]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/tehuti/tehuti.c
ASoC: ux500: Restore platform DAI assignments
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / tehuti / tehuti.c
1 /*
2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12 /*
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels between driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
25 *
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
30 * RXD Fifo.
31 *
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
41 *
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
51 *
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
55
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
62 *
63 */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67 #include "tehuti.h"
68
69 static const struct pci_device_id bdx_pci_tbl[] = {
70 { PCI_VDEVICE(TEHUTI, 0x3009), },
71 { PCI_VDEVICE(TEHUTI, 0x3010), },
72 { PCI_VDEVICE(TEHUTI, 0x3014), },
73 { 0 }
74 };
75
76 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
77
78 /* Definitions needed by ISR or NAPI functions */
79 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
80 static void bdx_tx_cleanup(struct bdx_priv *priv);
81 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
82
83 /* Definitions needed by FW loading */
84 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
85
86 /* Definitions needed by hw_start */
87 static int bdx_tx_init(struct bdx_priv *priv);
88 static int bdx_rx_init(struct bdx_priv *priv);
89
90 /* Definitions needed by bdx_close */
91 static void bdx_rx_free(struct bdx_priv *priv);
92 static void bdx_tx_free(struct bdx_priv *priv);
93
94 /* Definitions needed by bdx_probe */
95 static void bdx_set_ethtool_ops(struct net_device *netdev);
96
97 /*************************************************************************
98 * Print Info *
99 *************************************************************************/
100
101 static void print_hw_id(struct pci_dev *pdev)
102 {
103 struct pci_nic *nic = pci_get_drvdata(pdev);
104 u16 pci_link_status = 0;
105 u16 pci_ctrl = 0;
106
107 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
108 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
109
110 pr_info("%s%s\n", BDX_NIC_NAME,
111 nic->port_num == 1 ? "" : ", 2-Port");
112 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
113 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
114 readl(nic->regs + FPGA_SEED),
115 GET_LINK_STATUS_LANES(pci_link_status),
116 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
117 }
118
119 static void print_fw_id(struct pci_nic *nic)
120 {
121 pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
122 }
123
124 static void print_eth_id(struct net_device *ndev)
125 {
126 netdev_info(ndev, "%s, Port %c\n",
127 BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
128
129 }
130
131 /*************************************************************************
132 * Code *
133 *************************************************************************/
134
135 #define bdx_enable_interrupts(priv) \
136 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
137 #define bdx_disable_interrupts(priv) \
138 do { WRITE_REG(priv, regIMR, 0); } while (0)
139
140 /**
141 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
142 * @priv: NIC private structure
143 * @f: fifo to initialize
144 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
145 * @reg_XXX: offsets of registers relative to base address
146 *
147 * 1K extra space is allocated at the end of the fifo to simplify
148 * processing of descriptors that wraps around fifo's end
149 *
150 * Returns 0 on success, negative value on failure
151 *
152 */
153 static int
154 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
155 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
156 {
157 u16 memsz = FIFO_SIZE * (1 << fsz_type);
158
159 memset(f, 0, sizeof(struct fifo));
160 /* pci_alloc_consistent gives us 4k-aligned memory */
161 f->va = pci_alloc_consistent(priv->pdev,
162 memsz + FIFO_EXTRA_SPACE, &f->da);
163 if (!f->va) {
164 pr_err("pci_alloc_consistent failed\n");
165 RET(-ENOMEM);
166 }
167 f->reg_CFG0 = reg_CFG0;
168 f->reg_CFG1 = reg_CFG1;
169 f->reg_RPTR = reg_RPTR;
170 f->reg_WPTR = reg_WPTR;
171 f->rptr = 0;
172 f->wptr = 0;
173 f->memsz = memsz;
174 f->size_mask = memsz - 1;
175 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
176 WRITE_REG(priv, reg_CFG1, H32_64(f->da));
177
178 RET(0);
179 }
180
181 /**
182 * bdx_fifo_free - free all resources used by fifo
183 * @priv: NIC private structure
184 * @f: fifo to release
185 */
186 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
187 {
188 ENTER;
189 if (f->va) {
190 pci_free_consistent(priv->pdev,
191 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
192 f->va = NULL;
193 }
194 RET();
195 }
196
197 /**
198 * bdx_link_changed - notifies OS about hw link state.
199 * @priv: hw adapter structure
200 */
201 static void bdx_link_changed(struct bdx_priv *priv)
202 {
203 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
204
205 if (!link) {
206 if (netif_carrier_ok(priv->ndev)) {
207 netif_stop_queue(priv->ndev);
208 netif_carrier_off(priv->ndev);
209 netdev_err(priv->ndev, "Link Down\n");
210 }
211 } else {
212 if (!netif_carrier_ok(priv->ndev)) {
213 netif_wake_queue(priv->ndev);
214 netif_carrier_on(priv->ndev);
215 netdev_err(priv->ndev, "Link Up\n");
216 }
217 }
218 }
219
220 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
221 {
222 if (isr & IR_RX_FREE_0) {
223 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
224 DBG("RX_FREE_0\n");
225 }
226
227 if (isr & IR_LNKCHG0)
228 bdx_link_changed(priv);
229
230 if (isr & IR_PCIE_LINK)
231 netdev_err(priv->ndev, "PCI-E Link Fault\n");
232
233 if (isr & IR_PCIE_TOUT)
234 netdev_err(priv->ndev, "PCI-E Time Out\n");
235
236 }
237
238 /**
239 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
240 * @irq: interrupt number
241 * @dev: network device
242 *
243 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
244 *
245 * It reads ISR register to know interrupt reasons, and proceed them one by one.
246 * Reasons of interest are:
247 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
248 * RX_FREE - number of free Rx buffers in RXF fifo gets low
249 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
250 */
251
252 static irqreturn_t bdx_isr_napi(int irq, void *dev)
253 {
254 struct net_device *ndev = dev;
255 struct bdx_priv *priv = netdev_priv(ndev);
256 u32 isr;
257
258 ENTER;
259 isr = (READ_REG(priv, regISR) & IR_RUN);
260 if (unlikely(!isr)) {
261 bdx_enable_interrupts(priv);
262 return IRQ_NONE; /* Not our interrupt */
263 }
264
265 if (isr & IR_EXTRA)
266 bdx_isr_extra(priv, isr);
267
268 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
269 if (likely(napi_schedule_prep(&priv->napi))) {
270 __napi_schedule(&priv->napi);
271 RET(IRQ_HANDLED);
272 } else {
273 /* NOTE: we get here if intr has slipped into window
274 * between these lines in bdx_poll:
275 * bdx_enable_interrupts(priv);
276 * return 0;
277 * currently intrs are disabled (since we read ISR),
278 * and we have failed to register next poll.
279 * so we read the regs to trigger chip
280 * and allow further interupts. */
281 READ_REG(priv, regTXF_WPTR_0);
282 READ_REG(priv, regRXD_WPTR_0);
283 }
284 }
285
286 bdx_enable_interrupts(priv);
287 RET(IRQ_HANDLED);
288 }
289
290 static int bdx_poll(struct napi_struct *napi, int budget)
291 {
292 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
293 int work_done;
294
295 ENTER;
296 bdx_tx_cleanup(priv);
297 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
298 if ((work_done < budget) ||
299 (priv->napi_stop++ >= 30)) {
300 DBG("rx poll is done. backing to isr-driven\n");
301
302 /* from time to time we exit to let NAPI layer release
303 * device lock and allow waiting tasks (eg rmmod) to advance) */
304 priv->napi_stop = 0;
305
306 napi_complete_done(napi, work_done);
307 bdx_enable_interrupts(priv);
308 }
309 return work_done;
310 }
311
312 /**
313 * bdx_fw_load - loads firmware to NIC
314 * @priv: NIC private structure
315 *
316 * Firmware is loaded via TXD fifo, so it must be initialized first.
317 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
318 * can have few of them). So all drivers use semaphore register to choose one
319 * that will actually load FW to NIC.
320 */
321
322 static int bdx_fw_load(struct bdx_priv *priv)
323 {
324 const struct firmware *fw = NULL;
325 int master, i;
326 int rc;
327
328 ENTER;
329 master = READ_REG(priv, regINIT_SEMAPHORE);
330 if (!READ_REG(priv, regINIT_STATUS) && master) {
331 rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
332 if (rc)
333 goto out;
334 bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
335 mdelay(100);
336 }
337 for (i = 0; i < 200; i++) {
338 if (READ_REG(priv, regINIT_STATUS)) {
339 rc = 0;
340 goto out;
341 }
342 mdelay(2);
343 }
344 rc = -EIO;
345 out:
346 if (master)
347 WRITE_REG(priv, regINIT_SEMAPHORE, 1);
348
349 release_firmware(fw);
350
351 if (rc) {
352 netdev_err(priv->ndev, "firmware loading failed\n");
353 if (rc == -EIO)
354 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
355 READ_REG(priv, regVPC),
356 READ_REG(priv, regVIC),
357 READ_REG(priv, regINIT_STATUS), i);
358 RET(rc);
359 } else {
360 DBG("%s: firmware loading success\n", priv->ndev->name);
361 RET(0);
362 }
363 }
364
365 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
366 {
367 u32 val;
368
369 ENTER;
370 DBG("mac0=%x mac1=%x mac2=%x\n",
371 READ_REG(priv, regUNC_MAC0_A),
372 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
373
374 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
375 WRITE_REG(priv, regUNC_MAC2_A, val);
376 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
377 WRITE_REG(priv, regUNC_MAC1_A, val);
378 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
379 WRITE_REG(priv, regUNC_MAC0_A, val);
380
381 DBG("mac0=%x mac1=%x mac2=%x\n",
382 READ_REG(priv, regUNC_MAC0_A),
383 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
384 RET();
385 }
386
387 /**
388 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
389 * @priv: NIC private structure
390 */
391 static int bdx_hw_start(struct bdx_priv *priv)
392 {
393 int rc = -EIO;
394 struct net_device *ndev = priv->ndev;
395
396 ENTER;
397 bdx_link_changed(priv);
398
399 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
400 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
401 WRITE_REG(priv, regPAUSE_QUANT, 0x96);
402 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
403 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
404 WRITE_REG(priv, regRX_FULLNESS, 0);
405 WRITE_REG(priv, regTX_FULLNESS, 0);
406 WRITE_REG(priv, regCTRLST,
407 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
408
409 WRITE_REG(priv, regVGLB, 0);
410 WRITE_REG(priv, regMAX_FRAME_A,
411 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
412
413 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
414 WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
415 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
416
417 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
418 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
419
420 /* Enable timer interrupt once in 2 secs. */
421 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
422 bdx_restore_mac(priv->ndev, priv);
423
424 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
425 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
426
427 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
428
429 rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
430 ndev->name, ndev);
431 if (rc)
432 goto err_irq;
433 bdx_enable_interrupts(priv);
434
435 RET(0);
436
437 err_irq:
438 RET(rc);
439 }
440
441 static void bdx_hw_stop(struct bdx_priv *priv)
442 {
443 ENTER;
444 bdx_disable_interrupts(priv);
445 free_irq(priv->pdev->irq, priv->ndev);
446
447 netif_carrier_off(priv->ndev);
448 netif_stop_queue(priv->ndev);
449
450 RET();
451 }
452
453 static int bdx_hw_reset_direct(void __iomem *regs)
454 {
455 u32 val, i;
456 ENTER;
457
458 /* reset sequences: read, write 1, read, write 0 */
459 val = readl(regs + regCLKPLL);
460 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
461 udelay(50);
462 val = readl(regs + regCLKPLL);
463 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
464
465 /* check that the PLLs are locked and reset ended */
466 for (i = 0; i < 70; i++, mdelay(10))
467 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
468 /* do any PCI-E read transaction */
469 readl(regs + regRXD_CFG0_0);
470 return 0;
471 }
472 pr_err("HW reset failed\n");
473 return 1; /* failure */
474 }
475
476 static int bdx_hw_reset(struct bdx_priv *priv)
477 {
478 u32 val, i;
479 ENTER;
480
481 if (priv->port == 0) {
482 /* reset sequences: read, write 1, read, write 0 */
483 val = READ_REG(priv, regCLKPLL);
484 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
485 udelay(50);
486 val = READ_REG(priv, regCLKPLL);
487 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
488 }
489 /* check that the PLLs are locked and reset ended */
490 for (i = 0; i < 70; i++, mdelay(10))
491 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
492 /* do any PCI-E read transaction */
493 READ_REG(priv, regRXD_CFG0_0);
494 return 0;
495 }
496 pr_err("HW reset failed\n");
497 return 1; /* failure */
498 }
499
500 static int bdx_sw_reset(struct bdx_priv *priv)
501 {
502 int i;
503
504 ENTER;
505 /* 1. load MAC (obsolete) */
506 /* 2. disable Rx (and Tx) */
507 WRITE_REG(priv, regGMAC_RXF_A, 0);
508 mdelay(100);
509 /* 3. disable port */
510 WRITE_REG(priv, regDIS_PORT, 1);
511 /* 4. disable queue */
512 WRITE_REG(priv, regDIS_QU, 1);
513 /* 5. wait until hw is disabled */
514 for (i = 0; i < 50; i++) {
515 if (READ_REG(priv, regRST_PORT) & 1)
516 break;
517 mdelay(10);
518 }
519 if (i == 50)
520 netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
521
522 /* 6. disable intrs */
523 WRITE_REG(priv, regRDINTCM0, 0);
524 WRITE_REG(priv, regTDINTCM0, 0);
525 WRITE_REG(priv, regIMR, 0);
526 READ_REG(priv, regISR);
527
528 /* 7. reset queue */
529 WRITE_REG(priv, regRST_QU, 1);
530 /* 8. reset port */
531 WRITE_REG(priv, regRST_PORT, 1);
532 /* 9. zero all read and write pointers */
533 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
534 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
535 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
536 WRITE_REG(priv, i, 0);
537 /* 10. unseet port disable */
538 WRITE_REG(priv, regDIS_PORT, 0);
539 /* 11. unset queue disable */
540 WRITE_REG(priv, regDIS_QU, 0);
541 /* 12. unset queue reset */
542 WRITE_REG(priv, regRST_QU, 0);
543 /* 13. unset port reset */
544 WRITE_REG(priv, regRST_PORT, 0);
545 /* 14. enable Rx */
546 /* skiped. will be done later */
547 /* 15. save MAC (obsolete) */
548 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
549 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
550
551 RET(0);
552 }
553
554 /* bdx_reset - performs right type of reset depending on hw type */
555 static int bdx_reset(struct bdx_priv *priv)
556 {
557 ENTER;
558 RET((priv->pdev->device == 0x3009)
559 ? bdx_hw_reset(priv)
560 : bdx_sw_reset(priv));
561 }
562
563 /**
564 * bdx_close - Disables a network interface
565 * @netdev: network interface device structure
566 *
567 * Returns 0, this is not allowed to fail
568 *
569 * The close entry point is called when an interface is de-activated
570 * by the OS. The hardware is still under the drivers control, but
571 * needs to be disabled. A global MAC reset is issued to stop the
572 * hardware, and all transmit and receive resources are freed.
573 **/
574 static int bdx_close(struct net_device *ndev)
575 {
576 struct bdx_priv *priv = NULL;
577
578 ENTER;
579 priv = netdev_priv(ndev);
580
581 napi_disable(&priv->napi);
582
583 bdx_reset(priv);
584 bdx_hw_stop(priv);
585 bdx_rx_free(priv);
586 bdx_tx_free(priv);
587 RET(0);
588 }
589
590 /**
591 * bdx_open - Called when a network interface is made active
592 * @netdev: network interface device structure
593 *
594 * Returns 0 on success, negative value on failure
595 *
596 * The open entry point is called when a network interface is made
597 * active by the system (IFF_UP). At this point all resources needed
598 * for transmit and receive operations are allocated, the interrupt
599 * handler is registered with the OS, the watchdog timer is started,
600 * and the stack is notified that the interface is ready.
601 **/
602 static int bdx_open(struct net_device *ndev)
603 {
604 struct bdx_priv *priv;
605 int rc;
606
607 ENTER;
608 priv = netdev_priv(ndev);
609 bdx_reset(priv);
610 if (netif_running(ndev))
611 netif_stop_queue(priv->ndev);
612
613 if ((rc = bdx_tx_init(priv)) ||
614 (rc = bdx_rx_init(priv)) ||
615 (rc = bdx_fw_load(priv)))
616 goto err;
617
618 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
619
620 rc = bdx_hw_start(priv);
621 if (rc)
622 goto err;
623
624 napi_enable(&priv->napi);
625
626 print_fw_id(priv->nic);
627
628 RET(0);
629
630 err:
631 bdx_close(ndev);
632 RET(rc);
633 }
634
635 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
636 {
637 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
638 -EINVAL : 0;
639 }
640
641 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
642 {
643 struct bdx_priv *priv = netdev_priv(ndev);
644 u32 data[3];
645 int error;
646
647 ENTER;
648
649 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
650 if (cmd != SIOCDEVPRIVATE) {
651 error = copy_from_user(data, ifr->ifr_data, sizeof(data));
652 if (error) {
653 pr_err("can't copy from user\n");
654 RET(-EFAULT);
655 }
656 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
657 }
658
659 if (!capable(CAP_SYS_RAWIO))
660 return -EPERM;
661
662 switch (data[0]) {
663
664 case BDX_OP_READ:
665 error = bdx_range_check(priv, data[1]);
666 if (error < 0)
667 return error;
668 data[2] = READ_REG(priv, data[1]);
669 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
670 data[2]);
671 error = copy_to_user(ifr->ifr_data, data, sizeof(data));
672 if (error)
673 RET(-EFAULT);
674 break;
675
676 case BDX_OP_WRITE:
677 error = bdx_range_check(priv, data[1]);
678 if (error < 0)
679 return error;
680 WRITE_REG(priv, data[1], data[2]);
681 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
682 break;
683
684 default:
685 RET(-EOPNOTSUPP);
686 }
687 return 0;
688 }
689
690 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
691 {
692 ENTER;
693 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
694 RET(bdx_ioctl_priv(ndev, ifr, cmd));
695 else
696 RET(-EOPNOTSUPP);
697 }
698
699 /**
700 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
701 * @ndev: network device
702 * @vid: VLAN vid
703 * @op: add or kill operation
704 *
705 * Passes VLAN filter table to hardware
706 */
707 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
708 {
709 struct bdx_priv *priv = netdev_priv(ndev);
710 u32 reg, bit, val;
711
712 ENTER;
713 DBG2("vid=%d value=%d\n", (int)vid, enable);
714 if (unlikely(vid >= 4096)) {
715 pr_err("invalid VID: %u (> 4096)\n", vid);
716 RET();
717 }
718 reg = regVLAN_0 + (vid / 32) * 4;
719 bit = 1 << vid % 32;
720 val = READ_REG(priv, reg);
721 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
722 if (enable)
723 val |= bit;
724 else
725 val &= ~bit;
726 DBG2("new val %x\n", val);
727 WRITE_REG(priv, reg, val);
728 RET();
729 }
730
731 /**
732 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
733 * @ndev: network device
734 * @vid: VLAN vid to add
735 */
736 static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
737 {
738 __bdx_vlan_rx_vid(ndev, vid, 1);
739 return 0;
740 }
741
742 /**
743 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
744 * @ndev: network device
745 * @vid: VLAN vid to kill
746 */
747 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
748 {
749 __bdx_vlan_rx_vid(ndev, vid, 0);
750 return 0;
751 }
752
753 /**
754 * bdx_change_mtu - Change the Maximum Transfer Unit
755 * @netdev: network interface device structure
756 * @new_mtu: new value for maximum frame size
757 *
758 * Returns 0 on success, negative on failure
759 */
760 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
761 {
762 ENTER;
763
764 ndev->mtu = new_mtu;
765 if (netif_running(ndev)) {
766 bdx_close(ndev);
767 bdx_open(ndev);
768 }
769 RET(0);
770 }
771
772 static void bdx_setmulti(struct net_device *ndev)
773 {
774 struct bdx_priv *priv = netdev_priv(ndev);
775
776 u32 rxf_val =
777 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
778 int i;
779
780 ENTER;
781 /* IMF - imperfect (hash) rx multicat filter */
782 /* PMF - perfect rx multicat filter */
783
784 /* FIXME: RXE(OFF) */
785 if (ndev->flags & IFF_PROMISC) {
786 rxf_val |= GMAC_RX_FILTER_PRM;
787 } else if (ndev->flags & IFF_ALLMULTI) {
788 /* set IMF to accept all multicast frmaes */
789 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
790 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
791 } else if (!netdev_mc_empty(ndev)) {
792 u8 hash;
793 struct netdev_hw_addr *ha;
794 u32 reg, val;
795
796 /* set IMF to deny all multicast frames */
797 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
798 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
799 /* set PMF to deny all multicast frames */
800 for (i = 0; i < MAC_MCST_NUM; i++) {
801 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
802 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
803 }
804
805 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
806 /* TBD: sort addresses and write them in ascending order
807 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
808 * multicast frames throu IMF */
809 /* accept the rest of addresses throu IMF */
810 netdev_for_each_mc_addr(ha, ndev) {
811 hash = 0;
812 for (i = 0; i < ETH_ALEN; i++)
813 hash ^= ha->addr[i];
814 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
815 val = READ_REG(priv, reg);
816 val |= (1 << (hash % 32));
817 WRITE_REG(priv, reg, val);
818 }
819
820 } else {
821 DBG("only own mac %d\n", netdev_mc_count(ndev));
822 rxf_val |= GMAC_RX_FILTER_AB;
823 }
824 WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
825 /* enable RX */
826 /* FIXME: RXE(ON) */
827 RET();
828 }
829
830 static int bdx_set_mac(struct net_device *ndev, void *p)
831 {
832 struct bdx_priv *priv = netdev_priv(ndev);
833 struct sockaddr *addr = p;
834
835 ENTER;
836 /*
837 if (netif_running(dev))
838 return -EBUSY
839 */
840 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
841 bdx_restore_mac(ndev, priv);
842 RET(0);
843 }
844
845 static int bdx_read_mac(struct bdx_priv *priv)
846 {
847 u16 macAddress[3], i;
848 ENTER;
849
850 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
851 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
852 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
853 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
854 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
855 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
856 for (i = 0; i < 3; i++) {
857 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
858 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
859 }
860 RET(0);
861 }
862
863 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
864 {
865 u64 val;
866
867 val = READ_REG(priv, reg);
868 val |= ((u64) READ_REG(priv, reg + 8)) << 32;
869 return val;
870 }
871
872 /*Do the statistics-update work*/
873 static void bdx_update_stats(struct bdx_priv *priv)
874 {
875 struct bdx_stats *stats = &priv->hw_stats;
876 u64 *stats_vector = (u64 *) stats;
877 int i;
878 int addr;
879
880 /*Fill HW structure */
881 addr = 0x7200;
882 /*First 12 statistics - 0x7200 - 0x72B0 */
883 for (i = 0; i < 12; i++) {
884 stats_vector[i] = bdx_read_l2stat(priv, addr);
885 addr += 0x10;
886 }
887 BDX_ASSERT(addr != 0x72C0);
888 /* 0x72C0-0x72E0 RSRV */
889 addr = 0x72F0;
890 for (; i < 16; i++) {
891 stats_vector[i] = bdx_read_l2stat(priv, addr);
892 addr += 0x10;
893 }
894 BDX_ASSERT(addr != 0x7330);
895 /* 0x7330-0x7360 RSRV */
896 addr = 0x7370;
897 for (; i < 19; i++) {
898 stats_vector[i] = bdx_read_l2stat(priv, addr);
899 addr += 0x10;
900 }
901 BDX_ASSERT(addr != 0x73A0);
902 /* 0x73A0-0x73B0 RSRV */
903 addr = 0x73C0;
904 for (; i < 23; i++) {
905 stats_vector[i] = bdx_read_l2stat(priv, addr);
906 addr += 0x10;
907 }
908 BDX_ASSERT(addr != 0x7400);
909 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
910 }
911
912 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
913 u16 rxd_vlan);
914 static void print_rxfd(struct rxf_desc *rxfd);
915
916 /*************************************************************************
917 * Rx DB *
918 *************************************************************************/
919
920 static void bdx_rxdb_destroy(struct rxdb *db)
921 {
922 vfree(db);
923 }
924
925 static struct rxdb *bdx_rxdb_create(int nelem)
926 {
927 struct rxdb *db;
928 int i;
929
930 db = vmalloc(sizeof(struct rxdb)
931 + (nelem * sizeof(int))
932 + (nelem * sizeof(struct rx_map)));
933 if (likely(db != NULL)) {
934 db->stack = (int *)(db + 1);
935 db->elems = (void *)(db->stack + nelem);
936 db->nelem = nelem;
937 db->top = nelem;
938 for (i = 0; i < nelem; i++)
939 db->stack[i] = nelem - i - 1; /* to make first allocs
940 close to db struct*/
941 }
942
943 return db;
944 }
945
946 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
947 {
948 BDX_ASSERT(db->top <= 0);
949 return db->stack[--(db->top)];
950 }
951
952 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
953 {
954 BDX_ASSERT((n < 0) || (n >= db->nelem));
955 return db->elems + n;
956 }
957
958 static inline int bdx_rxdb_available(struct rxdb *db)
959 {
960 return db->top;
961 }
962
963 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
964 {
965 BDX_ASSERT((n >= db->nelem) || (n < 0));
966 db->stack[(db->top)++] = n;
967 }
968
969 /*************************************************************************
970 * Rx Init *
971 *************************************************************************/
972
973 /**
974 * bdx_rx_init - initialize RX all related HW and SW resources
975 * @priv: NIC private structure
976 *
977 * Returns 0 on success, negative value on failure
978 *
979 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
980 * skb for rx. It assumes that Rx is desabled in HW
981 * funcs are grouped for better cache usage
982 *
983 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
984 * filled and packets will be dropped by nic without getting into host or
985 * cousing interrupt. Anyway, in that condition, host has no chance to process
986 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
987 */
988
989 /* TBD: ensure proper packet size */
990
991 static int bdx_rx_init(struct bdx_priv *priv)
992 {
993 ENTER;
994
995 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
996 regRXD_CFG0_0, regRXD_CFG1_0,
997 regRXD_RPTR_0, regRXD_WPTR_0))
998 goto err_mem;
999 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1000 regRXF_CFG0_0, regRXF_CFG1_0,
1001 regRXF_RPTR_0, regRXF_WPTR_0))
1002 goto err_mem;
1003 priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1004 sizeof(struct rxf_desc));
1005 if (!priv->rxdb)
1006 goto err_mem;
1007
1008 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1009 return 0;
1010
1011 err_mem:
1012 netdev_err(priv->ndev, "Rx init failed\n");
1013 return -ENOMEM;
1014 }
1015
1016 /**
1017 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1018 * @priv: NIC private structure
1019 * @f: RXF fifo
1020 */
1021 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1022 {
1023 struct rx_map *dm;
1024 struct rxdb *db = priv->rxdb;
1025 u16 i;
1026
1027 ENTER;
1028 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1029 db->nelem - bdx_rxdb_available(db));
1030 while (bdx_rxdb_available(db) > 0) {
1031 i = bdx_rxdb_alloc_elem(db);
1032 dm = bdx_rxdb_addr_elem(db, i);
1033 dm->dma = 0;
1034 }
1035 for (i = 0; i < db->nelem; i++) {
1036 dm = bdx_rxdb_addr_elem(db, i);
1037 if (dm->dma) {
1038 pci_unmap_single(priv->pdev,
1039 dm->dma, f->m.pktsz,
1040 PCI_DMA_FROMDEVICE);
1041 dev_kfree_skb(dm->skb);
1042 }
1043 }
1044 }
1045
1046 /**
1047 * bdx_rx_free - release all Rx resources
1048 * @priv: NIC private structure
1049 *
1050 * It assumes that Rx is desabled in HW
1051 */
1052 static void bdx_rx_free(struct bdx_priv *priv)
1053 {
1054 ENTER;
1055 if (priv->rxdb) {
1056 bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1057 bdx_rxdb_destroy(priv->rxdb);
1058 priv->rxdb = NULL;
1059 }
1060 bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1061 bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1062
1063 RET();
1064 }
1065
1066 /*************************************************************************
1067 * Rx Engine *
1068 *************************************************************************/
1069
1070 /**
1071 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1072 * @priv: nic's private structure
1073 * @f: RXF fifo that needs skbs
1074 *
1075 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1076 * skb's virtual and physical addresses are stored in skb db.
1077 * To calculate free space, func uses cached values of RPTR and WPTR
1078 * When needed, it also updates RPTR and WPTR.
1079 */
1080
1081 /* TBD: do not update WPTR if no desc were written */
1082
1083 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1084 {
1085 struct sk_buff *skb;
1086 struct rxf_desc *rxfd;
1087 struct rx_map *dm;
1088 int dno, delta, idx;
1089 struct rxdb *db = priv->rxdb;
1090
1091 ENTER;
1092 dno = bdx_rxdb_available(db) - 1;
1093 while (dno > 0) {
1094 skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1095 if (!skb)
1096 break;
1097
1098 skb_reserve(skb, NET_IP_ALIGN);
1099
1100 idx = bdx_rxdb_alloc_elem(db);
1101 dm = bdx_rxdb_addr_elem(db, idx);
1102 dm->dma = pci_map_single(priv->pdev,
1103 skb->data, f->m.pktsz,
1104 PCI_DMA_FROMDEVICE);
1105 dm->skb = skb;
1106 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1107 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1108 rxfd->va_lo = idx;
1109 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1110 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1111 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1112 print_rxfd(rxfd);
1113
1114 f->m.wptr += sizeof(struct rxf_desc);
1115 delta = f->m.wptr - f->m.memsz;
1116 if (unlikely(delta >= 0)) {
1117 f->m.wptr = delta;
1118 if (delta > 0) {
1119 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1120 DBG("wrapped descriptor\n");
1121 }
1122 }
1123 dno--;
1124 }
1125 /*TBD: to do - delayed rxf wptr like in txd */
1126 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1127 RET();
1128 }
1129
1130 static inline void
1131 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1132 struct sk_buff *skb)
1133 {
1134 ENTER;
1135 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1136 if (GET_RXD_VTAG(rxd_val1)) {
1137 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1138 priv->ndev->name,
1139 GET_RXD_VLAN_ID(rxd_vlan),
1140 GET_RXD_VTAG(rxd_val1));
1141 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1142 }
1143 netif_receive_skb(skb);
1144 }
1145
1146 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1147 {
1148 struct rxf_desc *rxfd;
1149 struct rx_map *dm;
1150 struct rxf_fifo *f;
1151 struct rxdb *db;
1152 struct sk_buff *skb;
1153 int delta;
1154
1155 ENTER;
1156 DBG("priv=%p rxdd=%p\n", priv, rxdd);
1157 f = &priv->rxf_fifo0;
1158 db = priv->rxdb;
1159 DBG("db=%p f=%p\n", db, f);
1160 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1161 DBG("dm=%p\n", dm);
1162 skb = dm->skb;
1163 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1164 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1165 rxfd->va_lo = rxdd->va_lo;
1166 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1167 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1168 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1169 print_rxfd(rxfd);
1170
1171 f->m.wptr += sizeof(struct rxf_desc);
1172 delta = f->m.wptr - f->m.memsz;
1173 if (unlikely(delta >= 0)) {
1174 f->m.wptr = delta;
1175 if (delta > 0) {
1176 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1177 DBG("wrapped descriptor\n");
1178 }
1179 }
1180 RET();
1181 }
1182
1183 /**
1184 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1185 * NOTE: a special treatment is given to non-continuous descriptors
1186 * that start near the end, wraps around and continue at the beginning. a second
1187 * part is copied right after the first, and then descriptor is interpreted as
1188 * normal. fifo has an extra space to allow such operations
1189 * @priv: nic's private structure
1190 * @f: RXF fifo that needs skbs
1191 * @budget: maximum number of packets to receive
1192 */
1193
1194 /* TBD: replace memcpy func call by explicite inline asm */
1195
1196 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1197 {
1198 struct net_device *ndev = priv->ndev;
1199 struct sk_buff *skb, *skb2;
1200 struct rxd_desc *rxdd;
1201 struct rx_map *dm;
1202 struct rxf_fifo *rxf_fifo;
1203 int tmp_len, size;
1204 int done = 0;
1205 int max_done = BDX_MAX_RX_DONE;
1206 struct rxdb *db = NULL;
1207 /* Unmarshalled descriptor - copy of descriptor in host order */
1208 u32 rxd_val1;
1209 u16 len;
1210 u16 rxd_vlan;
1211
1212 ENTER;
1213 max_done = budget;
1214
1215 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1216
1217 size = f->m.wptr - f->m.rptr;
1218 if (size < 0)
1219 size = f->m.memsz + size; /* size is negative :-) */
1220
1221 while (size > 0) {
1222
1223 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1224 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1225
1226 len = CPU_CHIP_SWAP16(rxdd->len);
1227
1228 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1229
1230 print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1231
1232 tmp_len = GET_RXD_BC(rxd_val1) << 3;
1233 BDX_ASSERT(tmp_len <= 0);
1234 size -= tmp_len;
1235 if (size < 0) /* test for partially arrived descriptor */
1236 break;
1237
1238 f->m.rptr += tmp_len;
1239
1240 tmp_len = f->m.rptr - f->m.memsz;
1241 if (unlikely(tmp_len >= 0)) {
1242 f->m.rptr = tmp_len;
1243 if (tmp_len > 0) {
1244 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1245 f->m.rptr, tmp_len);
1246 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1247 }
1248 }
1249
1250 if (unlikely(GET_RXD_ERR(rxd_val1))) {
1251 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1252 ndev->stats.rx_errors++;
1253 bdx_recycle_skb(priv, rxdd);
1254 continue;
1255 }
1256
1257 rxf_fifo = &priv->rxf_fifo0;
1258 db = priv->rxdb;
1259 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1260 skb = dm->skb;
1261
1262 if (len < BDX_COPYBREAK &&
1263 (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1264 skb_reserve(skb2, NET_IP_ALIGN);
1265 /*skb_put(skb2, len); */
1266 pci_dma_sync_single_for_cpu(priv->pdev,
1267 dm->dma, rxf_fifo->m.pktsz,
1268 PCI_DMA_FROMDEVICE);
1269 memcpy(skb2->data, skb->data, len);
1270 bdx_recycle_skb(priv, rxdd);
1271 skb = skb2;
1272 } else {
1273 pci_unmap_single(priv->pdev,
1274 dm->dma, rxf_fifo->m.pktsz,
1275 PCI_DMA_FROMDEVICE);
1276 bdx_rxdb_free_elem(db, rxdd->va_lo);
1277 }
1278
1279 ndev->stats.rx_bytes += len;
1280
1281 skb_put(skb, len);
1282 skb->protocol = eth_type_trans(skb, ndev);
1283
1284 /* Non-IP packets aren't checksum-offloaded */
1285 if (GET_RXD_PKT_ID(rxd_val1) == 0)
1286 skb_checksum_none_assert(skb);
1287 else
1288 skb->ip_summed = CHECKSUM_UNNECESSARY;
1289
1290 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1291
1292 if (++done >= max_done)
1293 break;
1294 }
1295
1296 ndev->stats.rx_packets += done;
1297
1298 /* FIXME: do smth to minimize pci accesses */
1299 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1300
1301 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1302
1303 RET(done);
1304 }
1305
1306 /*************************************************************************
1307 * Debug / Temprorary Code *
1308 *************************************************************************/
1309 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1310 u16 rxd_vlan)
1311 {
1312 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1313 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1314 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1315 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1316 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1317 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1318 rxdd->va_hi);
1319 }
1320
1321 static void print_rxfd(struct rxf_desc *rxfd)
1322 {
1323 DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1324 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1325 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1326 }
1327
1328 /*
1329 * TX HW/SW interaction overview
1330 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1331 * There are 2 types of TX communication channels between driver and NIC.
1332 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1333 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1334 *
1335 * Currently NIC supports TSO, checksuming and gather DMA
1336 * UFO and IP fragmentation is on the way
1337 *
1338 * RX SW Data Structures
1339 * ~~~~~~~~~~~~~~~~~~~~~
1340 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1341 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1342 * acknowledges sent by TXF descriptors.
1343 * Implemented as cyclic buffer.
1344 * fifo - keeps info about fifo's size and location, relevant HW registers,
1345 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1346 * Implemented as simple struct.
1347 *
1348 * TX SW Execution Flow
1349 * ~~~~~~~~~~~~~~~~~~~~
1350 * OS calls driver's hard_xmit method with packet to sent.
1351 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1352 * by updating TXD WPTR.
1353 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1354 * To prevent TXD fifo overflow without reading HW registers every time,
1355 * SW deploys "tx level" technique.
1356 * Upon strart up, tx level is initialized to TXD fifo length.
1357 * For every sent packet, SW gets its TXD descriptor sizei
1358 * (from precalculated array) and substructs it from tx level.
1359 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1360 * original TXD descriptor from txdb and adds it to tx level.
1361 * When Tx level drops under some predefined treshhold, the driver
1362 * stops the TX queue. When TX level rises above that level,
1363 * the tx queue is enabled again.
1364 *
1365 * This technique avoids eccessive reading of RPTR and WPTR registers.
1366 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1367 */
1368
1369 /*************************************************************************
1370 * Tx DB *
1371 *************************************************************************/
1372 static inline int bdx_tx_db_size(struct txdb *db)
1373 {
1374 int taken = db->wptr - db->rptr;
1375 if (taken < 0)
1376 taken = db->size + 1 + taken; /* (size + 1) equals memsz */
1377
1378 return db->size - taken;
1379 }
1380
1381 /**
1382 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1383 * @db: tx data base
1384 * @pptr: read or write pointer
1385 */
1386 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1387 {
1388 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1389
1390 BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1391 *pptr != db->wptr); /* or write pointer */
1392
1393 BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1394 *pptr >= db->end); /* in range */
1395
1396 ++*pptr;
1397 if (unlikely(*pptr == db->end))
1398 *pptr = db->start;
1399 }
1400
1401 /**
1402 * bdx_tx_db_inc_rptr - increment read pointer
1403 * @db: tx data base
1404 */
1405 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1406 {
1407 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
1408 __bdx_tx_db_ptr_next(db, &db->rptr);
1409 }
1410
1411 /**
1412 * bdx_tx_db_inc_wptr - increment write pointer
1413 * @db: tx data base
1414 */
1415 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1416 {
1417 __bdx_tx_db_ptr_next(db, &db->wptr);
1418 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
1419 a result of write */
1420 }
1421
1422 /**
1423 * bdx_tx_db_init - creates and initializes tx db
1424 * @d: tx data base
1425 * @sz_type: size of tx fifo
1426 *
1427 * Returns 0 on success, error code otherwise
1428 */
1429 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1430 {
1431 int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1432
1433 d->start = vmalloc(memsz);
1434 if (!d->start)
1435 return -ENOMEM;
1436
1437 /*
1438 * In order to differentiate between db is empty and db is full
1439 * states at least one element should always be empty in order to
1440 * avoid rptr == wptr which means db is empty
1441 */
1442 d->size = memsz / sizeof(struct tx_map) - 1;
1443 d->end = d->start + d->size + 1; /* just after last element */
1444
1445 /* all dbs are created equally empty */
1446 d->rptr = d->start;
1447 d->wptr = d->start;
1448
1449 return 0;
1450 }
1451
1452 /**
1453 * bdx_tx_db_close - closes tx db and frees all memory
1454 * @d: tx data base
1455 */
1456 static void bdx_tx_db_close(struct txdb *d)
1457 {
1458 BDX_ASSERT(d == NULL);
1459
1460 vfree(d->start);
1461 d->start = NULL;
1462 }
1463
1464 /*************************************************************************
1465 * Tx Engine *
1466 *************************************************************************/
1467
1468 /* sizes of tx desc (including padding if needed) as function
1469 * of skb's frag number */
1470 static struct {
1471 u16 bytes;
1472 u16 qwords; /* qword = 64 bit */
1473 } txd_sizes[MAX_SKB_FRAGS + 1];
1474
1475 /**
1476 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1477 * @priv: NIC private structure
1478 * @skb: socket buffer to map
1479 * @txdd: TX descriptor to use
1480 *
1481 * It makes dma mappings for skb's data blocks and writes them to PBL of
1482 * new tx descriptor. It also stores them in the tx db, so they could be
1483 * unmaped after data was sent. It is reponsibility of a caller to make
1484 * sure that there is enough space in the tx db. Last element holds pointer
1485 * to skb itself and marked with zero length
1486 */
1487 static inline void
1488 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1489 struct txd_desc *txdd)
1490 {
1491 struct txdb *db = &priv->txdb;
1492 struct pbl *pbl = &txdd->pbl[0];
1493 int nr_frags = skb_shinfo(skb)->nr_frags;
1494 int i;
1495
1496 db->wptr->len = skb_headlen(skb);
1497 db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1498 db->wptr->len, PCI_DMA_TODEVICE);
1499 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1500 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1501 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1502 DBG("=== pbl len: 0x%x ================\n", pbl->len);
1503 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1504 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1505 bdx_tx_db_inc_wptr(db);
1506
1507 for (i = 0; i < nr_frags; i++) {
1508 const struct skb_frag_struct *frag;
1509
1510 frag = &skb_shinfo(skb)->frags[i];
1511 db->wptr->len = skb_frag_size(frag);
1512 db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1513 0, skb_frag_size(frag),
1514 DMA_TO_DEVICE);
1515
1516 pbl++;
1517 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1518 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1519 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1520 bdx_tx_db_inc_wptr(db);
1521 }
1522
1523 /* add skb clean up info. */
1524 db->wptr->len = -txd_sizes[nr_frags].bytes;
1525 db->wptr->addr.skb = skb;
1526 bdx_tx_db_inc_wptr(db);
1527 }
1528
1529 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1530 * number of frags is used as index to fetch correct descriptors size,
1531 * instead of calculating it each time */
1532 static void __init init_txd_sizes(void)
1533 {
1534 int i, lwords;
1535
1536 /* 7 - is number of lwords in txd with one phys buffer
1537 * 3 - is number of lwords used for every additional phys buffer */
1538 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1539 lwords = 7 + (i * 3);
1540 if (lwords & 1)
1541 lwords++; /* pad it with 1 lword */
1542 txd_sizes[i].qwords = lwords >> 1;
1543 txd_sizes[i].bytes = lwords << 2;
1544 }
1545 }
1546
1547 /* bdx_tx_init - initialize all Tx related stuff.
1548 * Namely, TXD and TXF fifos, database etc */
1549 static int bdx_tx_init(struct bdx_priv *priv)
1550 {
1551 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1552 regTXD_CFG0_0,
1553 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1554 goto err_mem;
1555 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1556 regTXF_CFG0_0,
1557 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1558 goto err_mem;
1559
1560 /* The TX db has to keep mappings for all packets sent (on TxD)
1561 * and not yet reclaimed (on TxF) */
1562 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1563 goto err_mem;
1564
1565 priv->tx_level = BDX_MAX_TX_LEVEL;
1566 #ifdef BDX_DELAY_WPTR
1567 priv->tx_update_mark = priv->tx_level - 1024;
1568 #endif
1569 return 0;
1570
1571 err_mem:
1572 netdev_err(priv->ndev, "Tx init failed\n");
1573 return -ENOMEM;
1574 }
1575
1576 /**
1577 * bdx_tx_space - calculates available space in TX fifo
1578 * @priv: NIC private structure
1579 *
1580 * Returns available space in TX fifo in bytes
1581 */
1582 static inline int bdx_tx_space(struct bdx_priv *priv)
1583 {
1584 struct txd_fifo *f = &priv->txd_fifo0;
1585 int fsize;
1586
1587 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1588 fsize = f->m.rptr - f->m.wptr;
1589 if (fsize <= 0)
1590 fsize = f->m.memsz + fsize;
1591 return fsize;
1592 }
1593
1594 /**
1595 * bdx_tx_transmit - send packet to NIC
1596 * @skb: packet to send
1597 * @ndev: network device assigned to NIC
1598 * Return codes:
1599 * o NETDEV_TX_OK everything ok.
1600 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1601 * Usually a bug, means queue start/stop flow control is broken in
1602 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1603 */
1604 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1605 struct net_device *ndev)
1606 {
1607 struct bdx_priv *priv = netdev_priv(ndev);
1608 struct txd_fifo *f = &priv->txd_fifo0;
1609 int txd_checksum = 7; /* full checksum */
1610 int txd_lgsnd = 0;
1611 int txd_vlan_id = 0;
1612 int txd_vtag = 0;
1613 int txd_mss = 0;
1614
1615 int nr_frags = skb_shinfo(skb)->nr_frags;
1616 struct txd_desc *txdd;
1617 int len;
1618 unsigned long flags;
1619
1620 ENTER;
1621 local_irq_save(flags);
1622 spin_lock(&priv->tx_lock);
1623
1624 /* build tx descriptor */
1625 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
1626 txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1627 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1628 txd_checksum = 0;
1629
1630 if (skb_shinfo(skb)->gso_size) {
1631 txd_mss = skb_shinfo(skb)->gso_size;
1632 txd_lgsnd = 1;
1633 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1634 txd_mss);
1635 }
1636
1637 if (skb_vlan_tag_present(skb)) {
1638 /*Cut VLAN ID to 12 bits */
1639 txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1640 txd_vtag = 1;
1641 }
1642
1643 txdd->length = CPU_CHIP_SWAP16(skb->len);
1644 txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1645 txdd->txd_val1 =
1646 CPU_CHIP_SWAP32(TXD_W1_VAL
1647 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1648 txd_lgsnd, txd_vlan_id));
1649 DBG("=== TxD desc =====================\n");
1650 DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1651 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1652
1653 bdx_tx_map_skb(priv, skb, txdd);
1654
1655 /* increment TXD write pointer. In case of
1656 fifo wrapping copy reminder of the descriptor
1657 to the beginning */
1658 f->m.wptr += txd_sizes[nr_frags].bytes;
1659 len = f->m.wptr - f->m.memsz;
1660 if (unlikely(len >= 0)) {
1661 f->m.wptr = len;
1662 if (len > 0) {
1663 BDX_ASSERT(len > f->m.memsz);
1664 memcpy(f->m.va, f->m.va + f->m.memsz, len);
1665 }
1666 }
1667 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
1668
1669 priv->tx_level -= txd_sizes[nr_frags].bytes;
1670 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1671 #ifdef BDX_DELAY_WPTR
1672 if (priv->tx_level > priv->tx_update_mark) {
1673 /* Force memory writes to complete before letting h/w
1674 know there are new descriptors to fetch.
1675 (might be needed on platforms like IA64)
1676 wmb(); */
1677 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1678 } else {
1679 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1680 priv->tx_noupd = 0;
1681 WRITE_REG(priv, f->m.reg_WPTR,
1682 f->m.wptr & TXF_WPTR_WR_PTR);
1683 }
1684 }
1685 #else
1686 /* Force memory writes to complete before letting h/w
1687 know there are new descriptors to fetch.
1688 (might be needed on platforms like IA64)
1689 wmb(); */
1690 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1691
1692 #endif
1693 #ifdef BDX_LLTX
1694 netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1695 #endif
1696 ndev->stats.tx_packets++;
1697 ndev->stats.tx_bytes += skb->len;
1698
1699 if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1700 DBG("%s: %s: TX Q STOP level %d\n",
1701 BDX_DRV_NAME, ndev->name, priv->tx_level);
1702 netif_stop_queue(ndev);
1703 }
1704
1705 spin_unlock_irqrestore(&priv->tx_lock, flags);
1706 return NETDEV_TX_OK;
1707 }
1708
1709 /**
1710 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1711 * @priv: bdx adapter
1712 *
1713 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1714 * that those packets were sent
1715 */
1716 static void bdx_tx_cleanup(struct bdx_priv *priv)
1717 {
1718 struct txf_fifo *f = &priv->txf_fifo0;
1719 struct txdb *db = &priv->txdb;
1720 int tx_level = 0;
1721
1722 ENTER;
1723 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1724 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
1725
1726 while (f->m.wptr != f->m.rptr) {
1727 f->m.rptr += BDX_TXF_DESC_SZ;
1728 f->m.rptr &= f->m.size_mask;
1729
1730 /* unmap all the fragments */
1731 /* first has to come tx_maps containing dma */
1732 BDX_ASSERT(db->rptr->len == 0);
1733 do {
1734 BDX_ASSERT(db->rptr->addr.dma == 0);
1735 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1736 db->rptr->len, PCI_DMA_TODEVICE);
1737 bdx_tx_db_inc_rptr(db);
1738 } while (db->rptr->len > 0);
1739 tx_level -= db->rptr->len; /* '-' koz len is negative */
1740
1741 /* now should come skb pointer - free it */
1742 dev_kfree_skb_irq(db->rptr->addr.skb);
1743 bdx_tx_db_inc_rptr(db);
1744 }
1745
1746 /* let h/w know which TXF descriptors were cleaned */
1747 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1748 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1749
1750 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1751 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1752 spin_lock(&priv->tx_lock);
1753 priv->tx_level += tx_level;
1754 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1755 #ifdef BDX_DELAY_WPTR
1756 if (priv->tx_noupd) {
1757 priv->tx_noupd = 0;
1758 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1759 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1760 }
1761 #endif
1762
1763 if (unlikely(netif_queue_stopped(priv->ndev) &&
1764 netif_carrier_ok(priv->ndev) &&
1765 (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1766 DBG("%s: %s: TX Q WAKE level %d\n",
1767 BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1768 netif_wake_queue(priv->ndev);
1769 }
1770 spin_unlock(&priv->tx_lock);
1771 }
1772
1773 /**
1774 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1775 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1776 */
1777 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1778 {
1779 struct txdb *db = &priv->txdb;
1780
1781 ENTER;
1782 while (db->rptr != db->wptr) {
1783 if (likely(db->rptr->len))
1784 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1785 db->rptr->len, PCI_DMA_TODEVICE);
1786 else
1787 dev_kfree_skb(db->rptr->addr.skb);
1788 bdx_tx_db_inc_rptr(db);
1789 }
1790 RET();
1791 }
1792
1793 /* bdx_tx_free - frees all Tx resources */
1794 static void bdx_tx_free(struct bdx_priv *priv)
1795 {
1796 ENTER;
1797 bdx_tx_free_skbs(priv);
1798 bdx_fifo_free(priv, &priv->txd_fifo0.m);
1799 bdx_fifo_free(priv, &priv->txf_fifo0.m);
1800 bdx_tx_db_close(&priv->txdb);
1801 }
1802
1803 /**
1804 * bdx_tx_push_desc - push descriptor to TxD fifo
1805 * @priv: NIC private structure
1806 * @data: desc's data
1807 * @size: desc's size
1808 *
1809 * Pushes desc to TxD fifo and overlaps it if needed.
1810 * NOTE: this func does not check for available space. this is responsibility
1811 * of the caller. Neither does it check that data size is smaller than
1812 * fifo size.
1813 */
1814 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1815 {
1816 struct txd_fifo *f = &priv->txd_fifo0;
1817 int i = f->m.memsz - f->m.wptr;
1818
1819 if (size == 0)
1820 return;
1821
1822 if (i > size) {
1823 memcpy(f->m.va + f->m.wptr, data, size);
1824 f->m.wptr += size;
1825 } else {
1826 memcpy(f->m.va + f->m.wptr, data, i);
1827 f->m.wptr = size - i;
1828 memcpy(f->m.va, data + i, f->m.wptr);
1829 }
1830 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1831 }
1832
1833 /**
1834 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1835 * @priv: NIC private structure
1836 * @data: desc's data
1837 * @size: desc's size
1838 *
1839 * NOTE: this func does check for available space and, if necessary, waits for
1840 * NIC to read existing data before writing new one.
1841 */
1842 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1843 {
1844 int timer = 0;
1845 ENTER;
1846
1847 while (size > 0) {
1848 /* we substruct 8 because when fifo is full rptr == wptr
1849 which also means that fifo is empty, we can understand
1850 the difference, but could hw do the same ??? :) */
1851 int avail = bdx_tx_space(priv) - 8;
1852 if (avail <= 0) {
1853 if (timer++ > 300) { /* prevent endless loop */
1854 DBG("timeout while writing desc to TxD fifo\n");
1855 break;
1856 }
1857 udelay(50); /* give hw a chance to clean fifo */
1858 continue;
1859 }
1860 avail = min(avail, size);
1861 DBG("about to push %d bytes starting %p size %d\n", avail,
1862 data, size);
1863 bdx_tx_push_desc(priv, data, avail);
1864 size -= avail;
1865 data += avail;
1866 }
1867 RET();
1868 }
1869
1870 static const struct net_device_ops bdx_netdev_ops = {
1871 .ndo_open = bdx_open,
1872 .ndo_stop = bdx_close,
1873 .ndo_start_xmit = bdx_tx_transmit,
1874 .ndo_validate_addr = eth_validate_addr,
1875 .ndo_do_ioctl = bdx_ioctl,
1876 .ndo_set_rx_mode = bdx_setmulti,
1877 .ndo_change_mtu = bdx_change_mtu,
1878 .ndo_set_mac_address = bdx_set_mac,
1879 .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
1880 .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
1881 };
1882
1883 /**
1884 * bdx_probe - Device Initialization Routine
1885 * @pdev: PCI device information struct
1886 * @ent: entry in bdx_pci_tbl
1887 *
1888 * Returns 0 on success, negative on failure
1889 *
1890 * bdx_probe initializes an adapter identified by a pci_dev structure.
1891 * The OS initialization, configuring of the adapter private structure,
1892 * and a hardware reset occur.
1893 *
1894 * functions and their order used as explained in
1895 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1896 *
1897 */
1898
1899 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1900 static int
1901 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1902 {
1903 struct net_device *ndev;
1904 struct bdx_priv *priv;
1905 int err, pci_using_dac, port;
1906 unsigned long pciaddr;
1907 u32 regionSize;
1908 struct pci_nic *nic;
1909
1910 ENTER;
1911
1912 nic = vmalloc(sizeof(*nic));
1913 if (!nic)
1914 RET(-ENOMEM);
1915
1916 /************** pci *****************/
1917 err = pci_enable_device(pdev);
1918 if (err) /* it triggers interrupt, dunno why. */
1919 goto err_pci; /* it's not a problem though */
1920
1921 if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1922 !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1923 pci_using_dac = 1;
1924 } else {
1925 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1926 (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1927 pr_err("No usable DMA configuration, aborting\n");
1928 goto err_dma;
1929 }
1930 pci_using_dac = 0;
1931 }
1932
1933 err = pci_request_regions(pdev, BDX_DRV_NAME);
1934 if (err)
1935 goto err_dma;
1936
1937 pci_set_master(pdev);
1938
1939 pciaddr = pci_resource_start(pdev, 0);
1940 if (!pciaddr) {
1941 err = -EIO;
1942 pr_err("no MMIO resource\n");
1943 goto err_out_res;
1944 }
1945 regionSize = pci_resource_len(pdev, 0);
1946 if (regionSize < BDX_REGS_SIZE) {
1947 err = -EIO;
1948 pr_err("MMIO resource (%x) too small\n", regionSize);
1949 goto err_out_res;
1950 }
1951
1952 nic->regs = ioremap(pciaddr, regionSize);
1953 if (!nic->regs) {
1954 err = -EIO;
1955 pr_err("ioremap failed\n");
1956 goto err_out_res;
1957 }
1958
1959 if (pdev->irq < 2) {
1960 err = -EIO;
1961 pr_err("invalid irq (%d)\n", pdev->irq);
1962 goto err_out_iomap;
1963 }
1964 pci_set_drvdata(pdev, nic);
1965
1966 if (pdev->device == 0x3014)
1967 nic->port_num = 2;
1968 else
1969 nic->port_num = 1;
1970
1971 print_hw_id(pdev);
1972
1973 bdx_hw_reset_direct(nic->regs);
1974
1975 nic->irq_type = IRQ_INTX;
1976 #ifdef BDX_MSI
1977 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1978 err = pci_enable_msi(pdev);
1979 if (err)
1980 pr_err("Can't enable msi. error is %d\n", err);
1981 else
1982 nic->irq_type = IRQ_MSI;
1983 } else
1984 DBG("HW does not support MSI\n");
1985 #endif
1986
1987 /************** netdev **************/
1988 for (port = 0; port < nic->port_num; port++) {
1989 ndev = alloc_etherdev(sizeof(struct bdx_priv));
1990 if (!ndev) {
1991 err = -ENOMEM;
1992 goto err_out_iomap;
1993 }
1994
1995 ndev->netdev_ops = &bdx_netdev_ops;
1996 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1997
1998 bdx_set_ethtool_ops(ndev); /* ethtool interface */
1999
2000 /* these fields are used for info purposes only
2001 * so we can have them same for all ports of the board */
2002 ndev->if_port = port;
2003 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2004 | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2005 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
2006 ;
2007 ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2008 NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
2009
2010 if (pci_using_dac)
2011 ndev->features |= NETIF_F_HIGHDMA;
2012
2013 /************** priv ****************/
2014 priv = nic->priv[port] = netdev_priv(ndev);
2015
2016 priv->pBdxRegs = nic->regs + port * 0x8000;
2017 priv->port = port;
2018 priv->pdev = pdev;
2019 priv->ndev = ndev;
2020 priv->nic = nic;
2021 priv->msg_enable = BDX_DEF_MSG_ENABLE;
2022
2023 netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2024
2025 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2026 DBG("HW statistics not supported\n");
2027 priv->stats_flag = 0;
2028 } else {
2029 priv->stats_flag = 1;
2030 }
2031
2032 /* Initialize fifo sizes. */
2033 priv->txd_size = 2;
2034 priv->txf_size = 2;
2035 priv->rxd_size = 2;
2036 priv->rxf_size = 3;
2037
2038 /* Initialize the initial coalescing registers. */
2039 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2040 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2041
2042 /* ndev->xmit_lock spinlock is not used.
2043 * Private priv->tx_lock is used for synchronization
2044 * between transmit and TX irq cleanup. In addition
2045 * set multicast list callback has to use priv->tx_lock.
2046 */
2047 #ifdef BDX_LLTX
2048 ndev->features |= NETIF_F_LLTX;
2049 #endif
2050 /* MTU range: 60 - 16384 */
2051 ndev->min_mtu = ETH_ZLEN;
2052 ndev->max_mtu = BDX_MAX_MTU;
2053
2054 spin_lock_init(&priv->tx_lock);
2055
2056 /*bdx_hw_reset(priv); */
2057 if (bdx_read_mac(priv)) {
2058 pr_err("load MAC address failed\n");
2059 goto err_out_iomap;
2060 }
2061 SET_NETDEV_DEV(ndev, &pdev->dev);
2062 err = register_netdev(ndev);
2063 if (err) {
2064 pr_err("register_netdev failed\n");
2065 goto err_out_free;
2066 }
2067 netif_carrier_off(ndev);
2068 netif_stop_queue(ndev);
2069
2070 print_eth_id(ndev);
2071 }
2072 RET(0);
2073
2074 err_out_free:
2075 free_netdev(ndev);
2076 err_out_iomap:
2077 iounmap(nic->regs);
2078 err_out_res:
2079 pci_release_regions(pdev);
2080 err_dma:
2081 pci_disable_device(pdev);
2082 err_pci:
2083 vfree(nic);
2084
2085 RET(err);
2086 }
2087
2088 /****************** Ethtool interface *********************/
2089 /* get strings for statistics counters */
2090 static const char
2091 bdx_stat_names[][ETH_GSTRING_LEN] = {
2092 "InUCast", /* 0x7200 */
2093 "InMCast", /* 0x7210 */
2094 "InBCast", /* 0x7220 */
2095 "InPkts", /* 0x7230 */
2096 "InErrors", /* 0x7240 */
2097 "InDropped", /* 0x7250 */
2098 "FrameTooLong", /* 0x7260 */
2099 "FrameSequenceErrors", /* 0x7270 */
2100 "InVLAN", /* 0x7280 */
2101 "InDroppedDFE", /* 0x7290 */
2102 "InDroppedIntFull", /* 0x72A0 */
2103 "InFrameAlignErrors", /* 0x72B0 */
2104
2105 /* 0x72C0-0x72E0 RSRV */
2106
2107 "OutUCast", /* 0x72F0 */
2108 "OutMCast", /* 0x7300 */
2109 "OutBCast", /* 0x7310 */
2110 "OutPkts", /* 0x7320 */
2111
2112 /* 0x7330-0x7360 RSRV */
2113
2114 "OutVLAN", /* 0x7370 */
2115 "InUCastOctects", /* 0x7380 */
2116 "OutUCastOctects", /* 0x7390 */
2117
2118 /* 0x73A0-0x73B0 RSRV */
2119
2120 "InBCastOctects", /* 0x73C0 */
2121 "OutBCastOctects", /* 0x73D0 */
2122 "InOctects", /* 0x73E0 */
2123 "OutOctects", /* 0x73F0 */
2124 };
2125
2126 /*
2127 * bdx_get_link_ksettings - get device-specific settings
2128 * @netdev
2129 * @ecmd
2130 */
2131 static int bdx_get_link_ksettings(struct net_device *netdev,
2132 struct ethtool_link_ksettings *ecmd)
2133 {
2134 ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2135 ethtool_link_ksettings_add_link_mode(ecmd, supported,
2136 10000baseT_Full);
2137 ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2138 ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2139 ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2140 10000baseT_Full);
2141 ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2142
2143 ecmd->base.speed = SPEED_10000;
2144 ecmd->base.duplex = DUPLEX_FULL;
2145 ecmd->base.port = PORT_FIBRE;
2146 ecmd->base.autoneg = AUTONEG_DISABLE;
2147
2148 return 0;
2149 }
2150
2151 /*
2152 * bdx_get_drvinfo - report driver information
2153 * @netdev
2154 * @drvinfo
2155 */
2156 static void
2157 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2158 {
2159 struct bdx_priv *priv = netdev_priv(netdev);
2160
2161 strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2162 strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2163 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2164 strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2165 sizeof(drvinfo->bus_info));
2166 }
2167
2168 /*
2169 * bdx_get_coalesce - get interrupt coalescing parameters
2170 * @netdev
2171 * @ecoal
2172 */
2173 static int
2174 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2175 {
2176 u32 rdintcm;
2177 u32 tdintcm;
2178 struct bdx_priv *priv = netdev_priv(netdev);
2179
2180 rdintcm = priv->rdintcm;
2181 tdintcm = priv->tdintcm;
2182
2183 /* PCK_TH measures in multiples of FIFO bytes
2184 We translate to packets */
2185 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2186 ecoal->rx_max_coalesced_frames =
2187 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2188
2189 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2190 ecoal->tx_max_coalesced_frames =
2191 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2192
2193 /* adaptive parameters ignored */
2194 return 0;
2195 }
2196
2197 /*
2198 * bdx_set_coalesce - set interrupt coalescing parameters
2199 * @netdev
2200 * @ecoal
2201 */
2202 static int
2203 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2204 {
2205 u32 rdintcm;
2206 u32 tdintcm;
2207 struct bdx_priv *priv = netdev_priv(netdev);
2208 int rx_coal;
2209 int tx_coal;
2210 int rx_max_coal;
2211 int tx_max_coal;
2212
2213 /* Check for valid input */
2214 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2215 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2216 rx_max_coal = ecoal->rx_max_coalesced_frames;
2217 tx_max_coal = ecoal->tx_max_coalesced_frames;
2218
2219 /* Translate from packets to multiples of FIFO bytes */
2220 rx_max_coal =
2221 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2222 / PCK_TH_MULT);
2223 tx_max_coal =
2224 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2225 / PCK_TH_MULT);
2226
2227 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2228 (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2229 return -EINVAL;
2230
2231 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2232 GET_RXF_TH(priv->rdintcm), rx_max_coal);
2233 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2234 tx_max_coal);
2235
2236 priv->rdintcm = rdintcm;
2237 priv->tdintcm = tdintcm;
2238
2239 WRITE_REG(priv, regRDINTCM0, rdintcm);
2240 WRITE_REG(priv, regTDINTCM0, tdintcm);
2241
2242 return 0;
2243 }
2244
2245 /* Convert RX fifo size to number of pending packets */
2246 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2247 {
2248 return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2249 }
2250
2251 /* Convert TX fifo size to number of pending packets */
2252 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2253 {
2254 return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2255 }
2256
2257 /*
2258 * bdx_get_ringparam - report ring sizes
2259 * @netdev
2260 * @ring
2261 */
2262 static void
2263 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2264 {
2265 struct bdx_priv *priv = netdev_priv(netdev);
2266
2267 /*max_pending - the maximum-sized FIFO we allow */
2268 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2269 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2270 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2271 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2272 }
2273
2274 /*
2275 * bdx_set_ringparam - set ring sizes
2276 * @netdev
2277 * @ring
2278 */
2279 static int
2280 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2281 {
2282 struct bdx_priv *priv = netdev_priv(netdev);
2283 int rx_size = 0;
2284 int tx_size = 0;
2285
2286 for (; rx_size < 4; rx_size++) {
2287 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2288 break;
2289 }
2290 if (rx_size == 4)
2291 rx_size = 3;
2292
2293 for (; tx_size < 4; tx_size++) {
2294 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2295 break;
2296 }
2297 if (tx_size == 4)
2298 tx_size = 3;
2299
2300 /*Is there anything to do? */
2301 if ((rx_size == priv->rxf_size) &&
2302 (tx_size == priv->txd_size))
2303 return 0;
2304
2305 priv->rxf_size = rx_size;
2306 if (rx_size > 1)
2307 priv->rxd_size = rx_size - 1;
2308 else
2309 priv->rxd_size = rx_size;
2310
2311 priv->txf_size = priv->txd_size = tx_size;
2312
2313 if (netif_running(netdev)) {
2314 bdx_close(netdev);
2315 bdx_open(netdev);
2316 }
2317 return 0;
2318 }
2319
2320 /*
2321 * bdx_get_strings - return a set of strings that describe the requested objects
2322 * @netdev
2323 * @data
2324 */
2325 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2326 {
2327 switch (stringset) {
2328 case ETH_SS_STATS:
2329 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2330 break;
2331 }
2332 }
2333
2334 /*
2335 * bdx_get_sset_count - return number of statistics or tests
2336 * @netdev
2337 */
2338 static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2339 {
2340 struct bdx_priv *priv = netdev_priv(netdev);
2341
2342 switch (stringset) {
2343 case ETH_SS_STATS:
2344 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2345 != sizeof(struct bdx_stats) / sizeof(u64));
2346 return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
2347 }
2348
2349 return -EINVAL;
2350 }
2351
2352 /*
2353 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2354 * @netdev
2355 * @stats
2356 * @data
2357 */
2358 static void bdx_get_ethtool_stats(struct net_device *netdev,
2359 struct ethtool_stats *stats, u64 *data)
2360 {
2361 struct bdx_priv *priv = netdev_priv(netdev);
2362
2363 if (priv->stats_flag) {
2364
2365 /* Update stats from HW */
2366 bdx_update_stats(priv);
2367
2368 /* Copy data to user buffer */
2369 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2370 }
2371 }
2372
2373 /*
2374 * bdx_set_ethtool_ops - ethtool interface implementation
2375 * @netdev
2376 */
2377 static void bdx_set_ethtool_ops(struct net_device *netdev)
2378 {
2379 static const struct ethtool_ops bdx_ethtool_ops = {
2380 .get_drvinfo = bdx_get_drvinfo,
2381 .get_link = ethtool_op_get_link,
2382 .get_coalesce = bdx_get_coalesce,
2383 .set_coalesce = bdx_set_coalesce,
2384 .get_ringparam = bdx_get_ringparam,
2385 .set_ringparam = bdx_set_ringparam,
2386 .get_strings = bdx_get_strings,
2387 .get_sset_count = bdx_get_sset_count,
2388 .get_ethtool_stats = bdx_get_ethtool_stats,
2389 .get_link_ksettings = bdx_get_link_ksettings,
2390 };
2391
2392 netdev->ethtool_ops = &bdx_ethtool_ops;
2393 }
2394
2395 /**
2396 * bdx_remove - Device Removal Routine
2397 * @pdev: PCI device information struct
2398 *
2399 * bdx_remove is called by the PCI subsystem to alert the driver
2400 * that it should release a PCI device. The could be caused by a
2401 * Hot-Plug event, or because the driver is going to be removed from
2402 * memory.
2403 **/
2404 static void bdx_remove(struct pci_dev *pdev)
2405 {
2406 struct pci_nic *nic = pci_get_drvdata(pdev);
2407 struct net_device *ndev;
2408 int port;
2409
2410 for (port = 0; port < nic->port_num; port++) {
2411 ndev = nic->priv[port]->ndev;
2412 unregister_netdev(ndev);
2413 free_netdev(ndev);
2414 }
2415
2416 /*bdx_hw_reset_direct(nic->regs); */
2417 #ifdef BDX_MSI
2418 if (nic->irq_type == IRQ_MSI)
2419 pci_disable_msi(pdev);
2420 #endif
2421
2422 iounmap(nic->regs);
2423 pci_release_regions(pdev);
2424 pci_disable_device(pdev);
2425 vfree(nic);
2426
2427 RET();
2428 }
2429
2430 static struct pci_driver bdx_pci_driver = {
2431 .name = BDX_DRV_NAME,
2432 .id_table = bdx_pci_tbl,
2433 .probe = bdx_probe,
2434 .remove = bdx_remove,
2435 };
2436
2437 /*
2438 * print_driver_id - print parameters of the driver build
2439 */
2440 static void __init print_driver_id(void)
2441 {
2442 pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2443 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2444 }
2445
2446 static int __init bdx_module_init(void)
2447 {
2448 ENTER;
2449 init_txd_sizes();
2450 print_driver_id();
2451 RET(pci_register_driver(&bdx_pci_driver));
2452 }
2453
2454 module_init(bdx_module_init);
2455
2456 static void __exit bdx_module_exit(void)
2457 {
2458 ENTER;
2459 pci_unregister_driver(&bdx_pci_driver);
2460 RET();
2461 }
2462
2463 module_exit(bdx_module_exit);
2464
2465 MODULE_LICENSE("GPL");
2466 MODULE_AUTHOR(DRIVER_AUTHOR);
2467 MODULE_DESCRIPTION(BDX_DRV_DESC);
2468 MODULE_FIRMWARE("tehuti/bdx.bin");