]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/tehuti/tehuti.c
drivers/net: Remove alloc_etherdev error messages
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / tehuti / tehuti.c
1 /*
2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12 /*
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels between driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
25 *
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
30 * RXD Fifo.
31 *
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
41 *
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
51 *
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
55
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
62 *
63 */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67 #include "tehuti.h"
68
69 static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl) = {
70 { PCI_VDEVICE(TEHUTI, 0x3009), },
71 { PCI_VDEVICE(TEHUTI, 0x3010), },
72 { PCI_VDEVICE(TEHUTI, 0x3014), },
73 { 0 }
74 };
75
76 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
77
78 /* Definitions needed by ISR or NAPI functions */
79 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
80 static void bdx_tx_cleanup(struct bdx_priv *priv);
81 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
82
83 /* Definitions needed by FW loading */
84 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
85
86 /* Definitions needed by hw_start */
87 static int bdx_tx_init(struct bdx_priv *priv);
88 static int bdx_rx_init(struct bdx_priv *priv);
89
90 /* Definitions needed by bdx_close */
91 static void bdx_rx_free(struct bdx_priv *priv);
92 static void bdx_tx_free(struct bdx_priv *priv);
93
94 /* Definitions needed by bdx_probe */
95 static void bdx_set_ethtool_ops(struct net_device *netdev);
96
97 /*************************************************************************
98 * Print Info *
99 *************************************************************************/
100
101 static void print_hw_id(struct pci_dev *pdev)
102 {
103 struct pci_nic *nic = pci_get_drvdata(pdev);
104 u16 pci_link_status = 0;
105 u16 pci_ctrl = 0;
106
107 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
108 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
109
110 pr_info("%s%s\n", BDX_NIC_NAME,
111 nic->port_num == 1 ? "" : ", 2-Port");
112 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
113 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
114 readl(nic->regs + FPGA_SEED),
115 GET_LINK_STATUS_LANES(pci_link_status),
116 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
117 }
118
119 static void print_fw_id(struct pci_nic *nic)
120 {
121 pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
122 }
123
124 static void print_eth_id(struct net_device *ndev)
125 {
126 netdev_info(ndev, "%s, Port %c\n",
127 BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
128
129 }
130
131 /*************************************************************************
132 * Code *
133 *************************************************************************/
134
135 #define bdx_enable_interrupts(priv) \
136 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
137 #define bdx_disable_interrupts(priv) \
138 do { WRITE_REG(priv, regIMR, 0); } while (0)
139
140 /* bdx_fifo_init
141 * create TX/RX descriptor fifo for host-NIC communication.
142 * 1K extra space is allocated at the end of the fifo to simplify
143 * processing of descriptors that wraps around fifo's end
144 * @priv - NIC private structure
145 * @f - fifo to initialize
146 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
147 * @reg_XXX - offsets of registers relative to base address
148 *
149 * Returns 0 on success, negative value on failure
150 *
151 */
152 static int
153 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
154 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
155 {
156 u16 memsz = FIFO_SIZE * (1 << fsz_type);
157
158 memset(f, 0, sizeof(struct fifo));
159 /* pci_alloc_consistent gives us 4k-aligned memory */
160 f->va = pci_alloc_consistent(priv->pdev,
161 memsz + FIFO_EXTRA_SPACE, &f->da);
162 if (!f->va) {
163 pr_err("pci_alloc_consistent failed\n");
164 RET(-ENOMEM);
165 }
166 f->reg_CFG0 = reg_CFG0;
167 f->reg_CFG1 = reg_CFG1;
168 f->reg_RPTR = reg_RPTR;
169 f->reg_WPTR = reg_WPTR;
170 f->rptr = 0;
171 f->wptr = 0;
172 f->memsz = memsz;
173 f->size_mask = memsz - 1;
174 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
175 WRITE_REG(priv, reg_CFG1, H32_64(f->da));
176
177 RET(0);
178 }
179
180 /* bdx_fifo_free - free all resources used by fifo
181 * @priv - NIC private structure
182 * @f - fifo to release
183 */
184 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
185 {
186 ENTER;
187 if (f->va) {
188 pci_free_consistent(priv->pdev,
189 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
190 f->va = NULL;
191 }
192 RET();
193 }
194
195 /*
196 * bdx_link_changed - notifies OS about hw link state.
197 * @bdx_priv - hw adapter structure
198 */
199 static void bdx_link_changed(struct bdx_priv *priv)
200 {
201 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
202
203 if (!link) {
204 if (netif_carrier_ok(priv->ndev)) {
205 netif_stop_queue(priv->ndev);
206 netif_carrier_off(priv->ndev);
207 netdev_err(priv->ndev, "Link Down\n");
208 }
209 } else {
210 if (!netif_carrier_ok(priv->ndev)) {
211 netif_wake_queue(priv->ndev);
212 netif_carrier_on(priv->ndev);
213 netdev_err(priv->ndev, "Link Up\n");
214 }
215 }
216 }
217
218 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
219 {
220 if (isr & IR_RX_FREE_0) {
221 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
222 DBG("RX_FREE_0\n");
223 }
224
225 if (isr & IR_LNKCHG0)
226 bdx_link_changed(priv);
227
228 if (isr & IR_PCIE_LINK)
229 netdev_err(priv->ndev, "PCI-E Link Fault\n");
230
231 if (isr & IR_PCIE_TOUT)
232 netdev_err(priv->ndev, "PCI-E Time Out\n");
233
234 }
235
236 /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
237 * @irq - interrupt number
238 * @ndev - network device
239 * @regs - CPU registers
240 *
241 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
242 *
243 * It reads ISR register to know interrupt reasons, and proceed them one by one.
244 * Reasons of interest are:
245 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
246 * RX_FREE - number of free Rx buffers in RXF fifo gets low
247 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
248 */
249
250 static irqreturn_t bdx_isr_napi(int irq, void *dev)
251 {
252 struct net_device *ndev = dev;
253 struct bdx_priv *priv = netdev_priv(ndev);
254 u32 isr;
255
256 ENTER;
257 isr = (READ_REG(priv, regISR) & IR_RUN);
258 if (unlikely(!isr)) {
259 bdx_enable_interrupts(priv);
260 return IRQ_NONE; /* Not our interrupt */
261 }
262
263 if (isr & IR_EXTRA)
264 bdx_isr_extra(priv, isr);
265
266 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
267 if (likely(napi_schedule_prep(&priv->napi))) {
268 __napi_schedule(&priv->napi);
269 RET(IRQ_HANDLED);
270 } else {
271 /* NOTE: we get here if intr has slipped into window
272 * between these lines in bdx_poll:
273 * bdx_enable_interrupts(priv);
274 * return 0;
275 * currently intrs are disabled (since we read ISR),
276 * and we have failed to register next poll.
277 * so we read the regs to trigger chip
278 * and allow further interupts. */
279 READ_REG(priv, regTXF_WPTR_0);
280 READ_REG(priv, regRXD_WPTR_0);
281 }
282 }
283
284 bdx_enable_interrupts(priv);
285 RET(IRQ_HANDLED);
286 }
287
288 static int bdx_poll(struct napi_struct *napi, int budget)
289 {
290 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
291 int work_done;
292
293 ENTER;
294 bdx_tx_cleanup(priv);
295 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
296 if ((work_done < budget) ||
297 (priv->napi_stop++ >= 30)) {
298 DBG("rx poll is done. backing to isr-driven\n");
299
300 /* from time to time we exit to let NAPI layer release
301 * device lock and allow waiting tasks (eg rmmod) to advance) */
302 priv->napi_stop = 0;
303
304 napi_complete(napi);
305 bdx_enable_interrupts(priv);
306 }
307 return work_done;
308 }
309
310 /* bdx_fw_load - loads firmware to NIC
311 * @priv - NIC private structure
312 * Firmware is loaded via TXD fifo, so it must be initialized first.
313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
314 * can have few of them). So all drivers use semaphore register to choose one
315 * that will actually load FW to NIC.
316 */
317
318 static int bdx_fw_load(struct bdx_priv *priv)
319 {
320 const struct firmware *fw = NULL;
321 int master, i;
322 int rc;
323
324 ENTER;
325 master = READ_REG(priv, regINIT_SEMAPHORE);
326 if (!READ_REG(priv, regINIT_STATUS) && master) {
327 rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
328 if (rc)
329 goto out;
330 bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
331 mdelay(100);
332 }
333 for (i = 0; i < 200; i++) {
334 if (READ_REG(priv, regINIT_STATUS)) {
335 rc = 0;
336 goto out;
337 }
338 mdelay(2);
339 }
340 rc = -EIO;
341 out:
342 if (master)
343 WRITE_REG(priv, regINIT_SEMAPHORE, 1);
344 if (fw)
345 release_firmware(fw);
346
347 if (rc) {
348 netdev_err(priv->ndev, "firmware loading failed\n");
349 if (rc == -EIO)
350 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
351 READ_REG(priv, regVPC),
352 READ_REG(priv, regVIC),
353 READ_REG(priv, regINIT_STATUS), i);
354 RET(rc);
355 } else {
356 DBG("%s: firmware loading success\n", priv->ndev->name);
357 RET(0);
358 }
359 }
360
361 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
362 {
363 u32 val;
364
365 ENTER;
366 DBG("mac0=%x mac1=%x mac2=%x\n",
367 READ_REG(priv, regUNC_MAC0_A),
368 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
369
370 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
371 WRITE_REG(priv, regUNC_MAC2_A, val);
372 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
373 WRITE_REG(priv, regUNC_MAC1_A, val);
374 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
375 WRITE_REG(priv, regUNC_MAC0_A, val);
376
377 DBG("mac0=%x mac1=%x mac2=%x\n",
378 READ_REG(priv, regUNC_MAC0_A),
379 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
380 RET();
381 }
382
383 /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
384 * @priv - NIC private structure
385 */
386 static int bdx_hw_start(struct bdx_priv *priv)
387 {
388 int rc = -EIO;
389 struct net_device *ndev = priv->ndev;
390
391 ENTER;
392 bdx_link_changed(priv);
393
394 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
395 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
396 WRITE_REG(priv, regPAUSE_QUANT, 0x96);
397 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
398 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
399 WRITE_REG(priv, regRX_FULLNESS, 0);
400 WRITE_REG(priv, regTX_FULLNESS, 0);
401 WRITE_REG(priv, regCTRLST,
402 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
403
404 WRITE_REG(priv, regVGLB, 0);
405 WRITE_REG(priv, regMAX_FRAME_A,
406 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
407
408 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
409 WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
410 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
411
412 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
413 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
414
415 /* Enable timer interrupt once in 2 secs. */
416 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
417 bdx_restore_mac(priv->ndev, priv);
418
419 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
420 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
421
422 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
423
424 rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
425 ndev->name, ndev);
426 if (rc)
427 goto err_irq;
428 bdx_enable_interrupts(priv);
429
430 RET(0);
431
432 err_irq:
433 RET(rc);
434 }
435
436 static void bdx_hw_stop(struct bdx_priv *priv)
437 {
438 ENTER;
439 bdx_disable_interrupts(priv);
440 free_irq(priv->pdev->irq, priv->ndev);
441
442 netif_carrier_off(priv->ndev);
443 netif_stop_queue(priv->ndev);
444
445 RET();
446 }
447
448 static int bdx_hw_reset_direct(void __iomem *regs)
449 {
450 u32 val, i;
451 ENTER;
452
453 /* reset sequences: read, write 1, read, write 0 */
454 val = readl(regs + regCLKPLL);
455 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
456 udelay(50);
457 val = readl(regs + regCLKPLL);
458 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
459
460 /* check that the PLLs are locked and reset ended */
461 for (i = 0; i < 70; i++, mdelay(10))
462 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
463 /* do any PCI-E read transaction */
464 readl(regs + regRXD_CFG0_0);
465 return 0;
466 }
467 pr_err("HW reset failed\n");
468 return 1; /* failure */
469 }
470
471 static int bdx_hw_reset(struct bdx_priv *priv)
472 {
473 u32 val, i;
474 ENTER;
475
476 if (priv->port == 0) {
477 /* reset sequences: read, write 1, read, write 0 */
478 val = READ_REG(priv, regCLKPLL);
479 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
480 udelay(50);
481 val = READ_REG(priv, regCLKPLL);
482 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
483 }
484 /* check that the PLLs are locked and reset ended */
485 for (i = 0; i < 70; i++, mdelay(10))
486 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
487 /* do any PCI-E read transaction */
488 READ_REG(priv, regRXD_CFG0_0);
489 return 0;
490 }
491 pr_err("HW reset failed\n");
492 return 1; /* failure */
493 }
494
495 static int bdx_sw_reset(struct bdx_priv *priv)
496 {
497 int i;
498
499 ENTER;
500 /* 1. load MAC (obsolete) */
501 /* 2. disable Rx (and Tx) */
502 WRITE_REG(priv, regGMAC_RXF_A, 0);
503 mdelay(100);
504 /* 3. disable port */
505 WRITE_REG(priv, regDIS_PORT, 1);
506 /* 4. disable queue */
507 WRITE_REG(priv, regDIS_QU, 1);
508 /* 5. wait until hw is disabled */
509 for (i = 0; i < 50; i++) {
510 if (READ_REG(priv, regRST_PORT) & 1)
511 break;
512 mdelay(10);
513 }
514 if (i == 50)
515 netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
516
517 /* 6. disable intrs */
518 WRITE_REG(priv, regRDINTCM0, 0);
519 WRITE_REG(priv, regTDINTCM0, 0);
520 WRITE_REG(priv, regIMR, 0);
521 READ_REG(priv, regISR);
522
523 /* 7. reset queue */
524 WRITE_REG(priv, regRST_QU, 1);
525 /* 8. reset port */
526 WRITE_REG(priv, regRST_PORT, 1);
527 /* 9. zero all read and write pointers */
528 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
529 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
530 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
531 WRITE_REG(priv, i, 0);
532 /* 10. unseet port disable */
533 WRITE_REG(priv, regDIS_PORT, 0);
534 /* 11. unset queue disable */
535 WRITE_REG(priv, regDIS_QU, 0);
536 /* 12. unset queue reset */
537 WRITE_REG(priv, regRST_QU, 0);
538 /* 13. unset port reset */
539 WRITE_REG(priv, regRST_PORT, 0);
540 /* 14. enable Rx */
541 /* skiped. will be done later */
542 /* 15. save MAC (obsolete) */
543 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
544 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
545
546 RET(0);
547 }
548
549 /* bdx_reset - performs right type of reset depending on hw type */
550 static int bdx_reset(struct bdx_priv *priv)
551 {
552 ENTER;
553 RET((priv->pdev->device == 0x3009)
554 ? bdx_hw_reset(priv)
555 : bdx_sw_reset(priv));
556 }
557
558 /**
559 * bdx_close - Disables a network interface
560 * @netdev: network interface device structure
561 *
562 * Returns 0, this is not allowed to fail
563 *
564 * The close entry point is called when an interface is de-activated
565 * by the OS. The hardware is still under the drivers control, but
566 * needs to be disabled. A global MAC reset is issued to stop the
567 * hardware, and all transmit and receive resources are freed.
568 **/
569 static int bdx_close(struct net_device *ndev)
570 {
571 struct bdx_priv *priv = NULL;
572
573 ENTER;
574 priv = netdev_priv(ndev);
575
576 napi_disable(&priv->napi);
577
578 bdx_reset(priv);
579 bdx_hw_stop(priv);
580 bdx_rx_free(priv);
581 bdx_tx_free(priv);
582 RET(0);
583 }
584
585 /**
586 * bdx_open - Called when a network interface is made active
587 * @netdev: network interface device structure
588 *
589 * Returns 0 on success, negative value on failure
590 *
591 * The open entry point is called when a network interface is made
592 * active by the system (IFF_UP). At this point all resources needed
593 * for transmit and receive operations are allocated, the interrupt
594 * handler is registered with the OS, the watchdog timer is started,
595 * and the stack is notified that the interface is ready.
596 **/
597 static int bdx_open(struct net_device *ndev)
598 {
599 struct bdx_priv *priv;
600 int rc;
601
602 ENTER;
603 priv = netdev_priv(ndev);
604 bdx_reset(priv);
605 if (netif_running(ndev))
606 netif_stop_queue(priv->ndev);
607
608 if ((rc = bdx_tx_init(priv)) ||
609 (rc = bdx_rx_init(priv)) ||
610 (rc = bdx_fw_load(priv)))
611 goto err;
612
613 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
614
615 rc = bdx_hw_start(priv);
616 if (rc)
617 goto err;
618
619 napi_enable(&priv->napi);
620
621 print_fw_id(priv->nic);
622
623 RET(0);
624
625 err:
626 bdx_close(ndev);
627 RET(rc);
628 }
629
630 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
631 {
632 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
633 -EINVAL : 0;
634 }
635
636 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
637 {
638 struct bdx_priv *priv = netdev_priv(ndev);
639 u32 data[3];
640 int error;
641
642 ENTER;
643
644 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
645 if (cmd != SIOCDEVPRIVATE) {
646 error = copy_from_user(data, ifr->ifr_data, sizeof(data));
647 if (error) {
648 pr_err("can't copy from user\n");
649 RET(-EFAULT);
650 }
651 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
652 }
653
654 if (!capable(CAP_SYS_RAWIO))
655 return -EPERM;
656
657 switch (data[0]) {
658
659 case BDX_OP_READ:
660 error = bdx_range_check(priv, data[1]);
661 if (error < 0)
662 return error;
663 data[2] = READ_REG(priv, data[1]);
664 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
665 data[2]);
666 error = copy_to_user(ifr->ifr_data, data, sizeof(data));
667 if (error)
668 RET(-EFAULT);
669 break;
670
671 case BDX_OP_WRITE:
672 error = bdx_range_check(priv, data[1]);
673 if (error < 0)
674 return error;
675 WRITE_REG(priv, data[1], data[2]);
676 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
677 break;
678
679 default:
680 RET(-EOPNOTSUPP);
681 }
682 return 0;
683 }
684
685 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
686 {
687 ENTER;
688 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
689 RET(bdx_ioctl_priv(ndev, ifr, cmd));
690 else
691 RET(-EOPNOTSUPP);
692 }
693
694 /*
695 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
696 * by passing VLAN filter table to hardware
697 * @ndev network device
698 * @vid VLAN vid
699 * @op add or kill operation
700 */
701 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
702 {
703 struct bdx_priv *priv = netdev_priv(ndev);
704 u32 reg, bit, val;
705
706 ENTER;
707 DBG2("vid=%d value=%d\n", (int)vid, enable);
708 if (unlikely(vid >= 4096)) {
709 pr_err("invalid VID: %u (> 4096)\n", vid);
710 RET();
711 }
712 reg = regVLAN_0 + (vid / 32) * 4;
713 bit = 1 << vid % 32;
714 val = READ_REG(priv, reg);
715 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
716 if (enable)
717 val |= bit;
718 else
719 val &= ~bit;
720 DBG2("new val %x\n", val);
721 WRITE_REG(priv, reg, val);
722 RET();
723 }
724
725 /*
726 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
727 * @ndev network device
728 * @vid VLAN vid to add
729 */
730 static int bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
731 {
732 __bdx_vlan_rx_vid(ndev, vid, 1);
733 return 0;
734 }
735
736 /*
737 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
738 * @ndev network device
739 * @vid VLAN vid to kill
740 */
741 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
742 {
743 __bdx_vlan_rx_vid(ndev, vid, 0);
744 return 0;
745 }
746
747 /**
748 * bdx_change_mtu - Change the Maximum Transfer Unit
749 * @netdev: network interface device structure
750 * @new_mtu: new value for maximum frame size
751 *
752 * Returns 0 on success, negative on failure
753 */
754 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
755 {
756 ENTER;
757
758 if (new_mtu == ndev->mtu)
759 RET(0);
760
761 /* enforce minimum frame size */
762 if (new_mtu < ETH_ZLEN) {
763 netdev_err(ndev, "mtu %d is less then minimal %d\n",
764 new_mtu, ETH_ZLEN);
765 RET(-EINVAL);
766 }
767
768 ndev->mtu = new_mtu;
769 if (netif_running(ndev)) {
770 bdx_close(ndev);
771 bdx_open(ndev);
772 }
773 RET(0);
774 }
775
776 static void bdx_setmulti(struct net_device *ndev)
777 {
778 struct bdx_priv *priv = netdev_priv(ndev);
779
780 u32 rxf_val =
781 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
782 int i;
783
784 ENTER;
785 /* IMF - imperfect (hash) rx multicat filter */
786 /* PMF - perfect rx multicat filter */
787
788 /* FIXME: RXE(OFF) */
789 if (ndev->flags & IFF_PROMISC) {
790 rxf_val |= GMAC_RX_FILTER_PRM;
791 } else if (ndev->flags & IFF_ALLMULTI) {
792 /* set IMF to accept all multicast frmaes */
793 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
794 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
795 } else if (!netdev_mc_empty(ndev)) {
796 u8 hash;
797 struct netdev_hw_addr *ha;
798 u32 reg, val;
799
800 /* set IMF to deny all multicast frames */
801 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
802 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
803 /* set PMF to deny all multicast frames */
804 for (i = 0; i < MAC_MCST_NUM; i++) {
805 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
806 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
807 }
808
809 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
810 /* TBD: sort addresses and write them in ascending order
811 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
812 * multicast frames throu IMF */
813 /* accept the rest of addresses throu IMF */
814 netdev_for_each_mc_addr(ha, ndev) {
815 hash = 0;
816 for (i = 0; i < ETH_ALEN; i++)
817 hash ^= ha->addr[i];
818 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
819 val = READ_REG(priv, reg);
820 val |= (1 << (hash % 32));
821 WRITE_REG(priv, reg, val);
822 }
823
824 } else {
825 DBG("only own mac %d\n", netdev_mc_count(ndev));
826 rxf_val |= GMAC_RX_FILTER_AB;
827 }
828 WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
829 /* enable RX */
830 /* FIXME: RXE(ON) */
831 RET();
832 }
833
834 static int bdx_set_mac(struct net_device *ndev, void *p)
835 {
836 struct bdx_priv *priv = netdev_priv(ndev);
837 struct sockaddr *addr = p;
838
839 ENTER;
840 /*
841 if (netif_running(dev))
842 return -EBUSY
843 */
844 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
845 bdx_restore_mac(ndev, priv);
846 RET(0);
847 }
848
849 static int bdx_read_mac(struct bdx_priv *priv)
850 {
851 u16 macAddress[3], i;
852 ENTER;
853
854 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
855 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
856 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
857 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
858 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
859 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
860 for (i = 0; i < 3; i++) {
861 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
862 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
863 }
864 RET(0);
865 }
866
867 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
868 {
869 u64 val;
870
871 val = READ_REG(priv, reg);
872 val |= ((u64) READ_REG(priv, reg + 8)) << 32;
873 return val;
874 }
875
876 /*Do the statistics-update work*/
877 static void bdx_update_stats(struct bdx_priv *priv)
878 {
879 struct bdx_stats *stats = &priv->hw_stats;
880 u64 *stats_vector = (u64 *) stats;
881 int i;
882 int addr;
883
884 /*Fill HW structure */
885 addr = 0x7200;
886 /*First 12 statistics - 0x7200 - 0x72B0 */
887 for (i = 0; i < 12; i++) {
888 stats_vector[i] = bdx_read_l2stat(priv, addr);
889 addr += 0x10;
890 }
891 BDX_ASSERT(addr != 0x72C0);
892 /* 0x72C0-0x72E0 RSRV */
893 addr = 0x72F0;
894 for (; i < 16; i++) {
895 stats_vector[i] = bdx_read_l2stat(priv, addr);
896 addr += 0x10;
897 }
898 BDX_ASSERT(addr != 0x7330);
899 /* 0x7330-0x7360 RSRV */
900 addr = 0x7370;
901 for (; i < 19; i++) {
902 stats_vector[i] = bdx_read_l2stat(priv, addr);
903 addr += 0x10;
904 }
905 BDX_ASSERT(addr != 0x73A0);
906 /* 0x73A0-0x73B0 RSRV */
907 addr = 0x73C0;
908 for (; i < 23; i++) {
909 stats_vector[i] = bdx_read_l2stat(priv, addr);
910 addr += 0x10;
911 }
912 BDX_ASSERT(addr != 0x7400);
913 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
914 }
915
916 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
917 u16 rxd_vlan);
918 static void print_rxfd(struct rxf_desc *rxfd);
919
920 /*************************************************************************
921 * Rx DB *
922 *************************************************************************/
923
924 static void bdx_rxdb_destroy(struct rxdb *db)
925 {
926 vfree(db);
927 }
928
929 static struct rxdb *bdx_rxdb_create(int nelem)
930 {
931 struct rxdb *db;
932 int i;
933
934 db = vmalloc(sizeof(struct rxdb)
935 + (nelem * sizeof(int))
936 + (nelem * sizeof(struct rx_map)));
937 if (likely(db != NULL)) {
938 db->stack = (int *)(db + 1);
939 db->elems = (void *)(db->stack + nelem);
940 db->nelem = nelem;
941 db->top = nelem;
942 for (i = 0; i < nelem; i++)
943 db->stack[i] = nelem - i - 1; /* to make first allocs
944 close to db struct*/
945 }
946
947 return db;
948 }
949
950 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
951 {
952 BDX_ASSERT(db->top <= 0);
953 return db->stack[--(db->top)];
954 }
955
956 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
957 {
958 BDX_ASSERT((n < 0) || (n >= db->nelem));
959 return db->elems + n;
960 }
961
962 static inline int bdx_rxdb_available(struct rxdb *db)
963 {
964 return db->top;
965 }
966
967 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
968 {
969 BDX_ASSERT((n >= db->nelem) || (n < 0));
970 db->stack[(db->top)++] = n;
971 }
972
973 /*************************************************************************
974 * Rx Init *
975 *************************************************************************/
976
977 /* bdx_rx_init - initialize RX all related HW and SW resources
978 * @priv - NIC private structure
979 *
980 * Returns 0 on success, negative value on failure
981 *
982 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
983 * skb for rx. It assumes that Rx is desabled in HW
984 * funcs are grouped for better cache usage
985 *
986 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
987 * filled and packets will be dropped by nic without getting into host or
988 * cousing interrupt. Anyway, in that condition, host has no chance to process
989 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
990 */
991
992 /* TBD: ensure proper packet size */
993
994 static int bdx_rx_init(struct bdx_priv *priv)
995 {
996 ENTER;
997
998 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
999 regRXD_CFG0_0, regRXD_CFG1_0,
1000 regRXD_RPTR_0, regRXD_WPTR_0))
1001 goto err_mem;
1002 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1003 regRXF_CFG0_0, regRXF_CFG1_0,
1004 regRXF_RPTR_0, regRXF_WPTR_0))
1005 goto err_mem;
1006 priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1007 sizeof(struct rxf_desc));
1008 if (!priv->rxdb)
1009 goto err_mem;
1010
1011 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1012 return 0;
1013
1014 err_mem:
1015 netdev_err(priv->ndev, "Rx init failed\n");
1016 return -ENOMEM;
1017 }
1018
1019 /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1020 * @priv - NIC private structure
1021 * @f - RXF fifo
1022 */
1023 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1024 {
1025 struct rx_map *dm;
1026 struct rxdb *db = priv->rxdb;
1027 u16 i;
1028
1029 ENTER;
1030 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1031 db->nelem - bdx_rxdb_available(db));
1032 while (bdx_rxdb_available(db) > 0) {
1033 i = bdx_rxdb_alloc_elem(db);
1034 dm = bdx_rxdb_addr_elem(db, i);
1035 dm->dma = 0;
1036 }
1037 for (i = 0; i < db->nelem; i++) {
1038 dm = bdx_rxdb_addr_elem(db, i);
1039 if (dm->dma) {
1040 pci_unmap_single(priv->pdev,
1041 dm->dma, f->m.pktsz,
1042 PCI_DMA_FROMDEVICE);
1043 dev_kfree_skb(dm->skb);
1044 }
1045 }
1046 }
1047
1048 /* bdx_rx_free - release all Rx resources
1049 * @priv - NIC private structure
1050 * It assumes that Rx is desabled in HW
1051 */
1052 static void bdx_rx_free(struct bdx_priv *priv)
1053 {
1054 ENTER;
1055 if (priv->rxdb) {
1056 bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1057 bdx_rxdb_destroy(priv->rxdb);
1058 priv->rxdb = NULL;
1059 }
1060 bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1061 bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1062
1063 RET();
1064 }
1065
1066 /*************************************************************************
1067 * Rx Engine *
1068 *************************************************************************/
1069
1070 /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1071 * @priv - nic's private structure
1072 * @f - RXF fifo that needs skbs
1073 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1074 * skb's virtual and physical addresses are stored in skb db.
1075 * To calculate free space, func uses cached values of RPTR and WPTR
1076 * When needed, it also updates RPTR and WPTR.
1077 */
1078
1079 /* TBD: do not update WPTR if no desc were written */
1080
1081 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1082 {
1083 struct sk_buff *skb;
1084 struct rxf_desc *rxfd;
1085 struct rx_map *dm;
1086 int dno, delta, idx;
1087 struct rxdb *db = priv->rxdb;
1088
1089 ENTER;
1090 dno = bdx_rxdb_available(db) - 1;
1091 while (dno > 0) {
1092 skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN);
1093 if (!skb) {
1094 pr_err("NO MEM: dev_alloc_skb failed\n");
1095 break;
1096 }
1097 skb->dev = priv->ndev;
1098 skb_reserve(skb, NET_IP_ALIGN);
1099
1100 idx = bdx_rxdb_alloc_elem(db);
1101 dm = bdx_rxdb_addr_elem(db, idx);
1102 dm->dma = pci_map_single(priv->pdev,
1103 skb->data, f->m.pktsz,
1104 PCI_DMA_FROMDEVICE);
1105 dm->skb = skb;
1106 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1107 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1108 rxfd->va_lo = idx;
1109 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1110 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1111 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1112 print_rxfd(rxfd);
1113
1114 f->m.wptr += sizeof(struct rxf_desc);
1115 delta = f->m.wptr - f->m.memsz;
1116 if (unlikely(delta >= 0)) {
1117 f->m.wptr = delta;
1118 if (delta > 0) {
1119 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1120 DBG("wrapped descriptor\n");
1121 }
1122 }
1123 dno--;
1124 }
1125 /*TBD: to do - delayed rxf wptr like in txd */
1126 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1127 RET();
1128 }
1129
1130 static inline void
1131 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1132 struct sk_buff *skb)
1133 {
1134 ENTER;
1135 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1136 if (GET_RXD_VTAG(rxd_val1)) {
1137 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1138 priv->ndev->name,
1139 GET_RXD_VLAN_ID(rxd_vlan),
1140 GET_RXD_VTAG(rxd_val1));
1141 __vlan_hwaccel_put_tag(skb, GET_RXD_VLAN_TCI(rxd_vlan));
1142 }
1143 netif_receive_skb(skb);
1144 }
1145
1146 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1147 {
1148 struct rxf_desc *rxfd;
1149 struct rx_map *dm;
1150 struct rxf_fifo *f;
1151 struct rxdb *db;
1152 struct sk_buff *skb;
1153 int delta;
1154
1155 ENTER;
1156 DBG("priv=%p rxdd=%p\n", priv, rxdd);
1157 f = &priv->rxf_fifo0;
1158 db = priv->rxdb;
1159 DBG("db=%p f=%p\n", db, f);
1160 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1161 DBG("dm=%p\n", dm);
1162 skb = dm->skb;
1163 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1164 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1165 rxfd->va_lo = rxdd->va_lo;
1166 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1167 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1168 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1169 print_rxfd(rxfd);
1170
1171 f->m.wptr += sizeof(struct rxf_desc);
1172 delta = f->m.wptr - f->m.memsz;
1173 if (unlikely(delta >= 0)) {
1174 f->m.wptr = delta;
1175 if (delta > 0) {
1176 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1177 DBG("wrapped descriptor\n");
1178 }
1179 }
1180 RET();
1181 }
1182
1183 /* bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1184 * NOTE: a special treatment is given to non-continuous descriptors
1185 * that start near the end, wraps around and continue at the beginning. a second
1186 * part is copied right after the first, and then descriptor is interpreted as
1187 * normal. fifo has an extra space to allow such operations
1188 * @priv - nic's private structure
1189 * @f - RXF fifo that needs skbs
1190 */
1191
1192 /* TBD: replace memcpy func call by explicite inline asm */
1193
1194 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1195 {
1196 struct net_device *ndev = priv->ndev;
1197 struct sk_buff *skb, *skb2;
1198 struct rxd_desc *rxdd;
1199 struct rx_map *dm;
1200 struct rxf_fifo *rxf_fifo;
1201 int tmp_len, size;
1202 int done = 0;
1203 int max_done = BDX_MAX_RX_DONE;
1204 struct rxdb *db = NULL;
1205 /* Unmarshalled descriptor - copy of descriptor in host order */
1206 u32 rxd_val1;
1207 u16 len;
1208 u16 rxd_vlan;
1209
1210 ENTER;
1211 max_done = budget;
1212
1213 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1214
1215 size = f->m.wptr - f->m.rptr;
1216 if (size < 0)
1217 size = f->m.memsz + size; /* size is negative :-) */
1218
1219 while (size > 0) {
1220
1221 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1222 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1223
1224 len = CPU_CHIP_SWAP16(rxdd->len);
1225
1226 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1227
1228 print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1229
1230 tmp_len = GET_RXD_BC(rxd_val1) << 3;
1231 BDX_ASSERT(tmp_len <= 0);
1232 size -= tmp_len;
1233 if (size < 0) /* test for partially arrived descriptor */
1234 break;
1235
1236 f->m.rptr += tmp_len;
1237
1238 tmp_len = f->m.rptr - f->m.memsz;
1239 if (unlikely(tmp_len >= 0)) {
1240 f->m.rptr = tmp_len;
1241 if (tmp_len > 0) {
1242 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1243 f->m.rptr, tmp_len);
1244 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1245 }
1246 }
1247
1248 if (unlikely(GET_RXD_ERR(rxd_val1))) {
1249 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1250 ndev->stats.rx_errors++;
1251 bdx_recycle_skb(priv, rxdd);
1252 continue;
1253 }
1254
1255 rxf_fifo = &priv->rxf_fifo0;
1256 db = priv->rxdb;
1257 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1258 skb = dm->skb;
1259
1260 if (len < BDX_COPYBREAK &&
1261 (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
1262 skb_reserve(skb2, NET_IP_ALIGN);
1263 /*skb_put(skb2, len); */
1264 pci_dma_sync_single_for_cpu(priv->pdev,
1265 dm->dma, rxf_fifo->m.pktsz,
1266 PCI_DMA_FROMDEVICE);
1267 memcpy(skb2->data, skb->data, len);
1268 bdx_recycle_skb(priv, rxdd);
1269 skb = skb2;
1270 } else {
1271 pci_unmap_single(priv->pdev,
1272 dm->dma, rxf_fifo->m.pktsz,
1273 PCI_DMA_FROMDEVICE);
1274 bdx_rxdb_free_elem(db, rxdd->va_lo);
1275 }
1276
1277 ndev->stats.rx_bytes += len;
1278
1279 skb_put(skb, len);
1280 skb->protocol = eth_type_trans(skb, ndev);
1281
1282 /* Non-IP packets aren't checksum-offloaded */
1283 if (GET_RXD_PKT_ID(rxd_val1) == 0)
1284 skb_checksum_none_assert(skb);
1285 else
1286 skb->ip_summed = CHECKSUM_UNNECESSARY;
1287
1288 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1289
1290 if (++done >= max_done)
1291 break;
1292 }
1293
1294 ndev->stats.rx_packets += done;
1295
1296 /* FIXME: do smth to minimize pci accesses */
1297 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1298
1299 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1300
1301 RET(done);
1302 }
1303
1304 /*************************************************************************
1305 * Debug / Temprorary Code *
1306 *************************************************************************/
1307 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1308 u16 rxd_vlan)
1309 {
1310 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1311 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1312 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1313 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1314 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1315 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1316 rxdd->va_hi);
1317 }
1318
1319 static void print_rxfd(struct rxf_desc *rxfd)
1320 {
1321 DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1322 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1323 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1324 }
1325
1326 /*
1327 * TX HW/SW interaction overview
1328 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1329 * There are 2 types of TX communication channels between driver and NIC.
1330 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1331 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1332 *
1333 * Currently NIC supports TSO, checksuming and gather DMA
1334 * UFO and IP fragmentation is on the way
1335 *
1336 * RX SW Data Structures
1337 * ~~~~~~~~~~~~~~~~~~~~~
1338 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1339 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1340 * acknowledges sent by TXF descriptors.
1341 * Implemented as cyclic buffer.
1342 * fifo - keeps info about fifo's size and location, relevant HW registers,
1343 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1344 * Implemented as simple struct.
1345 *
1346 * TX SW Execution Flow
1347 * ~~~~~~~~~~~~~~~~~~~~
1348 * OS calls driver's hard_xmit method with packet to sent.
1349 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1350 * by updating TXD WPTR.
1351 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1352 * To prevent TXD fifo overflow without reading HW registers every time,
1353 * SW deploys "tx level" technique.
1354 * Upon strart up, tx level is initialized to TXD fifo length.
1355 * For every sent packet, SW gets its TXD descriptor sizei
1356 * (from precalculated array) and substructs it from tx level.
1357 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1358 * original TXD descriptor from txdb and adds it to tx level.
1359 * When Tx level drops under some predefined treshhold, the driver
1360 * stops the TX queue. When TX level rises above that level,
1361 * the tx queue is enabled again.
1362 *
1363 * This technique avoids eccessive reading of RPTR and WPTR registers.
1364 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1365 */
1366
1367 /*************************************************************************
1368 * Tx DB *
1369 *************************************************************************/
1370 static inline int bdx_tx_db_size(struct txdb *db)
1371 {
1372 int taken = db->wptr - db->rptr;
1373 if (taken < 0)
1374 taken = db->size + 1 + taken; /* (size + 1) equals memsz */
1375
1376 return db->size - taken;
1377 }
1378
1379 /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1380 * @d - tx data base
1381 * @ptr - read or write pointer
1382 */
1383 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1384 {
1385 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1386
1387 BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1388 *pptr != db->wptr); /* or write pointer */
1389
1390 BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1391 *pptr >= db->end); /* in range */
1392
1393 ++*pptr;
1394 if (unlikely(*pptr == db->end))
1395 *pptr = db->start;
1396 }
1397
1398 /* bdx_tx_db_inc_rptr - increment read pointer
1399 * @d - tx data base
1400 */
1401 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1402 {
1403 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
1404 __bdx_tx_db_ptr_next(db, &db->rptr);
1405 }
1406
1407 /* bdx_tx_db_inc_rptr - increment write pointer
1408 * @d - tx data base
1409 */
1410 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1411 {
1412 __bdx_tx_db_ptr_next(db, &db->wptr);
1413 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
1414 a result of write */
1415 }
1416
1417 /* bdx_tx_db_init - creates and initializes tx db
1418 * @d - tx data base
1419 * @sz_type - size of tx fifo
1420 * Returns 0 on success, error code otherwise
1421 */
1422 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1423 {
1424 int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1425
1426 d->start = vmalloc(memsz);
1427 if (!d->start)
1428 return -ENOMEM;
1429
1430 /*
1431 * In order to differentiate between db is empty and db is full
1432 * states at least one element should always be empty in order to
1433 * avoid rptr == wptr which means db is empty
1434 */
1435 d->size = memsz / sizeof(struct tx_map) - 1;
1436 d->end = d->start + d->size + 1; /* just after last element */
1437
1438 /* all dbs are created equally empty */
1439 d->rptr = d->start;
1440 d->wptr = d->start;
1441
1442 return 0;
1443 }
1444
1445 /* bdx_tx_db_close - closes tx db and frees all memory
1446 * @d - tx data base
1447 */
1448 static void bdx_tx_db_close(struct txdb *d)
1449 {
1450 BDX_ASSERT(d == NULL);
1451
1452 vfree(d->start);
1453 d->start = NULL;
1454 }
1455
1456 /*************************************************************************
1457 * Tx Engine *
1458 *************************************************************************/
1459
1460 /* sizes of tx desc (including padding if needed) as function
1461 * of skb's frag number */
1462 static struct {
1463 u16 bytes;
1464 u16 qwords; /* qword = 64 bit */
1465 } txd_sizes[MAX_SKB_FRAGS + 1];
1466
1467 /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1468 * @priv - NIC private structure
1469 * @skb - socket buffer to map
1470 *
1471 * It makes dma mappings for skb's data blocks and writes them to PBL of
1472 * new tx descriptor. It also stores them in the tx db, so they could be
1473 * unmaped after data was sent. It is reponsibility of a caller to make
1474 * sure that there is enough space in the tx db. Last element holds pointer
1475 * to skb itself and marked with zero length
1476 */
1477 static inline void
1478 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1479 struct txd_desc *txdd)
1480 {
1481 struct txdb *db = &priv->txdb;
1482 struct pbl *pbl = &txdd->pbl[0];
1483 int nr_frags = skb_shinfo(skb)->nr_frags;
1484 int i;
1485
1486 db->wptr->len = skb_headlen(skb);
1487 db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1488 db->wptr->len, PCI_DMA_TODEVICE);
1489 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1490 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1491 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1492 DBG("=== pbl len: 0x%x ================\n", pbl->len);
1493 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1494 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1495 bdx_tx_db_inc_wptr(db);
1496
1497 for (i = 0; i < nr_frags; i++) {
1498 const struct skb_frag_struct *frag;
1499
1500 frag = &skb_shinfo(skb)->frags[i];
1501 db->wptr->len = skb_frag_size(frag);
1502 db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1503 0, skb_frag_size(frag),
1504 DMA_TO_DEVICE);
1505
1506 pbl++;
1507 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1508 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1509 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1510 bdx_tx_db_inc_wptr(db);
1511 }
1512
1513 /* add skb clean up info. */
1514 db->wptr->len = -txd_sizes[nr_frags].bytes;
1515 db->wptr->addr.skb = skb;
1516 bdx_tx_db_inc_wptr(db);
1517 }
1518
1519 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1520 * number of frags is used as index to fetch correct descriptors size,
1521 * instead of calculating it each time */
1522 static void __init init_txd_sizes(void)
1523 {
1524 int i, lwords;
1525
1526 /* 7 - is number of lwords in txd with one phys buffer
1527 * 3 - is number of lwords used for every additional phys buffer */
1528 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1529 lwords = 7 + (i * 3);
1530 if (lwords & 1)
1531 lwords++; /* pad it with 1 lword */
1532 txd_sizes[i].qwords = lwords >> 1;
1533 txd_sizes[i].bytes = lwords << 2;
1534 }
1535 }
1536
1537 /* bdx_tx_init - initialize all Tx related stuff.
1538 * Namely, TXD and TXF fifos, database etc */
1539 static int bdx_tx_init(struct bdx_priv *priv)
1540 {
1541 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1542 regTXD_CFG0_0,
1543 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1544 goto err_mem;
1545 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1546 regTXF_CFG0_0,
1547 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1548 goto err_mem;
1549
1550 /* The TX db has to keep mappings for all packets sent (on TxD)
1551 * and not yet reclaimed (on TxF) */
1552 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1553 goto err_mem;
1554
1555 priv->tx_level = BDX_MAX_TX_LEVEL;
1556 #ifdef BDX_DELAY_WPTR
1557 priv->tx_update_mark = priv->tx_level - 1024;
1558 #endif
1559 return 0;
1560
1561 err_mem:
1562 netdev_err(priv->ndev, "Tx init failed\n");
1563 return -ENOMEM;
1564 }
1565
1566 /*
1567 * bdx_tx_space - calculates available space in TX fifo
1568 * @priv - NIC private structure
1569 * Returns available space in TX fifo in bytes
1570 */
1571 static inline int bdx_tx_space(struct bdx_priv *priv)
1572 {
1573 struct txd_fifo *f = &priv->txd_fifo0;
1574 int fsize;
1575
1576 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1577 fsize = f->m.rptr - f->m.wptr;
1578 if (fsize <= 0)
1579 fsize = f->m.memsz + fsize;
1580 return fsize;
1581 }
1582
1583 /* bdx_tx_transmit - send packet to NIC
1584 * @skb - packet to send
1585 * ndev - network device assigned to NIC
1586 * Return codes:
1587 * o NETDEV_TX_OK everything ok.
1588 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1589 * Usually a bug, means queue start/stop flow control is broken in
1590 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1591 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1592 */
1593 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1594 struct net_device *ndev)
1595 {
1596 struct bdx_priv *priv = netdev_priv(ndev);
1597 struct txd_fifo *f = &priv->txd_fifo0;
1598 int txd_checksum = 7; /* full checksum */
1599 int txd_lgsnd = 0;
1600 int txd_vlan_id = 0;
1601 int txd_vtag = 0;
1602 int txd_mss = 0;
1603
1604 int nr_frags = skb_shinfo(skb)->nr_frags;
1605 struct txd_desc *txdd;
1606 int len;
1607 unsigned long flags;
1608
1609 ENTER;
1610 local_irq_save(flags);
1611 if (!spin_trylock(&priv->tx_lock)) {
1612 local_irq_restore(flags);
1613 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1614 BDX_DRV_NAME, ndev->name);
1615 return NETDEV_TX_LOCKED;
1616 }
1617
1618 /* build tx descriptor */
1619 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
1620 txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1621 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1622 txd_checksum = 0;
1623
1624 if (skb_shinfo(skb)->gso_size) {
1625 txd_mss = skb_shinfo(skb)->gso_size;
1626 txd_lgsnd = 1;
1627 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1628 txd_mss);
1629 }
1630
1631 if (vlan_tx_tag_present(skb)) {
1632 /*Cut VLAN ID to 12 bits */
1633 txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
1634 txd_vtag = 1;
1635 }
1636
1637 txdd->length = CPU_CHIP_SWAP16(skb->len);
1638 txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1639 txdd->txd_val1 =
1640 CPU_CHIP_SWAP32(TXD_W1_VAL
1641 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1642 txd_lgsnd, txd_vlan_id));
1643 DBG("=== TxD desc =====================\n");
1644 DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1645 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1646
1647 bdx_tx_map_skb(priv, skb, txdd);
1648
1649 /* increment TXD write pointer. In case of
1650 fifo wrapping copy reminder of the descriptor
1651 to the beginning */
1652 f->m.wptr += txd_sizes[nr_frags].bytes;
1653 len = f->m.wptr - f->m.memsz;
1654 if (unlikely(len >= 0)) {
1655 f->m.wptr = len;
1656 if (len > 0) {
1657 BDX_ASSERT(len > f->m.memsz);
1658 memcpy(f->m.va, f->m.va + f->m.memsz, len);
1659 }
1660 }
1661 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
1662
1663 priv->tx_level -= txd_sizes[nr_frags].bytes;
1664 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1665 #ifdef BDX_DELAY_WPTR
1666 if (priv->tx_level > priv->tx_update_mark) {
1667 /* Force memory writes to complete before letting h/w
1668 know there are new descriptors to fetch.
1669 (might be needed on platforms like IA64)
1670 wmb(); */
1671 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1672 } else {
1673 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1674 priv->tx_noupd = 0;
1675 WRITE_REG(priv, f->m.reg_WPTR,
1676 f->m.wptr & TXF_WPTR_WR_PTR);
1677 }
1678 }
1679 #else
1680 /* Force memory writes to complete before letting h/w
1681 know there are new descriptors to fetch.
1682 (might be needed on platforms like IA64)
1683 wmb(); */
1684 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1685
1686 #endif
1687 #ifdef BDX_LLTX
1688 ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1689 #endif
1690 ndev->stats.tx_packets++;
1691 ndev->stats.tx_bytes += skb->len;
1692
1693 if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1694 DBG("%s: %s: TX Q STOP level %d\n",
1695 BDX_DRV_NAME, ndev->name, priv->tx_level);
1696 netif_stop_queue(ndev);
1697 }
1698
1699 spin_unlock_irqrestore(&priv->tx_lock, flags);
1700 return NETDEV_TX_OK;
1701 }
1702
1703 /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1704 * @priv - bdx adapter
1705 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1706 * that those packets were sent
1707 */
1708 static void bdx_tx_cleanup(struct bdx_priv *priv)
1709 {
1710 struct txf_fifo *f = &priv->txf_fifo0;
1711 struct txdb *db = &priv->txdb;
1712 int tx_level = 0;
1713
1714 ENTER;
1715 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1716 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
1717
1718 while (f->m.wptr != f->m.rptr) {
1719 f->m.rptr += BDX_TXF_DESC_SZ;
1720 f->m.rptr &= f->m.size_mask;
1721
1722 /* unmap all the fragments */
1723 /* first has to come tx_maps containing dma */
1724 BDX_ASSERT(db->rptr->len == 0);
1725 do {
1726 BDX_ASSERT(db->rptr->addr.dma == 0);
1727 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1728 db->rptr->len, PCI_DMA_TODEVICE);
1729 bdx_tx_db_inc_rptr(db);
1730 } while (db->rptr->len > 0);
1731 tx_level -= db->rptr->len; /* '-' koz len is negative */
1732
1733 /* now should come skb pointer - free it */
1734 dev_kfree_skb_irq(db->rptr->addr.skb);
1735 bdx_tx_db_inc_rptr(db);
1736 }
1737
1738 /* let h/w know which TXF descriptors were cleaned */
1739 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1740 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1741
1742 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1743 * we resume the transmition and use tx_lock to synchronize with xmit.*/
1744 spin_lock(&priv->tx_lock);
1745 priv->tx_level += tx_level;
1746 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1747 #ifdef BDX_DELAY_WPTR
1748 if (priv->tx_noupd) {
1749 priv->tx_noupd = 0;
1750 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1751 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1752 }
1753 #endif
1754
1755 if (unlikely(netif_queue_stopped(priv->ndev) &&
1756 netif_carrier_ok(priv->ndev) &&
1757 (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1758 DBG("%s: %s: TX Q WAKE level %d\n",
1759 BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1760 netif_wake_queue(priv->ndev);
1761 }
1762 spin_unlock(&priv->tx_lock);
1763 }
1764
1765 /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1766 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1767 */
1768 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1769 {
1770 struct txdb *db = &priv->txdb;
1771
1772 ENTER;
1773 while (db->rptr != db->wptr) {
1774 if (likely(db->rptr->len))
1775 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1776 db->rptr->len, PCI_DMA_TODEVICE);
1777 else
1778 dev_kfree_skb(db->rptr->addr.skb);
1779 bdx_tx_db_inc_rptr(db);
1780 }
1781 RET();
1782 }
1783
1784 /* bdx_tx_free - frees all Tx resources */
1785 static void bdx_tx_free(struct bdx_priv *priv)
1786 {
1787 ENTER;
1788 bdx_tx_free_skbs(priv);
1789 bdx_fifo_free(priv, &priv->txd_fifo0.m);
1790 bdx_fifo_free(priv, &priv->txf_fifo0.m);
1791 bdx_tx_db_close(&priv->txdb);
1792 }
1793
1794 /* bdx_tx_push_desc - push descriptor to TxD fifo
1795 * @priv - NIC private structure
1796 * @data - desc's data
1797 * @size - desc's size
1798 *
1799 * Pushes desc to TxD fifo and overlaps it if needed.
1800 * NOTE: this func does not check for available space. this is responsibility
1801 * of the caller. Neither does it check that data size is smaller than
1802 * fifo size.
1803 */
1804 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1805 {
1806 struct txd_fifo *f = &priv->txd_fifo0;
1807 int i = f->m.memsz - f->m.wptr;
1808
1809 if (size == 0)
1810 return;
1811
1812 if (i > size) {
1813 memcpy(f->m.va + f->m.wptr, data, size);
1814 f->m.wptr += size;
1815 } else {
1816 memcpy(f->m.va + f->m.wptr, data, i);
1817 f->m.wptr = size - i;
1818 memcpy(f->m.va, data + i, f->m.wptr);
1819 }
1820 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1821 }
1822
1823 /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1824 * @priv - NIC private structure
1825 * @data - desc's data
1826 * @size - desc's size
1827 *
1828 * NOTE: this func does check for available space and, if necessary, waits for
1829 * NIC to read existing data before writing new one.
1830 */
1831 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1832 {
1833 int timer = 0;
1834 ENTER;
1835
1836 while (size > 0) {
1837 /* we substruct 8 because when fifo is full rptr == wptr
1838 which also means that fifo is empty, we can understand
1839 the difference, but could hw do the same ??? :) */
1840 int avail = bdx_tx_space(priv) - 8;
1841 if (avail <= 0) {
1842 if (timer++ > 300) { /* prevent endless loop */
1843 DBG("timeout while writing desc to TxD fifo\n");
1844 break;
1845 }
1846 udelay(50); /* give hw a chance to clean fifo */
1847 continue;
1848 }
1849 avail = min(avail, size);
1850 DBG("about to push %d bytes starting %p size %d\n", avail,
1851 data, size);
1852 bdx_tx_push_desc(priv, data, avail);
1853 size -= avail;
1854 data += avail;
1855 }
1856 RET();
1857 }
1858
1859 static const struct net_device_ops bdx_netdev_ops = {
1860 .ndo_open = bdx_open,
1861 .ndo_stop = bdx_close,
1862 .ndo_start_xmit = bdx_tx_transmit,
1863 .ndo_validate_addr = eth_validate_addr,
1864 .ndo_do_ioctl = bdx_ioctl,
1865 .ndo_set_rx_mode = bdx_setmulti,
1866 .ndo_change_mtu = bdx_change_mtu,
1867 .ndo_set_mac_address = bdx_set_mac,
1868 .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
1869 .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
1870 };
1871
1872 /**
1873 * bdx_probe - Device Initialization Routine
1874 * @pdev: PCI device information struct
1875 * @ent: entry in bdx_pci_tbl
1876 *
1877 * Returns 0 on success, negative on failure
1878 *
1879 * bdx_probe initializes an adapter identified by a pci_dev structure.
1880 * The OS initialization, configuring of the adapter private structure,
1881 * and a hardware reset occur.
1882 *
1883 * functions and their order used as explained in
1884 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1885 *
1886 */
1887
1888 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1889 static int __devinit
1890 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1891 {
1892 struct net_device *ndev;
1893 struct bdx_priv *priv;
1894 int err, pci_using_dac, port;
1895 unsigned long pciaddr;
1896 u32 regionSize;
1897 struct pci_nic *nic;
1898
1899 ENTER;
1900
1901 nic = vmalloc(sizeof(*nic));
1902 if (!nic)
1903 RET(-ENOMEM);
1904
1905 /************** pci *****************/
1906 err = pci_enable_device(pdev);
1907 if (err) /* it triggers interrupt, dunno why. */
1908 goto err_pci; /* it's not a problem though */
1909
1910 if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1911 !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1912 pci_using_dac = 1;
1913 } else {
1914 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1915 (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1916 pr_err("No usable DMA configuration, aborting\n");
1917 goto err_dma;
1918 }
1919 pci_using_dac = 0;
1920 }
1921
1922 err = pci_request_regions(pdev, BDX_DRV_NAME);
1923 if (err)
1924 goto err_dma;
1925
1926 pci_set_master(pdev);
1927
1928 pciaddr = pci_resource_start(pdev, 0);
1929 if (!pciaddr) {
1930 err = -EIO;
1931 pr_err("no MMIO resource\n");
1932 goto err_out_res;
1933 }
1934 regionSize = pci_resource_len(pdev, 0);
1935 if (regionSize < BDX_REGS_SIZE) {
1936 err = -EIO;
1937 pr_err("MMIO resource (%x) too small\n", regionSize);
1938 goto err_out_res;
1939 }
1940
1941 nic->regs = ioremap(pciaddr, regionSize);
1942 if (!nic->regs) {
1943 err = -EIO;
1944 pr_err("ioremap failed\n");
1945 goto err_out_res;
1946 }
1947
1948 if (pdev->irq < 2) {
1949 err = -EIO;
1950 pr_err("invalid irq (%d)\n", pdev->irq);
1951 goto err_out_iomap;
1952 }
1953 pci_set_drvdata(pdev, nic);
1954
1955 if (pdev->device == 0x3014)
1956 nic->port_num = 2;
1957 else
1958 nic->port_num = 1;
1959
1960 print_hw_id(pdev);
1961
1962 bdx_hw_reset_direct(nic->regs);
1963
1964 nic->irq_type = IRQ_INTX;
1965 #ifdef BDX_MSI
1966 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1967 err = pci_enable_msi(pdev);
1968 if (err)
1969 pr_err("Can't eneble msi. error is %d\n", err);
1970 else
1971 nic->irq_type = IRQ_MSI;
1972 } else
1973 DBG("HW does not support MSI\n");
1974 #endif
1975
1976 /************** netdev **************/
1977 for (port = 0; port < nic->port_num; port++) {
1978 ndev = alloc_etherdev(sizeof(struct bdx_priv));
1979 if (!ndev) {
1980 err = -ENOMEM;
1981 goto err_out_iomap;
1982 }
1983
1984 ndev->netdev_ops = &bdx_netdev_ops;
1985 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1986
1987 bdx_set_ethtool_ops(ndev); /* ethtool interface */
1988
1989 /* these fields are used for info purposes only
1990 * so we can have them same for all ports of the board */
1991 ndev->if_port = port;
1992 ndev->base_addr = pciaddr;
1993 ndev->mem_start = pciaddr;
1994 ndev->mem_end = pciaddr + regionSize;
1995 ndev->irq = pdev->irq;
1996 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
1997 | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
1998 NETIF_F_HW_VLAN_FILTER | NETIF_F_RXCSUM
1999 /*| NETIF_F_FRAGLIST */
2000 ;
2001 ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2002 NETIF_F_TSO | NETIF_F_HW_VLAN_TX;
2003
2004 if (pci_using_dac)
2005 ndev->features |= NETIF_F_HIGHDMA;
2006
2007 /************** priv ****************/
2008 priv = nic->priv[port] = netdev_priv(ndev);
2009
2010 priv->pBdxRegs = nic->regs + port * 0x8000;
2011 priv->port = port;
2012 priv->pdev = pdev;
2013 priv->ndev = ndev;
2014 priv->nic = nic;
2015 priv->msg_enable = BDX_DEF_MSG_ENABLE;
2016
2017 netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2018
2019 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2020 DBG("HW statistics not supported\n");
2021 priv->stats_flag = 0;
2022 } else {
2023 priv->stats_flag = 1;
2024 }
2025
2026 /* Initialize fifo sizes. */
2027 priv->txd_size = 2;
2028 priv->txf_size = 2;
2029 priv->rxd_size = 2;
2030 priv->rxf_size = 3;
2031
2032 /* Initialize the initial coalescing registers. */
2033 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2034 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2035
2036 /* ndev->xmit_lock spinlock is not used.
2037 * Private priv->tx_lock is used for synchronization
2038 * between transmit and TX irq cleanup. In addition
2039 * set multicast list callback has to use priv->tx_lock.
2040 */
2041 #ifdef BDX_LLTX
2042 ndev->features |= NETIF_F_LLTX;
2043 #endif
2044 spin_lock_init(&priv->tx_lock);
2045
2046 /*bdx_hw_reset(priv); */
2047 if (bdx_read_mac(priv)) {
2048 pr_err("load MAC address failed\n");
2049 goto err_out_iomap;
2050 }
2051 SET_NETDEV_DEV(ndev, &pdev->dev);
2052 err = register_netdev(ndev);
2053 if (err) {
2054 pr_err("register_netdev failed\n");
2055 goto err_out_free;
2056 }
2057 netif_carrier_off(ndev);
2058 netif_stop_queue(ndev);
2059
2060 print_eth_id(ndev);
2061 }
2062 RET(0);
2063
2064 err_out_free:
2065 free_netdev(ndev);
2066 err_out_iomap:
2067 iounmap(nic->regs);
2068 err_out_res:
2069 pci_release_regions(pdev);
2070 err_dma:
2071 pci_disable_device(pdev);
2072 err_pci:
2073 vfree(nic);
2074
2075 RET(err);
2076 }
2077
2078 /****************** Ethtool interface *********************/
2079 /* get strings for statistics counters */
2080 static const char
2081 bdx_stat_names[][ETH_GSTRING_LEN] = {
2082 "InUCast", /* 0x7200 */
2083 "InMCast", /* 0x7210 */
2084 "InBCast", /* 0x7220 */
2085 "InPkts", /* 0x7230 */
2086 "InErrors", /* 0x7240 */
2087 "InDropped", /* 0x7250 */
2088 "FrameTooLong", /* 0x7260 */
2089 "FrameSequenceErrors", /* 0x7270 */
2090 "InVLAN", /* 0x7280 */
2091 "InDroppedDFE", /* 0x7290 */
2092 "InDroppedIntFull", /* 0x72A0 */
2093 "InFrameAlignErrors", /* 0x72B0 */
2094
2095 /* 0x72C0-0x72E0 RSRV */
2096
2097 "OutUCast", /* 0x72F0 */
2098 "OutMCast", /* 0x7300 */
2099 "OutBCast", /* 0x7310 */
2100 "OutPkts", /* 0x7320 */
2101
2102 /* 0x7330-0x7360 RSRV */
2103
2104 "OutVLAN", /* 0x7370 */
2105 "InUCastOctects", /* 0x7380 */
2106 "OutUCastOctects", /* 0x7390 */
2107
2108 /* 0x73A0-0x73B0 RSRV */
2109
2110 "InBCastOctects", /* 0x73C0 */
2111 "OutBCastOctects", /* 0x73D0 */
2112 "InOctects", /* 0x73E0 */
2113 "OutOctects", /* 0x73F0 */
2114 };
2115
2116 /*
2117 * bdx_get_settings - get device-specific settings
2118 * @netdev
2119 * @ecmd
2120 */
2121 static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2122 {
2123 u32 rdintcm;
2124 u32 tdintcm;
2125 struct bdx_priv *priv = netdev_priv(netdev);
2126
2127 rdintcm = priv->rdintcm;
2128 tdintcm = priv->tdintcm;
2129
2130 ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2131 ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2132 ethtool_cmd_speed_set(ecmd, SPEED_10000);
2133 ecmd->duplex = DUPLEX_FULL;
2134 ecmd->port = PORT_FIBRE;
2135 ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
2136 ecmd->autoneg = AUTONEG_DISABLE;
2137
2138 /* PCK_TH measures in multiples of FIFO bytes
2139 We translate to packets */
2140 ecmd->maxtxpkt =
2141 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2142 ecmd->maxrxpkt =
2143 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2144
2145 return 0;
2146 }
2147
2148 /*
2149 * bdx_get_drvinfo - report driver information
2150 * @netdev
2151 * @drvinfo
2152 */
2153 static void
2154 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2155 {
2156 struct bdx_priv *priv = netdev_priv(netdev);
2157
2158 strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2159 strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2160 strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2161 strlcat(drvinfo->bus_info, pci_name(priv->pdev),
2162 sizeof(drvinfo->bus_info));
2163
2164 drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2165 drvinfo->testinfo_len = 0;
2166 drvinfo->regdump_len = 0;
2167 drvinfo->eedump_len = 0;
2168 }
2169
2170 /*
2171 * bdx_get_coalesce - get interrupt coalescing parameters
2172 * @netdev
2173 * @ecoal
2174 */
2175 static int
2176 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2177 {
2178 u32 rdintcm;
2179 u32 tdintcm;
2180 struct bdx_priv *priv = netdev_priv(netdev);
2181
2182 rdintcm = priv->rdintcm;
2183 tdintcm = priv->tdintcm;
2184
2185 /* PCK_TH measures in multiples of FIFO bytes
2186 We translate to packets */
2187 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2188 ecoal->rx_max_coalesced_frames =
2189 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2190
2191 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2192 ecoal->tx_max_coalesced_frames =
2193 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2194
2195 /* adaptive parameters ignored */
2196 return 0;
2197 }
2198
2199 /*
2200 * bdx_set_coalesce - set interrupt coalescing parameters
2201 * @netdev
2202 * @ecoal
2203 */
2204 static int
2205 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2206 {
2207 u32 rdintcm;
2208 u32 tdintcm;
2209 struct bdx_priv *priv = netdev_priv(netdev);
2210 int rx_coal;
2211 int tx_coal;
2212 int rx_max_coal;
2213 int tx_max_coal;
2214
2215 /* Check for valid input */
2216 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2217 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2218 rx_max_coal = ecoal->rx_max_coalesced_frames;
2219 tx_max_coal = ecoal->tx_max_coalesced_frames;
2220
2221 /* Translate from packets to multiples of FIFO bytes */
2222 rx_max_coal =
2223 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2224 / PCK_TH_MULT);
2225 tx_max_coal =
2226 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2227 / PCK_TH_MULT);
2228
2229 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2230 (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2231 return -EINVAL;
2232
2233 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2234 GET_RXF_TH(priv->rdintcm), rx_max_coal);
2235 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2236 tx_max_coal);
2237
2238 priv->rdintcm = rdintcm;
2239 priv->tdintcm = tdintcm;
2240
2241 WRITE_REG(priv, regRDINTCM0, rdintcm);
2242 WRITE_REG(priv, regTDINTCM0, tdintcm);
2243
2244 return 0;
2245 }
2246
2247 /* Convert RX fifo size to number of pending packets */
2248 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2249 {
2250 return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2251 }
2252
2253 /* Convert TX fifo size to number of pending packets */
2254 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2255 {
2256 return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2257 }
2258
2259 /*
2260 * bdx_get_ringparam - report ring sizes
2261 * @netdev
2262 * @ring
2263 */
2264 static void
2265 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2266 {
2267 struct bdx_priv *priv = netdev_priv(netdev);
2268
2269 /*max_pending - the maximum-sized FIFO we allow */
2270 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2271 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2272 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2273 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2274 }
2275
2276 /*
2277 * bdx_set_ringparam - set ring sizes
2278 * @netdev
2279 * @ring
2280 */
2281 static int
2282 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2283 {
2284 struct bdx_priv *priv = netdev_priv(netdev);
2285 int rx_size = 0;
2286 int tx_size = 0;
2287
2288 for (; rx_size < 4; rx_size++) {
2289 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2290 break;
2291 }
2292 if (rx_size == 4)
2293 rx_size = 3;
2294
2295 for (; tx_size < 4; tx_size++) {
2296 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2297 break;
2298 }
2299 if (tx_size == 4)
2300 tx_size = 3;
2301
2302 /*Is there anything to do? */
2303 if ((rx_size == priv->rxf_size) &&
2304 (tx_size == priv->txd_size))
2305 return 0;
2306
2307 priv->rxf_size = rx_size;
2308 if (rx_size > 1)
2309 priv->rxd_size = rx_size - 1;
2310 else
2311 priv->rxd_size = rx_size;
2312
2313 priv->txf_size = priv->txd_size = tx_size;
2314
2315 if (netif_running(netdev)) {
2316 bdx_close(netdev);
2317 bdx_open(netdev);
2318 }
2319 return 0;
2320 }
2321
2322 /*
2323 * bdx_get_strings - return a set of strings that describe the requested objects
2324 * @netdev
2325 * @data
2326 */
2327 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2328 {
2329 switch (stringset) {
2330 case ETH_SS_STATS:
2331 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2332 break;
2333 }
2334 }
2335
2336 /*
2337 * bdx_get_sset_count - return number of statistics or tests
2338 * @netdev
2339 */
2340 static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2341 {
2342 struct bdx_priv *priv = netdev_priv(netdev);
2343
2344 switch (stringset) {
2345 case ETH_SS_STATS:
2346 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2347 != sizeof(struct bdx_stats) / sizeof(u64));
2348 return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
2349 }
2350
2351 return -EINVAL;
2352 }
2353
2354 /*
2355 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2356 * @netdev
2357 * @stats
2358 * @data
2359 */
2360 static void bdx_get_ethtool_stats(struct net_device *netdev,
2361 struct ethtool_stats *stats, u64 *data)
2362 {
2363 struct bdx_priv *priv = netdev_priv(netdev);
2364
2365 if (priv->stats_flag) {
2366
2367 /* Update stats from HW */
2368 bdx_update_stats(priv);
2369
2370 /* Copy data to user buffer */
2371 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2372 }
2373 }
2374
2375 /*
2376 * bdx_set_ethtool_ops - ethtool interface implementation
2377 * @netdev
2378 */
2379 static void bdx_set_ethtool_ops(struct net_device *netdev)
2380 {
2381 static const struct ethtool_ops bdx_ethtool_ops = {
2382 .get_settings = bdx_get_settings,
2383 .get_drvinfo = bdx_get_drvinfo,
2384 .get_link = ethtool_op_get_link,
2385 .get_coalesce = bdx_get_coalesce,
2386 .set_coalesce = bdx_set_coalesce,
2387 .get_ringparam = bdx_get_ringparam,
2388 .set_ringparam = bdx_set_ringparam,
2389 .get_strings = bdx_get_strings,
2390 .get_sset_count = bdx_get_sset_count,
2391 .get_ethtool_stats = bdx_get_ethtool_stats,
2392 };
2393
2394 SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
2395 }
2396
2397 /**
2398 * bdx_remove - Device Removal Routine
2399 * @pdev: PCI device information struct
2400 *
2401 * bdx_remove is called by the PCI subsystem to alert the driver
2402 * that it should release a PCI device. The could be caused by a
2403 * Hot-Plug event, or because the driver is going to be removed from
2404 * memory.
2405 **/
2406 static void __devexit bdx_remove(struct pci_dev *pdev)
2407 {
2408 struct pci_nic *nic = pci_get_drvdata(pdev);
2409 struct net_device *ndev;
2410 int port;
2411
2412 for (port = 0; port < nic->port_num; port++) {
2413 ndev = nic->priv[port]->ndev;
2414 unregister_netdev(ndev);
2415 free_netdev(ndev);
2416 }
2417
2418 /*bdx_hw_reset_direct(nic->regs); */
2419 #ifdef BDX_MSI
2420 if (nic->irq_type == IRQ_MSI)
2421 pci_disable_msi(pdev);
2422 #endif
2423
2424 iounmap(nic->regs);
2425 pci_release_regions(pdev);
2426 pci_disable_device(pdev);
2427 pci_set_drvdata(pdev, NULL);
2428 vfree(nic);
2429
2430 RET();
2431 }
2432
2433 static struct pci_driver bdx_pci_driver = {
2434 .name = BDX_DRV_NAME,
2435 .id_table = bdx_pci_tbl,
2436 .probe = bdx_probe,
2437 .remove = __devexit_p(bdx_remove),
2438 };
2439
2440 /*
2441 * print_driver_id - print parameters of the driver build
2442 */
2443 static void __init print_driver_id(void)
2444 {
2445 pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2446 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2447 }
2448
2449 static int __init bdx_module_init(void)
2450 {
2451 ENTER;
2452 init_txd_sizes();
2453 print_driver_id();
2454 RET(pci_register_driver(&bdx_pci_driver));
2455 }
2456
2457 module_init(bdx_module_init);
2458
2459 static void __exit bdx_module_exit(void)
2460 {
2461 ENTER;
2462 pci_unregister_driver(&bdx_pci_driver);
2463 RET();
2464 }
2465
2466 module_exit(bdx_module_exit);
2467
2468 MODULE_LICENSE("GPL");
2469 MODULE_AUTHOR(DRIVER_AUTHOR);
2470 MODULE_DESCRIPTION(BDX_DRV_DESC);
2471 MODULE_FIRMWARE("tehuti/bdx.bin");