]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/ti/cpsw.c
Merge tag 'hsi-for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39 #include <linux/sys_soc.h>
40
41 #include <linux/pinctrl/consumer.h>
42 #include <net/pkt_cls.h>
43
44 #include "cpsw.h"
45 #include "cpsw_ale.h"
46 #include "cpts.h"
47 #include "davinci_cpdma.h"
48
49 #include <net/pkt_sched.h>
50
51 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
52 NETIF_MSG_DRV | NETIF_MSG_LINK | \
53 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
54 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
55 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
56 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
57 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
58 NETIF_MSG_RX_STATUS)
59
60 #define cpsw_info(priv, type, format, ...) \
61 do { \
62 if (netif_msg_##type(priv) && net_ratelimit()) \
63 dev_info(priv->dev, format, ## __VA_ARGS__); \
64 } while (0)
65
66 #define cpsw_err(priv, type, format, ...) \
67 do { \
68 if (netif_msg_##type(priv) && net_ratelimit()) \
69 dev_err(priv->dev, format, ## __VA_ARGS__); \
70 } while (0)
71
72 #define cpsw_dbg(priv, type, format, ...) \
73 do { \
74 if (netif_msg_##type(priv) && net_ratelimit()) \
75 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
76 } while (0)
77
78 #define cpsw_notice(priv, type, format, ...) \
79 do { \
80 if (netif_msg_##type(priv) && net_ratelimit()) \
81 dev_notice(priv->dev, format, ## __VA_ARGS__); \
82 } while (0)
83
84 #define ALE_ALL_PORTS 0x7
85
86 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
87 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
88 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
89
90 #define CPSW_VERSION_1 0x19010a
91 #define CPSW_VERSION_2 0x19010c
92 #define CPSW_VERSION_3 0x19010f
93 #define CPSW_VERSION_4 0x190112
94
95 #define HOST_PORT_NUM 0
96 #define CPSW_ALE_PORTS_NUM 3
97 #define SLIVER_SIZE 0x40
98
99 #define CPSW1_HOST_PORT_OFFSET 0x028
100 #define CPSW1_SLAVE_OFFSET 0x050
101 #define CPSW1_SLAVE_SIZE 0x040
102 #define CPSW1_CPDMA_OFFSET 0x100
103 #define CPSW1_STATERAM_OFFSET 0x200
104 #define CPSW1_HW_STATS 0x400
105 #define CPSW1_CPTS_OFFSET 0x500
106 #define CPSW1_ALE_OFFSET 0x600
107 #define CPSW1_SLIVER_OFFSET 0x700
108
109 #define CPSW2_HOST_PORT_OFFSET 0x108
110 #define CPSW2_SLAVE_OFFSET 0x200
111 #define CPSW2_SLAVE_SIZE 0x100
112 #define CPSW2_CPDMA_OFFSET 0x800
113 #define CPSW2_HW_STATS 0x900
114 #define CPSW2_STATERAM_OFFSET 0xa00
115 #define CPSW2_CPTS_OFFSET 0xc00
116 #define CPSW2_ALE_OFFSET 0xd00
117 #define CPSW2_SLIVER_OFFSET 0xd80
118 #define CPSW2_BD_OFFSET 0x2000
119
120 #define CPDMA_RXTHRESH 0x0c0
121 #define CPDMA_RXFREE 0x0e0
122 #define CPDMA_TXHDP 0x00
123 #define CPDMA_RXHDP 0x20
124 #define CPDMA_TXCP 0x40
125 #define CPDMA_RXCP 0x60
126
127 #define CPSW_POLL_WEIGHT 64
128 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4
129 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN)
130 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\
131 ETH_FCS_LEN +\
132 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
133
134 #define RX_PRIORITY_MAPPING 0x76543210
135 #define TX_PRIORITY_MAPPING 0x33221100
136 #define CPDMA_TX_PRIORITY_MAP 0x76543210
137
138 #define CPSW_VLAN_AWARE BIT(1)
139 #define CPSW_RX_VLAN_ENCAP BIT(2)
140 #define CPSW_ALE_VLAN_AWARE 1
141
142 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
143 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
144 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
145
146 #define CPSW_INTPACEEN (0x3f << 16)
147 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
148 #define CPSW_CMINTMAX_CNT 63
149 #define CPSW_CMINTMIN_CNT 2
150 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
151 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
152
153 #define cpsw_slave_index(cpsw, priv) \
154 ((cpsw->data.dual_emac) ? priv->emac_port : \
155 cpsw->data.active_slave)
156 #define IRQ_NUM 2
157 #define CPSW_MAX_QUEUES 8
158 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
159 #define CPSW_FIFO_QUEUE_TYPE_SHIFT 16
160 #define CPSW_FIFO_SHAPE_EN_SHIFT 16
161 #define CPSW_FIFO_RATE_EN_SHIFT 20
162 #define CPSW_TC_NUM 4
163 #define CPSW_FIFO_SHAPERS_NUM (CPSW_TC_NUM - 1)
164 #define CPSW_PCT_MASK 0x7f
165
166 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29
167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0)
168 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16
169 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8
170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0)
171 enum {
172 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
173 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
174 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
175 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
176 };
177
178 static int debug_level;
179 module_param(debug_level, int, 0);
180 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
181
182 static int ale_ageout = 10;
183 module_param(ale_ageout, int, 0);
184 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
185
186 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
187 module_param(rx_packet_max, int, 0);
188 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
189
190 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
191 module_param(descs_pool_size, int, 0444);
192 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
193
194 struct cpsw_wr_regs {
195 u32 id_ver;
196 u32 soft_reset;
197 u32 control;
198 u32 int_control;
199 u32 rx_thresh_en;
200 u32 rx_en;
201 u32 tx_en;
202 u32 misc_en;
203 u32 mem_allign1[8];
204 u32 rx_thresh_stat;
205 u32 rx_stat;
206 u32 tx_stat;
207 u32 misc_stat;
208 u32 mem_allign2[8];
209 u32 rx_imax;
210 u32 tx_imax;
211
212 };
213
214 struct cpsw_ss_regs {
215 u32 id_ver;
216 u32 control;
217 u32 soft_reset;
218 u32 stat_port_en;
219 u32 ptype;
220 u32 soft_idle;
221 u32 thru_rate;
222 u32 gap_thresh;
223 u32 tx_start_wds;
224 u32 flow_control;
225 u32 vlan_ltype;
226 u32 ts_ltype;
227 u32 dlr_ltype;
228 };
229
230 /* CPSW_PORT_V1 */
231 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
232 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
233 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
234 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
235 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
236 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
237 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
238 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
239
240 /* CPSW_PORT_V2 */
241 #define CPSW2_CONTROL 0x00 /* Control Register */
242 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
243 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
244 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
245 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
246 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
247 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
248
249 /* CPSW_PORT_V1 and V2 */
250 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
251 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
252 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
253
254 /* CPSW_PORT_V2 only */
255 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
256 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
257 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
258 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
259 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
260 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
261 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
262 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
263
264 /* Bit definitions for the CPSW2_CONTROL register */
265 #define PASS_PRI_TAGGED BIT(24) /* Pass Priority Tagged */
266 #define VLAN_LTYPE2_EN BIT(21) /* VLAN LTYPE 2 enable */
267 #define VLAN_LTYPE1_EN BIT(20) /* VLAN LTYPE 1 enable */
268 #define DSCP_PRI_EN BIT(16) /* DSCP Priority Enable */
269 #define TS_107 BIT(15) /* Tyme Sync Dest IP Address 107 */
270 #define TS_320 BIT(14) /* Time Sync Dest Port 320 enable */
271 #define TS_319 BIT(13) /* Time Sync Dest Port 319 enable */
272 #define TS_132 BIT(12) /* Time Sync Dest IP Addr 132 enable */
273 #define TS_131 BIT(11) /* Time Sync Dest IP Addr 131 enable */
274 #define TS_130 BIT(10) /* Time Sync Dest IP Addr 130 enable */
275 #define TS_129 BIT(9) /* Time Sync Dest IP Addr 129 enable */
276 #define TS_TTL_NONZERO BIT(8) /* Time Sync Time To Live Non-zero enable */
277 #define TS_ANNEX_F_EN BIT(6) /* Time Sync Annex F enable */
278 #define TS_ANNEX_D_EN BIT(4) /* Time Sync Annex D enable */
279 #define TS_LTYPE2_EN BIT(3) /* Time Sync LTYPE 2 enable */
280 #define TS_LTYPE1_EN BIT(2) /* Time Sync LTYPE 1 enable */
281 #define TS_TX_EN BIT(1) /* Time Sync Transmit Enable */
282 #define TS_RX_EN BIT(0) /* Time Sync Receive Enable */
283
284 #define CTRL_V2_TS_BITS \
285 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
286 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN | VLAN_LTYPE1_EN)
287
288 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
289 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
290 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
291
292
293 #define CTRL_V3_TS_BITS \
294 (TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
295 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
296 TS_LTYPE1_EN | VLAN_LTYPE1_EN)
297
298 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
299 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
300 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
301
302 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
303 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
304 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
305 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
306 #define TS_MSG_TYPE_EN_MASK (0xffff)
307
308 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
309 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
310
311 /* Bit definitions for the CPSW1_TS_CTL register */
312 #define CPSW_V1_TS_RX_EN BIT(0)
313 #define CPSW_V1_TS_TX_EN BIT(4)
314 #define CPSW_V1_MSG_TYPE_OFS 16
315
316 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
317 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
318
319 #define CPSW_MAX_BLKS_TX 15
320 #define CPSW_MAX_BLKS_TX_SHIFT 4
321 #define CPSW_MAX_BLKS_RX 5
322
323 struct cpsw_host_regs {
324 u32 max_blks;
325 u32 blk_cnt;
326 u32 tx_in_ctl;
327 u32 port_vlan;
328 u32 tx_pri_map;
329 u32 cpdma_tx_pri_map;
330 u32 cpdma_rx_chan_map;
331 };
332
333 struct cpsw_sliver_regs {
334 u32 id_ver;
335 u32 mac_control;
336 u32 mac_status;
337 u32 soft_reset;
338 u32 rx_maxlen;
339 u32 __reserved_0;
340 u32 rx_pause;
341 u32 tx_pause;
342 u32 __reserved_1;
343 u32 rx_pri_map;
344 };
345
346 struct cpsw_hw_stats {
347 u32 rxgoodframes;
348 u32 rxbroadcastframes;
349 u32 rxmulticastframes;
350 u32 rxpauseframes;
351 u32 rxcrcerrors;
352 u32 rxaligncodeerrors;
353 u32 rxoversizedframes;
354 u32 rxjabberframes;
355 u32 rxundersizedframes;
356 u32 rxfragments;
357 u32 __pad_0[2];
358 u32 rxoctets;
359 u32 txgoodframes;
360 u32 txbroadcastframes;
361 u32 txmulticastframes;
362 u32 txpauseframes;
363 u32 txdeferredframes;
364 u32 txcollisionframes;
365 u32 txsinglecollframes;
366 u32 txmultcollframes;
367 u32 txexcessivecollisions;
368 u32 txlatecollisions;
369 u32 txunderrun;
370 u32 txcarriersenseerrors;
371 u32 txoctets;
372 u32 octetframes64;
373 u32 octetframes65t127;
374 u32 octetframes128t255;
375 u32 octetframes256t511;
376 u32 octetframes512t1023;
377 u32 octetframes1024tup;
378 u32 netoctets;
379 u32 rxsofoverruns;
380 u32 rxmofoverruns;
381 u32 rxdmaoverruns;
382 };
383
384 struct cpsw_slave_data {
385 struct device_node *phy_node;
386 char phy_id[MII_BUS_ID_SIZE];
387 int phy_if;
388 u8 mac_addr[ETH_ALEN];
389 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */
390 };
391
392 struct cpsw_platform_data {
393 struct cpsw_slave_data *slave_data;
394 u32 ss_reg_ofs; /* Subsystem control register offset */
395 u32 channels; /* number of cpdma channels (symmetric) */
396 u32 slaves; /* number of slave cpgmac ports */
397 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
398 u32 ale_entries; /* ale table size */
399 u32 bd_ram_size; /*buffer descriptor ram size */
400 u32 mac_control; /* Mac control register */
401 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/
402 bool dual_emac; /* Enable Dual EMAC mode */
403 };
404
405 struct cpsw_slave {
406 void __iomem *regs;
407 struct cpsw_sliver_regs __iomem *sliver;
408 int slave_num;
409 u32 mac_control;
410 struct cpsw_slave_data *data;
411 struct phy_device *phy;
412 struct net_device *ndev;
413 u32 port_vlan;
414 };
415
416 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
417 {
418 return readl_relaxed(slave->regs + offset);
419 }
420
421 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
422 {
423 writel_relaxed(val, slave->regs + offset);
424 }
425
426 struct cpsw_vector {
427 struct cpdma_chan *ch;
428 int budget;
429 };
430
431 struct cpsw_common {
432 struct device *dev;
433 struct cpsw_platform_data data;
434 struct napi_struct napi_rx;
435 struct napi_struct napi_tx;
436 struct cpsw_ss_regs __iomem *regs;
437 struct cpsw_wr_regs __iomem *wr_regs;
438 u8 __iomem *hw_stats;
439 struct cpsw_host_regs __iomem *host_port_regs;
440 u32 version;
441 u32 coal_intvl;
442 u32 bus_freq_mhz;
443 int rx_packet_max;
444 struct cpsw_slave *slaves;
445 struct cpdma_ctlr *dma;
446 struct cpsw_vector txv[CPSW_MAX_QUEUES];
447 struct cpsw_vector rxv[CPSW_MAX_QUEUES];
448 struct cpsw_ale *ale;
449 bool quirk_irq;
450 bool rx_irq_disabled;
451 bool tx_irq_disabled;
452 u32 irqs_table[IRQ_NUM];
453 struct cpts *cpts;
454 int rx_ch_num, tx_ch_num;
455 int speed;
456 int usage_count;
457 };
458
459 struct cpsw_priv {
460 struct net_device *ndev;
461 struct device *dev;
462 u32 msg_enable;
463 u8 mac_addr[ETH_ALEN];
464 bool rx_pause;
465 bool tx_pause;
466 bool mqprio_hw;
467 int fifo_bw[CPSW_TC_NUM];
468 int shp_cfg_speed;
469 int tx_ts_enabled;
470 int rx_ts_enabled;
471 u32 emac_port;
472 struct cpsw_common *cpsw;
473 };
474
475 struct cpsw_stats {
476 char stat_string[ETH_GSTRING_LEN];
477 int type;
478 int sizeof_stat;
479 int stat_offset;
480 };
481
482 enum {
483 CPSW_STATS,
484 CPDMA_RX_STATS,
485 CPDMA_TX_STATS,
486 };
487
488 #define CPSW_STAT(m) CPSW_STATS, \
489 FIELD_SIZEOF(struct cpsw_hw_stats, m), \
490 offsetof(struct cpsw_hw_stats, m)
491 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
492 FIELD_SIZEOF(struct cpdma_chan_stats, m), \
493 offsetof(struct cpdma_chan_stats, m)
494 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
495 FIELD_SIZEOF(struct cpdma_chan_stats, m), \
496 offsetof(struct cpdma_chan_stats, m)
497
498 static const struct cpsw_stats cpsw_gstrings_stats[] = {
499 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
500 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
501 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
502 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
503 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
504 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
505 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
506 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
507 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
508 { "Rx Fragments", CPSW_STAT(rxfragments) },
509 { "Rx Octets", CPSW_STAT(rxoctets) },
510 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
511 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
512 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
513 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
514 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
515 { "Collisions", CPSW_STAT(txcollisionframes) },
516 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
517 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
518 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
519 { "Late Collisions", CPSW_STAT(txlatecollisions) },
520 { "Tx Underrun", CPSW_STAT(txunderrun) },
521 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
522 { "Tx Octets", CPSW_STAT(txoctets) },
523 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
524 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
525 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
526 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
527 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
528 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
529 { "Net Octets", CPSW_STAT(netoctets) },
530 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
531 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
532 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
533 };
534
535 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
536 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
537 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
538 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
539 { "misqueued", CPDMA_RX_STAT(misqueued) },
540 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
541 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
542 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
543 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
544 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
545 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
546 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
547 { "requeue", CPDMA_RX_STAT(requeue) },
548 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
549 };
550
551 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
552 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
553
554 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
555 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
556 #define for_each_slave(priv, func, arg...) \
557 do { \
558 struct cpsw_slave *slave; \
559 struct cpsw_common *cpsw = (priv)->cpsw; \
560 int n; \
561 if (cpsw->data.dual_emac) \
562 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
563 else \
564 for (n = cpsw->data.slaves, \
565 slave = cpsw->slaves; \
566 n; n--) \
567 (func)(slave++, ##arg); \
568 } while (0)
569
570 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
571 __be16 proto, u16 vid);
572
573 static inline int cpsw_get_slave_port(u32 slave_num)
574 {
575 return slave_num + 1;
576 }
577
578 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
579 {
580 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
581 struct cpsw_ale *ale = cpsw->ale;
582 int i;
583
584 if (cpsw->data.dual_emac) {
585 bool flag = false;
586
587 /* Enabling promiscuous mode for one interface will be
588 * common for both the interface as the interface shares
589 * the same hardware resource.
590 */
591 for (i = 0; i < cpsw->data.slaves; i++)
592 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
593 flag = true;
594
595 if (!enable && flag) {
596 enable = true;
597 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
598 }
599
600 if (enable) {
601 /* Enable Bypass */
602 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
603
604 dev_dbg(&ndev->dev, "promiscuity enabled\n");
605 } else {
606 /* Disable Bypass */
607 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
608 dev_dbg(&ndev->dev, "promiscuity disabled\n");
609 }
610 } else {
611 if (enable) {
612 unsigned long timeout = jiffies + HZ;
613
614 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
615 for (i = 0; i <= cpsw->data.slaves; i++) {
616 cpsw_ale_control_set(ale, i,
617 ALE_PORT_NOLEARN, 1);
618 cpsw_ale_control_set(ale, i,
619 ALE_PORT_NO_SA_UPDATE, 1);
620 }
621
622 /* Clear All Untouched entries */
623 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
624 do {
625 cpu_relax();
626 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
627 break;
628 } while (time_after(timeout, jiffies));
629 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
630
631 /* Clear all mcast from ALE */
632 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
633 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
634
635 /* Flood All Unicast Packets to Host port */
636 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
637 dev_dbg(&ndev->dev, "promiscuity enabled\n");
638 } else {
639 /* Don't Flood All Unicast Packets to Host port */
640 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
641
642 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
643 for (i = 0; i <= cpsw->data.slaves; i++) {
644 cpsw_ale_control_set(ale, i,
645 ALE_PORT_NOLEARN, 0);
646 cpsw_ale_control_set(ale, i,
647 ALE_PORT_NO_SA_UPDATE, 0);
648 }
649 dev_dbg(&ndev->dev, "promiscuity disabled\n");
650 }
651 }
652 }
653
654 struct addr_sync_ctx {
655 struct net_device *ndev;
656 const u8 *addr; /* address to be synched */
657 int consumed; /* number of address instances */
658 int flush; /* flush flag */
659 };
660
661 /**
662 * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
663 * if it's not deleted
664 * @ndev: device to sync
665 * @addr: address to be added or deleted
666 * @vid: vlan id, if vid < 0 set/unset address for real device
667 * @add: add address if the flag is set or remove otherwise
668 */
669 static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
670 int vid, int add)
671 {
672 struct cpsw_priv *priv = netdev_priv(ndev);
673 struct cpsw_common *cpsw = priv->cpsw;
674 int mask, flags, ret;
675
676 if (vid < 0) {
677 if (cpsw->data.dual_emac)
678 vid = cpsw->slaves[priv->emac_port].port_vlan;
679 else
680 vid = 0;
681 }
682
683 mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
684 flags = vid ? ALE_VLAN : 0;
685
686 if (add)
687 ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
688 else
689 ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
690
691 return ret;
692 }
693
694 static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
695 {
696 struct addr_sync_ctx *sync_ctx = ctx;
697 struct netdev_hw_addr *ha;
698 int found = 0, ret = 0;
699
700 if (!vdev || !(vdev->flags & IFF_UP))
701 return 0;
702
703 /* vlan address is relevant if its sync_cnt != 0 */
704 netdev_for_each_mc_addr(ha, vdev) {
705 if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
706 found = ha->sync_cnt;
707 break;
708 }
709 }
710
711 if (found)
712 sync_ctx->consumed++;
713
714 if (sync_ctx->flush) {
715 if (!found)
716 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
717 return 0;
718 }
719
720 if (found)
721 ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
722
723 return ret;
724 }
725
726 static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
727 {
728 struct addr_sync_ctx sync_ctx;
729 int ret;
730
731 sync_ctx.consumed = 0;
732 sync_ctx.addr = addr;
733 sync_ctx.ndev = ndev;
734 sync_ctx.flush = 0;
735
736 ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
737 if (sync_ctx.consumed < num && !ret)
738 ret = cpsw_set_mc(ndev, addr, -1, 1);
739
740 return ret;
741 }
742
743 static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
744 {
745 struct addr_sync_ctx sync_ctx;
746
747 sync_ctx.consumed = 0;
748 sync_ctx.addr = addr;
749 sync_ctx.ndev = ndev;
750 sync_ctx.flush = 1;
751
752 vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
753 if (sync_ctx.consumed == num)
754 cpsw_set_mc(ndev, addr, -1, 0);
755
756 return 0;
757 }
758
759 static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
760 {
761 struct addr_sync_ctx *sync_ctx = ctx;
762 struct netdev_hw_addr *ha;
763 int found = 0;
764
765 if (!vdev || !(vdev->flags & IFF_UP))
766 return 0;
767
768 /* vlan address is relevant if its sync_cnt != 0 */
769 netdev_for_each_mc_addr(ha, vdev) {
770 if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
771 found = ha->sync_cnt;
772 break;
773 }
774 }
775
776 if (!found)
777 return 0;
778
779 sync_ctx->consumed++;
780 cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
781 return 0;
782 }
783
784 static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
785 {
786 struct addr_sync_ctx sync_ctx;
787
788 sync_ctx.addr = addr;
789 sync_ctx.ndev = ndev;
790 sync_ctx.consumed = 0;
791
792 vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
793 if (sync_ctx.consumed < num)
794 cpsw_set_mc(ndev, addr, -1, 0);
795
796 return 0;
797 }
798
799 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
800 {
801 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
802
803 if (ndev->flags & IFF_PROMISC) {
804 /* Enable promiscuous mode */
805 cpsw_set_promiscious(ndev, true);
806 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
807 return;
808 } else {
809 /* Disable promiscuous mode */
810 cpsw_set_promiscious(ndev, false);
811 }
812
813 /* Restore allmulti on vlans if necessary */
814 cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI);
815
816 /* add/remove mcast address either for real netdev or for vlan */
817 __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
818 cpsw_del_mc_addr);
819 }
820
821 static void cpsw_intr_enable(struct cpsw_common *cpsw)
822 {
823 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
824 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
825
826 cpdma_ctlr_int_ctrl(cpsw->dma, true);
827 return;
828 }
829
830 static void cpsw_intr_disable(struct cpsw_common *cpsw)
831 {
832 writel_relaxed(0, &cpsw->wr_regs->tx_en);
833 writel_relaxed(0, &cpsw->wr_regs->rx_en);
834
835 cpdma_ctlr_int_ctrl(cpsw->dma, false);
836 return;
837 }
838
839 static void cpsw_tx_handler(void *token, int len, int status)
840 {
841 struct netdev_queue *txq;
842 struct sk_buff *skb = token;
843 struct net_device *ndev = skb->dev;
844 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
845
846 /* Check whether the queue is stopped due to stalled tx dma, if the
847 * queue is stopped then start the queue as we have free desc for tx
848 */
849 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
850 if (unlikely(netif_tx_queue_stopped(txq)))
851 netif_tx_wake_queue(txq);
852
853 cpts_tx_timestamp(cpsw->cpts, skb);
854 ndev->stats.tx_packets++;
855 ndev->stats.tx_bytes += len;
856 dev_kfree_skb_any(skb);
857 }
858
859 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
860 {
861 struct cpsw_priv *priv = netdev_priv(skb->dev);
862 struct cpsw_common *cpsw = priv->cpsw;
863 u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
864 u16 vtag, vid, prio, pkt_type;
865
866 /* Remove VLAN header encapsulation word */
867 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
868
869 pkt_type = (rx_vlan_encap_hdr >>
870 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
871 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
872 /* Ignore unknown & Priority-tagged packets*/
873 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
874 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
875 return;
876
877 vid = (rx_vlan_encap_hdr >>
878 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
879 VLAN_VID_MASK;
880 /* Ignore vid 0 and pass packet as is */
881 if (!vid)
882 return;
883 /* Ignore default vlans in dual mac mode */
884 if (cpsw->data.dual_emac &&
885 vid == cpsw->slaves[priv->emac_port].port_vlan)
886 return;
887
888 prio = (rx_vlan_encap_hdr >>
889 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
890 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
891
892 vtag = (prio << VLAN_PRIO_SHIFT) | vid;
893 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
894
895 /* strip vlan tag for VLAN-tagged packet */
896 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
897 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
898 skb_pull(skb, VLAN_HLEN);
899 }
900 }
901
902 static void cpsw_rx_handler(void *token, int len, int status)
903 {
904 struct cpdma_chan *ch;
905 struct sk_buff *skb = token;
906 struct sk_buff *new_skb;
907 struct net_device *ndev = skb->dev;
908 int ret = 0, port;
909 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
910 struct cpsw_priv *priv;
911
912 if (cpsw->data.dual_emac) {
913 port = CPDMA_RX_SOURCE_PORT(status);
914 if (port) {
915 ndev = cpsw->slaves[--port].ndev;
916 skb->dev = ndev;
917 }
918 }
919
920 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
921 /* In dual emac mode check for all interfaces */
922 if (cpsw->data.dual_emac && cpsw->usage_count &&
923 (status >= 0)) {
924 /* The packet received is for the interface which
925 * is already down and the other interface is up
926 * and running, instead of freeing which results
927 * in reducing of the number of rx descriptor in
928 * DMA engine, requeue skb back to cpdma.
929 */
930 new_skb = skb;
931 goto requeue;
932 }
933
934 /* the interface is going down, skbs are purged */
935 dev_kfree_skb_any(skb);
936 return;
937 }
938
939 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
940 if (new_skb) {
941 skb_copy_queue_mapping(new_skb, skb);
942 skb_put(skb, len);
943 if (status & CPDMA_RX_VLAN_ENCAP)
944 cpsw_rx_vlan_encap(skb);
945 priv = netdev_priv(ndev);
946 if (priv->rx_ts_enabled)
947 cpts_rx_timestamp(cpsw->cpts, skb);
948 skb->protocol = eth_type_trans(skb, ndev);
949 netif_receive_skb(skb);
950 ndev->stats.rx_bytes += len;
951 ndev->stats.rx_packets++;
952 kmemleak_not_leak(new_skb);
953 } else {
954 ndev->stats.rx_dropped++;
955 new_skb = skb;
956 }
957
958 requeue:
959 if (netif_dormant(ndev)) {
960 dev_kfree_skb_any(new_skb);
961 return;
962 }
963
964 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
965 ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
966 skb_tailroom(new_skb), 0);
967 if (WARN_ON(ret < 0))
968 dev_kfree_skb_any(new_skb);
969 }
970
971 static void cpsw_split_res(struct net_device *ndev)
972 {
973 struct cpsw_priv *priv = netdev_priv(ndev);
974 u32 consumed_rate = 0, bigest_rate = 0;
975 struct cpsw_common *cpsw = priv->cpsw;
976 struct cpsw_vector *txv = cpsw->txv;
977 int i, ch_weight, rlim_ch_num = 0;
978 int budget, bigest_rate_ch = 0;
979 u32 ch_rate, max_rate;
980 int ch_budget = 0;
981
982 for (i = 0; i < cpsw->tx_ch_num; i++) {
983 ch_rate = cpdma_chan_get_rate(txv[i].ch);
984 if (!ch_rate)
985 continue;
986
987 rlim_ch_num++;
988 consumed_rate += ch_rate;
989 }
990
991 if (cpsw->tx_ch_num == rlim_ch_num) {
992 max_rate = consumed_rate;
993 } else if (!rlim_ch_num) {
994 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
995 bigest_rate = 0;
996 max_rate = consumed_rate;
997 } else {
998 max_rate = cpsw->speed * 1000;
999
1000 /* if max_rate is less then expected due to reduced link speed,
1001 * split proportionally according next potential max speed
1002 */
1003 if (max_rate < consumed_rate)
1004 max_rate *= 10;
1005
1006 if (max_rate < consumed_rate)
1007 max_rate *= 10;
1008
1009 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
1010 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
1011 (cpsw->tx_ch_num - rlim_ch_num);
1012 bigest_rate = (max_rate - consumed_rate) /
1013 (cpsw->tx_ch_num - rlim_ch_num);
1014 }
1015
1016 /* split tx weight/budget */
1017 budget = CPSW_POLL_WEIGHT;
1018 for (i = 0; i < cpsw->tx_ch_num; i++) {
1019 ch_rate = cpdma_chan_get_rate(txv[i].ch);
1020 if (ch_rate) {
1021 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
1022 if (!txv[i].budget)
1023 txv[i].budget++;
1024 if (ch_rate > bigest_rate) {
1025 bigest_rate_ch = i;
1026 bigest_rate = ch_rate;
1027 }
1028
1029 ch_weight = (ch_rate * 100) / max_rate;
1030 if (!ch_weight)
1031 ch_weight++;
1032 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
1033 } else {
1034 txv[i].budget = ch_budget;
1035 if (!bigest_rate_ch)
1036 bigest_rate_ch = i;
1037 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
1038 }
1039
1040 budget -= txv[i].budget;
1041 }
1042
1043 if (budget)
1044 txv[bigest_rate_ch].budget += budget;
1045
1046 /* split rx budget */
1047 budget = CPSW_POLL_WEIGHT;
1048 ch_budget = budget / cpsw->rx_ch_num;
1049 for (i = 0; i < cpsw->rx_ch_num; i++) {
1050 cpsw->rxv[i].budget = ch_budget;
1051 budget -= ch_budget;
1052 }
1053
1054 if (budget)
1055 cpsw->rxv[0].budget += budget;
1056 }
1057
1058 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
1059 {
1060 struct cpsw_common *cpsw = dev_id;
1061
1062 writel(0, &cpsw->wr_regs->tx_en);
1063 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
1064
1065 if (cpsw->quirk_irq) {
1066 disable_irq_nosync(cpsw->irqs_table[1]);
1067 cpsw->tx_irq_disabled = true;
1068 }
1069
1070 napi_schedule(&cpsw->napi_tx);
1071 return IRQ_HANDLED;
1072 }
1073
1074 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
1075 {
1076 struct cpsw_common *cpsw = dev_id;
1077
1078 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
1079 writel(0, &cpsw->wr_regs->rx_en);
1080
1081 if (cpsw->quirk_irq) {
1082 disable_irq_nosync(cpsw->irqs_table[0]);
1083 cpsw->rx_irq_disabled = true;
1084 }
1085
1086 napi_schedule(&cpsw->napi_rx);
1087 return IRQ_HANDLED;
1088 }
1089
1090 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
1091 {
1092 u32 ch_map;
1093 int num_tx, cur_budget, ch;
1094 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
1095 struct cpsw_vector *txv;
1096
1097 /* process every unprocessed channel */
1098 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
1099 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
1100 if (!(ch_map & 0x80))
1101 continue;
1102
1103 txv = &cpsw->txv[ch];
1104 if (unlikely(txv->budget > budget - num_tx))
1105 cur_budget = budget - num_tx;
1106 else
1107 cur_budget = txv->budget;
1108
1109 num_tx += cpdma_chan_process(txv->ch, cur_budget);
1110 if (num_tx >= budget)
1111 break;
1112 }
1113
1114 if (num_tx < budget) {
1115 napi_complete(napi_tx);
1116 writel(0xff, &cpsw->wr_regs->tx_en);
1117 }
1118
1119 return num_tx;
1120 }
1121
1122 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
1123 {
1124 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
1125 int num_tx;
1126
1127 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
1128 if (num_tx < budget) {
1129 napi_complete(napi_tx);
1130 writel(0xff, &cpsw->wr_regs->tx_en);
1131 if (cpsw->tx_irq_disabled) {
1132 cpsw->tx_irq_disabled = false;
1133 enable_irq(cpsw->irqs_table[1]);
1134 }
1135 }
1136
1137 return num_tx;
1138 }
1139
1140 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1141 {
1142 u32 ch_map;
1143 int num_rx, cur_budget, ch;
1144 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1145 struct cpsw_vector *rxv;
1146
1147 /* process every unprocessed channel */
1148 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1149 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1150 if (!(ch_map & 0x01))
1151 continue;
1152
1153 rxv = &cpsw->rxv[ch];
1154 if (unlikely(rxv->budget > budget - num_rx))
1155 cur_budget = budget - num_rx;
1156 else
1157 cur_budget = rxv->budget;
1158
1159 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1160 if (num_rx >= budget)
1161 break;
1162 }
1163
1164 if (num_rx < budget) {
1165 napi_complete_done(napi_rx, num_rx);
1166 writel(0xff, &cpsw->wr_regs->rx_en);
1167 }
1168
1169 return num_rx;
1170 }
1171
1172 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
1173 {
1174 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1175 int num_rx;
1176
1177 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
1178 if (num_rx < budget) {
1179 napi_complete_done(napi_rx, num_rx);
1180 writel(0xff, &cpsw->wr_regs->rx_en);
1181 if (cpsw->rx_irq_disabled) {
1182 cpsw->rx_irq_disabled = false;
1183 enable_irq(cpsw->irqs_table[0]);
1184 }
1185 }
1186
1187 return num_rx;
1188 }
1189
1190 static inline void soft_reset(const char *module, void __iomem *reg)
1191 {
1192 unsigned long timeout = jiffies + HZ;
1193
1194 writel_relaxed(1, reg);
1195 do {
1196 cpu_relax();
1197 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1198
1199 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1200 }
1201
1202 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1203 struct cpsw_priv *priv)
1204 {
1205 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1206 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1207 }
1208
1209 static bool cpsw_shp_is_off(struct cpsw_priv *priv)
1210 {
1211 struct cpsw_common *cpsw = priv->cpsw;
1212 struct cpsw_slave *slave;
1213 u32 shift, mask, val;
1214
1215 val = readl_relaxed(&cpsw->regs->ptype);
1216
1217 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1218 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1219 mask = 7 << shift;
1220 val = val & mask;
1221
1222 return !val;
1223 }
1224
1225 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
1226 {
1227 struct cpsw_common *cpsw = priv->cpsw;
1228 struct cpsw_slave *slave;
1229 u32 shift, mask, val;
1230
1231 val = readl_relaxed(&cpsw->regs->ptype);
1232
1233 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1234 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1235 mask = (1 << --fifo) << shift;
1236 val = on ? val | mask : val & ~mask;
1237
1238 writel_relaxed(val, &cpsw->regs->ptype);
1239 }
1240
1241 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1242 struct cpsw_priv *priv, bool *link)
1243 {
1244 struct phy_device *phy = slave->phy;
1245 u32 mac_control = 0;
1246 u32 slave_port;
1247 struct cpsw_common *cpsw = priv->cpsw;
1248
1249 if (!phy)
1250 return;
1251
1252 slave_port = cpsw_get_slave_port(slave->slave_num);
1253
1254 if (phy->link) {
1255 mac_control = cpsw->data.mac_control;
1256
1257 /* enable forwarding */
1258 cpsw_ale_control_set(cpsw->ale, slave_port,
1259 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1260
1261 if (phy->speed == 1000)
1262 mac_control |= BIT(7); /* GIGABITEN */
1263 if (phy->duplex)
1264 mac_control |= BIT(0); /* FULLDUPLEXEN */
1265
1266 /* set speed_in input in case RMII mode is used in 100Mbps */
1267 if (phy->speed == 100)
1268 mac_control |= BIT(15);
1269 /* in band mode only works in 10Mbps RGMII mode */
1270 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1271 mac_control |= BIT(18); /* In Band mode */
1272
1273 if (priv->rx_pause)
1274 mac_control |= BIT(3);
1275
1276 if (priv->tx_pause)
1277 mac_control |= BIT(4);
1278
1279 *link = true;
1280
1281 if (priv->shp_cfg_speed &&
1282 priv->shp_cfg_speed != slave->phy->speed &&
1283 !cpsw_shp_is_off(priv))
1284 dev_warn(priv->dev,
1285 "Speed was changed, CBS shaper speeds are changed!");
1286 } else {
1287 mac_control = 0;
1288 /* disable forwarding */
1289 cpsw_ale_control_set(cpsw->ale, slave_port,
1290 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1291 }
1292
1293 if (mac_control != slave->mac_control) {
1294 phy_print_status(phy);
1295 writel_relaxed(mac_control, &slave->sliver->mac_control);
1296 }
1297
1298 slave->mac_control = mac_control;
1299 }
1300
1301 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1302 {
1303 int i, speed;
1304
1305 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1306 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1307 speed += cpsw->slaves[i].phy->speed;
1308
1309 return speed;
1310 }
1311
1312 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1313 {
1314 int i, rlim_ch_num;
1315 int speed, ch_rate;
1316
1317 /* re-split resources only in case speed was changed */
1318 speed = cpsw_get_common_speed(cpsw);
1319 if (speed == cpsw->speed || !speed)
1320 return 0;
1321
1322 cpsw->speed = speed;
1323
1324 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1325 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1326 if (!ch_rate)
1327 break;
1328
1329 rlim_ch_num++;
1330 }
1331
1332 /* cases not dependent on speed */
1333 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1334 return 0;
1335
1336 return 1;
1337 }
1338
1339 static void cpsw_adjust_link(struct net_device *ndev)
1340 {
1341 struct cpsw_priv *priv = netdev_priv(ndev);
1342 struct cpsw_common *cpsw = priv->cpsw;
1343 bool link = false;
1344
1345 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1346
1347 if (link) {
1348 if (cpsw_need_resplit(cpsw))
1349 cpsw_split_res(ndev);
1350
1351 netif_carrier_on(ndev);
1352 if (netif_running(ndev))
1353 netif_tx_wake_all_queues(ndev);
1354 } else {
1355 netif_carrier_off(ndev);
1356 netif_tx_stop_all_queues(ndev);
1357 }
1358 }
1359
1360 static int cpsw_get_coalesce(struct net_device *ndev,
1361 struct ethtool_coalesce *coal)
1362 {
1363 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1364
1365 coal->rx_coalesce_usecs = cpsw->coal_intvl;
1366 return 0;
1367 }
1368
1369 static int cpsw_set_coalesce(struct net_device *ndev,
1370 struct ethtool_coalesce *coal)
1371 {
1372 struct cpsw_priv *priv = netdev_priv(ndev);
1373 u32 int_ctrl;
1374 u32 num_interrupts = 0;
1375 u32 prescale = 0;
1376 u32 addnl_dvdr = 1;
1377 u32 coal_intvl = 0;
1378 struct cpsw_common *cpsw = priv->cpsw;
1379
1380 coal_intvl = coal->rx_coalesce_usecs;
1381
1382 int_ctrl = readl(&cpsw->wr_regs->int_control);
1383 prescale = cpsw->bus_freq_mhz * 4;
1384
1385 if (!coal->rx_coalesce_usecs) {
1386 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1387 goto update_return;
1388 }
1389
1390 if (coal_intvl < CPSW_CMINTMIN_INTVL)
1391 coal_intvl = CPSW_CMINTMIN_INTVL;
1392
1393 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1394 /* Interrupt pacer works with 4us Pulse, we can
1395 * throttle further by dilating the 4us pulse.
1396 */
1397 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1398
1399 if (addnl_dvdr > 1) {
1400 prescale *= addnl_dvdr;
1401 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1402 coal_intvl = (CPSW_CMINTMAX_INTVL
1403 * addnl_dvdr);
1404 } else {
1405 addnl_dvdr = 1;
1406 coal_intvl = CPSW_CMINTMAX_INTVL;
1407 }
1408 }
1409
1410 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1411 writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1412 writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1413
1414 int_ctrl |= CPSW_INTPACEEN;
1415 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1416 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1417
1418 update_return:
1419 writel(int_ctrl, &cpsw->wr_regs->int_control);
1420
1421 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1422 cpsw->coal_intvl = coal_intvl;
1423
1424 return 0;
1425 }
1426
1427 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1428 {
1429 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1430
1431 switch (sset) {
1432 case ETH_SS_STATS:
1433 return (CPSW_STATS_COMMON_LEN +
1434 (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1435 CPSW_STATS_CH_LEN);
1436 default:
1437 return -EOPNOTSUPP;
1438 }
1439 }
1440
1441 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1442 {
1443 int ch_stats_len;
1444 int line;
1445 int i;
1446
1447 ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1448 for (i = 0; i < ch_stats_len; i++) {
1449 line = i % CPSW_STATS_CH_LEN;
1450 snprintf(*p, ETH_GSTRING_LEN,
1451 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
1452 (long)(i / CPSW_STATS_CH_LEN),
1453 cpsw_gstrings_ch_stats[line].stat_string);
1454 *p += ETH_GSTRING_LEN;
1455 }
1456 }
1457
1458 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1459 {
1460 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1461 u8 *p = data;
1462 int i;
1463
1464 switch (stringset) {
1465 case ETH_SS_STATS:
1466 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1467 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1468 ETH_GSTRING_LEN);
1469 p += ETH_GSTRING_LEN;
1470 }
1471
1472 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1473 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1474 break;
1475 }
1476 }
1477
1478 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1479 struct ethtool_stats *stats, u64 *data)
1480 {
1481 u8 *p;
1482 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1483 struct cpdma_chan_stats ch_stats;
1484 int i, l, ch;
1485
1486 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1487 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1488 data[l] = readl(cpsw->hw_stats +
1489 cpsw_gstrings_stats[l].stat_offset);
1490
1491 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1492 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1493 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1494 p = (u8 *)&ch_stats +
1495 cpsw_gstrings_ch_stats[i].stat_offset;
1496 data[l] = *(u32 *)p;
1497 }
1498 }
1499
1500 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1501 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1502 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1503 p = (u8 *)&ch_stats +
1504 cpsw_gstrings_ch_stats[i].stat_offset;
1505 data[l] = *(u32 *)p;
1506 }
1507 }
1508 }
1509
1510 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1511 struct sk_buff *skb,
1512 struct cpdma_chan *txch)
1513 {
1514 struct cpsw_common *cpsw = priv->cpsw;
1515
1516 skb_tx_timestamp(skb);
1517 return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1518 priv->emac_port + cpsw->data.dual_emac);
1519 }
1520
1521 static inline void cpsw_add_dual_emac_def_ale_entries(
1522 struct cpsw_priv *priv, struct cpsw_slave *slave,
1523 u32 slave_port)
1524 {
1525 struct cpsw_common *cpsw = priv->cpsw;
1526 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1527
1528 if (cpsw->version == CPSW_VERSION_1)
1529 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1530 else
1531 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1532 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1533 port_mask, port_mask, 0);
1534 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1535 ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
1536 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1537 HOST_PORT_NUM, ALE_VLAN |
1538 ALE_SECURE, slave->port_vlan);
1539 cpsw_ale_control_set(cpsw->ale, slave_port,
1540 ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1541 }
1542
1543 static void soft_reset_slave(struct cpsw_slave *slave)
1544 {
1545 char name[32];
1546
1547 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1548 soft_reset(name, &slave->sliver->soft_reset);
1549 }
1550
1551 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1552 {
1553 u32 slave_port;
1554 struct phy_device *phy;
1555 struct cpsw_common *cpsw = priv->cpsw;
1556
1557 soft_reset_slave(slave);
1558
1559 /* setup priority mapping */
1560 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1561
1562 switch (cpsw->version) {
1563 case CPSW_VERSION_1:
1564 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1565 /* Increase RX FIFO size to 5 for supporting fullduplex
1566 * flow control mode
1567 */
1568 slave_write(slave,
1569 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1570 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1571 break;
1572 case CPSW_VERSION_2:
1573 case CPSW_VERSION_3:
1574 case CPSW_VERSION_4:
1575 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1576 /* Increase RX FIFO size to 5 for supporting fullduplex
1577 * flow control mode
1578 */
1579 slave_write(slave,
1580 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1581 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1582 break;
1583 }
1584
1585 /* setup max packet size, and mac address */
1586 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1587 cpsw_set_slave_mac(slave, priv);
1588
1589 slave->mac_control = 0; /* no link yet */
1590
1591 slave_port = cpsw_get_slave_port(slave->slave_num);
1592
1593 if (cpsw->data.dual_emac)
1594 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1595 else
1596 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1597 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1598
1599 if (slave->data->phy_node) {
1600 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1601 &cpsw_adjust_link, 0, slave->data->phy_if);
1602 if (!phy) {
1603 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1604 slave->data->phy_node,
1605 slave->slave_num);
1606 return;
1607 }
1608 } else {
1609 phy = phy_connect(priv->ndev, slave->data->phy_id,
1610 &cpsw_adjust_link, slave->data->phy_if);
1611 if (IS_ERR(phy)) {
1612 dev_err(priv->dev,
1613 "phy \"%s\" not found on slave %d, err %ld\n",
1614 slave->data->phy_id, slave->slave_num,
1615 PTR_ERR(phy));
1616 return;
1617 }
1618 }
1619
1620 slave->phy = phy;
1621
1622 phy_attached_info(slave->phy);
1623
1624 phy_start(slave->phy);
1625
1626 /* Configure GMII_SEL register */
1627 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1628 }
1629
1630 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1631 {
1632 struct cpsw_common *cpsw = priv->cpsw;
1633 const int vlan = cpsw->data.default_vlan;
1634 u32 reg;
1635 int i;
1636 int unreg_mcast_mask;
1637
1638 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1639 CPSW2_PORT_VLAN;
1640
1641 writel(vlan, &cpsw->host_port_regs->port_vlan);
1642
1643 for (i = 0; i < cpsw->data.slaves; i++)
1644 slave_write(cpsw->slaves + i, vlan, reg);
1645
1646 if (priv->ndev->flags & IFF_ALLMULTI)
1647 unreg_mcast_mask = ALE_ALL_PORTS;
1648 else
1649 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1650
1651 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1652 ALE_ALL_PORTS, ALE_ALL_PORTS,
1653 unreg_mcast_mask);
1654 }
1655
1656 static void cpsw_init_host_port(struct cpsw_priv *priv)
1657 {
1658 u32 fifo_mode;
1659 u32 control_reg;
1660 struct cpsw_common *cpsw = priv->cpsw;
1661
1662 /* soft reset the controller and initialize ale */
1663 soft_reset("cpsw", &cpsw->regs->soft_reset);
1664 cpsw_ale_start(cpsw->ale);
1665
1666 /* switch to vlan unaware mode */
1667 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1668 CPSW_ALE_VLAN_AWARE);
1669 control_reg = readl(&cpsw->regs->control);
1670 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1671 writel(control_reg, &cpsw->regs->control);
1672 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1673 CPSW_FIFO_NORMAL_MODE;
1674 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1675
1676 /* setup host port priority mapping */
1677 writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1678 &cpsw->host_port_regs->cpdma_tx_pri_map);
1679 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1680
1681 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1682 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1683
1684 if (!cpsw->data.dual_emac) {
1685 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1686 0, 0);
1687 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1688 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1689 }
1690 }
1691
1692 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1693 {
1694 struct cpsw_common *cpsw = priv->cpsw;
1695 struct sk_buff *skb;
1696 int ch_buf_num;
1697 int ch, i, ret;
1698
1699 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1700 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1701 for (i = 0; i < ch_buf_num; i++) {
1702 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1703 cpsw->rx_packet_max,
1704 GFP_KERNEL);
1705 if (!skb) {
1706 cpsw_err(priv, ifup, "cannot allocate skb\n");
1707 return -ENOMEM;
1708 }
1709
1710 skb_set_queue_mapping(skb, ch);
1711 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1712 skb->data, skb_tailroom(skb),
1713 0);
1714 if (ret < 0) {
1715 cpsw_err(priv, ifup,
1716 "cannot submit skb to channel %d rx, error %d\n",
1717 ch, ret);
1718 kfree_skb(skb);
1719 return ret;
1720 }
1721 kmemleak_not_leak(skb);
1722 }
1723
1724 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1725 ch, ch_buf_num);
1726 }
1727
1728 return 0;
1729 }
1730
1731 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1732 {
1733 u32 slave_port;
1734
1735 slave_port = cpsw_get_slave_port(slave->slave_num);
1736
1737 if (!slave->phy)
1738 return;
1739 phy_stop(slave->phy);
1740 phy_disconnect(slave->phy);
1741 slave->phy = NULL;
1742 cpsw_ale_control_set(cpsw->ale, slave_port,
1743 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1744 soft_reset_slave(slave);
1745 }
1746
1747 static int cpsw_tc_to_fifo(int tc, int num_tc)
1748 {
1749 if (tc == num_tc - 1)
1750 return 0;
1751
1752 return CPSW_FIFO_SHAPERS_NUM - tc;
1753 }
1754
1755 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
1756 {
1757 struct cpsw_common *cpsw = priv->cpsw;
1758 u32 val = 0, send_pct, shift;
1759 struct cpsw_slave *slave;
1760 int pct = 0, i;
1761
1762 if (bw > priv->shp_cfg_speed * 1000)
1763 goto err;
1764
1765 /* shaping has to stay enabled for highest fifos linearly
1766 * and fifo bw no more then interface can allow
1767 */
1768 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1769 send_pct = slave_read(slave, SEND_PERCENT);
1770 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
1771 if (!bw) {
1772 if (i >= fifo || !priv->fifo_bw[i])
1773 continue;
1774
1775 dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
1776 continue;
1777 }
1778
1779 if (!priv->fifo_bw[i] && i > fifo) {
1780 dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
1781 return -EINVAL;
1782 }
1783
1784 shift = (i - 1) * 8;
1785 if (i == fifo) {
1786 send_pct &= ~(CPSW_PCT_MASK << shift);
1787 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
1788 if (!val)
1789 val = 1;
1790
1791 send_pct |= val << shift;
1792 pct += val;
1793 continue;
1794 }
1795
1796 if (priv->fifo_bw[i])
1797 pct += (send_pct >> shift) & CPSW_PCT_MASK;
1798 }
1799
1800 if (pct >= 100)
1801 goto err;
1802
1803 slave_write(slave, send_pct, SEND_PERCENT);
1804 priv->fifo_bw[fifo] = bw;
1805
1806 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
1807 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
1808
1809 return 0;
1810 err:
1811 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
1812 return -EINVAL;
1813 }
1814
1815 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
1816 {
1817 struct cpsw_common *cpsw = priv->cpsw;
1818 struct cpsw_slave *slave;
1819 u32 tx_in_ctl_rg, val;
1820 int ret;
1821
1822 ret = cpsw_set_fifo_bw(priv, fifo, bw);
1823 if (ret)
1824 return ret;
1825
1826 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1827 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
1828 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
1829
1830 if (!bw)
1831 cpsw_fifo_shp_on(priv, fifo, bw);
1832
1833 val = slave_read(slave, tx_in_ctl_rg);
1834 if (cpsw_shp_is_off(priv)) {
1835 /* disable FIFOs rate limited queues */
1836 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
1837
1838 /* set type of FIFO queues to normal priority mode */
1839 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
1840
1841 /* set type of FIFO queues to be rate limited */
1842 if (bw)
1843 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
1844 else
1845 priv->shp_cfg_speed = 0;
1846 }
1847
1848 /* toggle a FIFO rate limited queue */
1849 if (bw)
1850 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1851 else
1852 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1853 slave_write(slave, val, tx_in_ctl_rg);
1854
1855 /* FIFO transmit shape enable */
1856 cpsw_fifo_shp_on(priv, fifo, bw);
1857 return 0;
1858 }
1859
1860 /* Defaults:
1861 * class A - prio 3
1862 * class B - prio 2
1863 * shaping for class A should be set first
1864 */
1865 static int cpsw_set_cbs(struct net_device *ndev,
1866 struct tc_cbs_qopt_offload *qopt)
1867 {
1868 struct cpsw_priv *priv = netdev_priv(ndev);
1869 struct cpsw_common *cpsw = priv->cpsw;
1870 struct cpsw_slave *slave;
1871 int prev_speed = 0;
1872 int tc, ret, fifo;
1873 u32 bw = 0;
1874
1875 tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
1876
1877 /* enable channels in backward order, as highest FIFOs must be rate
1878 * limited first and for compliance with CPDMA rate limited channels
1879 * that also used in bacward order. FIFO0 cannot be rate limited.
1880 */
1881 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
1882 if (!fifo) {
1883 dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
1884 return -EINVAL;
1885 }
1886
1887 /* do nothing, it's disabled anyway */
1888 if (!qopt->enable && !priv->fifo_bw[fifo])
1889 return 0;
1890
1891 /* shapers can be set if link speed is known */
1892 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1893 if (slave->phy && slave->phy->link) {
1894 if (priv->shp_cfg_speed &&
1895 priv->shp_cfg_speed != slave->phy->speed)
1896 prev_speed = priv->shp_cfg_speed;
1897
1898 priv->shp_cfg_speed = slave->phy->speed;
1899 }
1900
1901 if (!priv->shp_cfg_speed) {
1902 dev_err(priv->dev, "Link speed is not known");
1903 return -1;
1904 }
1905
1906 ret = pm_runtime_get_sync(cpsw->dev);
1907 if (ret < 0) {
1908 pm_runtime_put_noidle(cpsw->dev);
1909 return ret;
1910 }
1911
1912 bw = qopt->enable ? qopt->idleslope : 0;
1913 ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
1914 if (ret) {
1915 priv->shp_cfg_speed = prev_speed;
1916 prev_speed = 0;
1917 }
1918
1919 if (bw && prev_speed)
1920 dev_warn(priv->dev,
1921 "Speed was changed, CBS shaper speeds are changed!");
1922
1923 pm_runtime_put_sync(cpsw->dev);
1924 return ret;
1925 }
1926
1927 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1928 {
1929 int fifo, bw;
1930
1931 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1932 bw = priv->fifo_bw[fifo];
1933 if (!bw)
1934 continue;
1935
1936 cpsw_set_fifo_rlimit(priv, fifo, bw);
1937 }
1938 }
1939
1940 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1941 {
1942 struct cpsw_common *cpsw = priv->cpsw;
1943 u32 tx_prio_map = 0;
1944 int i, tc, fifo;
1945 u32 tx_prio_rg;
1946
1947 if (!priv->mqprio_hw)
1948 return;
1949
1950 for (i = 0; i < 8; i++) {
1951 tc = netdev_get_prio_tc_map(priv->ndev, i);
1952 fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1953 tx_prio_map |= fifo << (4 * i);
1954 }
1955
1956 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1957 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1958
1959 slave_write(slave, tx_prio_map, tx_prio_rg);
1960 }
1961
1962 static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
1963 {
1964 struct cpsw_priv *priv = arg;
1965
1966 if (!vdev)
1967 return 0;
1968
1969 cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
1970 return 0;
1971 }
1972
1973 /* restore resources after port reset */
1974 static void cpsw_restore(struct cpsw_priv *priv)
1975 {
1976 /* restore vlan configurations */
1977 vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
1978
1979 /* restore MQPRIO offload */
1980 for_each_slave(priv, cpsw_mqprio_resume, priv);
1981
1982 /* restore CBS offload */
1983 for_each_slave(priv, cpsw_cbs_resume, priv);
1984 }
1985
1986 static int cpsw_ndo_open(struct net_device *ndev)
1987 {
1988 struct cpsw_priv *priv = netdev_priv(ndev);
1989 struct cpsw_common *cpsw = priv->cpsw;
1990 int ret;
1991 u32 reg;
1992
1993 ret = pm_runtime_get_sync(cpsw->dev);
1994 if (ret < 0) {
1995 pm_runtime_put_noidle(cpsw->dev);
1996 return ret;
1997 }
1998
1999 netif_carrier_off(ndev);
2000
2001 /* Notify the stack of the actual queue counts. */
2002 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
2003 if (ret) {
2004 dev_err(priv->dev, "cannot set real number of tx queues\n");
2005 goto err_cleanup;
2006 }
2007
2008 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
2009 if (ret) {
2010 dev_err(priv->dev, "cannot set real number of rx queues\n");
2011 goto err_cleanup;
2012 }
2013
2014 reg = cpsw->version;
2015
2016 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
2017 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
2018 CPSW_RTL_VERSION(reg));
2019
2020 /* Initialize host and slave ports */
2021 if (!cpsw->usage_count)
2022 cpsw_init_host_port(priv);
2023 for_each_slave(priv, cpsw_slave_open, priv);
2024
2025 /* Add default VLAN */
2026 if (!cpsw->data.dual_emac)
2027 cpsw_add_default_vlan(priv);
2028 else
2029 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
2030 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
2031
2032 /* initialize shared resources for every ndev */
2033 if (!cpsw->usage_count) {
2034 /* disable priority elevation */
2035 writel_relaxed(0, &cpsw->regs->ptype);
2036
2037 /* enable statistics collection only on all ports */
2038 writel_relaxed(0x7, &cpsw->regs->stat_port_en);
2039
2040 /* Enable internal fifo flow control */
2041 writel(0x7, &cpsw->regs->flow_control);
2042
2043 napi_enable(&cpsw->napi_rx);
2044 napi_enable(&cpsw->napi_tx);
2045
2046 if (cpsw->tx_irq_disabled) {
2047 cpsw->tx_irq_disabled = false;
2048 enable_irq(cpsw->irqs_table[1]);
2049 }
2050
2051 if (cpsw->rx_irq_disabled) {
2052 cpsw->rx_irq_disabled = false;
2053 enable_irq(cpsw->irqs_table[0]);
2054 }
2055
2056 ret = cpsw_fill_rx_channels(priv);
2057 if (ret < 0)
2058 goto err_cleanup;
2059
2060 if (cpts_register(cpsw->cpts))
2061 dev_err(priv->dev, "error registering cpts device\n");
2062
2063 }
2064
2065 cpsw_restore(priv);
2066
2067 /* Enable Interrupt pacing if configured */
2068 if (cpsw->coal_intvl != 0) {
2069 struct ethtool_coalesce coal;
2070
2071 coal.rx_coalesce_usecs = cpsw->coal_intvl;
2072 cpsw_set_coalesce(ndev, &coal);
2073 }
2074
2075 cpdma_ctlr_start(cpsw->dma);
2076 cpsw_intr_enable(cpsw);
2077 cpsw->usage_count++;
2078
2079 return 0;
2080
2081 err_cleanup:
2082 cpdma_ctlr_stop(cpsw->dma);
2083 for_each_slave(priv, cpsw_slave_stop, cpsw);
2084 pm_runtime_put_sync(cpsw->dev);
2085 netif_carrier_off(priv->ndev);
2086 return ret;
2087 }
2088
2089 static int cpsw_ndo_stop(struct net_device *ndev)
2090 {
2091 struct cpsw_priv *priv = netdev_priv(ndev);
2092 struct cpsw_common *cpsw = priv->cpsw;
2093
2094 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
2095 __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
2096 netif_tx_stop_all_queues(priv->ndev);
2097 netif_carrier_off(priv->ndev);
2098
2099 if (cpsw->usage_count <= 1) {
2100 napi_disable(&cpsw->napi_rx);
2101 napi_disable(&cpsw->napi_tx);
2102 cpts_unregister(cpsw->cpts);
2103 cpsw_intr_disable(cpsw);
2104 cpdma_ctlr_stop(cpsw->dma);
2105 cpsw_ale_stop(cpsw->ale);
2106 }
2107 for_each_slave(priv, cpsw_slave_stop, cpsw);
2108
2109 if (cpsw_need_resplit(cpsw))
2110 cpsw_split_res(ndev);
2111
2112 cpsw->usage_count--;
2113 pm_runtime_put_sync(cpsw->dev);
2114 return 0;
2115 }
2116
2117 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
2118 struct net_device *ndev)
2119 {
2120 struct cpsw_priv *priv = netdev_priv(ndev);
2121 struct cpsw_common *cpsw = priv->cpsw;
2122 struct cpts *cpts = cpsw->cpts;
2123 struct netdev_queue *txq;
2124 struct cpdma_chan *txch;
2125 int ret, q_idx;
2126
2127 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
2128 cpsw_err(priv, tx_err, "packet pad failed\n");
2129 ndev->stats.tx_dropped++;
2130 return NET_XMIT_DROP;
2131 }
2132
2133 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2134 priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
2135 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2136
2137 q_idx = skb_get_queue_mapping(skb);
2138 if (q_idx >= cpsw->tx_ch_num)
2139 q_idx = q_idx % cpsw->tx_ch_num;
2140
2141 txch = cpsw->txv[q_idx].ch;
2142 txq = netdev_get_tx_queue(ndev, q_idx);
2143 ret = cpsw_tx_packet_submit(priv, skb, txch);
2144 if (unlikely(ret != 0)) {
2145 cpsw_err(priv, tx_err, "desc submit failed\n");
2146 goto fail;
2147 }
2148
2149 /* If there is no more tx desc left free then we need to
2150 * tell the kernel to stop sending us tx frames.
2151 */
2152 if (unlikely(!cpdma_check_free_tx_desc(txch))) {
2153 netif_tx_stop_queue(txq);
2154
2155 /* Barrier, so that stop_queue visible to other cpus */
2156 smp_mb__after_atomic();
2157
2158 if (cpdma_check_free_tx_desc(txch))
2159 netif_tx_wake_queue(txq);
2160 }
2161
2162 return NETDEV_TX_OK;
2163 fail:
2164 ndev->stats.tx_dropped++;
2165 netif_tx_stop_queue(txq);
2166
2167 /* Barrier, so that stop_queue visible to other cpus */
2168 smp_mb__after_atomic();
2169
2170 if (cpdma_check_free_tx_desc(txch))
2171 netif_tx_wake_queue(txq);
2172
2173 return NETDEV_TX_BUSY;
2174 }
2175
2176 #if IS_ENABLED(CONFIG_TI_CPTS)
2177
2178 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
2179 {
2180 struct cpsw_common *cpsw = priv->cpsw;
2181 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2182 u32 ts_en, seq_id;
2183
2184 if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
2185 slave_write(slave, 0, CPSW1_TS_CTL);
2186 return;
2187 }
2188
2189 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
2190 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
2191
2192 if (priv->tx_ts_enabled)
2193 ts_en |= CPSW_V1_TS_TX_EN;
2194
2195 if (priv->rx_ts_enabled)
2196 ts_en |= CPSW_V1_TS_RX_EN;
2197
2198 slave_write(slave, ts_en, CPSW1_TS_CTL);
2199 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
2200 }
2201
2202 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
2203 {
2204 struct cpsw_slave *slave;
2205 struct cpsw_common *cpsw = priv->cpsw;
2206 u32 ctrl, mtype;
2207
2208 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2209
2210 ctrl = slave_read(slave, CPSW2_CONTROL);
2211 switch (cpsw->version) {
2212 case CPSW_VERSION_2:
2213 ctrl &= ~CTRL_V2_ALL_TS_MASK;
2214
2215 if (priv->tx_ts_enabled)
2216 ctrl |= CTRL_V2_TX_TS_BITS;
2217
2218 if (priv->rx_ts_enabled)
2219 ctrl |= CTRL_V2_RX_TS_BITS;
2220 break;
2221 case CPSW_VERSION_3:
2222 default:
2223 ctrl &= ~CTRL_V3_ALL_TS_MASK;
2224
2225 if (priv->tx_ts_enabled)
2226 ctrl |= CTRL_V3_TX_TS_BITS;
2227
2228 if (priv->rx_ts_enabled)
2229 ctrl |= CTRL_V3_RX_TS_BITS;
2230 break;
2231 }
2232
2233 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
2234
2235 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
2236 slave_write(slave, ctrl, CPSW2_CONTROL);
2237 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2238 writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
2239 }
2240
2241 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2242 {
2243 struct cpsw_priv *priv = netdev_priv(dev);
2244 struct hwtstamp_config cfg;
2245 struct cpsw_common *cpsw = priv->cpsw;
2246
2247 if (cpsw->version != CPSW_VERSION_1 &&
2248 cpsw->version != CPSW_VERSION_2 &&
2249 cpsw->version != CPSW_VERSION_3)
2250 return -EOPNOTSUPP;
2251
2252 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
2253 return -EFAULT;
2254
2255 /* reserved for future extensions */
2256 if (cfg.flags)
2257 return -EINVAL;
2258
2259 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2260 return -ERANGE;
2261
2262 switch (cfg.rx_filter) {
2263 case HWTSTAMP_FILTER_NONE:
2264 priv->rx_ts_enabled = 0;
2265 break;
2266 case HWTSTAMP_FILTER_ALL:
2267 case HWTSTAMP_FILTER_NTP_ALL:
2268 return -ERANGE;
2269 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2270 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2271 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2272 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
2273 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
2274 break;
2275 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2276 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2277 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2278 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2279 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2280 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2281 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2282 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2283 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2284 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
2285 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
2286 break;
2287 default:
2288 return -ERANGE;
2289 }
2290
2291 priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
2292
2293 switch (cpsw->version) {
2294 case CPSW_VERSION_1:
2295 cpsw_hwtstamp_v1(priv);
2296 break;
2297 case CPSW_VERSION_2:
2298 case CPSW_VERSION_3:
2299 cpsw_hwtstamp_v2(priv);
2300 break;
2301 default:
2302 WARN_ON(1);
2303 }
2304
2305 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2306 }
2307
2308 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2309 {
2310 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
2311 struct cpsw_priv *priv = netdev_priv(dev);
2312 struct hwtstamp_config cfg;
2313
2314 if (cpsw->version != CPSW_VERSION_1 &&
2315 cpsw->version != CPSW_VERSION_2 &&
2316 cpsw->version != CPSW_VERSION_3)
2317 return -EOPNOTSUPP;
2318
2319 cfg.flags = 0;
2320 cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2321 cfg.rx_filter = priv->rx_ts_enabled;
2322
2323 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2324 }
2325 #else
2326 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2327 {
2328 return -EOPNOTSUPP;
2329 }
2330
2331 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2332 {
2333 return -EOPNOTSUPP;
2334 }
2335 #endif /*CONFIG_TI_CPTS*/
2336
2337 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2338 {
2339 struct cpsw_priv *priv = netdev_priv(dev);
2340 struct cpsw_common *cpsw = priv->cpsw;
2341 int slave_no = cpsw_slave_index(cpsw, priv);
2342
2343 if (!netif_running(dev))
2344 return -EINVAL;
2345
2346 switch (cmd) {
2347 case SIOCSHWTSTAMP:
2348 return cpsw_hwtstamp_set(dev, req);
2349 case SIOCGHWTSTAMP:
2350 return cpsw_hwtstamp_get(dev, req);
2351 }
2352
2353 if (!cpsw->slaves[slave_no].phy)
2354 return -EOPNOTSUPP;
2355 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2356 }
2357
2358 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
2359 {
2360 struct cpsw_priv *priv = netdev_priv(ndev);
2361 struct cpsw_common *cpsw = priv->cpsw;
2362 int ch;
2363
2364 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2365 ndev->stats.tx_errors++;
2366 cpsw_intr_disable(cpsw);
2367 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2368 cpdma_chan_stop(cpsw->txv[ch].ch);
2369 cpdma_chan_start(cpsw->txv[ch].ch);
2370 }
2371
2372 cpsw_intr_enable(cpsw);
2373 netif_trans_update(ndev);
2374 netif_tx_wake_all_queues(ndev);
2375 }
2376
2377 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
2378 {
2379 struct cpsw_priv *priv = netdev_priv(ndev);
2380 struct sockaddr *addr = (struct sockaddr *)p;
2381 struct cpsw_common *cpsw = priv->cpsw;
2382 int flags = 0;
2383 u16 vid = 0;
2384 int ret;
2385
2386 if (!is_valid_ether_addr(addr->sa_data))
2387 return -EADDRNOTAVAIL;
2388
2389 ret = pm_runtime_get_sync(cpsw->dev);
2390 if (ret < 0) {
2391 pm_runtime_put_noidle(cpsw->dev);
2392 return ret;
2393 }
2394
2395 if (cpsw->data.dual_emac) {
2396 vid = cpsw->slaves[priv->emac_port].port_vlan;
2397 flags = ALE_VLAN;
2398 }
2399
2400 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2401 flags, vid);
2402 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2403 flags, vid);
2404
2405 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
2406 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2407 for_each_slave(priv, cpsw_set_slave_mac, priv);
2408
2409 pm_runtime_put(cpsw->dev);
2410
2411 return 0;
2412 }
2413
2414 #ifdef CONFIG_NET_POLL_CONTROLLER
2415 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2416 {
2417 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2418
2419 cpsw_intr_disable(cpsw);
2420 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2421 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2422 cpsw_intr_enable(cpsw);
2423 }
2424 #endif
2425
2426 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
2427 unsigned short vid)
2428 {
2429 int ret;
2430 int unreg_mcast_mask = 0;
2431 int mcast_mask;
2432 u32 port_mask;
2433 struct cpsw_common *cpsw = priv->cpsw;
2434
2435 if (cpsw->data.dual_emac) {
2436 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2437
2438 mcast_mask = ALE_PORT_HOST;
2439 if (priv->ndev->flags & IFF_ALLMULTI)
2440 unreg_mcast_mask = mcast_mask;
2441 } else {
2442 port_mask = ALE_ALL_PORTS;
2443 mcast_mask = port_mask;
2444
2445 if (priv->ndev->flags & IFF_ALLMULTI)
2446 unreg_mcast_mask = ALE_ALL_PORTS;
2447 else
2448 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2449 }
2450
2451 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2452 unreg_mcast_mask);
2453 if (ret != 0)
2454 return ret;
2455
2456 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2457 HOST_PORT_NUM, ALE_VLAN, vid);
2458 if (ret != 0)
2459 goto clean_vid;
2460
2461 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2462 mcast_mask, ALE_VLAN, vid, 0);
2463 if (ret != 0)
2464 goto clean_vlan_ucast;
2465 return 0;
2466
2467 clean_vlan_ucast:
2468 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2469 HOST_PORT_NUM, ALE_VLAN, vid);
2470 clean_vid:
2471 cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2472 return ret;
2473 }
2474
2475 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2476 __be16 proto, u16 vid)
2477 {
2478 struct cpsw_priv *priv = netdev_priv(ndev);
2479 struct cpsw_common *cpsw = priv->cpsw;
2480 int ret;
2481
2482 if (vid == cpsw->data.default_vlan)
2483 return 0;
2484
2485 ret = pm_runtime_get_sync(cpsw->dev);
2486 if (ret < 0) {
2487 pm_runtime_put_noidle(cpsw->dev);
2488 return ret;
2489 }
2490
2491 if (cpsw->data.dual_emac) {
2492 /* In dual EMAC, reserved VLAN id should not be used for
2493 * creating VLAN interfaces as this can break the dual
2494 * EMAC port separation
2495 */
2496 int i;
2497
2498 for (i = 0; i < cpsw->data.slaves; i++) {
2499 if (vid == cpsw->slaves[i].port_vlan) {
2500 ret = -EINVAL;
2501 goto err;
2502 }
2503 }
2504 }
2505
2506 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2507 ret = cpsw_add_vlan_ale_entry(priv, vid);
2508 err:
2509 pm_runtime_put(cpsw->dev);
2510 return ret;
2511 }
2512
2513 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2514 __be16 proto, u16 vid)
2515 {
2516 struct cpsw_priv *priv = netdev_priv(ndev);
2517 struct cpsw_common *cpsw = priv->cpsw;
2518 int ret;
2519
2520 if (vid == cpsw->data.default_vlan)
2521 return 0;
2522
2523 ret = pm_runtime_get_sync(cpsw->dev);
2524 if (ret < 0) {
2525 pm_runtime_put_noidle(cpsw->dev);
2526 return ret;
2527 }
2528
2529 if (cpsw->data.dual_emac) {
2530 int i;
2531
2532 for (i = 0; i < cpsw->data.slaves; i++) {
2533 if (vid == cpsw->slaves[i].port_vlan)
2534 goto err;
2535 }
2536 }
2537
2538 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2539 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2540 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2541 HOST_PORT_NUM, ALE_VLAN, vid);
2542 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2543 0, ALE_VLAN, vid);
2544 ret |= cpsw_ale_flush_multicast(cpsw->ale, 0, vid);
2545 err:
2546 pm_runtime_put(cpsw->dev);
2547 return ret;
2548 }
2549
2550 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2551 {
2552 struct cpsw_priv *priv = netdev_priv(ndev);
2553 struct cpsw_common *cpsw = priv->cpsw;
2554 struct cpsw_slave *slave;
2555 u32 min_rate;
2556 u32 ch_rate;
2557 int i, ret;
2558
2559 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2560 if (ch_rate == rate)
2561 return 0;
2562
2563 ch_rate = rate * 1000;
2564 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2565 if ((ch_rate < min_rate && ch_rate)) {
2566 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2567 min_rate);
2568 return -EINVAL;
2569 }
2570
2571 if (rate > cpsw->speed) {
2572 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2573 return -EINVAL;
2574 }
2575
2576 ret = pm_runtime_get_sync(cpsw->dev);
2577 if (ret < 0) {
2578 pm_runtime_put_noidle(cpsw->dev);
2579 return ret;
2580 }
2581
2582 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2583 pm_runtime_put(cpsw->dev);
2584
2585 if (ret)
2586 return ret;
2587
2588 /* update rates for slaves tx queues */
2589 for (i = 0; i < cpsw->data.slaves; i++) {
2590 slave = &cpsw->slaves[i];
2591 if (!slave->ndev)
2592 continue;
2593
2594 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2595 }
2596
2597 cpsw_split_res(ndev);
2598 return ret;
2599 }
2600
2601 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
2602 {
2603 struct tc_mqprio_qopt_offload *mqprio = type_data;
2604 struct cpsw_priv *priv = netdev_priv(ndev);
2605 struct cpsw_common *cpsw = priv->cpsw;
2606 int fifo, num_tc, count, offset;
2607 struct cpsw_slave *slave;
2608 u32 tx_prio_map = 0;
2609 int i, tc, ret;
2610
2611 num_tc = mqprio->qopt.num_tc;
2612 if (num_tc > CPSW_TC_NUM)
2613 return -EINVAL;
2614
2615 if (mqprio->mode != TC_MQPRIO_MODE_DCB)
2616 return -EINVAL;
2617
2618 ret = pm_runtime_get_sync(cpsw->dev);
2619 if (ret < 0) {
2620 pm_runtime_put_noidle(cpsw->dev);
2621 return ret;
2622 }
2623
2624 if (num_tc) {
2625 for (i = 0; i < 8; i++) {
2626 tc = mqprio->qopt.prio_tc_map[i];
2627 fifo = cpsw_tc_to_fifo(tc, num_tc);
2628 tx_prio_map |= fifo << (4 * i);
2629 }
2630
2631 netdev_set_num_tc(ndev, num_tc);
2632 for (i = 0; i < num_tc; i++) {
2633 count = mqprio->qopt.count[i];
2634 offset = mqprio->qopt.offset[i];
2635 netdev_set_tc_queue(ndev, i, count, offset);
2636 }
2637 }
2638
2639 if (!mqprio->qopt.hw) {
2640 /* restore default configuration */
2641 netdev_reset_tc(ndev);
2642 tx_prio_map = TX_PRIORITY_MAPPING;
2643 }
2644
2645 priv->mqprio_hw = mqprio->qopt.hw;
2646
2647 offset = cpsw->version == CPSW_VERSION_1 ?
2648 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
2649
2650 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2651 slave_write(slave, tx_prio_map, offset);
2652
2653 pm_runtime_put_sync(cpsw->dev);
2654
2655 return 0;
2656 }
2657
2658 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2659 void *type_data)
2660 {
2661 switch (type) {
2662 case TC_SETUP_QDISC_CBS:
2663 return cpsw_set_cbs(ndev, type_data);
2664
2665 case TC_SETUP_QDISC_MQPRIO:
2666 return cpsw_set_mqprio(ndev, type_data);
2667
2668 default:
2669 return -EOPNOTSUPP;
2670 }
2671 }
2672
2673 static const struct net_device_ops cpsw_netdev_ops = {
2674 .ndo_open = cpsw_ndo_open,
2675 .ndo_stop = cpsw_ndo_stop,
2676 .ndo_start_xmit = cpsw_ndo_start_xmit,
2677 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
2678 .ndo_do_ioctl = cpsw_ndo_ioctl,
2679 .ndo_validate_addr = eth_validate_addr,
2680 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
2681 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
2682 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
2683 #ifdef CONFIG_NET_POLL_CONTROLLER
2684 .ndo_poll_controller = cpsw_ndo_poll_controller,
2685 #endif
2686 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
2687 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
2688 .ndo_setup_tc = cpsw_ndo_setup_tc,
2689 };
2690
2691 static int cpsw_get_regs_len(struct net_device *ndev)
2692 {
2693 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2694
2695 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2696 }
2697
2698 static void cpsw_get_regs(struct net_device *ndev,
2699 struct ethtool_regs *regs, void *p)
2700 {
2701 u32 *reg = p;
2702 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2703
2704 /* update CPSW IP version */
2705 regs->version = cpsw->version;
2706
2707 cpsw_ale_dump(cpsw->ale, reg);
2708 }
2709
2710 static void cpsw_get_drvinfo(struct net_device *ndev,
2711 struct ethtool_drvinfo *info)
2712 {
2713 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2714 struct platform_device *pdev = to_platform_device(cpsw->dev);
2715
2716 strlcpy(info->driver, "cpsw", sizeof(info->driver));
2717 strlcpy(info->version, "1.0", sizeof(info->version));
2718 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2719 }
2720
2721 static u32 cpsw_get_msglevel(struct net_device *ndev)
2722 {
2723 struct cpsw_priv *priv = netdev_priv(ndev);
2724 return priv->msg_enable;
2725 }
2726
2727 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2728 {
2729 struct cpsw_priv *priv = netdev_priv(ndev);
2730 priv->msg_enable = value;
2731 }
2732
2733 #if IS_ENABLED(CONFIG_TI_CPTS)
2734 static int cpsw_get_ts_info(struct net_device *ndev,
2735 struct ethtool_ts_info *info)
2736 {
2737 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2738
2739 info->so_timestamping =
2740 SOF_TIMESTAMPING_TX_HARDWARE |
2741 SOF_TIMESTAMPING_TX_SOFTWARE |
2742 SOF_TIMESTAMPING_RX_HARDWARE |
2743 SOF_TIMESTAMPING_RX_SOFTWARE |
2744 SOF_TIMESTAMPING_SOFTWARE |
2745 SOF_TIMESTAMPING_RAW_HARDWARE;
2746 info->phc_index = cpsw->cpts->phc_index;
2747 info->tx_types =
2748 (1 << HWTSTAMP_TX_OFF) |
2749 (1 << HWTSTAMP_TX_ON);
2750 info->rx_filters =
2751 (1 << HWTSTAMP_FILTER_NONE) |
2752 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2753 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2754 return 0;
2755 }
2756 #else
2757 static int cpsw_get_ts_info(struct net_device *ndev,
2758 struct ethtool_ts_info *info)
2759 {
2760 info->so_timestamping =
2761 SOF_TIMESTAMPING_TX_SOFTWARE |
2762 SOF_TIMESTAMPING_RX_SOFTWARE |
2763 SOF_TIMESTAMPING_SOFTWARE;
2764 info->phc_index = -1;
2765 info->tx_types = 0;
2766 info->rx_filters = 0;
2767 return 0;
2768 }
2769 #endif
2770
2771 static int cpsw_get_link_ksettings(struct net_device *ndev,
2772 struct ethtool_link_ksettings *ecmd)
2773 {
2774 struct cpsw_priv *priv = netdev_priv(ndev);
2775 struct cpsw_common *cpsw = priv->cpsw;
2776 int slave_no = cpsw_slave_index(cpsw, priv);
2777
2778 if (!cpsw->slaves[slave_no].phy)
2779 return -EOPNOTSUPP;
2780
2781 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2782 return 0;
2783 }
2784
2785 static int cpsw_set_link_ksettings(struct net_device *ndev,
2786 const struct ethtool_link_ksettings *ecmd)
2787 {
2788 struct cpsw_priv *priv = netdev_priv(ndev);
2789 struct cpsw_common *cpsw = priv->cpsw;
2790 int slave_no = cpsw_slave_index(cpsw, priv);
2791
2792 if (cpsw->slaves[slave_no].phy)
2793 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2794 ecmd);
2795 else
2796 return -EOPNOTSUPP;
2797 }
2798
2799 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2800 {
2801 struct cpsw_priv *priv = netdev_priv(ndev);
2802 struct cpsw_common *cpsw = priv->cpsw;
2803 int slave_no = cpsw_slave_index(cpsw, priv);
2804
2805 wol->supported = 0;
2806 wol->wolopts = 0;
2807
2808 if (cpsw->slaves[slave_no].phy)
2809 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2810 }
2811
2812 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2813 {
2814 struct cpsw_priv *priv = netdev_priv(ndev);
2815 struct cpsw_common *cpsw = priv->cpsw;
2816 int slave_no = cpsw_slave_index(cpsw, priv);
2817
2818 if (cpsw->slaves[slave_no].phy)
2819 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2820 else
2821 return -EOPNOTSUPP;
2822 }
2823
2824 static void cpsw_get_pauseparam(struct net_device *ndev,
2825 struct ethtool_pauseparam *pause)
2826 {
2827 struct cpsw_priv *priv = netdev_priv(ndev);
2828
2829 pause->autoneg = AUTONEG_DISABLE;
2830 pause->rx_pause = priv->rx_pause ? true : false;
2831 pause->tx_pause = priv->tx_pause ? true : false;
2832 }
2833
2834 static int cpsw_set_pauseparam(struct net_device *ndev,
2835 struct ethtool_pauseparam *pause)
2836 {
2837 struct cpsw_priv *priv = netdev_priv(ndev);
2838 bool link;
2839
2840 priv->rx_pause = pause->rx_pause ? true : false;
2841 priv->tx_pause = pause->tx_pause ? true : false;
2842
2843 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2844 return 0;
2845 }
2846
2847 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2848 {
2849 struct cpsw_priv *priv = netdev_priv(ndev);
2850 struct cpsw_common *cpsw = priv->cpsw;
2851 int ret;
2852
2853 ret = pm_runtime_get_sync(cpsw->dev);
2854 if (ret < 0) {
2855 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2856 pm_runtime_put_noidle(cpsw->dev);
2857 }
2858
2859 return ret;
2860 }
2861
2862 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2863 {
2864 struct cpsw_priv *priv = netdev_priv(ndev);
2865 int ret;
2866
2867 ret = pm_runtime_put(priv->cpsw->dev);
2868 if (ret < 0)
2869 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2870 }
2871
2872 static void cpsw_get_channels(struct net_device *ndev,
2873 struct ethtool_channels *ch)
2874 {
2875 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2876
2877 ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2878 ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2879 ch->max_combined = 0;
2880 ch->max_other = 0;
2881 ch->other_count = 0;
2882 ch->rx_count = cpsw->rx_ch_num;
2883 ch->tx_count = cpsw->tx_ch_num;
2884 ch->combined_count = 0;
2885 }
2886
2887 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2888 struct ethtool_channels *ch)
2889 {
2890 if (cpsw->quirk_irq) {
2891 dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
2892 return -EOPNOTSUPP;
2893 }
2894
2895 if (ch->combined_count)
2896 return -EINVAL;
2897
2898 /* verify we have at least one channel in each direction */
2899 if (!ch->rx_count || !ch->tx_count)
2900 return -EINVAL;
2901
2902 if (ch->rx_count > cpsw->data.channels ||
2903 ch->tx_count > cpsw->data.channels)
2904 return -EINVAL;
2905
2906 return 0;
2907 }
2908
2909 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2910 {
2911 struct cpsw_common *cpsw = priv->cpsw;
2912 void (*handler)(void *, int, int);
2913 struct netdev_queue *queue;
2914 struct cpsw_vector *vec;
2915 int ret, *ch, vch;
2916
2917 if (rx) {
2918 ch = &cpsw->rx_ch_num;
2919 vec = cpsw->rxv;
2920 handler = cpsw_rx_handler;
2921 } else {
2922 ch = &cpsw->tx_ch_num;
2923 vec = cpsw->txv;
2924 handler = cpsw_tx_handler;
2925 }
2926
2927 while (*ch < ch_num) {
2928 vch = rx ? *ch : 7 - *ch;
2929 vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2930 queue = netdev_get_tx_queue(priv->ndev, *ch);
2931 queue->tx_maxrate = 0;
2932
2933 if (IS_ERR(vec[*ch].ch))
2934 return PTR_ERR(vec[*ch].ch);
2935
2936 if (!vec[*ch].ch)
2937 return -EINVAL;
2938
2939 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2940 (rx ? "rx" : "tx"));
2941 (*ch)++;
2942 }
2943
2944 while (*ch > ch_num) {
2945 (*ch)--;
2946
2947 ret = cpdma_chan_destroy(vec[*ch].ch);
2948 if (ret)
2949 return ret;
2950
2951 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2952 (rx ? "rx" : "tx"));
2953 }
2954
2955 return 0;
2956 }
2957
2958 static int cpsw_update_channels(struct cpsw_priv *priv,
2959 struct ethtool_channels *ch)
2960 {
2961 int ret;
2962
2963 ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2964 if (ret)
2965 return ret;
2966
2967 ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2968 if (ret)
2969 return ret;
2970
2971 return 0;
2972 }
2973
2974 static void cpsw_suspend_data_pass(struct net_device *ndev)
2975 {
2976 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2977 struct cpsw_slave *slave;
2978 int i;
2979
2980 /* Disable NAPI scheduling */
2981 cpsw_intr_disable(cpsw);
2982
2983 /* Stop all transmit queues for every network device.
2984 * Disable re-using rx descriptors with dormant_on.
2985 */
2986 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2987 if (!(slave->ndev && netif_running(slave->ndev)))
2988 continue;
2989
2990 netif_tx_stop_all_queues(slave->ndev);
2991 netif_dormant_on(slave->ndev);
2992 }
2993
2994 /* Handle rest of tx packets and stop cpdma channels */
2995 cpdma_ctlr_stop(cpsw->dma);
2996 }
2997
2998 static int cpsw_resume_data_pass(struct net_device *ndev)
2999 {
3000 struct cpsw_priv *priv = netdev_priv(ndev);
3001 struct cpsw_common *cpsw = priv->cpsw;
3002 struct cpsw_slave *slave;
3003 int i, ret;
3004
3005 /* Allow rx packets handling */
3006 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
3007 if (slave->ndev && netif_running(slave->ndev))
3008 netif_dormant_off(slave->ndev);
3009
3010 /* After this receive is started */
3011 if (cpsw->usage_count) {
3012 ret = cpsw_fill_rx_channels(priv);
3013 if (ret)
3014 return ret;
3015
3016 cpdma_ctlr_start(cpsw->dma);
3017 cpsw_intr_enable(cpsw);
3018 }
3019
3020 /* Resume transmit for every affected interface */
3021 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
3022 if (slave->ndev && netif_running(slave->ndev))
3023 netif_tx_start_all_queues(slave->ndev);
3024
3025 return 0;
3026 }
3027
3028 static int cpsw_set_channels(struct net_device *ndev,
3029 struct ethtool_channels *chs)
3030 {
3031 struct cpsw_priv *priv = netdev_priv(ndev);
3032 struct cpsw_common *cpsw = priv->cpsw;
3033 struct cpsw_slave *slave;
3034 int i, ret;
3035
3036 ret = cpsw_check_ch_settings(cpsw, chs);
3037 if (ret < 0)
3038 return ret;
3039
3040 cpsw_suspend_data_pass(ndev);
3041 ret = cpsw_update_channels(priv, chs);
3042 if (ret)
3043 goto err;
3044
3045 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
3046 if (!(slave->ndev && netif_running(slave->ndev)))
3047 continue;
3048
3049 /* Inform stack about new count of queues */
3050 ret = netif_set_real_num_tx_queues(slave->ndev,
3051 cpsw->tx_ch_num);
3052 if (ret) {
3053 dev_err(priv->dev, "cannot set real number of tx queues\n");
3054 goto err;
3055 }
3056
3057 ret = netif_set_real_num_rx_queues(slave->ndev,
3058 cpsw->rx_ch_num);
3059 if (ret) {
3060 dev_err(priv->dev, "cannot set real number of rx queues\n");
3061 goto err;
3062 }
3063 }
3064
3065 if (cpsw->usage_count)
3066 cpsw_split_res(ndev);
3067
3068 ret = cpsw_resume_data_pass(ndev);
3069 if (!ret)
3070 return 0;
3071 err:
3072 dev_err(priv->dev, "cannot update channels number, closing device\n");
3073 dev_close(ndev);
3074 return ret;
3075 }
3076
3077 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3078 {
3079 struct cpsw_priv *priv = netdev_priv(ndev);
3080 struct cpsw_common *cpsw = priv->cpsw;
3081 int slave_no = cpsw_slave_index(cpsw, priv);
3082
3083 if (cpsw->slaves[slave_no].phy)
3084 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
3085 else
3086 return -EOPNOTSUPP;
3087 }
3088
3089 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3090 {
3091 struct cpsw_priv *priv = netdev_priv(ndev);
3092 struct cpsw_common *cpsw = priv->cpsw;
3093 int slave_no = cpsw_slave_index(cpsw, priv);
3094
3095 if (cpsw->slaves[slave_no].phy)
3096 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
3097 else
3098 return -EOPNOTSUPP;
3099 }
3100
3101 static int cpsw_nway_reset(struct net_device *ndev)
3102 {
3103 struct cpsw_priv *priv = netdev_priv(ndev);
3104 struct cpsw_common *cpsw = priv->cpsw;
3105 int slave_no = cpsw_slave_index(cpsw, priv);
3106
3107 if (cpsw->slaves[slave_no].phy)
3108 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
3109 else
3110 return -EOPNOTSUPP;
3111 }
3112
3113 static void cpsw_get_ringparam(struct net_device *ndev,
3114 struct ethtool_ringparam *ering)
3115 {
3116 struct cpsw_priv *priv = netdev_priv(ndev);
3117 struct cpsw_common *cpsw = priv->cpsw;
3118
3119 /* not supported */
3120 ering->tx_max_pending = 0;
3121 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
3122 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
3123 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
3124 }
3125
3126 static int cpsw_set_ringparam(struct net_device *ndev,
3127 struct ethtool_ringparam *ering)
3128 {
3129 struct cpsw_priv *priv = netdev_priv(ndev);
3130 struct cpsw_common *cpsw = priv->cpsw;
3131 int ret;
3132
3133 /* ignore ering->tx_pending - only rx_pending adjustment is supported */
3134
3135 if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
3136 ering->rx_pending < CPSW_MAX_QUEUES ||
3137 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
3138 return -EINVAL;
3139
3140 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
3141 return 0;
3142
3143 cpsw_suspend_data_pass(ndev);
3144
3145 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
3146
3147 if (cpsw->usage_count)
3148 cpdma_chan_split_pool(cpsw->dma);
3149
3150 ret = cpsw_resume_data_pass(ndev);
3151 if (!ret)
3152 return 0;
3153
3154 dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3155 dev_close(ndev);
3156 return ret;
3157 }
3158
3159 static const struct ethtool_ops cpsw_ethtool_ops = {
3160 .get_drvinfo = cpsw_get_drvinfo,
3161 .get_msglevel = cpsw_get_msglevel,
3162 .set_msglevel = cpsw_set_msglevel,
3163 .get_link = ethtool_op_get_link,
3164 .get_ts_info = cpsw_get_ts_info,
3165 .get_coalesce = cpsw_get_coalesce,
3166 .set_coalesce = cpsw_set_coalesce,
3167 .get_sset_count = cpsw_get_sset_count,
3168 .get_strings = cpsw_get_strings,
3169 .get_ethtool_stats = cpsw_get_ethtool_stats,
3170 .get_pauseparam = cpsw_get_pauseparam,
3171 .set_pauseparam = cpsw_set_pauseparam,
3172 .get_wol = cpsw_get_wol,
3173 .set_wol = cpsw_set_wol,
3174 .get_regs_len = cpsw_get_regs_len,
3175 .get_regs = cpsw_get_regs,
3176 .begin = cpsw_ethtool_op_begin,
3177 .complete = cpsw_ethtool_op_complete,
3178 .get_channels = cpsw_get_channels,
3179 .set_channels = cpsw_set_channels,
3180 .get_link_ksettings = cpsw_get_link_ksettings,
3181 .set_link_ksettings = cpsw_set_link_ksettings,
3182 .get_eee = cpsw_get_eee,
3183 .set_eee = cpsw_set_eee,
3184 .nway_reset = cpsw_nway_reset,
3185 .get_ringparam = cpsw_get_ringparam,
3186 .set_ringparam = cpsw_set_ringparam,
3187 };
3188
3189 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
3190 u32 slave_reg_ofs, u32 sliver_reg_ofs)
3191 {
3192 void __iomem *regs = cpsw->regs;
3193 int slave_num = slave->slave_num;
3194 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num;
3195
3196 slave->data = data;
3197 slave->regs = regs + slave_reg_ofs;
3198 slave->sliver = regs + sliver_reg_ofs;
3199 slave->port_vlan = data->dual_emac_res_vlan;
3200 }
3201
3202 static int cpsw_probe_dt(struct cpsw_platform_data *data,
3203 struct platform_device *pdev)
3204 {
3205 struct device_node *node = pdev->dev.of_node;
3206 struct device_node *slave_node;
3207 int i = 0, ret;
3208 u32 prop;
3209
3210 if (!node)
3211 return -EINVAL;
3212
3213 if (of_property_read_u32(node, "slaves", &prop)) {
3214 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3215 return -EINVAL;
3216 }
3217 data->slaves = prop;
3218
3219 if (of_property_read_u32(node, "active_slave", &prop)) {
3220 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3221 return -EINVAL;
3222 }
3223 data->active_slave = prop;
3224
3225 data->slave_data = devm_kcalloc(&pdev->dev,
3226 data->slaves,
3227 sizeof(struct cpsw_slave_data),
3228 GFP_KERNEL);
3229 if (!data->slave_data)
3230 return -ENOMEM;
3231
3232 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3233 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3234 return -EINVAL;
3235 }
3236 data->channels = prop;
3237
3238 if (of_property_read_u32(node, "ale_entries", &prop)) {
3239 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3240 return -EINVAL;
3241 }
3242 data->ale_entries = prop;
3243
3244 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3245 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3246 return -EINVAL;
3247 }
3248 data->bd_ram_size = prop;
3249
3250 if (of_property_read_u32(node, "mac_control", &prop)) {
3251 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3252 return -EINVAL;
3253 }
3254 data->mac_control = prop;
3255
3256 if (of_property_read_bool(node, "dual_emac"))
3257 data->dual_emac = 1;
3258
3259 /*
3260 * Populate all the child nodes here...
3261 */
3262 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
3263 /* We do not want to force this, as in some cases may not have child */
3264 if (ret)
3265 dev_warn(&pdev->dev, "Doesn't have any child node\n");
3266
3267 for_each_available_child_of_node(node, slave_node) {
3268 struct cpsw_slave_data *slave_data = data->slave_data + i;
3269 const void *mac_addr = NULL;
3270 int lenp;
3271 const __be32 *parp;
3272
3273 /* This is no slave child node, continue */
3274 if (!of_node_name_eq(slave_node, "slave"))
3275 continue;
3276
3277 slave_data->phy_node = of_parse_phandle(slave_node,
3278 "phy-handle", 0);
3279 parp = of_get_property(slave_node, "phy_id", &lenp);
3280 if (slave_data->phy_node) {
3281 dev_dbg(&pdev->dev,
3282 "slave[%d] using phy-handle=\"%pOF\"\n",
3283 i, slave_data->phy_node);
3284 } else if (of_phy_is_fixed_link(slave_node)) {
3285 /* In the case of a fixed PHY, the DT node associated
3286 * to the PHY is the Ethernet MAC DT node.
3287 */
3288 ret = of_phy_register_fixed_link(slave_node);
3289 if (ret) {
3290 if (ret != -EPROBE_DEFER)
3291 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3292 return ret;
3293 }
3294 slave_data->phy_node = of_node_get(slave_node);
3295 } else if (parp) {
3296 u32 phyid;
3297 struct device_node *mdio_node;
3298 struct platform_device *mdio;
3299
3300 if (lenp != (sizeof(__be32) * 2)) {
3301 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
3302 goto no_phy_slave;
3303 }
3304 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
3305 phyid = be32_to_cpup(parp+1);
3306 mdio = of_find_device_by_node(mdio_node);
3307 of_node_put(mdio_node);
3308 if (!mdio) {
3309 dev_err(&pdev->dev, "Missing mdio platform device\n");
3310 return -EINVAL;
3311 }
3312 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
3313 PHY_ID_FMT, mdio->name, phyid);
3314 put_device(&mdio->dev);
3315 } else {
3316 dev_err(&pdev->dev,
3317 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
3318 i);
3319 goto no_phy_slave;
3320 }
3321 slave_data->phy_if = of_get_phy_mode(slave_node);
3322 if (slave_data->phy_if < 0) {
3323 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
3324 i);
3325 return slave_data->phy_if;
3326 }
3327
3328 no_phy_slave:
3329 mac_addr = of_get_mac_address(slave_node);
3330 if (mac_addr) {
3331 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3332 } else {
3333 ret = ti_cm_get_macid(&pdev->dev, i,
3334 slave_data->mac_addr);
3335 if (ret)
3336 return ret;
3337 }
3338 if (data->dual_emac) {
3339 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3340 &prop)) {
3341 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3342 slave_data->dual_emac_res_vlan = i+1;
3343 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
3344 slave_data->dual_emac_res_vlan, i);
3345 } else {
3346 slave_data->dual_emac_res_vlan = prop;
3347 }
3348 }
3349
3350 i++;
3351 if (i == data->slaves)
3352 break;
3353 }
3354
3355 return 0;
3356 }
3357
3358 static void cpsw_remove_dt(struct platform_device *pdev)
3359 {
3360 struct net_device *ndev = platform_get_drvdata(pdev);
3361 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3362 struct cpsw_platform_data *data = &cpsw->data;
3363 struct device_node *node = pdev->dev.of_node;
3364 struct device_node *slave_node;
3365 int i = 0;
3366
3367 for_each_available_child_of_node(node, slave_node) {
3368 struct cpsw_slave_data *slave_data = &data->slave_data[i];
3369
3370 if (!of_node_name_eq(slave_node, "slave"))
3371 continue;
3372
3373 if (of_phy_is_fixed_link(slave_node))
3374 of_phy_deregister_fixed_link(slave_node);
3375
3376 of_node_put(slave_data->phy_node);
3377
3378 i++;
3379 if (i == data->slaves)
3380 break;
3381 }
3382
3383 of_platform_depopulate(&pdev->dev);
3384 }
3385
3386 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3387 {
3388 struct cpsw_common *cpsw = priv->cpsw;
3389 struct cpsw_platform_data *data = &cpsw->data;
3390 struct net_device *ndev;
3391 struct cpsw_priv *priv_sl2;
3392 int ret = 0;
3393
3394 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3395 if (!ndev) {
3396 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3397 return -ENOMEM;
3398 }
3399
3400 priv_sl2 = netdev_priv(ndev);
3401 priv_sl2->cpsw = cpsw;
3402 priv_sl2->ndev = ndev;
3403 priv_sl2->dev = &ndev->dev;
3404 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3405
3406 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
3407 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
3408 ETH_ALEN);
3409 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
3410 priv_sl2->mac_addr);
3411 } else {
3412 eth_random_addr(priv_sl2->mac_addr);
3413 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
3414 priv_sl2->mac_addr);
3415 }
3416 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
3417
3418 priv_sl2->emac_port = 1;
3419 cpsw->slaves[1].ndev = ndev;
3420 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3421
3422 ndev->netdev_ops = &cpsw_netdev_ops;
3423 ndev->ethtool_ops = &cpsw_ethtool_ops;
3424
3425 /* register the network device */
3426 SET_NETDEV_DEV(ndev, cpsw->dev);
3427 ret = register_netdev(ndev);
3428 if (ret) {
3429 dev_err(cpsw->dev, "cpsw: error registering net device\n");
3430 free_netdev(ndev);
3431 ret = -ENODEV;
3432 }
3433
3434 return ret;
3435 }
3436
3437 static const struct of_device_id cpsw_of_mtable[] = {
3438 { .compatible = "ti,cpsw"},
3439 { .compatible = "ti,am335x-cpsw"},
3440 { .compatible = "ti,am4372-cpsw"},
3441 { .compatible = "ti,dra7-cpsw"},
3442 { /* sentinel */ },
3443 };
3444 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
3445
3446 static const struct soc_device_attribute cpsw_soc_devices[] = {
3447 { .family = "AM33xx", .revision = "ES1.0"},
3448 { /* sentinel */ }
3449 };
3450
3451 static int cpsw_probe(struct platform_device *pdev)
3452 {
3453 struct clk *clk;
3454 struct cpsw_platform_data *data;
3455 struct net_device *ndev;
3456 struct cpsw_priv *priv;
3457 struct cpdma_params dma_params;
3458 struct cpsw_ale_params ale_params;
3459 void __iomem *ss_regs;
3460 void __iomem *cpts_regs;
3461 struct resource *res, *ss_res;
3462 struct gpio_descs *mode;
3463 u32 slave_offset, sliver_offset, slave_size;
3464 const struct soc_device_attribute *soc;
3465 struct cpsw_common *cpsw;
3466 int ret = 0, i, ch;
3467 int irq;
3468
3469 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
3470 if (!cpsw)
3471 return -ENOMEM;
3472
3473 cpsw->dev = &pdev->dev;
3474
3475 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3476 if (!ndev) {
3477 dev_err(&pdev->dev, "error allocating net_device\n");
3478 return -ENOMEM;
3479 }
3480
3481 platform_set_drvdata(pdev, ndev);
3482 priv = netdev_priv(ndev);
3483 priv->cpsw = cpsw;
3484 priv->ndev = ndev;
3485 priv->dev = &ndev->dev;
3486 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3487 cpsw->rx_packet_max = max(rx_packet_max, 128);
3488
3489 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
3490 if (IS_ERR(mode)) {
3491 ret = PTR_ERR(mode);
3492 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3493 goto clean_ndev_ret;
3494 }
3495
3496 /*
3497 * This may be required here for child devices.
3498 */
3499 pm_runtime_enable(&pdev->dev);
3500
3501 /* Select default pin state */
3502 pinctrl_pm_select_default_state(&pdev->dev);
3503
3504 /* Need to enable clocks with runtime PM api to access module
3505 * registers
3506 */
3507 ret = pm_runtime_get_sync(&pdev->dev);
3508 if (ret < 0) {
3509 pm_runtime_put_noidle(&pdev->dev);
3510 goto clean_runtime_disable_ret;
3511 }
3512
3513 ret = cpsw_probe_dt(&cpsw->data, pdev);
3514 if (ret)
3515 goto clean_dt_ret;
3516
3517 data = &cpsw->data;
3518 cpsw->rx_ch_num = 1;
3519 cpsw->tx_ch_num = 1;
3520
3521 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3522 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3523 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3524 } else {
3525 eth_random_addr(priv->mac_addr);
3526 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3527 }
3528
3529 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3530
3531 cpsw->slaves = devm_kcalloc(&pdev->dev,
3532 data->slaves, sizeof(struct cpsw_slave),
3533 GFP_KERNEL);
3534 if (!cpsw->slaves) {
3535 ret = -ENOMEM;
3536 goto clean_dt_ret;
3537 }
3538 for (i = 0; i < data->slaves; i++)
3539 cpsw->slaves[i].slave_num = i;
3540
3541 cpsw->slaves[0].ndev = ndev;
3542 priv->emac_port = 0;
3543
3544 clk = devm_clk_get(&pdev->dev, "fck");
3545 if (IS_ERR(clk)) {
3546 dev_err(priv->dev, "fck is not found\n");
3547 ret = -ENODEV;
3548 goto clean_dt_ret;
3549 }
3550 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3551
3552 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3553 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3554 if (IS_ERR(ss_regs)) {
3555 ret = PTR_ERR(ss_regs);
3556 goto clean_dt_ret;
3557 }
3558 cpsw->regs = ss_regs;
3559
3560 cpsw->version = readl(&cpsw->regs->id_ver);
3561
3562 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3563 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3564 if (IS_ERR(cpsw->wr_regs)) {
3565 ret = PTR_ERR(cpsw->wr_regs);
3566 goto clean_dt_ret;
3567 }
3568
3569 memset(&dma_params, 0, sizeof(dma_params));
3570 memset(&ale_params, 0, sizeof(ale_params));
3571
3572 switch (cpsw->version) {
3573 case CPSW_VERSION_1:
3574 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3575 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
3576 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
3577 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
3578 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
3579 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
3580 slave_offset = CPSW1_SLAVE_OFFSET;
3581 slave_size = CPSW1_SLAVE_SIZE;
3582 sliver_offset = CPSW1_SLIVER_OFFSET;
3583 dma_params.desc_mem_phys = 0;
3584 break;
3585 case CPSW_VERSION_2:
3586 case CPSW_VERSION_3:
3587 case CPSW_VERSION_4:
3588 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3589 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
3590 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
3591 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
3592 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
3593 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
3594 slave_offset = CPSW2_SLAVE_OFFSET;
3595 slave_size = CPSW2_SLAVE_SIZE;
3596 sliver_offset = CPSW2_SLIVER_OFFSET;
3597 dma_params.desc_mem_phys =
3598 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3599 break;
3600 default:
3601 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3602 ret = -ENODEV;
3603 goto clean_dt_ret;
3604 }
3605 for (i = 0; i < cpsw->data.slaves; i++) {
3606 struct cpsw_slave *slave = &cpsw->slaves[i];
3607
3608 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3609 slave_offset += slave_size;
3610 sliver_offset += SLIVER_SIZE;
3611 }
3612
3613 dma_params.dev = &pdev->dev;
3614 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
3615 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
3616 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
3617 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
3618 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
3619
3620 dma_params.num_chan = data->channels;
3621 dma_params.has_soft_reset = true;
3622 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
3623 dma_params.desc_mem_size = data->bd_ram_size;
3624 dma_params.desc_align = 16;
3625 dma_params.has_ext_regs = true;
3626 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
3627 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
3628 dma_params.descs_pool_size = descs_pool_size;
3629
3630 cpsw->dma = cpdma_ctlr_create(&dma_params);
3631 if (!cpsw->dma) {
3632 dev_err(priv->dev, "error initializing dma\n");
3633 ret = -ENOMEM;
3634 goto clean_dt_ret;
3635 }
3636
3637 soc = soc_device_match(cpsw_soc_devices);
3638 if (soc)
3639 cpsw->quirk_irq = 1;
3640
3641 ch = cpsw->quirk_irq ? 0 : 7;
3642 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3643 if (IS_ERR(cpsw->txv[0].ch)) {
3644 dev_err(priv->dev, "error initializing tx dma channel\n");
3645 ret = PTR_ERR(cpsw->txv[0].ch);
3646 goto clean_dma_ret;
3647 }
3648
3649 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3650 if (IS_ERR(cpsw->rxv[0].ch)) {
3651 dev_err(priv->dev, "error initializing rx dma channel\n");
3652 ret = PTR_ERR(cpsw->rxv[0].ch);
3653 goto clean_dma_ret;
3654 }
3655
3656 ale_params.dev = &pdev->dev;
3657 ale_params.ale_ageout = ale_ageout;
3658 ale_params.ale_entries = data->ale_entries;
3659 ale_params.ale_ports = CPSW_ALE_PORTS_NUM;
3660
3661 cpsw->ale = cpsw_ale_create(&ale_params);
3662 if (!cpsw->ale) {
3663 dev_err(priv->dev, "error initializing ale engine\n");
3664 ret = -ENODEV;
3665 goto clean_dma_ret;
3666 }
3667
3668 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3669 if (IS_ERR(cpsw->cpts)) {
3670 ret = PTR_ERR(cpsw->cpts);
3671 goto clean_dma_ret;
3672 }
3673
3674 ndev->irq = platform_get_irq(pdev, 1);
3675 if (ndev->irq < 0) {
3676 dev_err(priv->dev, "error getting irq resource\n");
3677 ret = ndev->irq;
3678 goto clean_dma_ret;
3679 }
3680
3681 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3682
3683 ndev->netdev_ops = &cpsw_netdev_ops;
3684 ndev->ethtool_ops = &cpsw_ethtool_ops;
3685 netif_napi_add(ndev, &cpsw->napi_rx,
3686 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
3687 CPSW_POLL_WEIGHT);
3688 netif_tx_napi_add(ndev, &cpsw->napi_tx,
3689 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
3690 CPSW_POLL_WEIGHT);
3691 cpsw_split_res(ndev);
3692
3693 /* register the network device */
3694 SET_NETDEV_DEV(ndev, &pdev->dev);
3695 ret = register_netdev(ndev);
3696 if (ret) {
3697 dev_err(priv->dev, "error registering net device\n");
3698 ret = -ENODEV;
3699 goto clean_dma_ret;
3700 }
3701
3702 if (cpsw->data.dual_emac) {
3703 ret = cpsw_probe_dual_emac(priv);
3704 if (ret) {
3705 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3706 goto clean_unregister_netdev_ret;
3707 }
3708 }
3709
3710 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3711 * MISC IRQs which are always kept disabled with this driver so
3712 * we will not request them.
3713 *
3714 * If anyone wants to implement support for those, make sure to
3715 * first request and append them to irqs_table array.
3716 */
3717
3718 /* RX IRQ */
3719 irq = platform_get_irq(pdev, 1);
3720 if (irq < 0) {
3721 ret = irq;
3722 goto clean_dma_ret;
3723 }
3724
3725 cpsw->irqs_table[0] = irq;
3726 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3727 0, dev_name(&pdev->dev), cpsw);
3728 if (ret < 0) {
3729 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3730 goto clean_dma_ret;
3731 }
3732
3733 /* TX IRQ */
3734 irq = platform_get_irq(pdev, 2);
3735 if (irq < 0) {
3736 ret = irq;
3737 goto clean_dma_ret;
3738 }
3739
3740 cpsw->irqs_table[1] = irq;
3741 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3742 0, dev_name(&pdev->dev), cpsw);
3743 if (ret < 0) {
3744 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3745 goto clean_dma_ret;
3746 }
3747
3748 cpsw_notice(priv, probe,
3749 "initialized device (regs %pa, irq %d, pool size %d)\n",
3750 &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3751
3752 pm_runtime_put(&pdev->dev);
3753
3754 return 0;
3755
3756 clean_unregister_netdev_ret:
3757 unregister_netdev(ndev);
3758 clean_dma_ret:
3759 cpdma_ctlr_destroy(cpsw->dma);
3760 clean_dt_ret:
3761 cpsw_remove_dt(pdev);
3762 pm_runtime_put_sync(&pdev->dev);
3763 clean_runtime_disable_ret:
3764 pm_runtime_disable(&pdev->dev);
3765 clean_ndev_ret:
3766 free_netdev(priv->ndev);
3767 return ret;
3768 }
3769
3770 static int cpsw_remove(struct platform_device *pdev)
3771 {
3772 struct net_device *ndev = platform_get_drvdata(pdev);
3773 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3774 int ret;
3775
3776 ret = pm_runtime_get_sync(&pdev->dev);
3777 if (ret < 0) {
3778 pm_runtime_put_noidle(&pdev->dev);
3779 return ret;
3780 }
3781
3782 if (cpsw->data.dual_emac)
3783 unregister_netdev(cpsw->slaves[1].ndev);
3784 unregister_netdev(ndev);
3785
3786 cpts_release(cpsw->cpts);
3787 cpdma_ctlr_destroy(cpsw->dma);
3788 cpsw_remove_dt(pdev);
3789 pm_runtime_put_sync(&pdev->dev);
3790 pm_runtime_disable(&pdev->dev);
3791 if (cpsw->data.dual_emac)
3792 free_netdev(cpsw->slaves[1].ndev);
3793 free_netdev(ndev);
3794 return 0;
3795 }
3796
3797 #ifdef CONFIG_PM_SLEEP
3798 static int cpsw_suspend(struct device *dev)
3799 {
3800 struct net_device *ndev = dev_get_drvdata(dev);
3801 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3802
3803 if (cpsw->data.dual_emac) {
3804 int i;
3805
3806 for (i = 0; i < cpsw->data.slaves; i++) {
3807 if (netif_running(cpsw->slaves[i].ndev))
3808 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3809 }
3810 } else {
3811 if (netif_running(ndev))
3812 cpsw_ndo_stop(ndev);
3813 }
3814
3815 /* Select sleep pin state */
3816 pinctrl_pm_select_sleep_state(dev);
3817
3818 return 0;
3819 }
3820
3821 static int cpsw_resume(struct device *dev)
3822 {
3823 struct net_device *ndev = dev_get_drvdata(dev);
3824 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3825
3826 /* Select default pin state */
3827 pinctrl_pm_select_default_state(dev);
3828
3829 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3830 rtnl_lock();
3831 if (cpsw->data.dual_emac) {
3832 int i;
3833
3834 for (i = 0; i < cpsw->data.slaves; i++) {
3835 if (netif_running(cpsw->slaves[i].ndev))
3836 cpsw_ndo_open(cpsw->slaves[i].ndev);
3837 }
3838 } else {
3839 if (netif_running(ndev))
3840 cpsw_ndo_open(ndev);
3841 }
3842 rtnl_unlock();
3843
3844 return 0;
3845 }
3846 #endif
3847
3848 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3849
3850 static struct platform_driver cpsw_driver = {
3851 .driver = {
3852 .name = "cpsw",
3853 .pm = &cpsw_pm_ops,
3854 .of_match_table = cpsw_of_mtable,
3855 },
3856 .probe = cpsw_probe,
3857 .remove = cpsw_remove,
3858 };
3859
3860 module_platform_driver(cpsw_driver);
3861
3862 MODULE_LICENSE("GPL");
3863 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3864 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3865 MODULE_DESCRIPTION("TI CPSW Ethernet driver");