrogate PCI config space for the
550 * true cause.
551 */
552 pci_read_config_word(gp->pdev, PCI_STATUS,
553 &pci_cfg_stat);
554 netdev_err(dev, "Read PCI cfg space status [%04x]\n",
555 pci_cfg_stat);
556 if (pci_cfg_stat & PCI_STATUS_PARITY)
557 netdev_err(dev, "PCI parity error detected\n");
558 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
559 netdev_err(dev, "PCI target abort\n");
560 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
561 netdev_err(dev, "PCI master acks target abort\n");
562 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
563 netdev_err(dev, "PCI master abort\n");
564 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
565 netdev_err(dev, "PCI system error SERR#\n");
566 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
567 netdev_err(dev, "PCI parity error\n");
568
569 /* Write the error bits back to clear them. */
570 pci_cfg_stat &= (PCI_STATUS_PARITY |
571 PCI_STATUS_SIG_TARGET_ABORT |
572 PCI_STATUS_REC_TARGET_ABORT |
573 PCI_STATUS_REC_MASTER_ABORT |
574 PCI_STATUS_SIG_SYSTEM_ERROR |
575 PCI_STATUS_DETECTED_PARITY);
576 pci_write_config_word(gp->pdev,
577 PCI_STATUS, pci_cfg_stat);
578 }
579
580 /* For all PCI errors, we should reset the chip. */
581 return 1;
582 }
583
584 /* All non-normal interrupt conditions get serviced here.
585 * Returns non-zero if we should just exit the interrupt
586 * handler right now (ie. if we reset the card which invalidates
587 * all of the other original irq status bits).
588 */
589 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
590 {
591 if (gem_status & GREG_STAT_RXNOBUF) {
592 /* Frame arrived, no free RX buffers available. */
593 if (netif_msg_rx_err(gp))
594 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
595 gp->dev->name);
596 dev->stats.rx_dropped++;
597 }
598
599 if (gem_status & GREG_STAT_RXTAGERR) {
600 /* corrupt RX tag framing */
601 if (netif_msg_rx_err(gp))
602 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
603 gp->dev->name);
604 dev->stats.rx_errors++;
605
606 return 1;
607 }
608
609 if (gem_status & GREG_STAT_PCS) {
610 if (gem_pcs_interrupt(dev, gp, gem_status))
611 return 1;
612 }
613
614 if (gem_status & GREG_STAT_TXMAC) {
615 if (gem_txmac_interrupt(dev, gp, gem_status))
616 return 1;
617 }
618
619 if (gem_status & GREG_STAT_RXMAC) {
620 if (gem_rxmac_interrupt(dev, gp, gem_status))
621 return 1;
622 }
623
624 if (gem_status & GREG_STAT_MAC) {
625 if (gem_mac_interrupt(dev, gp, gem_status))
626 return 1;
627 }
628
629 if (gem_status & GREG_STAT_MIF) {
630 if (gem_mif_interrupt(dev, gp, gem_status))
631 return 1;
632 }
633
634 if (gem_status & GREG_STAT_PCIERR) {
635 if (gem_pci_interrupt(dev, gp, gem_status))
636 return 1;
637 }
638
639 return 0;
640 }
641
642 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
643 {
644 int entry, limit;
645
646 entry = gp->tx_old;
647 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
648 while (entry != limit) {
649 struct sk_buff *skb;
650 struct gem_txd *txd;
651 dma_addr_t dma_addr;
652 u32 dma_len;
653 int frag;
654
655 if (netif_msg_tx_done(gp))
656 printk(KERN_DEBUG "%s: tx done, slot %d\n",
657 gp->dev->name, entry);
658 skb = gp->tx_skbs[entry];
659 if (skb_shinfo(skb)->nr_frags) {
660 int last = entry + skb_shinfo(skb)->nr_frags;
661 int walk = entry;
662 int incomplete = 0;
663
664 last &= (TX_RING_SIZE - 1);
665 for (;;) {
666 walk = NEXT_TX(walk);
667 if (walk == limit)
668 incomplete = 1;
669 if (walk == last)
670 break;
671 }
672 if (incomplete)
673 break;
674 }
675 gp->tx_skbs[entry] = NULL;
676 dev->stats.tx_bytes += skb->len;
677
678 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
679 txd = &gp->init_block->txd[entry];
680
681 dma_addr = le64_to_cpu(txd->buffer);
682 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
683
684 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
685 entry = NEXT_TX(entry);
686 }
687
688 dev->stats.tx_packets++;
689 dev_consume_skb_any(skb);
690 }
691 gp->tx_old = entry;
692
693 /* Need to make the tx_old update visible to gem_start_xmit()
694 * before checking for netif_queue_stopped(). Without the
695 * memory barrier, there is a small possibility that gem_start_xmit()
696 * will miss it and cause the queue to be stopped forever.
697 */
698 smp_mb();
699
700 if (unlikely(netif_queue_stopped(dev) &&
701 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
702 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
703
704 __netif_tx_lock(txq, smp_processor_id());
705 if (netif_queue_stopped(dev) &&
706 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
707 netif_wake_queue(dev);
708 __netif_tx_unlock(txq);
709 }
710 }
711
712 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
713 {
714 int cluster_start, curr, count, kick;
715
716 cluster_start = curr = (gp->rx_new & ~(4 - 1));
717 count = 0;
718 kick = -1;
719 dma_wmb();
720 while (curr != limit) {
721 curr = NEXT_RX(curr);
722 if (++count == 4) {
723 struct gem_rxd *rxd =
724 &gp->init_block->rxd[cluster_start];
725 for (;;) {
726 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
727 rxd++;
728 cluster_start = NEXT_RX(cluster_start);
729 if (cluster_start == curr)
730 break;
731 }
732 kick = curr;
733 count = 0;
734 }
735 }
736 if (kick >= 0) {
737 mb();
738 writel(kick, gp->regs + RXDMA_KICK);
739 }
740 }
741
742 #define ALIGNED_RX_SKB_ADDR(addr) \
743 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
744 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
745 gfp_t gfp_flags)
746 {
747 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
748
749 if (likely(skb)) {
750 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
751 skb_reserve(skb, offset);
752 }
753 return skb;
754 }
755
756 static int gem_rx(struct gem *gp, int work_to_do)
757 {
758 struct net_device *dev = gp->dev;
759 int entry, drops, work_done = 0;
760 u32 done;
761
762 if (netif_msg_rx_status(gp))
763 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
764 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
765
766 entry = gp->rx_new;
767 drops = 0;
768 done = readl(gp->regs + RXDMA_DONE);
769 for (;;) {
770 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
771 struct sk_buff *skb;
772 u64 status = le64_to_cpu(rxd->status_word);
773 dma_addr_t dma_addr;
774 int len;
775
776 if ((status & RXDCTRL_OWN) != 0)
777 break;
778
779 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
780 break;
781
782 /* When writing back RX descriptor, GEM writes status
783 * then buffer address, possibly in separate transactions.
784 * If we don't wait for the chip to write both, we could
785 * post a new buffer to this descriptor then have GEM spam
786 * on the buffer address. We sync on the RX completion
787 * register to prevent this from happening.
788 */
789 if (entry == done) {
790 done = readl(gp->regs + RXDMA_DONE);
791 if (entry == done)
792 break;
793 }
794
795 /* We can now account for the work we're about to do */
796 work_done++;
797
798 skb = gp->rx_skbs[entry];
799
800 len = (status & RXDCTRL_BUFSZ) >> 16;
801 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
802 dev->stats.rx_errors++;
803 if (len < ETH_ZLEN)
804 dev->stats.rx_length_errors++;
805 if (len & RXDCTRL_BAD)
806 dev->stats.rx_crc_errors++;
807
808 /* We'll just return it to GEM. */
809 drop_it:
810 dev->stats.rx_dropped++;
811 goto next;
812 }
813
814 dma_addr = le64_to_cpu(rxd->buffer);
815 if (len > RX_COPY_THRESHOLD) {
816 struct sk_buff *new_skb;
817
818 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
819 if (new_skb == NULL) {
820 drops++;
821 goto drop_it;
822 }
823 pci_unmap_page(gp->pdev, dma_addr,
824 RX_BUF_ALLOC_SIZE(gp),
825 PCI_DMA_FROMDEVICE);
826 gp->rx_skbs[entry] = new_skb;
827 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
828 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
829 virt_to_page(new_skb->data),
830 offset_in_page(new_skb->data),
831 RX_BUF_ALLOC_SIZE(gp),
832 PCI_DMA_FROMDEVICE));
833 skb_reserve(new_skb, RX_OFFSET);
834
835 /* Trim the original skb for the netif. */
836 skb_trim(skb, len);
837 } else {
838 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
839
840 if (copy_skb == NULL) {
841 drops++;
842 goto drop_it;
843 }
844
845 skb_reserve(copy_skb, 2);
846 skb_put(copy_skb, len);
847 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
848 skb_copy_from_linear_data(skb, copy_skb->data, len);
849 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
850
851 /* We'll reuse the original ring buffer. */
852 skb = copy_skb;
853 }
854
855 if (likely(dev->features & NETIF_F_RXCSUM)) {
856 __sum16 csum;
857
858 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
859 skb->csum = csum_unfold(csum);
860 skb->ip_summed = CHECKSUM_COMPLETE;
861 }
862 skb->protocol = eth_type_trans(skb, gp->dev);
863
864 napi_gro_receive(&gp->napi, skb);
865
866 dev->stats.rx_packets++;
867 dev->stats.rx_bytes += len;
868
869 next:
870 entry = NEXT_RX(entry);
871 }
872
873 gem_post_rxds(gp, entry);
874
875 gp->rx_new = entry;
876
877 if (drops)
878 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
879
880 return work_done;
881 }
882
883 static int gem_poll(struct napi_struct *napi, int budget)
884 {
885 struct gem *gp = container_of(napi, struct gem, napi);
886 struct net_device *dev = gp->dev;
887 int work_done;
888
889 work_done = 0;
890 do {
891 /* Handle anomalies */
892 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
893 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
894 int reset;
895
896 /* We run the abnormal interrupt handling code with
897 * the Tx lock. It only resets the Rx portion of the
898 * chip, but we need to guard it against DMA being
899 * restarted by the link poll timer
900 */
901 __netif_tx_lock(txq, smp_processor_id());
902 reset = gem_abnormal_irq(dev, gp, gp->status);
903 __netif_tx_unlock(txq);
904 if (reset) {
905 gem_schedule_reset(gp);
906 napi_complete(napi);
907 return work_done;
908 }
909 }
910
911 /* Run TX completion thread */
912 gem_tx(dev, gp, gp->status);
913
914 /* Run RX thread. We don't use any locking here,
915 * code willing to do bad things - like cleaning the
916 * rx ring - must call napi_disable(), which
917 * schedule_timeout()'s if polling is already disabled.
918 */
919 work_done += gem_rx(gp, budget - work_done);
920
921 if (work_done >= budget)
922 return work_done;
923
924 gp->status = readl(gp->regs + GREG_STAT);
925 } while (gp->status & GREG_STAT_NAPI);
926
927 napi_complete_done(napi, work_done);
928 gem_enable_ints(gp);
929
930 return work_done;
931 }
932
933 static irqreturn_t gem_interrupt(int irq, void *dev_id)
934 {
935 struct net_device *dev = dev_id;
936 struct gem *gp = netdev_priv(dev);
937
938 if (napi_schedule_prep(&gp->napi)) {
939 u32 gem_status = readl(gp->regs + GREG_STAT);
940
941 if (unlikely(gem_status == 0)) {
942 napi_enable(&gp->napi);
943 return IRQ_NONE;
944 }
945 if (netif_msg_intr(gp))
946 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
947 gp->dev->name, gem_status);
948
949 gp->status = gem_status;
950 gem_disable_ints(gp);
951 __napi_schedule(&gp->napi);
952 }
953
954 /* If polling was disabled at the time we received that
955 * interrupt, we may return IRQ_HANDLED here while we
956 * should return IRQ_NONE. No big deal...
957 */
958 return IRQ_HANDLED;
959 }
960
961 #ifdef CONFIG_NET_POLL_CONTROLLER
962 static void gem_poll_controller(struct net_device *dev)
963 {
964 struct gem *gp = netdev_priv(dev);
965
966 disable_irq(gp->pdev->irq);
967 gem_interrupt(gp->pdev->irq, dev);
968 enable_irq(gp->pdev->irq);
969 }
970 #endif
971
972 static void gem_tx_timeout(struct net_device *dev)
973 {
974 struct gem *gp = netdev_priv(dev);
975
976 netdev_err(dev, "transmit timed out, resetting\n");
977
978 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
979 readl(gp->regs + TXDMA_CFG),
980 readl(gp->regs + MAC_TXSTAT),
981 readl(gp->regs + MAC_TXCFG));
982 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
983 readl(gp->regs + RXDMA_CFG),
984 readl(gp->regs + MAC_RXSTAT),
985 readl(gp->regs + MAC_RXCFG));
986
987 gem_schedule_reset(gp);
988 }
989
990 static __inline__ int gem_intme(int entry)
991 {
992 /* Algorithm: IRQ every 1/2 of descriptors. */
993 if (!(entry & ((TX_RING_SIZE>>1)-1)))
994 return 1;
995
996 return 0;
997 }
998
999 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1000 struct net_device *dev)
1001 {
1002 struct gem *gp = netdev_priv(dev);
1003 int entry;
1004 u64 ctrl;
1005
1006 ctrl = 0;
1007 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1008 const u64 csum_start_off = skb_checksum_start_offset(skb);
1009 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1010
1011 ctrl = (TXDCTRL_CENAB |
1012 (csum_start_off << 15) |
1013 (csum_stuff_off << 21));
1014 }
1015
1016 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1017 /* This is a hard error, log it. */
1018 if (!netif_queue_stopped(dev)) {
1019 netif_stop_queue(dev);
1020 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1021 }
1022 return NETDEV_TX_BUSY;
1023 }
1024
1025 entry = gp->tx_new;
1026 gp->tx_skbs[entry] = skb;
1027
1028 if (skb_shinfo(skb)->nr_frags == 0) {
1029 struct gem_txd *txd = &gp->init_block->txd[entry];
1030 dma_addr_t mapping;
1031 u32 len;
1032
1033 len = skb->len;
1034 mapping = pci_map_page(gp->pdev,
1035 virt_to_page(skb->data),
1036 offset_in_page(skb->data),
1037 len, PCI_DMA_TODEVICE);
1038 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1039 if (gem_intme(entry))
1040 ctrl |= TXDCTRL_INTME;
1041 txd->buffer = cpu_to_le64(mapping);
1042 dma_wmb();
1043 txd->control_word = cpu_to_le64(ctrl);
1044 entry = NEXT_TX(entry);
1045 } else {
1046 struct gem_txd *txd;
1047 u32 first_len;
1048 u64 intme;
1049 dma_addr_t first_mapping;
1050 int frag, first_entry = entry;
1051
1052 intme = 0;
1053 if (gem_intme(entry))
1054 intme |= TXDCTRL_INTME;
1055
1056 /* We must give this initial chunk to the device last.
1057 * Otherwise we could race with the device.
1058 */
1059 first_len = skb_headlen(skb);
1060 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1061 offset_in_page(skb->data),
1062 first_len, PCI_DMA_TODEVICE);
1063 entry = NEXT_TX(entry);
1064
1065 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1066 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1067 u32 len;
1068 dma_addr_t mapping;
1069 u64 this_ctrl;
1070
1071 len = skb_frag_size(this_frag);
1072 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1073 0, len, DMA_TO_DEVICE);
1074 this_ctrl = ctrl;
1075 if (frag == skb_shinfo(skb)->nr_frags - 1)
1076 this_ctrl |= TXDCTRL_EOF;
1077
1078 txd = &gp->init_block->txd[entry];
1079 txd->buffer = cpu_to_le64(mapping);
1080 dma_wmb();
1081 txd->control_word = cpu_to_le64(this_ctrl | len);
1082
1083 if (gem_intme(entry))
1084 intme |= TXDCTRL_INTME;
1085
1086 entry = NEXT_TX(entry);
1087 }
1088 txd = &gp->init_block->txd[first_entry];
1089 txd->buffer = cpu_to_le64(first_mapping);
1090 dma_wmb();
1091 txd->control_word =
1092 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1093 }
1094
1095 gp->tx_new = entry;
1096 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1097 netif_stop_queue(dev);
1098
1099 /* netif_stop_queue() must be done before checking
1100 * checking tx index in TX_BUFFS_AVAIL() below, because
1101 * in gem_tx(), we update tx_old before checking for
1102 * netif_queue_stopped().
1103 */
1104 smp_mb();
1105 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1106 netif_wake_queue(dev);
1107 }
1108 if (netif_msg_tx_queued(gp))
1109 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1110 dev->name, entry, skb->len);
1111 mb();
1112 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1113
1114 return NETDEV_TX_OK;
1115 }
1116
1117 static void gem_pcs_reset(struct gem *gp)
1118 {
1119 int limit;
1120 u32 val;
1121
1122 /* Reset PCS unit. */
1123 val = readl(gp->regs + PCS_MIICTRL);
1124 val |= PCS_MIICTRL_RST;
1125 writel(val, gp->regs + PCS_MIICTRL);
1126
1127 limit = 32;
1128 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1129 udelay(100);
1130 if (limit-- <= 0)
1131 break;
1132 }
1133 if (limit < 0)
1134 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1135 }
1136
1137 static void gem_pcs_reinit_adv(struct gem *gp)
1138 {
1139 u32 val;
1140
1141 /* Make sure PCS is disabled while changing advertisement
1142 * configuration.
1143 */
1144 val = readl(gp->regs + PCS_CFG);
1145 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1146 writel(val, gp->regs + PCS_CFG);
1147
1148 /* Advertise all capabilities except asymmetric
1149 * pause.
1150 */
1151 val = readl(gp->regs + PCS_MIIADV);
1152 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1153 PCS_MIIADV_SP | PCS_MIIADV_AP);
1154 writel(val, gp->regs + PCS_MIIADV);
1155
1156 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1157 * and re-enable PCS.
1158 */
1159 val = readl(gp->regs + PCS_MIICTRL);
1160 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1161 val &= ~PCS_MIICTRL_WB;
1162 writel(val, gp->regs + PCS_MIICTRL);
1163
1164 val = readl(gp->regs + PCS_CFG);
1165 val |= PCS_CFG_ENABLE;
1166 writel(val, gp->regs + PCS_CFG);
1167
1168 /* Make sure serialink loopback is off. The meaning
1169 * of this bit is logically inverted based upon whether
1170 * you are in Serialink or SERDES mode.
1171 */
1172 val = readl(gp->regs + PCS_SCTRL);
1173 if (gp->phy_type == phy_serialink)
1174 val &= ~PCS_SCTRL_LOOP;
1175 else
1176 val |= PCS_SCTRL_LOOP;
1177 writel(val, gp->regs + PCS_SCTRL);
1178 }
1179
1180 #define STOP_TRIES 32
1181
1182 static void gem_reset(struct gem *gp)
1183 {
1184 int limit;
1185 u32 val;
1186
1187 /* Make sure we won't get any more interrupts */
1188 writel(0xffffffff, gp->regs + GREG_IMASK);
1189
1190 /* Reset the chip */
1191 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1192 gp->regs + GREG_SWRST);
1193
1194 limit = STOP_TRIES;
1195
1196 do {
1197 udelay(20);
1198 val = readl(gp->regs + GREG_SWRST);
1199 if (limit-- <= 0)
1200 break;
1201 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1202
1203 if (limit < 0)
1204 netdev_err(gp->dev, "SW reset is ghetto\n");
1205
1206 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1207 gem_pcs_reinit_adv(gp);
1208 }
1209
1210 static void gem_start_dma(struct gem *gp)
1211 {
1212 u32 val;
1213
1214 /* We are ready to rock, turn everything on. */
1215 val = readl(gp->regs + TXDMA_CFG);
1216 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1217 val = readl(gp->regs + RXDMA_CFG);
1218 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1219 val = readl(gp->regs + MAC_TXCFG);
1220 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1221 val = readl(gp->regs + MAC_RXCFG);
1222 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1223
1224 (void) readl(gp->regs + MAC_RXCFG);
1225 udelay(100);
1226
1227 gem_enable_ints(gp);
1228
1229 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1230 }
1231
1232 /* DMA won't be actually stopped before about 4ms tho ...
1233 */
1234 static void gem_stop_dma(struct gem *gp)
1235 {
1236 u32 val;
1237
1238 /* We are done rocking, turn everything off. */
1239 val = readl(gp->regs + TXDMA_CFG);
1240 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1241 val = readl(gp->regs + RXDMA_CFG);
1242 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1243 val = readl(gp->regs + MAC_TXCFG);
1244 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1245 val = readl(gp->regs + MAC_RXCFG);
1246 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1247
1248 (void) readl(gp->regs + MAC_RXCFG);
1249
1250 /* Need to wait a bit ... done by the caller */
1251 }
1252
1253
1254 // XXX dbl check what that function should do when called on PCS PHY
1255 static void gem_begin_auto_negotiation(struct gem *gp,
1256 const struct ethtool_link_ksettings *ep)
1257 {
1258 u32 advertise, features;
1259 int autoneg;
1260 int speed;
1261 int duplex;
1262 u32 advertising;
1263
1264 if (ep)
1265 ethtool_convert_link_mode_to_legacy_u32(
1266 &advertising, ep->link_modes.advertising);
1267
1268 if (gp->phy_type != phy_mii_mdio0 &&
1269 gp->phy_type != phy_mii_mdio1)
1270 goto non_mii;
1271
1272 /* Setup advertise */
1273 if (found_mii_phy(gp))
1274 features = gp->phy_mii.def->features;
1275 else
1276 features = 0;
1277
1278 advertise = features & ADVERTISE_MASK;
1279 if (gp->phy_mii.advertising != 0)
1280 advertise &= gp->phy_mii.advertising;
1281
1282 autoneg = gp->want_autoneg;
1283 speed = gp->phy_mii.speed;
1284 duplex = gp->phy_mii.duplex;
1285
1286 /* Setup link parameters */
1287 if (!ep)
1288 goto start_aneg;
1289 if (ep->base.autoneg == AUTONEG_ENABLE) {
1290 advertise = advertising;
1291 autoneg = 1;
1292 } else {
1293 autoneg = 0;
1294 speed = ep->base.speed;
1295 duplex = ep->base.duplex;
1296 }
1297
1298 start_aneg:
1299 /* Sanitize settings based on PHY capabilities */
1300 if ((features & SUPPORTED_Autoneg) == 0)
1301 autoneg = 0;
1302 if (speed == SPEED_1000 &&
1303 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1304 speed = SPEED_100;
1305 if (speed == SPEED_100 &&
1306 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1307 speed = SPEED_10;
1308 if (duplex == DUPLEX_FULL &&
1309 !(features & (SUPPORTED_1000baseT_Full |
1310 SUPPORTED_100baseT_Full |
1311 SUPPORTED_10baseT_Full)))
1312 duplex = DUPLEX_HALF;
1313 if (speed == 0)
1314 speed = SPEED_10;
1315
1316 /* If we are asleep, we don't try to actually setup the PHY, we
1317 * just store the settings
1318 */
1319 if (!netif_device_present(gp->dev)) {
1320 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1321 gp->phy_mii.speed = speed;
1322 gp->phy_mii.duplex = duplex;
1323 return;
1324 }
1325
1326 /* Configure PHY & start aneg */
1327 gp->want_autoneg = autoneg;
1328 if (autoneg) {
1329 if (found_mii_phy(gp))
1330 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1331 gp->lstate = link_aneg;
1332 } else {
1333 if (found_mii_phy(gp))
1334 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1335 gp->lstate = link_force_ok;
1336 }
1337
1338 non_mii:
1339 gp->timer_ticks = 0;
1340 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1341 }
1342
1343 /* A link-up condition has occurred, initialize and enable the
1344 * rest of the chip.
1345 */
1346 static int gem_set_link_modes(struct gem *gp)
1347 {
1348 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1349 int full_duplex, speed, pause;
1350 u32 val;
1351
1352 full_duplex = 0;
1353 speed = SPEED_10;
1354 pause = 0;
1355
1356 if (found_mii_phy(gp)) {
1357 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1358 return 1;
1359 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1360 speed = gp->phy_mii.speed;
1361 pause = gp->phy_mii.pause;
1362 } else if (gp->phy_type == phy_serialink ||
1363 gp->phy_type == phy_serdes) {
1364 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1365
1366 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1367 full_duplex = 1;
1368 speed = SPEED_1000;
1369 }
1370
1371 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1372 speed, (full_duplex ? "full" : "half"));
1373
1374
1375 /* We take the tx queue lock to avoid collisions between
1376 * this code, the tx path and the NAPI-driven error path
1377 */
1378 __netif_tx_lock(txq, smp_processor_id());
1379
1380 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1381 if (full_duplex) {
1382 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1383 } else {
1384 /* MAC_TXCFG_NBO must be zero. */
1385 }
1386 writel(val, gp->regs + MAC_TXCFG);
1387
1388 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1389 if (!full_duplex &&
1390 (gp->phy_type == phy_mii_mdio0 ||
1391 gp->phy_type == phy_mii_mdio1)) {
1392 val |= MAC_XIFCFG_DISE;
1393 } else if (full_duplex) {
1394 val |= MAC_XIFCFG_FLED;
1395 }
1396
1397 if (speed == SPEED_1000)
1398 val |= (MAC_XIFCFG_GMII);
1399
1400 writel(val, gp->regs + MAC_XIFCFG);
1401
1402 /* If gigabit and half-duplex, enable carrier extension
1403 * mode. Else, disable it.
1404 */
1405 if (speed == SPEED_1000 && !full_duplex) {
1406 val = readl(gp->regs + MAC_TXCFG);
1407 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1408
1409 val = readl(gp->regs + MAC_RXCFG);
1410 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1411 } else {
1412 val = readl(gp->regs + MAC_TXCFG);
1413 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1414
1415 val = readl(gp->regs + MAC_RXCFG);
1416 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1417 }
1418
1419 if (gp->phy_type == phy_serialink ||
1420 gp->phy_type == phy_serdes) {
1421 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1422
1423 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1424 pause = 1;
1425 }
1426
1427 if (!full_duplex)
1428 writel(512, gp->regs + MAC_STIME);
1429 else
1430 writel(64, gp->regs + MAC_STIME);
1431 val = readl(gp->regs + MAC_MCCFG);
1432 if (pause)
1433 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1434 else
1435 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1436 writel(val, gp->regs + MAC_MCCFG);
1437
1438 gem_start_dma(gp);
1439
1440 __netif_tx_unlock(txq);
1441
1442 if (netif_msg_link(gp)) {
1443 if (pause) {
1444 netdev_info(gp->dev,
1445 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1446 gp->rx_fifo_sz,
1447 gp->rx_pause_off,
1448 gp->rx_pause_on);
1449 } else {
1450 netdev_info(gp->dev, "Pause is disabled\n");
1451 }
1452 }
1453
1454 return 0;
1455 }
1456
1457 static int gem_mdio_link_not_up(struct gem *gp)
1458 {
1459 switch (gp->lstate) {
1460 case link_force_ret:
1461 netif_info(gp, link, gp->dev,
1462 "Autoneg failed again, keeping forced mode\n");
1463 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1464 gp->last_forced_speed, DUPLEX_HALF);
1465 gp->timer_ticks = 5;
1466 gp->lstate = link_force_ok;
1467 return 0;
1468 case link_aneg:
1469 /* We try forced modes after a failed aneg only on PHYs that don't
1470 * have "magic_aneg" bit set, which means they internally do the
1471 * while forced-mode thingy. On these, we just restart aneg
1472 */
1473 if (gp->phy_mii.def->magic_aneg)
1474 return 1;
1475 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1476 /* Try forced modes. */
1477 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1478 DUPLEX_HALF);
1479 gp->timer_ticks = 5;
1480 gp->lstate = link_force_try;
1481 return 0;
1482 case link_force_try:
1483 /* Downgrade from 100 to 10 Mbps if necessary.
1484 * If already at 10Mbps, warn user about the
1485 * situation every 10 ticks.
1486 */
1487 if (gp->phy_mii.speed == SPEED_100) {
1488 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1489 DUPLEX_HALF);
1490 gp->timer_ticks = 5;
1491 netif_info(gp, link, gp->dev,
1492 "switching to forced 10bt\n");
1493 return 0;
1494 } else
1495 return 1;
1496 default:
1497 return 0;
1498 }
1499 }
1500
1501 static void gem_link_timer(struct timer_list *t)
1502 {
1503 struct gem *gp = from_timer(gp, t, link_timer);
1504 struct net_device *dev = gp->dev;
1505 int restart_aneg = 0;
1506
1507 /* There's no point doing anything if we're going to be reset */
1508 if (gp->reset_task_pending)
1509 return;
1510
1511 if (gp->phy_type == phy_serialink ||
1512 gp->phy_type == phy_serdes) {
1513 u32 val = readl(gp->regs + PCS_MIISTAT);
1514
1515 if (!(val & PCS_MIISTAT_LS))
1516 val = readl(gp->regs + PCS_MIISTAT);
1517
1518 if ((val & PCS_MIISTAT_LS) != 0) {
1519 if (gp->lstate == link_up)
1520 goto restart;
1521
1522 gp->lstate = link_up;
1523 netif_carrier_on(dev);
1524 (void)gem_set_link_modes(gp);
1525 }
1526 goto restart;
1527 }
1528 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1529 /* Ok, here we got a link. If we had it due to a forced
1530 * fallback, and we were configured for autoneg, we do
1531 * retry a short autoneg pass. If you know your hub is
1532 * broken, use ethtool ;)
1533 */
1534 if (gp->lstate == link_force_try && gp->want_autoneg) {
1535 gp->lstate = link_force_ret;
1536 gp->last_forced_speed = gp->phy_mii.speed;
1537 gp->timer_ticks = 5;
1538 if (netif_msg_link(gp))
1539 netdev_info(dev,
1540 "Got link after fallback, retrying autoneg once...\n");
1541 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1542 } else if (gp->lstate != link_up) {
1543 gp->lstate = link_up;
1544 netif_carrier_on(dev);
1545 if (gem_set_link_modes(gp))
1546 restart_aneg = 1;
1547 }
1548 } else {
1549 /* If the link was previously up, we restart the
1550 * whole process
1551 */
1552 if (gp->lstate == link_up) {
1553 gp->lstate = link_down;
1554 netif_info(gp, link, dev, "Link down\n");
1555 netif_carrier_off(dev);
1556 gem_schedule_reset(gp);
1557 /* The reset task will restart the timer */
1558 return;
1559 } else if (++gp->timer_ticks > 10) {
1560 if (found_mii_phy(gp))
1561 restart_aneg = gem_mdio_link_not_up(gp);
1562 else
1563 restart_aneg = 1;
1564 }
1565 }
1566 if (restart_aneg) {
1567 gem_begin_auto_negotiation(gp, NULL);
1568 return;
1569 }
1570 restart:
1571 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1572 }
1573
1574 static void gem_clean_rings(struct gem *gp)
1575 {
1576 struct gem_init_block *gb = gp->init_block;
1577 struct sk_buff *skb;
1578 int i;
1579 dma_addr_t dma_addr;
1580
1581 for (i = 0; i < RX_RING_SIZE; i++) {
1582 struct gem_rxd *rxd;
1583
1584 rxd = &gb->rxd[i];
1585 if (gp->rx_skbs[i] != NULL) {
1586 skb = gp->rx_skbs[i];
1587 dma_addr = le64_to_cpu(rxd->buffer);
1588 pci_unmap_page(gp->pdev, dma_addr,
1589 RX_BUF_ALLOC_SIZE(gp),
1590 PCI_DMA_FROMDEVICE);
1591 dev_kfree_skb_any(skb);
1592 gp->rx_skbs[i] = NULL;
1593 }
1594 rxd->status_word = 0;
1595 dma_wmb();
1596 rxd->buffer = 0;
1597 }
1598
1599 for (i = 0; i < TX_RING_SIZE; i++) {
1600 if (gp->tx_skbs[i] != NULL) {
1601 struct gem_txd *txd;
1602 int frag;
1603
1604 skb = gp->tx_skbs[i];
1605 gp->tx_skbs[i] = NULL;
1606
1607 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1608 int ent = i & (TX_RING_SIZE - 1);
1609
1610 txd = &gb->txd[ent];
1611 dma_addr = le64_to_cpu(txd->buffer);
1612 pci_unmap_page(gp->pdev, dma_addr,
1613 le64_to_cpu(txd->control_word) &
1614 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1615
1616 if (frag != skb_shinfo(skb)->nr_frags)
1617 i++;
1618 }
1619 dev_kfree_skb_any(skb);
1620 }
1621 }
1622 }
1623
1624 static void gem_init_rings(struct gem *gp)
1625 {
1626 struct gem_init_block *gb = gp->init_block;
1627 struct net_device *dev = gp->dev;
1628 int i;
1629 dma_addr_t dma_addr;
1630
1631 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1632
1633 gem_clean_rings(gp);
1634
1635 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1636 (unsigned)VLAN_ETH_FRAME_LEN);
1637
1638 for (i = 0; i < RX_RING_SIZE; i++) {
1639 struct sk_buff *skb;
1640 struct gem_rxd *rxd = &gb->rxd[i];
1641
1642 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1643 if (!skb) {
1644 rxd->buffer = 0;
1645 rxd->status_word = 0;
1646 continue;
1647 }
1648
1649 gp->rx_skbs[i] = skb;
1650 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1651 dma_addr = pci_map_page(gp->pdev,
1652 virt_to_page(skb->data),
1653 offset_in_page(skb->data),
1654 RX_BUF_ALLOC_SIZE(gp),
1655 PCI_DMA_FROMDEVICE);
1656 rxd->buffer = cpu_to_le64(dma_addr);
1657 dma_wmb();
1658 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1659 skb_reserve(skb, RX_OFFSET);
1660 }
1661
1662 for (i = 0; i < TX_RING_SIZE; i++) {
1663 struct gem_txd *txd = &gb->txd[i];
1664
1665 txd->control_word = 0;
1666 dma_wmb();
1667 txd->buffer = 0;
1668 }
1669 wmb();
1670 }
1671
1672 /* Init PHY interface and start link poll state machine */
1673 static void gem_init_phy(struct gem *gp)
1674 {
1675 u32 mifcfg;
1676
1677 /* Revert MIF CFG setting done on stop_phy */
1678 mifcfg = readl(gp->regs + MIF_CFG);
1679 mifcfg &= ~MIF_CFG_BBMODE;
1680 writel(mifcfg, gp->regs + MIF_CFG);
1681
1682 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1683 int i;
1684
1685 /* Those delay sucks, the HW seem to love them though, I'll
1686 * serisouly consider breaking some locks here to be able
1687 * to schedule instead
1688 */
1689 for (i = 0; i < 3; i++) {
1690 #ifdef CONFIG_PPC_PMAC
1691 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1692 msleep(20);
1693 #endif
1694 /* Some PHYs used by apple have problem getting back to us,
1695 * we do an additional reset here
1696 */
1697 sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1698 msleep(20);
1699 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1700 break;
1701 if (i == 2)
1702 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1703 }
1704 }
1705
1706 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1707 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1708 u32 val;
1709
1710 /* Init datapath mode register. */
1711 if (gp->phy_type == phy_mii_mdio0 ||
1712 gp->phy_type == phy_mii_mdio1) {
1713 val = PCS_DMODE_MGM;
1714 } else if (gp->phy_type == phy_serialink) {
1715 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1716 } else {
1717 val = PCS_DMODE_ESM;
1718 }
1719
1720 writel(val, gp->regs + PCS_DMODE);
1721 }
1722
1723 if (gp->phy_type == phy_mii_mdio0 ||
1724 gp->phy_type == phy_mii_mdio1) {
1725 /* Reset and detect MII PHY */
1726 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1727
1728 /* Init PHY */
1729 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1730 gp->phy_mii.def->ops->init(&gp->phy_mii);
1731 } else {
1732 gem_pcs_reset(gp);
1733 gem_pcs_reinit_adv(gp);
1734 }
1735
1736 /* Default aneg parameters */
1737 gp->timer_ticks = 0;
1738 gp->lstate = link_down;
1739 netif_carrier_off(gp->dev);
1740
1741 /* Print things out */
1742 if (gp->phy_type == phy_mii_mdio0 ||
1743 gp->phy_type == phy_mii_mdio1)
1744 netdev_info(gp->dev, "Found %s PHY\n",
1745 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1746
1747 gem_begin_auto_negotiation(gp, NULL);
1748 }
1749
1750 static void gem_init_dma(struct gem *gp)
1751 {
1752 u64 desc_dma = (u64) gp->gblock_dvma;
1753 u32 val;
1754
1755 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1756 writel(val, gp->regs + TXDMA_CFG);
1757
1758 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1759 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1760 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1761
1762 writel(0, gp->regs + TXDMA_KICK);
1763
1764 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1765 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1766 writel(val, gp->regs + RXDMA_CFG);
1767
1768 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1769 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1770
1771 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1772
1773 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1774 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1775 writel(val, gp->regs + RXDMA_PTHRESH);
1776
1777 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1778 writel(((5 & RXDMA_BLANK_IPKTS) |
1779 ((8 << 12) & RXDMA_BLANK_ITIME)),
1780 gp->regs + RXDMA_BLANK);
1781 else
1782 writel(((5 & RXDMA_BLANK_IPKTS) |
1783 ((4 << 12) & RXDMA_BLANK_ITIME)),
1784 gp->regs + RXDMA_BLANK);
1785 }
1786
1787 static u32 gem_setup_multicast(struct gem *gp)
1788 {
1789 u32 rxcfg = 0;
1790 int i;
1791
1792 if ((gp->dev->flags & IFF_ALLMULTI) ||
1793 (netdev_mc_count(gp->dev) > 256)) {
1794 for (i=0; i<16; i++)
1795 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1796 rxcfg |= MAC_RXCFG_HFE;
1797 } else if (gp->dev->flags & IFF_PROMISC) {
1798 rxcfg |= MAC_RXCFG_PROM;
1799 } else {
1800 u16 hash_table[16];
1801 u32 crc;
1802 struct netdev_hw_addr *ha;
1803 int i;
1804
1805 memset(hash_table, 0, sizeof(hash_table));
1806 netdev_for_each_mc_addr(ha, gp->dev) {
1807 crc = ether_crc_le(6, ha->addr);
1808 crc >>= 24;
1809 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1810 }
1811 for (i=0; i<16; i++)
1812 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1813 rxcfg |= MAC_RXCFG_HFE;
1814 }
1815
1816 return rxcfg;
1817 }
1818
1819 static void gem_init_mac(struct gem *gp)
1820 {
1821 unsigned char *e = &gp->dev->dev_addr[0];
1822
1823 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1824
1825 writel(0x00, gp->regs + MAC_IPG0);
1826 writel(0x08, gp->regs + MAC_IPG1);
1827 writel(0x04, gp->regs + MAC_IPG2);
1828 writel(0x40, gp->regs + MAC_STIME);
1829 writel(0x40, gp->regs + MAC_MINFSZ);
1830
1831 /* Ethernet payload + header + FCS + optional VLAN tag. */
1832 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1833
1834 writel(0x07, gp->regs + MAC_PASIZE);
1835 writel(0x04, gp->regs + MAC_JAMSIZE);
1836 writel(0x10, gp->regs + MAC_ATTLIM);
1837 writel(0x8808, gp->regs + MAC_MCTYPE);
1838
1839 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1840
1841 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1842 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1843 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1844
1845 writel(0, gp->regs + MAC_ADDR3);
1846 writel(0, gp->regs + MAC_ADDR4);
1847 writel(0, gp->regs + MAC_ADDR5);
1848
1849 writel(0x0001, gp->regs + MAC_ADDR6);
1850 writel(0xc200, gp->regs + MAC_ADDR7);
1851 writel(0x0180, gp->regs + MAC_ADDR8);
1852
1853 writel(0, gp->regs + MAC_AFILT0);
1854 writel(0, gp->regs + MAC_AFILT1);
1855 writel(0, gp->regs + MAC_AFILT2);
1856 writel(0, gp->regs + MAC_AF21MSK);
1857 writel(0, gp->regs + MAC_AF0MSK);
1858
1859 gp->mac_rx_cfg = gem_setup_multicast(gp);
1860 #ifdef STRIP_FCS
1861 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1862 #endif
1863 writel(0, gp->regs + MAC_NCOLL);
1864 writel(0, gp->regs + MAC_FASUCC);
1865 writel(0, gp->regs + MAC_ECOLL);
1866 writel(0, gp->regs + MAC_LCOLL);
1867 writel(0, gp->regs + MAC_DTIMER);
1868 writel(0, gp->regs + MAC_PATMPS);
1869 writel(0, gp->regs + MAC_RFCTR);
1870 writel(0, gp->regs + MAC_LERR);
1871 writel(0, gp->regs + MAC_AERR);
1872 writel(0, gp->regs + MAC_FCSERR);
1873 writel(0, gp->regs + MAC_RXCVERR);
1874
1875 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1876 * them once a link is established.
1877 */
1878 writel(0, gp->regs + MAC_TXCFG);
1879 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1880 writel(0, gp->regs + MAC_MCCFG);
1881 writel(0, gp->regs + MAC_XIFCFG);
1882
1883 /* Setup MAC interrupts. We want to get all of the interesting
1884 * counter expiration events, but we do not want to hear about
1885 * normal rx/tx as the DMA engine tells us that.
1886 */
1887 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1888 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1889
1890 /* Don't enable even the PAUSE interrupts for now, we
1891 * make no use of those events other than to record them.
1892 */
1893 writel(0xffffffff, gp->regs + MAC_MCMASK);
1894
1895 /* Don't enable GEM's WOL in normal operations
1896 */
1897 if (gp->has_wol)
1898 writel(0, gp->regs + WOL_WAKECSR);
1899 }
1900
1901 static void gem_init_pause_thresholds(struct gem *gp)
1902 {
1903 u32 cfg;
1904
1905 /* Calculate pause thresholds. Setting the OFF threshold to the
1906 * full RX fifo size effectively disables PAUSE generation which
1907 * is what we do for 10/100 only GEMs which have FIFOs too small
1908 * to make real gains from PAUSE.
1909 */
1910 if (gp->rx_fifo_sz <= (2 * 1024)) {
1911 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1912 } else {
1913 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1914 int off = (gp->rx_fifo_sz - (max_frame * 2));
1915 int on = off - max_frame;
1916
1917 gp->rx_pause_off = off;
1918 gp->rx_pause_on = on;
1919 }
1920
1921
1922 /* Configure the chip "burst" DMA mode & enable some
1923 * HW bug fixes on Apple version
1924 */
1925 cfg = 0;
1926 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1927 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1928 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1929 cfg |= GREG_CFG_IBURST;
1930 #endif
1931 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1932 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1933 writel(cfg, gp->regs + GREG_CFG);
1934
1935 /* If Infinite Burst didn't stick, then use different
1936 * thresholds (and Apple bug fixes don't exist)
1937 */
1938 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1939 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1940 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1941 writel(cfg, gp->regs + GREG_CFG);
1942 }
1943 }
1944
1945 static int gem_check_invariants(struct gem *gp)
1946 {
1947 struct pci_dev *pdev = gp->pdev;
1948 u32 mif_cfg;
1949
1950 /* On Apple's sungem, we can't rely on registers as the chip
1951 * was been powered down by the firmware. The PHY is looked
1952 * up later on.
1953 */
1954 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1955 gp->phy_type = phy_mii_mdio0;
1956 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1957 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1958 gp->swrst_base = 0;
1959
1960 mif_cfg = readl(gp->regs + MIF_CFG);
1961 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1962 mif_cfg |= MIF_CFG_MDI0;
1963 writel(mif_cfg, gp->regs + MIF_CFG);
1964 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1965 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1966
1967 /* We hard-code the PHY address so we can properly bring it out of
1968 * reset later on, we can't really probe it at this point, though
1969 * that isn't an issue.
1970 */
1971 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1972 gp->mii_phy_addr = 1;
1973 else
1974 gp->mii_phy_addr = 0;
1975
1976 return 0;
1977 }
1978
1979 mif_cfg = readl(gp->regs + MIF_CFG);
1980
1981 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1982 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1983 /* One of the MII PHYs _must_ be present
1984 * as this chip has no gigabit PHY.
1985 */
1986 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1987 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1988 mif_cfg);
1989 return -1;
1990 }
1991 }
1992
1993 /* Determine initial PHY interface type guess. MDIO1 is the
1994 * external PHY and thus takes precedence over MDIO0.
1995 */
1996
1997 if (mif_cfg & MIF_CFG_MDI1) {
1998 gp->phy_type = phy_mii_mdio1;
1999 mif_cfg |= MIF_CFG_PSELECT;
2000 writel(mif_cfg, gp->regs + MIF_CFG);
2001 } else if (mif_cfg & MIF_CFG_MDI0) {
2002 gp->phy_type = phy_mii_mdio0;
2003 mif_cfg &= ~MIF_CFG_PSELECT;
2004 writel(mif_cfg, gp->regs + MIF_CFG);
2005 } else {
2006 #ifdef CONFIG_SPARC
2007 const char *p;
2008
2009 p = of_get_property(gp->of_node, "shared-pins", NULL);
2010 if (p && !strcmp(p, "serdes"))
2011 gp->phy_type = phy_serdes;
2012 else
2013 #endif
2014 gp->phy_type = phy_serialink;
2015 }
2016 if (gp->phy_type == phy_mii_mdio1 ||
2017 gp->phy_type == phy_mii_mdio0) {
2018 int i;
2019
2020 for (i = 0; i < 32; i++) {
2021 gp->mii_phy_addr = i;
2022 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2023 break;
2024 }
2025 if (i == 32) {
2026 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2027 pr_err("RIO MII phy will not respond\n");
2028 return -1;
2029 }
2030 gp->phy_type = phy_serdes;
2031 }
2032 }
2033
2034 /* Fetch the FIFO configurations now too. */
2035 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2036 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2037
2038 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2039 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2040 if (gp->tx_fifo_sz != (9 * 1024) ||
2041 gp->rx_fifo_sz != (20 * 1024)) {
2042 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2043 gp->tx_fifo_sz, gp->rx_fifo_sz);
2044 return -1;
2045 }
2046 gp->swrst_base = 0;
2047 } else {
2048 if (gp->tx_fifo_sz != (2 * 1024) ||
2049 gp->rx_fifo_sz != (2 * 1024)) {
2050 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2051 gp->tx_fifo_sz, gp->rx_fifo_sz);
2052 return -1;
2053 }
2054 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2055 }
2056 }
2057
2058 return 0;
2059 }
2060
2061 static void gem_reinit_chip(struct gem *gp)
2062 {
2063 /* Reset the chip */
2064 gem_reset(gp);
2065
2066 /* Make sure ints are disabled */
2067 gem_disable_ints(gp);
2068
2069 /* Allocate & setup ring buffers */
2070 gem_init_rings(gp);
2071
2072 /* Configure pause thresholds */
2073 gem_init_pause_thresholds(gp);
2074
2075 /* Init DMA & MAC engines */
2076 gem_init_dma(gp);
2077 gem_init_mac(gp);
2078 }
2079
2080
2081 static void gem_stop_phy(struct gem *gp, int wol)
2082 {
2083 u32 mifcfg;
2084
2085 /* Let the chip settle down a bit, it seems that helps
2086 * for sleep mode on some models
2087 */
2088 msleep(10);
2089
2090 /* Make sure we aren't polling PHY status change. We
2091 * don't currently use that feature though
2092 */
2093 mifcfg = readl(gp->regs + MIF_CFG);
2094 mifcfg &= ~MIF_CFG_POLL;
2095 writel(mifcfg, gp->regs + MIF_CFG);
2096
2097 if (wol && gp->has_wol) {
2098 unsigned char *e = &gp->dev->dev_addr[0];
2099 u32 csr;
2100
2101 /* Setup wake-on-lan for MAGIC packet */
2102 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2103 gp->regs + MAC_RXCFG);
2104 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2105 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2106 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2107
2108 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2109 csr = WOL_WAKECSR_ENABLE;
2110 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2111 csr |= WOL_WAKECSR_MII;
2112 writel(csr, gp->regs + WOL_WAKECSR);
2113 } else {
2114 writel(0, gp->regs + MAC_RXCFG);
2115 (void)readl(gp->regs + MAC_RXCFG);
2116 /* Machine sleep will die in strange ways if we
2117 * dont wait a bit here, looks like the chip takes
2118 * some time to really shut down
2119 */
2120 msleep(10);
2121 }
2122
2123 writel(0, gp->regs + MAC_TXCFG);
2124 writel(0, gp->regs + MAC_XIFCFG);
2125 writel(0, gp->regs + TXDMA_CFG);
2126 writel(0, gp->regs + RXDMA_CFG);
2127
2128 if (!wol) {
2129 gem_reset(gp);
2130 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2131 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2132
2133 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2134 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2135
2136 /* According to Apple, we must set the MDIO pins to this begnign
2137 * state or we may 1) eat more current, 2) damage some PHYs
2138 */
2139 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2140 writel(0, gp->regs + MIF_BBCLK);
2141 writel(0, gp->regs + MIF_BBDATA);
2142 writel(0, gp->regs + MIF_BBOENAB);
2143 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2144 (void) readl(gp->regs + MAC_XIFCFG);
2145 }
2146 }
2147
2148 static int gem_do_start(struct net_device *dev)
2149 {
2150 struct gem *gp = netdev_priv(dev);
2151 int rc;
2152
2153 /* Enable the cell */
2154 gem_get_cell(gp);
2155
2156 /* Make sure PCI access and bus master are enabled */
2157 rc = pci_enable_device(gp->pdev);
2158 if (rc) {
2159 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2160
2161 /* Put cell and forget it for now, it will be considered as
2162 * still asleep, a new sleep cycle may bring it back
2163 */
2164 gem_put_cell(gp);
2165 return -ENXIO;
2166 }
2167 pci_set_master(gp->pdev);
2168
2169 /* Init & setup chip hardware */
2170 gem_reinit_chip(gp);
2171
2172 /* An interrupt might come in handy */
2173 rc = request_irq(gp->pdev->irq, gem_interrupt,
2174 IRQF_SHARED, dev->name, (void *)dev);
2175 if (rc) {
2176 netdev_err(dev, "failed to request irq !\n");
2177
2178 gem_reset(gp);
2179 gem_clean_rings(gp);
2180 gem_put_cell(gp);
2181 return rc;
2182 }
2183
2184 /* Mark us as attached again if we come from resume(), this has
2185 * no effect if we weren't detached and needs to be done now.
2186 */
2187 netif_device_attach(dev);
2188
2189 /* Restart NAPI & queues */
2190 gem_netif_start(gp);
2191
2192 /* Detect & init PHY, start autoneg etc... this will
2193 * eventually result in starting DMA operations when
2194 * the link is up
2195 */
2196 gem_init_phy(gp);
2197
2198 return 0;
2199 }
2200
2201 static void gem_do_stop(struct net_device *dev, int wol)
2202 {
2203 struct gem *gp = netdev_priv(dev);
2204
2205 /* Stop NAPI and stop tx queue */
2206 gem_netif_stop(gp);
2207
2208 /* Make sure ints are disabled. We don't care about
2209 * synchronizing as NAPI is disabled, thus a stray
2210 * interrupt will do nothing bad (our irq handler
2211 * just schedules NAPI)
2212 */
2213 gem_disable_ints(gp);
2214
2215 /* Stop the link timer */
2216 del_timer_sync(&gp->link_timer);
2217
2218 /* We cannot cancel the reset task while holding the
2219 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2220 * if we did. This is not an issue however as the reset
2221 * task is synchronized vs. us (rtnl_lock) and will do
2222 * nothing if the device is down or suspended. We do
2223 * still clear reset_task_pending to avoid a spurrious
2224 * reset later on in case we do resume before it gets
2225 * scheduled.
2226 */
2227 gp->reset_task_pending = 0;
2228
2229 /* If we are going to sleep with WOL */
2230 gem_stop_dma(gp);
2231 msleep(10);
2232 if (!wol)
2233 gem_reset(gp);
2234 msleep(10);
2235
2236 /* Get rid of rings */
2237 gem_clean_rings(gp);
2238
2239 /* No irq needed anymore */
2240 free_irq(gp->pdev->irq, (void *) dev);
2241
2242 /* Shut the PHY down eventually and setup WOL */
2243 gem_stop_phy(gp, wol);
2244
2245 /* Make sure bus master is disabled */
2246 pci_disable_device(gp->pdev);
2247
2248 /* Cell not needed neither if no WOL */
2249 if (!wol)
2250 gem_put_cell(gp);
2251 }
2252
2253 static void gem_reset_task(struct work_struct *work)
2254 {
2255 struct gem *gp = container_of(work, struct gem, reset_task);
2256
2257 /* Lock out the network stack (essentially shield ourselves
2258 * against a racing open, close, control call, or suspend
2259 */
2260 rtnl_lock();
2261
2262 /* Skip the reset task if suspended or closed, or if it's
2263 * been cancelled by gem_do_stop (see comment there)
2264 */
2265 if (!netif_device_present(gp->dev) ||
2266 !netif_running(gp->dev) ||
2267 !gp->reset_task_pending) {
2268 rtnl_unlock();
2269 return;
2270 }
2271
2272 /* Stop the link timer */
2273 del_timer_sync(&gp->link_timer);
2274
2275 /* Stop NAPI and tx */
2276 gem_netif_stop(gp);
2277
2278 /* Reset the chip & rings */
2279 gem_reinit_chip(gp);
2280 if (gp->lstate == link_up)
2281 gem_set_link_modes(gp);
2282
2283 /* Restart NAPI and Tx */
2284 gem_netif_start(gp);
2285
2286 /* We are back ! */
2287 gp->reset_task_pending = 0;
2288
2289 /* If the link is not up, restart autoneg, else restart the
2290 * polling timer
2291 */
2292 if (gp->lstate != link_up)
2293 gem_begin_auto_negotiation(gp, NULL);
2294 else
2295 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2296
2297 rtnl_unlock();
2298 }
2299
2300 static int gem_open(struct net_device *dev)
2301 {
2302 /* We allow open while suspended, we just do nothing,
2303 * the chip will be initialized in resume()
2304 */
2305 if (netif_device_present(dev))
2306 return gem_do_start(dev);
2307 return 0;
2308 }
2309
2310 static int gem_close(struct net_device *dev)
2311 {
2312 if (netif_device_present(dev))
2313 gem_do_stop(dev, 0);
2314
2315 return 0;
2316 }
2317
2318 #ifdef CONFIG_PM
2319 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2320 {
2321 struct net_device *dev = pci_get_drvdata(pdev);
2322 struct gem *gp = netdev_priv(dev);
2323
2324 /* Lock the network stack first to avoid racing with open/close,
2325 * reset task and setting calls
2326 */
2327 rtnl_lock();
2328
2329 /* Not running, mark ourselves non-present, no need for
2330 * a lock here
2331 */
2332 if (!netif_running(dev)) {
2333 netif_device_detach(dev);
2334 rtnl_unlock();
2335 return 0;
2336 }
2337 netdev_info(dev, "suspending, WakeOnLan %s\n",
2338 (gp->wake_on_lan && netif_running(dev)) ?
2339 "enabled" : "disabled");
2340
2341 /* Tell the network stack we're gone. gem_do_stop() below will
2342 * synchronize with TX, stop NAPI etc...
2343 */
2344 netif_device_detach(dev);
2345
2346 /* Switch off chip, remember WOL setting */
2347 gp->asleep_wol = !!gp->wake_on_lan;
2348 gem_do_stop(dev, gp->asleep_wol);
2349
2350 /* Unlock the network stack */
2351 rtnl_unlock();
2352
2353 return 0;
2354 }
2355
2356 static int gem_resume(struct pci_dev *pdev)
2357 {
2358 struct net_device *dev = pci_get_drvdata(pdev);
2359 struct gem *gp = netdev_priv(dev);
2360
2361 /* See locking comment in gem_suspend */
2362 rtnl_lock();
2363
2364 /* Not running, mark ourselves present, no need for
2365 * a lock here
2366 */
2367 if (!netif_running(dev)) {
2368 netif_device_attach(dev);
2369 rtnl_unlock();
2370 return 0;
2371 }
2372
2373 /* Restart chip. If that fails there isn't much we can do, we
2374 * leave things stopped.
2375 */
2376 gem_do_start(dev);
2377
2378 /* If we had WOL enabled, the cell clock was never turned off during
2379 * sleep, so we end up beeing unbalanced. Fix that here
2380 */
2381 if (gp->asleep_wol)
2382 gem_put_cell(gp);
2383
2384 /* Unlock the network stack */
2385 rtnl_unlock();
2386
2387 return 0;
2388 }
2389 #endif /* CONFIG_PM */
2390
2391 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2392 {
2393 struct gem *gp = netdev_priv(dev);
2394
2395 /* I have seen this being called while the PM was in progress,
2396 * so we shield against this. Let's also not poke at registers
2397 * while the reset task is going on.
2398 *
2399 * TODO: Move stats collection elsewhere (link timer ?) and
2400 * make this a nop to avoid all those synchro issues
2401 */
2402 if (!netif_device_present(dev) || !netif_running(dev))
2403 goto bail;
2404
2405 /* Better safe than sorry... */
2406 if (WARN_ON(!gp->cell_enabled))
2407 goto bail;
2408
2409 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2410 writel(0, gp->regs + MAC_FCSERR);
2411
2412 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2413 writel(0, gp->regs + MAC_AERR);
2414
2415 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2416 writel(0, gp->regs + MAC_LERR);
2417
2418 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2419 dev->stats.collisions +=
2420 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2421 writel(0, gp->regs + MAC_ECOLL);
2422 writel(0, gp->regs + MAC_LCOLL);
2423 bail:
2424 return &dev->stats;
2425 }
2426
2427 static int gem_set_mac_address(struct net_device *dev, void *addr)
2428 {
2429 struct sockaddr *macaddr = (struct sockaddr *) addr;
2430 struct gem *gp = netdev_priv(dev);
2431 unsigned char *e = &dev->dev_addr[0];
2432
2433 if (!is_valid_ether_addr(macaddr->sa_data))
2434 return -EADDRNOTAVAIL;
2435
2436 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2437
2438 /* We'll just catch it later when the device is up'd or resumed */
2439 if (!netif_running(dev) || !netif_device_present(dev))
2440 return 0;
2441
2442 /* Better safe than sorry... */
2443 if (WARN_ON(!gp->cell_enabled))
2444 return 0;
2445
2446 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2447 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2448 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2449
2450 return 0;
2451 }
2452
2453 static void gem_set_multicast(struct net_device *dev)
2454 {
2455 struct gem *gp = netdev_priv(dev);
2456 u32 rxcfg, rxcfg_new;
2457 int limit = 10000;
2458
2459 if (!netif_running(dev) || !netif_device_present(dev))
2460 return;
2461
2462 /* Better safe than sorry... */
2463 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2464 return;
2465
2466 rxcfg = readl(gp->regs + MAC_RXCFG);
2467 rxcfg_new = gem_setup_multicast(gp);
2468 #ifdef STRIP_FCS
2469 rxcfg_new |= MAC_RXCFG_SFCS;
2470 #endif
2471 gp->mac_rx_cfg = rxcfg_new;
2472
2473 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2474 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2475 if (!limit--)
2476 break;
2477 udelay(10);
2478 }
2479
2480 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2481 rxcfg |= rxcfg_new;
2482
2483 writel(rxcfg, gp->regs + MAC_RXCFG);
2484 }
2485
2486 /* Jumbo-grams don't seem to work :-( */
2487 #define GEM_MIN_MTU ETH_MIN_MTU
2488 #if 1
2489 #define GEM_MAX_MTU ETH_DATA_LEN
2490 #else
2491 #define GEM_MAX_MTU 9000
2492 #endif
2493
2494 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2495 {
2496 struct gem *gp = netdev_priv(dev);
2497
2498 dev->mtu = new_mtu;
2499
2500 /* We'll just catch it later when the device is up'd or resumed */
2501 if (!netif_running(dev) || !netif_device_present(dev))
2502 return 0;
2503
2504 /* Better safe than sorry... */
2505 if (WARN_ON(!gp->cell_enabled))
2506 return 0;
2507
2508 gem_netif_stop(gp);
2509 gem_reinit_chip(gp);
2510 if (gp->lstate == link_up)
2511 gem_set_link_modes(gp);
2512 gem_netif_start(gp);
2513
2514 return 0;
2515 }
2516
2517 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2518 {
2519 struct gem *gp = netdev_priv(dev);
2520
2521 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2522 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2523 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2524 }
2525
2526 static int gem_get_link_ksettings(struct net_device *dev,
2527 struct ethtool_link_ksettings *cmd)
2528 {
2529 struct gem *gp = netdev_priv(dev);
2530 u32 supported, advertising;
2531
2532 if (gp->phy_type == phy_mii_mdio0 ||
2533 gp->phy_type == phy_mii_mdio1) {
2534 if (gp->phy_mii.def)
2535 supported = gp->phy_mii.def->features;
2536 else
2537 supported = (SUPPORTED_10baseT_Half |
2538 SUPPORTED_10baseT_Full);
2539
2540 /* XXX hardcoded stuff for now */
2541 cmd->base.port = PORT_MII;
2542 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2543
2544 /* Return current PHY settings */
2545 cmd->base.autoneg = gp->want_autoneg;
2546 cmd->base.speed = gp->phy_mii.speed;
2547 cmd->base.duplex = gp->phy_mii.duplex;
2548 advertising = gp->phy_mii.advertising;
2549
2550 /* If we started with a forced mode, we don't have a default
2551 * advertise set, we need to return something sensible so
2552 * userland can re-enable autoneg properly.
2553 */
2554 if (advertising == 0)
2555 advertising = supported;
2556 } else { // XXX PCS ?
2557 supported =
2558 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2559 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2560 SUPPORTED_Autoneg);
2561 advertising = supported;
2562 cmd->base.speed = 0;
2563 cmd->base.duplex = 0;
2564 cmd->base.port = 0;
2565 cmd->base.phy_address = 0;
2566 cmd->base.autoneg = 0;
2567
2568 /* serdes means usually a Fibre connector, with most fixed */
2569 if (gp->phy_type == phy_serdes) {
2570 cmd->base.port = PORT_FIBRE;
2571 supported = (SUPPORTED_1000baseT_Half |
2572 SUPPORTED_1000baseT_Full |
2573 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2574 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2575 advertising = supported;
2576 if (gp->lstate == link_up)
2577 cmd->base.speed = SPEED_1000;
2578 cmd->base.duplex = DUPLEX_FULL;
2579 cmd->base.autoneg = 1;
2580 }
2581 }
2582
2583 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2584 supported);
2585 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2586 advertising);
2587
2588 return 0;
2589 }
2590
2591 static int gem_set_link_ksettings(struct net_device *dev,
2592 const struct ethtool_link_ksettings *cmd)
2593 {
2594 struct gem *gp = netdev_priv(dev);
2595 u32 speed = cmd->base.speed;
2596 u32 advertising;
2597
2598 ethtool_convert_link_mode_to_legacy_u32(&advertising,
2599 cmd->link_modes.advertising);
2600
2601 /* Verify the settings we care about. */
2602 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2603 cmd->base.autoneg != AUTONEG_DISABLE)
2604 return -EINVAL;
2605
2606 if (cmd->base.autoneg == AUTONEG_ENABLE &&
2607 advertising == 0)
2608 return -EINVAL;
2609
2610 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2611 ((speed != SPEED_1000 &&
2612 speed != SPEED_100 &&
2613 speed != SPEED_10) ||
2614 (cmd->base.duplex != DUPLEX_HALF &&
2615 cmd->base.duplex != DUPLEX_FULL)))
2616 return -EINVAL;
2617
2618 /* Apply settings and restart link process. */
2619 if (netif_device_present(gp->dev)) {
2620 del_timer_sync(&gp->link_timer);
2621 gem_begin_auto_negotiation(gp, cmd);
2622 }
2623
2624 return 0;
2625 }
2626
2627 static int gem_nway_reset(struct net_device *dev)
2628 {
2629 struct gem *gp = netdev_priv(dev);
2630
2631 if (!gp->want_autoneg)
2632 return -EINVAL;
2633
2634 /* Restart link process */
2635 if (netif_device_present(gp->dev)) {
2636 del_timer_sync(&gp->link_timer);
2637 gem_begin_auto_negotiation(gp, NULL);
2638 }
2639
2640 return 0;
2641 }
2642
2643 static u32 gem_get_msglevel(struct net_device *dev)
2644 {
2645 struct gem *gp = netdev_priv(dev);
2646 return gp->msg_enable;
2647 }
2648
2649 static void gem_set_msglevel(struct net_device *dev, u32 value)
2650 {
2651 struct gem *gp = netdev_priv(dev);
2652 gp->msg_enable = value;
2653 }
2654
2655
2656 /* Add more when I understand how to program the chip */
2657 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2658
2659 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2660
2661 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2662 {
2663 struct gem *gp = netdev_priv(dev);
2664
2665 /* Add more when I understand how to program the chip */
2666 if (gp->has_wol) {
2667 wol->supported = WOL_SUPPORTED_MASK;
2668 wol->wolopts = gp->wake_on_lan;
2669 } else {
2670 wol->supported = 0;
2671 wol->wolopts = 0;
2672 }
2673 }
2674
2675 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2676 {
2677 struct gem *gp = netdev_priv(dev);
2678
2679 if (!gp->has_wol)
2680 return -EOPNOTSUPP;
2681 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2682 return 0;
2683 }
2684
2685 static const struct ethtool_ops gem_ethtool_ops = {
2686 .get_drvinfo = gem_get_drvinfo,
2687 .get_link = ethtool_op_get_link,
2688 .nway_reset = gem_nway_reset,
2689 .get_msglevel = gem_get_msglevel,
2690 .set_msglevel = gem_set_msglevel,
2691 .get_wol = gem_get_wol,
2692 .set_wol = gem_set_wol,
2693 .get_link_ksettings = gem_get_link_ksettings,
2694 .set_link_ksettings = gem_set_link_ksettings,
2695 };
2696
2697 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2698 {
2699 struct gem *gp = netdev_priv(dev);
2700 struct mii_ioctl_data *data = if_mii(ifr);
2701 int rc = -EOPNOTSUPP;
2702
2703 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2704 * netif_device_present() is true and holds rtnl_lock for us
2705 * so we have nothing to worry about
2706 */
2707
2708 switch (cmd) {
2709 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2710 data->phy_id = gp->mii_phy_addr;
2711 /* Fallthrough... */
2712
2713 case SIOCGMIIREG: /* Read MII PHY register. */
2714 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2715 data->reg_num & 0x1f);
2716 rc = 0;
2717 break;
2718
2719 case SIOCSMIIREG: /* Write MII PHY register. */
2720 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2721 data->val_in);
2722 rc = 0;
2723 break;
2724 }
2725 return rc;
2726 }
2727
2728 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2729 /* Fetch MAC address from vital product data of PCI ROM. */
2730 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2731 {
2732 int this_offset;
2733
2734 for (this_offset = 0x20; this_offset < len; this_offset++) {
2735 void __iomem *p = rom_base + this_offset;
2736 int i;
2737
2738 if (readb(p + 0) != 0x90 ||
2739 readb(p + 1) != 0x00 ||
2740 readb(p + 2) != 0x09 ||
2741 readb(p + 3) != 0x4e ||
2742 readb(p + 4) != 0x41 ||
2743 readb(p + 5) != 0x06)
2744 continue;
2745
2746 this_offset += 6;
2747 p += 6;
2748
2749 for (i = 0; i < 6; i++)
2750 dev_addr[i] = readb(p + i);
2751 return 1;
2752 }
2753 return 0;
2754 }
2755
2756 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2757 {
2758 size_t size;
2759 void __iomem *p = pci_map_rom(pdev, &size);
2760
2761 if (p) {
2762 int found;
2763
2764 found = readb(p) == 0x55 &&
2765 readb(p + 1) == 0xaa &&
2766 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2767 pci_unmap_rom(pdev, p);
2768 if (found)
2769 return;
2770 }
2771
2772 /* Sun MAC prefix then 3 random bytes. */
2773 dev_addr[0] = 0x08;
2774 dev_addr[1] = 0x00;
2775 dev_addr[2] = 0x20;
2776 get_random_bytes(dev_addr + 3, 3);
2777 }
2778 #endif /* not Sparc and not PPC */
2779
2780 static int gem_get_device_address(struct gem *gp)
2781 {
2782 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2783 struct net_device *dev = gp->dev;
2784 const unsigned char *addr;
2785
2786 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2787 if (addr == NULL) {
2788 #ifdef CONFIG_SPARC
2789 addr = idprom->id_ethaddr;
2790 #else
2791 printk("\n");
2792 pr_err("%s: can't get mac-address\n", dev->name);
2793 return -1;
2794 #endif
2795 }
2796 memcpy(dev->dev_addr, addr, ETH_ALEN);
2797 #else
2798 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2799 #endif
2800 return 0;
2801 }
2802
2803 static void gem_remove_one(struct pci_dev *pdev)
2804 {
2805 struct net_device *dev = pci_get_drvdata(pdev);
2806
2807 if (dev) {
2808 struct gem *gp = netdev_priv(dev);
2809
2810 unregister_netdev(dev);
2811
2812 /* Ensure reset task is truly gone */
2813 cancel_work_sync(&gp->reset_task);
2814
2815 /* Free resources */
2816 pci_free_consistent(pdev,
2817 sizeof(struct gem_init_block),
2818 gp->init_block,
2819 gp->gblock_dvma);
2820 iounmap(gp->regs);
2821 pci_release_regions(pdev);
2822 free_netdev(dev);
2823 }
2824 }
2825
2826 static const struct net_device_ops gem_netdev_ops = {
2827 .ndo_open = gem_open,
2828 .ndo_stop = gem_close,
2829 .ndo_start_xmit = gem_start_xmit,
2830 .ndo_get_stats = gem_get_stats,
2831 .ndo_set_rx_mode = gem_set_multicast,
2832 .ndo_do_ioctl = gem_ioctl,
2833 .ndo_tx_timeout = gem_tx_timeout,
2834 .ndo_change_mtu = gem_change_mtu,
2835 .ndo_validate_addr = eth_validate_addr,
2836 .ndo_set_mac_address = gem_set_mac_address,
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2838 .ndo_poll_controller = gem_poll_controller,
2839 #endif
2840 };
2841
2842 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2843 {
2844 unsigned long gemreg_base, gemreg_len;
2845 struct net_device *dev;
2846 struct gem *gp;
2847 int err, pci_using_dac;
2848
2849 printk_once(KERN_INFO "%s", version);
2850
2851 /* Apple gmac note: during probe, the chip is powered up by
2852 * the arch code to allow the code below to work (and to let
2853 * the chip be probed on the config space. It won't stay powered
2854 * up until the interface is brought up however, so we can't rely
2855 * on register configuration done at this point.
2856 */
2857 err = pci_enable_device(pdev);
2858 if (err) {
2859 pr_err("Cannot enable MMIO operation, aborting\n");
2860 return err;
2861 }
2862 pci_set_master(pdev);
2863
2864 /* Configure DMA attributes. */
2865
2866 /* All of the GEM documentation states that 64-bit DMA addressing
2867 * is fully supported and should work just fine. However the
2868 * front end for RIO based GEMs is different and only supports
2869 * 32-bit addressing.
2870 *
2871 * For now we assume the various PPC GEMs are 32-bit only as well.
2872 */
2873 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2874 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2875 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2876 pci_using_dac = 1;
2877 } else {
2878 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2879 if (err) {
2880 pr_err("No usable DMA configuration, aborting\n");
2881 goto err_disable_device;
2882 }
2883 pci_using_dac = 0;
2884 }
2885
2886 gemreg_base = pci_resource_start(pdev, 0);
2887 gemreg_len = pci_resource_len(pdev, 0);
2888
2889 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2890 pr_err("Cannot find proper PCI device base address, aborting\n");
2891 err = -ENODEV;
2892 goto err_disable_device;
2893 }
2894
2895 dev = alloc_etherdev(sizeof(*gp));
2896 if (!dev) {
2897 err = -ENOMEM;
2898 goto err_disable_device;
2899 }
2900 SET_NETDEV_DEV(dev, &pdev->dev);
2901
2902 gp = netdev_priv(dev);
2903
2904 err = pci_request_regions(pdev, DRV_NAME);
2905 if (err) {
2906 pr_err("Cannot obtain PCI resources, aborting\n");
2907 goto err_out_free_netdev;
2908 }
2909
2910 gp->pdev = pdev;
2911 gp->dev = dev;
2912
2913 gp->msg_enable = DEFAULT_MSG;
2914
2915 timer_setup(&gp->link_timer, gem_link_timer, 0);
2916
2917 INIT_WORK(&gp->reset_task, gem_reset_task);
2918
2919 gp->lstate = link_down;
2920 gp->timer_ticks = 0;
2921 netif_carrier_off(dev);
2922
2923 gp->regs = ioremap(gemreg_base, gemreg_len);
2924 if (!gp->regs) {
2925 pr_err("Cannot map device registers, aborting\n");
2926 err = -EIO;
2927 goto err_out_free_res;
2928 }
2929
2930 /* On Apple, we want a reference to the Open Firmware device-tree
2931 * node. We use it for clock control.
2932 */
2933 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2934 gp->of_node = pci_device_to_OF_node(pdev);
2935 #endif
2936
2937 /* Only Apple version supports WOL afaik */
2938 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2939 gp->has_wol = 1;
2940
2941 /* Make sure cell is enabled */
2942 gem_get_cell(gp);
2943
2944 /* Make sure everything is stopped and in init state */
2945 gem_reset(gp);
2946
2947 /* Fill up the mii_phy structure (even if we won't use it) */
2948 gp->phy_mii.dev = dev;
2949 gp->phy_mii.mdio_read = _sungem_phy_read;
2950 gp->phy_mii.mdio_write = _sungem_phy_write;
2951 #ifdef CONFIG_PPC_PMAC
2952 gp->phy_mii.platform_data = gp->of_node;
2953 #endif
2954 /* By default, we start with autoneg */
2955 gp->want_autoneg = 1;
2956
2957 /* Check fifo sizes, PHY type, etc... */
2958 if (gem_check_invariants(gp)) {
2959 err = -ENODEV;
2960 goto err_out_iounmap;
2961 }
2962
2963 /* It is guaranteed that the returned buffer will be at least
2964 * PAGE_SIZE aligned.
2965 */
2966 gp->init_block = (struct gem_init_block *)
2967 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2968 &gp->gblock_dvma);
2969 if (!gp->init_block) {
2970 pr_err("Cannot allocate init block, aborting\n");
2971 err = -ENOMEM;
2972 goto err_out_iounmap;
2973 }
2974
2975 err = gem_get_device_address(gp);
2976 if (err)
2977 goto err_out_free_consistent;
2978
2979 dev->netdev_ops = &gem_netdev_ops;
2980 netif_napi_add(dev, &gp->napi, gem_poll, 64);
2981 dev->ethtool_ops = &gem_ethtool_ops;
2982 dev->watchdog_timeo = 5 * HZ;
2983 dev->dma = 0;
2984
2985 /* Set that now, in case PM kicks in now */
2986 pci_set_drvdata(pdev, dev);
2987
2988 /* We can do scatter/gather and HW checksum */
2989 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2990 dev->features = dev->hw_features;
2991 if (pci_using_dac)
2992 dev->features |= NETIF_F_HIGHDMA;
2993
2994 /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2995 dev->min_mtu = GEM_MIN_MTU;
2996 dev->max_mtu = GEM_MAX_MTU;
2997
2998 /* Register with kernel */
2999 if (register_netdev(dev)) {
3000 pr_err("Cannot register net device, aborting\n");
3001 err = -ENOMEM;
3002 goto err_out_free_consistent;
3003 }
3004
3005 /* Undo the get_cell with appropriate locking (we could use
3006 * ndo_init/uninit but that would be even more clumsy imho)
3007 */
3008 rtnl_lock();
3009 gem_put_cell(gp);
3010 rtnl_unlock();
3011
3012 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3013 dev->dev_addr);
3014 return 0;
3015
3016 err_out_free_consistent:
3017 gem_remove_one(pdev);
3018 err_out_iounmap:
3019 gem_put_cell(gp);
3020 iounmap(gp->regs);
3021
3022 err_out_free_res:
3023 pci_release_regions(pdev);
3024
3025 err_out_free_netdev:
3026 free_netdev(dev);
3027 err_disable_device:
3028 pci_disable_device(pdev);
3029 return err;
3030
3031 }
3032
3033
3034 static struct pci_driver gem_driver = {
3035 .name = GEM_MODULE_NAME,
3036 .id_table = gem_pci_tbl,
3037 .probe = gem_init_one,
3038 .remove = gem_remove_one,
3039 #ifdef CONFIG_PM
3040 .suspend = gem_suspend,
3041 .resume = gem_resume,
3042 #endif /* CONFIG_PM */
3043 };
3044
3045 module_pci_driver(gem_driver);