]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/ti/cpsw.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38
39 #include <linux/pinctrl/consumer.h>
40
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45
46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
53 NETIF_MSG_RX_STATUS)
54
55 #define cpsw_info(priv, type, format, ...) \
56 do { \
57 if (netif_msg_##type(priv) && net_ratelimit()) \
58 dev_info(priv->dev, format, ## __VA_ARGS__); \
59 } while (0)
60
61 #define cpsw_err(priv, type, format, ...) \
62 do { \
63 if (netif_msg_##type(priv) && net_ratelimit()) \
64 dev_err(priv->dev, format, ## __VA_ARGS__); \
65 } while (0)
66
67 #define cpsw_dbg(priv, type, format, ...) \
68 do { \
69 if (netif_msg_##type(priv) && net_ratelimit()) \
70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
71 } while (0)
72
73 #define cpsw_notice(priv, type, format, ...) \
74 do { \
75 if (netif_msg_##type(priv) && net_ratelimit()) \
76 dev_notice(priv->dev, format, ## __VA_ARGS__); \
77 } while (0)
78
79 #define ALE_ALL_PORTS 0x7
80
81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
84
85 #define CPSW_VERSION_1 0x19010a
86 #define CPSW_VERSION_2 0x19010c
87 #define CPSW_VERSION_3 0x19010f
88 #define CPSW_VERSION_4 0x190112
89
90 #define HOST_PORT_NUM 0
91 #define SLIVER_SIZE 0x40
92
93 #define CPSW1_HOST_PORT_OFFSET 0x028
94 #define CPSW1_SLAVE_OFFSET 0x050
95 #define CPSW1_SLAVE_SIZE 0x040
96 #define CPSW1_CPDMA_OFFSET 0x100
97 #define CPSW1_STATERAM_OFFSET 0x200
98 #define CPSW1_HW_STATS 0x400
99 #define CPSW1_CPTS_OFFSET 0x500
100 #define CPSW1_ALE_OFFSET 0x600
101 #define CPSW1_SLIVER_OFFSET 0x700
102
103 #define CPSW2_HOST_PORT_OFFSET 0x108
104 #define CPSW2_SLAVE_OFFSET 0x200
105 #define CPSW2_SLAVE_SIZE 0x100
106 #define CPSW2_CPDMA_OFFSET 0x800
107 #define CPSW2_HW_STATS 0x900
108 #define CPSW2_STATERAM_OFFSET 0xa00
109 #define CPSW2_CPTS_OFFSET 0xc00
110 #define CPSW2_ALE_OFFSET 0xd00
111 #define CPSW2_SLIVER_OFFSET 0xd80
112 #define CPSW2_BD_OFFSET 0x2000
113
114 #define CPDMA_RXTHRESH 0x0c0
115 #define CPDMA_RXFREE 0x0e0
116 #define CPDMA_TXHDP 0x00
117 #define CPDMA_RXHDP 0x20
118 #define CPDMA_TXCP 0x40
119 #define CPDMA_RXCP 0x60
120
121 #define CPSW_POLL_WEIGHT 64
122 #define CPSW_MIN_PACKET_SIZE 60
123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4)
124
125 #define RX_PRIORITY_MAPPING 0x76543210
126 #define TX_PRIORITY_MAPPING 0x33221100
127 #define CPDMA_TX_PRIORITY_MAP 0x01234567
128
129 #define CPSW_VLAN_AWARE BIT(1)
130 #define CPSW_ALE_VLAN_AWARE 1
131
132 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
135
136 #define CPSW_INTPACEEN (0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT 63
139 #define CPSW_CMINTMIN_CNT 2
140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
142
143 #define cpsw_slave_index(cpsw, priv) \
144 ((cpsw->data.dual_emac) ? priv->emac_port : \
145 cpsw->data.active_slave)
146 #define IRQ_NUM 2
147 #define CPSW_MAX_QUEUES 8
148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149
150 static int debug_level;
151 module_param(debug_level, int, 0);
152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
153
154 static int ale_ageout = 10;
155 module_param(ale_ageout, int, 0);
156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
157
158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
159 module_param(rx_packet_max, int, 0);
160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
161
162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
163 module_param(descs_pool_size, int, 0444);
164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
165
166 struct cpsw_wr_regs {
167 u32 id_ver;
168 u32 soft_reset;
169 u32 control;
170 u32 int_control;
171 u32 rx_thresh_en;
172 u32 rx_en;
173 u32 tx_en;
174 u32 misc_en;
175 u32 mem_allign1[8];
176 u32 rx_thresh_stat;
177 u32 rx_stat;
178 u32 tx_stat;
179 u32 misc_stat;
180 u32 mem_allign2[8];
181 u32 rx_imax;
182 u32 tx_imax;
183
184 };
185
186 struct cpsw_ss_regs {
187 u32 id_ver;
188 u32 control;
189 u32 soft_reset;
190 u32 stat_port_en;
191 u32 ptype;
192 u32 soft_idle;
193 u32 thru_rate;
194 u32 gap_thresh;
195 u32 tx_start_wds;
196 u32 flow_control;
197 u32 vlan_ltype;
198 u32 ts_ltype;
199 u32 dlr_ltype;
200 };
201
202 /* CPSW_PORT_V1 */
203 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
204 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
205 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
206 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
207 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
208 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
209 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
210 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
211
212 /* CPSW_PORT_V2 */
213 #define CPSW2_CONTROL 0x00 /* Control Register */
214 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
215 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
216 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
217 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
218 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
219 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
220
221 /* CPSW_PORT_V1 and V2 */
222 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
223 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
224 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
225
226 /* CPSW_PORT_V2 only */
227 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
235
236 /* Bit definitions for the CPSW2_CONTROL register */
237 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
238 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
239 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
240 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
241 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
242 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
243 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
244 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
245 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
246 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
247 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
248 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
249 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
250 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
251 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
252 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
253 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
254
255 #define CTRL_V2_TS_BITS \
256 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258
259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
260 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
261 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
262
263
264 #define CTRL_V3_TS_BITS \
265 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
266 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
267 TS_LTYPE1_EN)
268
269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
270 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
271 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
272
273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
274 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
275 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
276 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
277 #define TS_MSG_TYPE_EN_MASK (0xffff)
278
279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281
282 /* Bit definitions for the CPSW1_TS_CTL register */
283 #define CPSW_V1_TS_RX_EN BIT(0)
284 #define CPSW_V1_TS_TX_EN BIT(4)
285 #define CPSW_V1_MSG_TYPE_OFS 16
286
287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
288 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
289
290 #define CPSW_MAX_BLKS_TX 15
291 #define CPSW_MAX_BLKS_TX_SHIFT 4
292 #define CPSW_MAX_BLKS_RX 5
293
294 struct cpsw_host_regs {
295 u32 max_blks;
296 u32 blk_cnt;
297 u32 tx_in_ctl;
298 u32 port_vlan;
299 u32 tx_pri_map;
300 u32 cpdma_tx_pri_map;
301 u32 cpdma_rx_chan_map;
302 };
303
304 struct cpsw_sliver_regs {
305 u32 id_ver;
306 u32 mac_control;
307 u32 mac_status;
308 u32 soft_reset;
309 u32 rx_maxlen;
310 u32 __reserved_0;
311 u32 rx_pause;
312 u32 tx_pause;
313 u32 __reserved_1;
314 u32 rx_pri_map;
315 };
316
317 struct cpsw_hw_stats {
318 u32 rxgoodframes;
319 u32 rxbroadcastframes;
320 u32 rxmulticastframes;
321 u32 rxpauseframes;
322 u32 rxcrcerrors;
323 u32 rxaligncodeerrors;
324 u32 rxoversizedframes;
325 u32 rxjabberframes;
326 u32 rxundersizedframes;
327 u32 rxfragments;
328 u32 __pad_0[2];
329 u32 rxoctets;
330 u32 txgoodframes;
331 u32 txbroadcastframes;
332 u32 txmulticastframes;
333 u32 txpauseframes;
334 u32 txdeferredframes;
335 u32 txcollisionframes;
336 u32 txsinglecollframes;
337 u32 txmultcollframes;
338 u32 txexcessivecollisions;
339 u32 txlatecollisions;
340 u32 txunderrun;
341 u32 txcarriersenseerrors;
342 u32 txoctets;
343 u32 octetframes64;
344 u32 octetframes65t127;
345 u32 octetframes128t255;
346 u32 octetframes256t511;
347 u32 octetframes512t1023;
348 u32 octetframes1024tup;
349 u32 netoctets;
350 u32 rxsofoverruns;
351 u32 rxmofoverruns;
352 u32 rxdmaoverruns;
353 };
354
355 struct cpsw_slave {
356 void __iomem *regs;
357 struct cpsw_sliver_regs __iomem *sliver;
358 int slave_num;
359 u32 mac_control;
360 struct cpsw_slave_data *data;
361 struct phy_device *phy;
362 struct net_device *ndev;
363 u32 port_vlan;
364 };
365
366 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
367 {
368 return __raw_readl(slave->regs + offset);
369 }
370
371 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
372 {
373 __raw_writel(val, slave->regs + offset);
374 }
375
376 struct cpsw_vector {
377 struct cpdma_chan *ch;
378 int budget;
379 };
380
381 struct cpsw_common {
382 struct device *dev;
383 struct cpsw_platform_data data;
384 struct napi_struct napi_rx;
385 struct napi_struct napi_tx;
386 struct cpsw_ss_regs __iomem *regs;
387 struct cpsw_wr_regs __iomem *wr_regs;
388 u8 __iomem *hw_stats;
389 struct cpsw_host_regs __iomem *host_port_regs;
390 u32 version;
391 u32 coal_intvl;
392 u32 bus_freq_mhz;
393 int rx_packet_max;
394 struct cpsw_slave *slaves;
395 struct cpdma_ctlr *dma;
396 struct cpsw_vector txv[CPSW_MAX_QUEUES];
397 struct cpsw_vector rxv[CPSW_MAX_QUEUES];
398 struct cpsw_ale *ale;
399 bool quirk_irq;
400 bool rx_irq_disabled;
401 bool tx_irq_disabled;
402 u32 irqs_table[IRQ_NUM];
403 struct cpts *cpts;
404 int rx_ch_num, tx_ch_num;
405 int speed;
406 int usage_count;
407 };
408
409 struct cpsw_priv {
410 struct net_device *ndev;
411 struct device *dev;
412 u32 msg_enable;
413 u8 mac_addr[ETH_ALEN];
414 bool rx_pause;
415 bool tx_pause;
416 u32 emac_port;
417 struct cpsw_common *cpsw;
418 };
419
420 struct cpsw_stats {
421 char stat_string[ETH_GSTRING_LEN];
422 int type;
423 int sizeof_stat;
424 int stat_offset;
425 };
426
427 enum {
428 CPSW_STATS,
429 CPDMA_RX_STATS,
430 CPDMA_TX_STATS,
431 };
432
433 #define CPSW_STAT(m) CPSW_STATS, \
434 sizeof(((struct cpsw_hw_stats *)0)->m), \
435 offsetof(struct cpsw_hw_stats, m)
436 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
437 sizeof(((struct cpdma_chan_stats *)0)->m), \
438 offsetof(struct cpdma_chan_stats, m)
439 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
440 sizeof(((struct cpdma_chan_stats *)0)->m), \
441 offsetof(struct cpdma_chan_stats, m)
442
443 static const struct cpsw_stats cpsw_gstrings_stats[] = {
444 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
445 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
446 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
447 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
448 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
449 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
450 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
451 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
452 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
453 { "Rx Fragments", CPSW_STAT(rxfragments) },
454 { "Rx Octets", CPSW_STAT(rxoctets) },
455 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
456 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
457 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
458 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
459 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
460 { "Collisions", CPSW_STAT(txcollisionframes) },
461 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
462 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
463 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
464 { "Late Collisions", CPSW_STAT(txlatecollisions) },
465 { "Tx Underrun", CPSW_STAT(txunderrun) },
466 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
467 { "Tx Octets", CPSW_STAT(txoctets) },
468 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
469 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
470 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
471 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
472 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
473 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
474 { "Net Octets", CPSW_STAT(netoctets) },
475 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
476 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
477 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
478 };
479
480 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
481 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
482 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
483 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
484 { "misqueued", CPDMA_RX_STAT(misqueued) },
485 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
486 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
487 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
488 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
489 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
490 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
491 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
492 { "requeue", CPDMA_RX_STAT(requeue) },
493 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
494 };
495
496 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
497 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
498
499 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
500 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
501 #define for_each_slave(priv, func, arg...) \
502 do { \
503 struct cpsw_slave *slave; \
504 struct cpsw_common *cpsw = (priv)->cpsw; \
505 int n; \
506 if (cpsw->data.dual_emac) \
507 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
508 else \
509 for (n = cpsw->data.slaves, \
510 slave = cpsw->slaves; \
511 n; n--) \
512 (func)(slave++, ##arg); \
513 } while (0)
514
515 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \
516 do { \
517 if (!cpsw->data.dual_emac) \
518 break; \
519 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
520 ndev = cpsw->slaves[0].ndev; \
521 skb->dev = ndev; \
522 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
523 ndev = cpsw->slaves[1].ndev; \
524 skb->dev = ndev; \
525 } \
526 } while (0)
527 #define cpsw_add_mcast(cpsw, priv, addr) \
528 do { \
529 if (cpsw->data.dual_emac) { \
530 struct cpsw_slave *slave = cpsw->slaves + \
531 priv->emac_port; \
532 int slave_port = cpsw_get_slave_port( \
533 slave->slave_num); \
534 cpsw_ale_add_mcast(cpsw->ale, addr, \
535 1 << slave_port | ALE_PORT_HOST, \
536 ALE_VLAN, slave->port_vlan, 0); \
537 } else { \
538 cpsw_ale_add_mcast(cpsw->ale, addr, \
539 ALE_ALL_PORTS, \
540 0, 0, 0); \
541 } \
542 } while (0)
543
544 static inline int cpsw_get_slave_port(u32 slave_num)
545 {
546 return slave_num + 1;
547 }
548
549 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
550 {
551 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
552 struct cpsw_ale *ale = cpsw->ale;
553 int i;
554
555 if (cpsw->data.dual_emac) {
556 bool flag = false;
557
558 /* Enabling promiscuous mode for one interface will be
559 * common for both the interface as the interface shares
560 * the same hardware resource.
561 */
562 for (i = 0; i < cpsw->data.slaves; i++)
563 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
564 flag = true;
565
566 if (!enable && flag) {
567 enable = true;
568 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
569 }
570
571 if (enable) {
572 /* Enable Bypass */
573 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
574
575 dev_dbg(&ndev->dev, "promiscuity enabled\n");
576 } else {
577 /* Disable Bypass */
578 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
579 dev_dbg(&ndev->dev, "promiscuity disabled\n");
580 }
581 } else {
582 if (enable) {
583 unsigned long timeout = jiffies + HZ;
584
585 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
586 for (i = 0; i <= cpsw->data.slaves; i++) {
587 cpsw_ale_control_set(ale, i,
588 ALE_PORT_NOLEARN, 1);
589 cpsw_ale_control_set(ale, i,
590 ALE_PORT_NO_SA_UPDATE, 1);
591 }
592
593 /* Clear All Untouched entries */
594 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
595 do {
596 cpu_relax();
597 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
598 break;
599 } while (time_after(timeout, jiffies));
600 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
601
602 /* Clear all mcast from ALE */
603 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
604
605 /* Flood All Unicast Packets to Host port */
606 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
607 dev_dbg(&ndev->dev, "promiscuity enabled\n");
608 } else {
609 /* Don't Flood All Unicast Packets to Host port */
610 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
611
612 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
613 for (i = 0; i <= cpsw->data.slaves; i++) {
614 cpsw_ale_control_set(ale, i,
615 ALE_PORT_NOLEARN, 0);
616 cpsw_ale_control_set(ale, i,
617 ALE_PORT_NO_SA_UPDATE, 0);
618 }
619 dev_dbg(&ndev->dev, "promiscuity disabled\n");
620 }
621 }
622 }
623
624 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
625 {
626 struct cpsw_priv *priv = netdev_priv(ndev);
627 struct cpsw_common *cpsw = priv->cpsw;
628 int vid;
629
630 if (cpsw->data.dual_emac)
631 vid = cpsw->slaves[priv->emac_port].port_vlan;
632 else
633 vid = cpsw->data.default_vlan;
634
635 if (ndev->flags & IFF_PROMISC) {
636 /* Enable promiscuous mode */
637 cpsw_set_promiscious(ndev, true);
638 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
639 return;
640 } else {
641 /* Disable promiscuous mode */
642 cpsw_set_promiscious(ndev, false);
643 }
644
645 /* Restore allmulti on vlans if necessary */
646 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
647
648 /* Clear all mcast from ALE */
649 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
650
651 if (!netdev_mc_empty(ndev)) {
652 struct netdev_hw_addr *ha;
653
654 /* program multicast address list into ALE register */
655 netdev_for_each_mc_addr(ha, ndev) {
656 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
657 }
658 }
659 }
660
661 static void cpsw_intr_enable(struct cpsw_common *cpsw)
662 {
663 __raw_writel(0xFF, &cpsw->wr_regs->tx_en);
664 __raw_writel(0xFF, &cpsw->wr_regs->rx_en);
665
666 cpdma_ctlr_int_ctrl(cpsw->dma, true);
667 return;
668 }
669
670 static void cpsw_intr_disable(struct cpsw_common *cpsw)
671 {
672 __raw_writel(0, &cpsw->wr_regs->tx_en);
673 __raw_writel(0, &cpsw->wr_regs->rx_en);
674
675 cpdma_ctlr_int_ctrl(cpsw->dma, false);
676 return;
677 }
678
679 static void cpsw_tx_handler(void *token, int len, int status)
680 {
681 struct netdev_queue *txq;
682 struct sk_buff *skb = token;
683 struct net_device *ndev = skb->dev;
684 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
685
686 /* Check whether the queue is stopped due to stalled tx dma, if the
687 * queue is stopped then start the queue as we have free desc for tx
688 */
689 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
690 if (unlikely(netif_tx_queue_stopped(txq)))
691 netif_tx_wake_queue(txq);
692
693 cpts_tx_timestamp(cpsw->cpts, skb);
694 ndev->stats.tx_packets++;
695 ndev->stats.tx_bytes += len;
696 dev_kfree_skb_any(skb);
697 }
698
699 static void cpsw_rx_handler(void *token, int len, int status)
700 {
701 struct cpdma_chan *ch;
702 struct sk_buff *skb = token;
703 struct sk_buff *new_skb;
704 struct net_device *ndev = skb->dev;
705 int ret = 0;
706 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
707
708 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
709
710 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
711 /* In dual emac mode check for all interfaces */
712 if (cpsw->data.dual_emac && cpsw->usage_count &&
713 (status >= 0)) {
714 /* The packet received is for the interface which
715 * is already down and the other interface is up
716 * and running, instead of freeing which results
717 * in reducing of the number of rx descriptor in
718 * DMA engine, requeue skb back to cpdma.
719 */
720 new_skb = skb;
721 goto requeue;
722 }
723
724 /* the interface is going down, skbs are purged */
725 dev_kfree_skb_any(skb);
726 return;
727 }
728
729 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
730 if (new_skb) {
731 skb_copy_queue_mapping(new_skb, skb);
732 skb_put(skb, len);
733 cpts_rx_timestamp(cpsw->cpts, skb);
734 skb->protocol = eth_type_trans(skb, ndev);
735 netif_receive_skb(skb);
736 ndev->stats.rx_bytes += len;
737 ndev->stats.rx_packets++;
738 kmemleak_not_leak(new_skb);
739 } else {
740 ndev->stats.rx_dropped++;
741 new_skb = skb;
742 }
743
744 requeue:
745 if (netif_dormant(ndev)) {
746 dev_kfree_skb_any(new_skb);
747 return;
748 }
749
750 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
751 ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
752 skb_tailroom(new_skb), 0);
753 if (WARN_ON(ret < 0))
754 dev_kfree_skb_any(new_skb);
755 }
756
757 static void cpsw_split_res(struct net_device *ndev)
758 {
759 struct cpsw_priv *priv = netdev_priv(ndev);
760 u32 consumed_rate = 0, bigest_rate = 0;
761 struct cpsw_common *cpsw = priv->cpsw;
762 struct cpsw_vector *txv = cpsw->txv;
763 int i, ch_weight, rlim_ch_num = 0;
764 int budget, bigest_rate_ch = 0;
765 u32 ch_rate, max_rate;
766 int ch_budget = 0;
767
768 for (i = 0; i < cpsw->tx_ch_num; i++) {
769 ch_rate = cpdma_chan_get_rate(txv[i].ch);
770 if (!ch_rate)
771 continue;
772
773 rlim_ch_num++;
774 consumed_rate += ch_rate;
775 }
776
777 if (cpsw->tx_ch_num == rlim_ch_num) {
778 max_rate = consumed_rate;
779 } else if (!rlim_ch_num) {
780 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
781 bigest_rate = 0;
782 max_rate = consumed_rate;
783 } else {
784 max_rate = cpsw->speed * 1000;
785
786 /* if max_rate is less then expected due to reduced link speed,
787 * split proportionally according next potential max speed
788 */
789 if (max_rate < consumed_rate)
790 max_rate *= 10;
791
792 if (max_rate < consumed_rate)
793 max_rate *= 10;
794
795 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
796 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
797 (cpsw->tx_ch_num - rlim_ch_num);
798 bigest_rate = (max_rate - consumed_rate) /
799 (cpsw->tx_ch_num - rlim_ch_num);
800 }
801
802 /* split tx weight/budget */
803 budget = CPSW_POLL_WEIGHT;
804 for (i = 0; i < cpsw->tx_ch_num; i++) {
805 ch_rate = cpdma_chan_get_rate(txv[i].ch);
806 if (ch_rate) {
807 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
808 if (!txv[i].budget)
809 txv[i].budget++;
810 if (ch_rate > bigest_rate) {
811 bigest_rate_ch = i;
812 bigest_rate = ch_rate;
813 }
814
815 ch_weight = (ch_rate * 100) / max_rate;
816 if (!ch_weight)
817 ch_weight++;
818 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
819 } else {
820 txv[i].budget = ch_budget;
821 if (!bigest_rate_ch)
822 bigest_rate_ch = i;
823 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
824 }
825
826 budget -= txv[i].budget;
827 }
828
829 if (budget)
830 txv[bigest_rate_ch].budget += budget;
831
832 /* split rx budget */
833 budget = CPSW_POLL_WEIGHT;
834 ch_budget = budget / cpsw->rx_ch_num;
835 for (i = 0; i < cpsw->rx_ch_num; i++) {
836 cpsw->rxv[i].budget = ch_budget;
837 budget -= ch_budget;
838 }
839
840 if (budget)
841 cpsw->rxv[0].budget += budget;
842 }
843
844 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
845 {
846 struct cpsw_common *cpsw = dev_id;
847
848 writel(0, &cpsw->wr_regs->tx_en);
849 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
850
851 if (cpsw->quirk_irq) {
852 disable_irq_nosync(cpsw->irqs_table[1]);
853 cpsw->tx_irq_disabled = true;
854 }
855
856 napi_schedule(&cpsw->napi_tx);
857 return IRQ_HANDLED;
858 }
859
860 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
861 {
862 struct cpsw_common *cpsw = dev_id;
863
864 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
865 writel(0, &cpsw->wr_regs->rx_en);
866
867 if (cpsw->quirk_irq) {
868 disable_irq_nosync(cpsw->irqs_table[0]);
869 cpsw->rx_irq_disabled = true;
870 }
871
872 napi_schedule(&cpsw->napi_rx);
873 return IRQ_HANDLED;
874 }
875
876 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
877 {
878 u32 ch_map;
879 int num_tx, cur_budget, ch;
880 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
881 struct cpsw_vector *txv;
882
883 /* process every unprocessed channel */
884 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
885 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
886 if (!(ch_map & 0x01))
887 continue;
888
889 txv = &cpsw->txv[ch];
890 if (unlikely(txv->budget > budget - num_tx))
891 cur_budget = budget - num_tx;
892 else
893 cur_budget = txv->budget;
894
895 num_tx += cpdma_chan_process(txv->ch, cur_budget);
896 if (num_tx >= budget)
897 break;
898 }
899
900 if (num_tx < budget) {
901 napi_complete(napi_tx);
902 writel(0xff, &cpsw->wr_regs->tx_en);
903 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
904 cpsw->tx_irq_disabled = false;
905 enable_irq(cpsw->irqs_table[1]);
906 }
907 }
908
909 return num_tx;
910 }
911
912 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
913 {
914 u32 ch_map;
915 int num_rx, cur_budget, ch;
916 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
917 struct cpsw_vector *rxv;
918
919 /* process every unprocessed channel */
920 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
921 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
922 if (!(ch_map & 0x01))
923 continue;
924
925 rxv = &cpsw->rxv[ch];
926 if (unlikely(rxv->budget > budget - num_rx))
927 cur_budget = budget - num_rx;
928 else
929 cur_budget = rxv->budget;
930
931 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
932 if (num_rx >= budget)
933 break;
934 }
935
936 if (num_rx < budget) {
937 napi_complete_done(napi_rx, num_rx);
938 writel(0xff, &cpsw->wr_regs->rx_en);
939 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
940 cpsw->rx_irq_disabled = false;
941 enable_irq(cpsw->irqs_table[0]);
942 }
943 }
944
945 return num_rx;
946 }
947
948 static inline void soft_reset(const char *module, void __iomem *reg)
949 {
950 unsigned long timeout = jiffies + HZ;
951
952 __raw_writel(1, reg);
953 do {
954 cpu_relax();
955 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
956
957 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
958 }
959
960 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
961 ((mac)[2] << 16) | ((mac)[3] << 24))
962 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
963
964 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
965 struct cpsw_priv *priv)
966 {
967 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
968 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
969 }
970
971 static void _cpsw_adjust_link(struct cpsw_slave *slave,
972 struct cpsw_priv *priv, bool *link)
973 {
974 struct phy_device *phy = slave->phy;
975 u32 mac_control = 0;
976 u32 slave_port;
977 struct cpsw_common *cpsw = priv->cpsw;
978
979 if (!phy)
980 return;
981
982 slave_port = cpsw_get_slave_port(slave->slave_num);
983
984 if (phy->link) {
985 mac_control = cpsw->data.mac_control;
986
987 /* enable forwarding */
988 cpsw_ale_control_set(cpsw->ale, slave_port,
989 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
990
991 if (phy->speed == 1000)
992 mac_control |= BIT(7); /* GIGABITEN */
993 if (phy->duplex)
994 mac_control |= BIT(0); /* FULLDUPLEXEN */
995
996 /* set speed_in input in case RMII mode is used in 100Mbps */
997 if (phy->speed == 100)
998 mac_control |= BIT(15);
999 else if (phy->speed == 10)
1000 mac_control |= BIT(18); /* In Band mode */
1001
1002 if (priv->rx_pause)
1003 mac_control |= BIT(3);
1004
1005 if (priv->tx_pause)
1006 mac_control |= BIT(4);
1007
1008 *link = true;
1009 } else {
1010 mac_control = 0;
1011 /* disable forwarding */
1012 cpsw_ale_control_set(cpsw->ale, slave_port,
1013 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1014 }
1015
1016 if (mac_control != slave->mac_control) {
1017 phy_print_status(phy);
1018 __raw_writel(mac_control, &slave->sliver->mac_control);
1019 }
1020
1021 slave->mac_control = mac_control;
1022 }
1023
1024 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1025 {
1026 int i, speed;
1027
1028 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1029 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1030 speed += cpsw->slaves[i].phy->speed;
1031
1032 return speed;
1033 }
1034
1035 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1036 {
1037 int i, rlim_ch_num;
1038 int speed, ch_rate;
1039
1040 /* re-split resources only in case speed was changed */
1041 speed = cpsw_get_common_speed(cpsw);
1042 if (speed == cpsw->speed || !speed)
1043 return 0;
1044
1045 cpsw->speed = speed;
1046
1047 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1048 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1049 if (!ch_rate)
1050 break;
1051
1052 rlim_ch_num++;
1053 }
1054
1055 /* cases not dependent on speed */
1056 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1057 return 0;
1058
1059 return 1;
1060 }
1061
1062 static void cpsw_adjust_link(struct net_device *ndev)
1063 {
1064 struct cpsw_priv *priv = netdev_priv(ndev);
1065 struct cpsw_common *cpsw = priv->cpsw;
1066 bool link = false;
1067
1068 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1069
1070 if (link) {
1071 if (cpsw_need_resplit(cpsw))
1072 cpsw_split_res(ndev);
1073
1074 netif_carrier_on(ndev);
1075 if (netif_running(ndev))
1076 netif_tx_wake_all_queues(ndev);
1077 } else {
1078 netif_carrier_off(ndev);
1079 netif_tx_stop_all_queues(ndev);
1080 }
1081 }
1082
1083 static int cpsw_get_coalesce(struct net_device *ndev,
1084 struct ethtool_coalesce *coal)
1085 {
1086 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1087
1088 coal->rx_coalesce_usecs = cpsw->coal_intvl;
1089 return 0;
1090 }
1091
1092 static int cpsw_set_coalesce(struct net_device *ndev,
1093 struct ethtool_coalesce *coal)
1094 {
1095 struct cpsw_priv *priv = netdev_priv(ndev);
1096 u32 int_ctrl;
1097 u32 num_interrupts = 0;
1098 u32 prescale = 0;
1099 u32 addnl_dvdr = 1;
1100 u32 coal_intvl = 0;
1101 struct cpsw_common *cpsw = priv->cpsw;
1102
1103 coal_intvl = coal->rx_coalesce_usecs;
1104
1105 int_ctrl = readl(&cpsw->wr_regs->int_control);
1106 prescale = cpsw->bus_freq_mhz * 4;
1107
1108 if (!coal->rx_coalesce_usecs) {
1109 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1110 goto update_return;
1111 }
1112
1113 if (coal_intvl < CPSW_CMINTMIN_INTVL)
1114 coal_intvl = CPSW_CMINTMIN_INTVL;
1115
1116 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1117 /* Interrupt pacer works with 4us Pulse, we can
1118 * throttle further by dilating the 4us pulse.
1119 */
1120 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1121
1122 if (addnl_dvdr > 1) {
1123 prescale *= addnl_dvdr;
1124 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1125 coal_intvl = (CPSW_CMINTMAX_INTVL
1126 * addnl_dvdr);
1127 } else {
1128 addnl_dvdr = 1;
1129 coal_intvl = CPSW_CMINTMAX_INTVL;
1130 }
1131 }
1132
1133 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1134 writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1135 writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1136
1137 int_ctrl |= CPSW_INTPACEEN;
1138 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1139 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1140
1141 update_return:
1142 writel(int_ctrl, &cpsw->wr_regs->int_control);
1143
1144 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1145 cpsw->coal_intvl = coal_intvl;
1146
1147 return 0;
1148 }
1149
1150 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1151 {
1152 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1153
1154 switch (sset) {
1155 case ETH_SS_STATS:
1156 return (CPSW_STATS_COMMON_LEN +
1157 (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1158 CPSW_STATS_CH_LEN);
1159 default:
1160 return -EOPNOTSUPP;
1161 }
1162 }
1163
1164 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1165 {
1166 int ch_stats_len;
1167 int line;
1168 int i;
1169
1170 ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1171 for (i = 0; i < ch_stats_len; i++) {
1172 line = i % CPSW_STATS_CH_LEN;
1173 snprintf(*p, ETH_GSTRING_LEN,
1174 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1175 i / CPSW_STATS_CH_LEN,
1176 cpsw_gstrings_ch_stats[line].stat_string);
1177 *p += ETH_GSTRING_LEN;
1178 }
1179 }
1180
1181 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1182 {
1183 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1184 u8 *p = data;
1185 int i;
1186
1187 switch (stringset) {
1188 case ETH_SS_STATS:
1189 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1190 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1191 ETH_GSTRING_LEN);
1192 p += ETH_GSTRING_LEN;
1193 }
1194
1195 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1196 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1197 break;
1198 }
1199 }
1200
1201 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1202 struct ethtool_stats *stats, u64 *data)
1203 {
1204 u8 *p;
1205 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1206 struct cpdma_chan_stats ch_stats;
1207 int i, l, ch;
1208
1209 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1210 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1211 data[l] = readl(cpsw->hw_stats +
1212 cpsw_gstrings_stats[l].stat_offset);
1213
1214 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1215 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1216 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1217 p = (u8 *)&ch_stats +
1218 cpsw_gstrings_ch_stats[i].stat_offset;
1219 data[l] = *(u32 *)p;
1220 }
1221 }
1222
1223 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1224 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1225 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1226 p = (u8 *)&ch_stats +
1227 cpsw_gstrings_ch_stats[i].stat_offset;
1228 data[l] = *(u32 *)p;
1229 }
1230 }
1231 }
1232
1233 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1234 struct sk_buff *skb,
1235 struct cpdma_chan *txch)
1236 {
1237 struct cpsw_common *cpsw = priv->cpsw;
1238
1239 skb_tx_timestamp(skb);
1240 return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1241 priv->emac_port + cpsw->data.dual_emac);
1242 }
1243
1244 static inline void cpsw_add_dual_emac_def_ale_entries(
1245 struct cpsw_priv *priv, struct cpsw_slave *slave,
1246 u32 slave_port)
1247 {
1248 struct cpsw_common *cpsw = priv->cpsw;
1249 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1250
1251 if (cpsw->version == CPSW_VERSION_1)
1252 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1253 else
1254 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1255 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1256 port_mask, port_mask, 0);
1257 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1258 port_mask, ALE_VLAN, slave->port_vlan, 0);
1259 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1260 HOST_PORT_NUM, ALE_VLAN |
1261 ALE_SECURE, slave->port_vlan);
1262 }
1263
1264 static void soft_reset_slave(struct cpsw_slave *slave)
1265 {
1266 char name[32];
1267
1268 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1269 soft_reset(name, &slave->sliver->soft_reset);
1270 }
1271
1272 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1273 {
1274 u32 slave_port;
1275 struct phy_device *phy;
1276 struct cpsw_common *cpsw = priv->cpsw;
1277
1278 soft_reset_slave(slave);
1279
1280 /* setup priority mapping */
1281 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1282
1283 switch (cpsw->version) {
1284 case CPSW_VERSION_1:
1285 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1286 /* Increase RX FIFO size to 5 for supporting fullduplex
1287 * flow control mode
1288 */
1289 slave_write(slave,
1290 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1291 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1292 break;
1293 case CPSW_VERSION_2:
1294 case CPSW_VERSION_3:
1295 case CPSW_VERSION_4:
1296 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1297 /* Increase RX FIFO size to 5 for supporting fullduplex
1298 * flow control mode
1299 */
1300 slave_write(slave,
1301 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1302 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1303 break;
1304 }
1305
1306 /* setup max packet size, and mac address */
1307 __raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1308 cpsw_set_slave_mac(slave, priv);
1309
1310 slave->mac_control = 0; /* no link yet */
1311
1312 slave_port = cpsw_get_slave_port(slave->slave_num);
1313
1314 if (cpsw->data.dual_emac)
1315 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1316 else
1317 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1318 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1319
1320 if (slave->data->phy_node) {
1321 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1322 &cpsw_adjust_link, 0, slave->data->phy_if);
1323 if (!phy) {
1324 dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1325 slave->data->phy_node->full_name,
1326 slave->slave_num);
1327 return;
1328 }
1329 } else {
1330 phy = phy_connect(priv->ndev, slave->data->phy_id,
1331 &cpsw_adjust_link, slave->data->phy_if);
1332 if (IS_ERR(phy)) {
1333 dev_err(priv->dev,
1334 "phy \"%s\" not found on slave %d, err %ld\n",
1335 slave->data->phy_id, slave->slave_num,
1336 PTR_ERR(phy));
1337 return;
1338 }
1339 }
1340
1341 slave->phy = phy;
1342
1343 phy_attached_info(slave->phy);
1344
1345 phy_start(slave->phy);
1346
1347 /* Configure GMII_SEL register */
1348 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1349 }
1350
1351 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1352 {
1353 struct cpsw_common *cpsw = priv->cpsw;
1354 const int vlan = cpsw->data.default_vlan;
1355 u32 reg;
1356 int i;
1357 int unreg_mcast_mask;
1358
1359 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1360 CPSW2_PORT_VLAN;
1361
1362 writel(vlan, &cpsw->host_port_regs->port_vlan);
1363
1364 for (i = 0; i < cpsw->data.slaves; i++)
1365 slave_write(cpsw->slaves + i, vlan, reg);
1366
1367 if (priv->ndev->flags & IFF_ALLMULTI)
1368 unreg_mcast_mask = ALE_ALL_PORTS;
1369 else
1370 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1371
1372 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1373 ALE_ALL_PORTS, ALE_ALL_PORTS,
1374 unreg_mcast_mask);
1375 }
1376
1377 static void cpsw_init_host_port(struct cpsw_priv *priv)
1378 {
1379 u32 fifo_mode;
1380 u32 control_reg;
1381 struct cpsw_common *cpsw = priv->cpsw;
1382
1383 /* soft reset the controller and initialize ale */
1384 soft_reset("cpsw", &cpsw->regs->soft_reset);
1385 cpsw_ale_start(cpsw->ale);
1386
1387 /* switch to vlan unaware mode */
1388 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1389 CPSW_ALE_VLAN_AWARE);
1390 control_reg = readl(&cpsw->regs->control);
1391 control_reg |= CPSW_VLAN_AWARE;
1392 writel(control_reg, &cpsw->regs->control);
1393 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1394 CPSW_FIFO_NORMAL_MODE;
1395 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1396
1397 /* setup host port priority mapping */
1398 __raw_writel(CPDMA_TX_PRIORITY_MAP,
1399 &cpsw->host_port_regs->cpdma_tx_pri_map);
1400 __raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1401
1402 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1403 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1404
1405 if (!cpsw->data.dual_emac) {
1406 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1407 0, 0);
1408 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1409 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1410 }
1411 }
1412
1413 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1414 {
1415 struct cpsw_common *cpsw = priv->cpsw;
1416 struct sk_buff *skb;
1417 int ch_buf_num;
1418 int ch, i, ret;
1419
1420 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1421 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1422 for (i = 0; i < ch_buf_num; i++) {
1423 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1424 cpsw->rx_packet_max,
1425 GFP_KERNEL);
1426 if (!skb) {
1427 cpsw_err(priv, ifup, "cannot allocate skb\n");
1428 return -ENOMEM;
1429 }
1430
1431 skb_set_queue_mapping(skb, ch);
1432 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1433 skb->data, skb_tailroom(skb),
1434 0);
1435 if (ret < 0) {
1436 cpsw_err(priv, ifup,
1437 "cannot submit skb to channel %d rx, error %d\n",
1438 ch, ret);
1439 kfree_skb(skb);
1440 return ret;
1441 }
1442 kmemleak_not_leak(skb);
1443 }
1444
1445 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1446 ch, ch_buf_num);
1447 }
1448
1449 return 0;
1450 }
1451
1452 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1453 {
1454 u32 slave_port;
1455
1456 slave_port = cpsw_get_slave_port(slave->slave_num);
1457
1458 if (!slave->phy)
1459 return;
1460 phy_stop(slave->phy);
1461 phy_disconnect(slave->phy);
1462 slave->phy = NULL;
1463 cpsw_ale_control_set(cpsw->ale, slave_port,
1464 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1465 soft_reset_slave(slave);
1466 }
1467
1468 static int cpsw_ndo_open(struct net_device *ndev)
1469 {
1470 struct cpsw_priv *priv = netdev_priv(ndev);
1471 struct cpsw_common *cpsw = priv->cpsw;
1472 int ret;
1473 u32 reg;
1474
1475 ret = pm_runtime_get_sync(cpsw->dev);
1476 if (ret < 0) {
1477 pm_runtime_put_noidle(cpsw->dev);
1478 return ret;
1479 }
1480
1481 netif_carrier_off(ndev);
1482
1483 /* Notify the stack of the actual queue counts. */
1484 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1485 if (ret) {
1486 dev_err(priv->dev, "cannot set real number of tx queues\n");
1487 goto err_cleanup;
1488 }
1489
1490 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1491 if (ret) {
1492 dev_err(priv->dev, "cannot set real number of rx queues\n");
1493 goto err_cleanup;
1494 }
1495
1496 reg = cpsw->version;
1497
1498 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1499 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1500 CPSW_RTL_VERSION(reg));
1501
1502 /* Initialize host and slave ports */
1503 if (!cpsw->usage_count)
1504 cpsw_init_host_port(priv);
1505 for_each_slave(priv, cpsw_slave_open, priv);
1506
1507 /* Add default VLAN */
1508 if (!cpsw->data.dual_emac)
1509 cpsw_add_default_vlan(priv);
1510 else
1511 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1512 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1513
1514 /* initialize shared resources for every ndev */
1515 if (!cpsw->usage_count) {
1516 /* disable priority elevation */
1517 __raw_writel(0, &cpsw->regs->ptype);
1518
1519 /* enable statistics collection only on all ports */
1520 __raw_writel(0x7, &cpsw->regs->stat_port_en);
1521
1522 /* Enable internal fifo flow control */
1523 writel(0x7, &cpsw->regs->flow_control);
1524
1525 napi_enable(&cpsw->napi_rx);
1526 napi_enable(&cpsw->napi_tx);
1527
1528 if (cpsw->tx_irq_disabled) {
1529 cpsw->tx_irq_disabled = false;
1530 enable_irq(cpsw->irqs_table[1]);
1531 }
1532
1533 if (cpsw->rx_irq_disabled) {
1534 cpsw->rx_irq_disabled = false;
1535 enable_irq(cpsw->irqs_table[0]);
1536 }
1537
1538 ret = cpsw_fill_rx_channels(priv);
1539 if (ret < 0)
1540 goto err_cleanup;
1541
1542 if (cpts_register(cpsw->cpts))
1543 dev_err(priv->dev, "error registering cpts device\n");
1544
1545 }
1546
1547 /* Enable Interrupt pacing if configured */
1548 if (cpsw->coal_intvl != 0) {
1549 struct ethtool_coalesce coal;
1550
1551 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1552 cpsw_set_coalesce(ndev, &coal);
1553 }
1554
1555 cpdma_ctlr_start(cpsw->dma);
1556 cpsw_intr_enable(cpsw);
1557 cpsw->usage_count++;
1558
1559 return 0;
1560
1561 err_cleanup:
1562 cpdma_ctlr_stop(cpsw->dma);
1563 for_each_slave(priv, cpsw_slave_stop, cpsw);
1564 pm_runtime_put_sync(cpsw->dev);
1565 netif_carrier_off(priv->ndev);
1566 return ret;
1567 }
1568
1569 static int cpsw_ndo_stop(struct net_device *ndev)
1570 {
1571 struct cpsw_priv *priv = netdev_priv(ndev);
1572 struct cpsw_common *cpsw = priv->cpsw;
1573
1574 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1575 netif_tx_stop_all_queues(priv->ndev);
1576 netif_carrier_off(priv->ndev);
1577
1578 if (cpsw->usage_count <= 1) {
1579 napi_disable(&cpsw->napi_rx);
1580 napi_disable(&cpsw->napi_tx);
1581 cpts_unregister(cpsw->cpts);
1582 cpsw_intr_disable(cpsw);
1583 cpdma_ctlr_stop(cpsw->dma);
1584 cpsw_ale_stop(cpsw->ale);
1585 }
1586 for_each_slave(priv, cpsw_slave_stop, cpsw);
1587
1588 if (cpsw_need_resplit(cpsw))
1589 cpsw_split_res(ndev);
1590
1591 cpsw->usage_count--;
1592 pm_runtime_put_sync(cpsw->dev);
1593 return 0;
1594 }
1595
1596 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1597 struct net_device *ndev)
1598 {
1599 struct cpsw_priv *priv = netdev_priv(ndev);
1600 struct cpsw_common *cpsw = priv->cpsw;
1601 struct cpts *cpts = cpsw->cpts;
1602 struct netdev_queue *txq;
1603 struct cpdma_chan *txch;
1604 int ret, q_idx;
1605
1606 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1607 cpsw_err(priv, tx_err, "packet pad failed\n");
1608 ndev->stats.tx_dropped++;
1609 return NET_XMIT_DROP;
1610 }
1611
1612 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1613 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1614 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1615
1616 q_idx = skb_get_queue_mapping(skb);
1617 if (q_idx >= cpsw->tx_ch_num)
1618 q_idx = q_idx % cpsw->tx_ch_num;
1619
1620 txch = cpsw->txv[q_idx].ch;
1621 ret = cpsw_tx_packet_submit(priv, skb, txch);
1622 if (unlikely(ret != 0)) {
1623 cpsw_err(priv, tx_err, "desc submit failed\n");
1624 goto fail;
1625 }
1626
1627 /* If there is no more tx desc left free then we need to
1628 * tell the kernel to stop sending us tx frames.
1629 */
1630 if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1631 txq = netdev_get_tx_queue(ndev, q_idx);
1632 netif_tx_stop_queue(txq);
1633 }
1634
1635 return NETDEV_TX_OK;
1636 fail:
1637 ndev->stats.tx_dropped++;
1638 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1639 netif_tx_stop_queue(txq);
1640 return NETDEV_TX_BUSY;
1641 }
1642
1643 #if IS_ENABLED(CONFIG_TI_CPTS)
1644
1645 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1646 {
1647 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1648 u32 ts_en, seq_id;
1649
1650 if (!cpts_is_tx_enabled(cpsw->cpts) &&
1651 !cpts_is_rx_enabled(cpsw->cpts)) {
1652 slave_write(slave, 0, CPSW1_TS_CTL);
1653 return;
1654 }
1655
1656 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1657 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1658
1659 if (cpts_is_tx_enabled(cpsw->cpts))
1660 ts_en |= CPSW_V1_TS_TX_EN;
1661
1662 if (cpts_is_rx_enabled(cpsw->cpts))
1663 ts_en |= CPSW_V1_TS_RX_EN;
1664
1665 slave_write(slave, ts_en, CPSW1_TS_CTL);
1666 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1667 }
1668
1669 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1670 {
1671 struct cpsw_slave *slave;
1672 struct cpsw_common *cpsw = priv->cpsw;
1673 u32 ctrl, mtype;
1674
1675 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1676
1677 ctrl = slave_read(slave, CPSW2_CONTROL);
1678 switch (cpsw->version) {
1679 case CPSW_VERSION_2:
1680 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1681
1682 if (cpts_is_tx_enabled(cpsw->cpts))
1683 ctrl |= CTRL_V2_TX_TS_BITS;
1684
1685 if (cpts_is_rx_enabled(cpsw->cpts))
1686 ctrl |= CTRL_V2_RX_TS_BITS;
1687 break;
1688 case CPSW_VERSION_3:
1689 default:
1690 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1691
1692 if (cpts_is_tx_enabled(cpsw->cpts))
1693 ctrl |= CTRL_V3_TX_TS_BITS;
1694
1695 if (cpts_is_rx_enabled(cpsw->cpts))
1696 ctrl |= CTRL_V3_RX_TS_BITS;
1697 break;
1698 }
1699
1700 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1701
1702 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1703 slave_write(slave, ctrl, CPSW2_CONTROL);
1704 __raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1705 }
1706
1707 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1708 {
1709 struct cpsw_priv *priv = netdev_priv(dev);
1710 struct hwtstamp_config cfg;
1711 struct cpsw_common *cpsw = priv->cpsw;
1712 struct cpts *cpts = cpsw->cpts;
1713
1714 if (cpsw->version != CPSW_VERSION_1 &&
1715 cpsw->version != CPSW_VERSION_2 &&
1716 cpsw->version != CPSW_VERSION_3)
1717 return -EOPNOTSUPP;
1718
1719 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1720 return -EFAULT;
1721
1722 /* reserved for future extensions */
1723 if (cfg.flags)
1724 return -EINVAL;
1725
1726 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1727 return -ERANGE;
1728
1729 switch (cfg.rx_filter) {
1730 case HWTSTAMP_FILTER_NONE:
1731 cpts_rx_enable(cpts, 0);
1732 break;
1733 case HWTSTAMP_FILTER_ALL:
1734 case HWTSTAMP_FILTER_NTP_ALL:
1735 return -ERANGE;
1736 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1737 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1738 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1739 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1740 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1741 break;
1742 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1743 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1744 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1745 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1746 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1747 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1748 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1749 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1751 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1752 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1753 break;
1754 default:
1755 return -ERANGE;
1756 }
1757
1758 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1759
1760 switch (cpsw->version) {
1761 case CPSW_VERSION_1:
1762 cpsw_hwtstamp_v1(cpsw);
1763 break;
1764 case CPSW_VERSION_2:
1765 case CPSW_VERSION_3:
1766 cpsw_hwtstamp_v2(priv);
1767 break;
1768 default:
1769 WARN_ON(1);
1770 }
1771
1772 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1773 }
1774
1775 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1776 {
1777 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1778 struct cpts *cpts = cpsw->cpts;
1779 struct hwtstamp_config cfg;
1780
1781 if (cpsw->version != CPSW_VERSION_1 &&
1782 cpsw->version != CPSW_VERSION_2 &&
1783 cpsw->version != CPSW_VERSION_3)
1784 return -EOPNOTSUPP;
1785
1786 cfg.flags = 0;
1787 cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1788 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1789 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1790 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1791
1792 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1793 }
1794 #else
1795 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1796 {
1797 return -EOPNOTSUPP;
1798 }
1799
1800 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1801 {
1802 return -EOPNOTSUPP;
1803 }
1804 #endif /*CONFIG_TI_CPTS*/
1805
1806 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1807 {
1808 struct cpsw_priv *priv = netdev_priv(dev);
1809 struct cpsw_common *cpsw = priv->cpsw;
1810 int slave_no = cpsw_slave_index(cpsw, priv);
1811
1812 if (!netif_running(dev))
1813 return -EINVAL;
1814
1815 switch (cmd) {
1816 case SIOCSHWTSTAMP:
1817 return cpsw_hwtstamp_set(dev, req);
1818 case SIOCGHWTSTAMP:
1819 return cpsw_hwtstamp_get(dev, req);
1820 }
1821
1822 if (!cpsw->slaves[slave_no].phy)
1823 return -EOPNOTSUPP;
1824 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1825 }
1826
1827 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1828 {
1829 struct cpsw_priv *priv = netdev_priv(ndev);
1830 struct cpsw_common *cpsw = priv->cpsw;
1831 int ch;
1832
1833 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1834 ndev->stats.tx_errors++;
1835 cpsw_intr_disable(cpsw);
1836 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1837 cpdma_chan_stop(cpsw->txv[ch].ch);
1838 cpdma_chan_start(cpsw->txv[ch].ch);
1839 }
1840
1841 cpsw_intr_enable(cpsw);
1842 netif_trans_update(ndev);
1843 netif_tx_wake_all_queues(ndev);
1844 }
1845
1846 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1847 {
1848 struct cpsw_priv *priv = netdev_priv(ndev);
1849 struct sockaddr *addr = (struct sockaddr *)p;
1850 struct cpsw_common *cpsw = priv->cpsw;
1851 int flags = 0;
1852 u16 vid = 0;
1853 int ret;
1854
1855 if (!is_valid_ether_addr(addr->sa_data))
1856 return -EADDRNOTAVAIL;
1857
1858 ret = pm_runtime_get_sync(cpsw->dev);
1859 if (ret < 0) {
1860 pm_runtime_put_noidle(cpsw->dev);
1861 return ret;
1862 }
1863
1864 if (cpsw->data.dual_emac) {
1865 vid = cpsw->slaves[priv->emac_port].port_vlan;
1866 flags = ALE_VLAN;
1867 }
1868
1869 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1870 flags, vid);
1871 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1872 flags, vid);
1873
1874 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1875 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1876 for_each_slave(priv, cpsw_set_slave_mac, priv);
1877
1878 pm_runtime_put(cpsw->dev);
1879
1880 return 0;
1881 }
1882
1883 #ifdef CONFIG_NET_POLL_CONTROLLER
1884 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1885 {
1886 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1887
1888 cpsw_intr_disable(cpsw);
1889 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1890 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1891 cpsw_intr_enable(cpsw);
1892 }
1893 #endif
1894
1895 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1896 unsigned short vid)
1897 {
1898 int ret;
1899 int unreg_mcast_mask = 0;
1900 u32 port_mask;
1901 struct cpsw_common *cpsw = priv->cpsw;
1902
1903 if (cpsw->data.dual_emac) {
1904 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1905
1906 if (priv->ndev->flags & IFF_ALLMULTI)
1907 unreg_mcast_mask = port_mask;
1908 } else {
1909 port_mask = ALE_ALL_PORTS;
1910
1911 if (priv->ndev->flags & IFF_ALLMULTI)
1912 unreg_mcast_mask = ALE_ALL_PORTS;
1913 else
1914 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1915 }
1916
1917 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1918 unreg_mcast_mask);
1919 if (ret != 0)
1920 return ret;
1921
1922 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1923 HOST_PORT_NUM, ALE_VLAN, vid);
1924 if (ret != 0)
1925 goto clean_vid;
1926
1927 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1928 port_mask, ALE_VLAN, vid, 0);
1929 if (ret != 0)
1930 goto clean_vlan_ucast;
1931 return 0;
1932
1933 clean_vlan_ucast:
1934 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1935 HOST_PORT_NUM, ALE_VLAN, vid);
1936 clean_vid:
1937 cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1938 return ret;
1939 }
1940
1941 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1942 __be16 proto, u16 vid)
1943 {
1944 struct cpsw_priv *priv = netdev_priv(ndev);
1945 struct cpsw_common *cpsw = priv->cpsw;
1946 int ret;
1947
1948 if (vid == cpsw->data.default_vlan)
1949 return 0;
1950
1951 ret = pm_runtime_get_sync(cpsw->dev);
1952 if (ret < 0) {
1953 pm_runtime_put_noidle(cpsw->dev);
1954 return ret;
1955 }
1956
1957 if (cpsw->data.dual_emac) {
1958 /* In dual EMAC, reserved VLAN id should not be used for
1959 * creating VLAN interfaces as this can break the dual
1960 * EMAC port separation
1961 */
1962 int i;
1963
1964 for (i = 0; i < cpsw->data.slaves; i++) {
1965 if (vid == cpsw->slaves[i].port_vlan)
1966 return -EINVAL;
1967 }
1968 }
1969
1970 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1971 ret = cpsw_add_vlan_ale_entry(priv, vid);
1972
1973 pm_runtime_put(cpsw->dev);
1974 return ret;
1975 }
1976
1977 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1978 __be16 proto, u16 vid)
1979 {
1980 struct cpsw_priv *priv = netdev_priv(ndev);
1981 struct cpsw_common *cpsw = priv->cpsw;
1982 int ret;
1983
1984 if (vid == cpsw->data.default_vlan)
1985 return 0;
1986
1987 ret = pm_runtime_get_sync(cpsw->dev);
1988 if (ret < 0) {
1989 pm_runtime_put_noidle(cpsw->dev);
1990 return ret;
1991 }
1992
1993 if (cpsw->data.dual_emac) {
1994 int i;
1995
1996 for (i = 0; i < cpsw->data.slaves; i++) {
1997 if (vid == cpsw->slaves[i].port_vlan)
1998 return -EINVAL;
1999 }
2000 }
2001
2002 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2003 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2004 if (ret != 0)
2005 return ret;
2006
2007 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2008 HOST_PORT_NUM, ALE_VLAN, vid);
2009 if (ret != 0)
2010 return ret;
2011
2012 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2013 0, ALE_VLAN, vid);
2014 pm_runtime_put(cpsw->dev);
2015 return ret;
2016 }
2017
2018 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2019 {
2020 struct cpsw_priv *priv = netdev_priv(ndev);
2021 struct cpsw_common *cpsw = priv->cpsw;
2022 struct cpsw_slave *slave;
2023 u32 min_rate;
2024 u32 ch_rate;
2025 int i, ret;
2026
2027 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2028 if (ch_rate == rate)
2029 return 0;
2030
2031 ch_rate = rate * 1000;
2032 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2033 if ((ch_rate < min_rate && ch_rate)) {
2034 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2035 min_rate);
2036 return -EINVAL;
2037 }
2038
2039 if (rate > cpsw->speed) {
2040 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2041 return -EINVAL;
2042 }
2043
2044 ret = pm_runtime_get_sync(cpsw->dev);
2045 if (ret < 0) {
2046 pm_runtime_put_noidle(cpsw->dev);
2047 return ret;
2048 }
2049
2050 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2051 pm_runtime_put(cpsw->dev);
2052
2053 if (ret)
2054 return ret;
2055
2056 /* update rates for slaves tx queues */
2057 for (i = 0; i < cpsw->data.slaves; i++) {
2058 slave = &cpsw->slaves[i];
2059 if (!slave->ndev)
2060 continue;
2061
2062 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2063 }
2064
2065 cpsw_split_res(ndev);
2066 return ret;
2067 }
2068
2069 static const struct net_device_ops cpsw_netdev_ops = {
2070 .ndo_open = cpsw_ndo_open,
2071 .ndo_stop = cpsw_ndo_stop,
2072 .ndo_start_xmit = cpsw_ndo_start_xmit,
2073 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
2074 .ndo_do_ioctl = cpsw_ndo_ioctl,
2075 .ndo_validate_addr = eth_validate_addr,
2076 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
2077 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
2078 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
2079 #ifdef CONFIG_NET_POLL_CONTROLLER
2080 .ndo_poll_controller = cpsw_ndo_poll_controller,
2081 #endif
2082 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
2083 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
2084 };
2085
2086 static int cpsw_get_regs_len(struct net_device *ndev)
2087 {
2088 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2089
2090 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2091 }
2092
2093 static void cpsw_get_regs(struct net_device *ndev,
2094 struct ethtool_regs *regs, void *p)
2095 {
2096 u32 *reg = p;
2097 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2098
2099 /* update CPSW IP version */
2100 regs->version = cpsw->version;
2101
2102 cpsw_ale_dump(cpsw->ale, reg);
2103 }
2104
2105 static void cpsw_get_drvinfo(struct net_device *ndev,
2106 struct ethtool_drvinfo *info)
2107 {
2108 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2109 struct platform_device *pdev = to_platform_device(cpsw->dev);
2110
2111 strlcpy(info->driver, "cpsw", sizeof(info->driver));
2112 strlcpy(info->version, "1.0", sizeof(info->version));
2113 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2114 }
2115
2116 static u32 cpsw_get_msglevel(struct net_device *ndev)
2117 {
2118 struct cpsw_priv *priv = netdev_priv(ndev);
2119 return priv->msg_enable;
2120 }
2121
2122 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2123 {
2124 struct cpsw_priv *priv = netdev_priv(ndev);
2125 priv->msg_enable = value;
2126 }
2127
2128 #if IS_ENABLED(CONFIG_TI_CPTS)
2129 static int cpsw_get_ts_info(struct net_device *ndev,
2130 struct ethtool_ts_info *info)
2131 {
2132 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2133
2134 info->so_timestamping =
2135 SOF_TIMESTAMPING_TX_HARDWARE |
2136 SOF_TIMESTAMPING_TX_SOFTWARE |
2137 SOF_TIMESTAMPING_RX_HARDWARE |
2138 SOF_TIMESTAMPING_RX_SOFTWARE |
2139 SOF_TIMESTAMPING_SOFTWARE |
2140 SOF_TIMESTAMPING_RAW_HARDWARE;
2141 info->phc_index = cpsw->cpts->phc_index;
2142 info->tx_types =
2143 (1 << HWTSTAMP_TX_OFF) |
2144 (1 << HWTSTAMP_TX_ON);
2145 info->rx_filters =
2146 (1 << HWTSTAMP_FILTER_NONE) |
2147 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2148 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2149 return 0;
2150 }
2151 #else
2152 static int cpsw_get_ts_info(struct net_device *ndev,
2153 struct ethtool_ts_info *info)
2154 {
2155 info->so_timestamping =
2156 SOF_TIMESTAMPING_TX_SOFTWARE |
2157 SOF_TIMESTAMPING_RX_SOFTWARE |
2158 SOF_TIMESTAMPING_SOFTWARE;
2159 info->phc_index = -1;
2160 info->tx_types = 0;
2161 info->rx_filters = 0;
2162 return 0;
2163 }
2164 #endif
2165
2166 static int cpsw_get_link_ksettings(struct net_device *ndev,
2167 struct ethtool_link_ksettings *ecmd)
2168 {
2169 struct cpsw_priv *priv = netdev_priv(ndev);
2170 struct cpsw_common *cpsw = priv->cpsw;
2171 int slave_no = cpsw_slave_index(cpsw, priv);
2172
2173 if (!cpsw->slaves[slave_no].phy)
2174 return -EOPNOTSUPP;
2175
2176 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2177 return 0;
2178 }
2179
2180 static int cpsw_set_link_ksettings(struct net_device *ndev,
2181 const struct ethtool_link_ksettings *ecmd)
2182 {
2183 struct cpsw_priv *priv = netdev_priv(ndev);
2184 struct cpsw_common *cpsw = priv->cpsw;
2185 int slave_no = cpsw_slave_index(cpsw, priv);
2186
2187 if (cpsw->slaves[slave_no].phy)
2188 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2189 ecmd);
2190 else
2191 return -EOPNOTSUPP;
2192 }
2193
2194 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2195 {
2196 struct cpsw_priv *priv = netdev_priv(ndev);
2197 struct cpsw_common *cpsw = priv->cpsw;
2198 int slave_no = cpsw_slave_index(cpsw, priv);
2199
2200 wol->supported = 0;
2201 wol->wolopts = 0;
2202
2203 if (cpsw->slaves[slave_no].phy)
2204 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2205 }
2206
2207 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2208 {
2209 struct cpsw_priv *priv = netdev_priv(ndev);
2210 struct cpsw_common *cpsw = priv->cpsw;
2211 int slave_no = cpsw_slave_index(cpsw, priv);
2212
2213 if (cpsw->slaves[slave_no].phy)
2214 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2215 else
2216 return -EOPNOTSUPP;
2217 }
2218
2219 static void cpsw_get_pauseparam(struct net_device *ndev,
2220 struct ethtool_pauseparam *pause)
2221 {
2222 struct cpsw_priv *priv = netdev_priv(ndev);
2223
2224 pause->autoneg = AUTONEG_DISABLE;
2225 pause->rx_pause = priv->rx_pause ? true : false;
2226 pause->tx_pause = priv->tx_pause ? true : false;
2227 }
2228
2229 static int cpsw_set_pauseparam(struct net_device *ndev,
2230 struct ethtool_pauseparam *pause)
2231 {
2232 struct cpsw_priv *priv = netdev_priv(ndev);
2233 bool link;
2234
2235 priv->rx_pause = pause->rx_pause ? true : false;
2236 priv->tx_pause = pause->tx_pause ? true : false;
2237
2238 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2239 return 0;
2240 }
2241
2242 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2243 {
2244 struct cpsw_priv *priv = netdev_priv(ndev);
2245 struct cpsw_common *cpsw = priv->cpsw;
2246 int ret;
2247
2248 ret = pm_runtime_get_sync(cpsw->dev);
2249 if (ret < 0) {
2250 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2251 pm_runtime_put_noidle(cpsw->dev);
2252 }
2253
2254 return ret;
2255 }
2256
2257 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2258 {
2259 struct cpsw_priv *priv = netdev_priv(ndev);
2260 int ret;
2261
2262 ret = pm_runtime_put(priv->cpsw->dev);
2263 if (ret < 0)
2264 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2265 }
2266
2267 static void cpsw_get_channels(struct net_device *ndev,
2268 struct ethtool_channels *ch)
2269 {
2270 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2271
2272 ch->max_combined = 0;
2273 ch->max_rx = CPSW_MAX_QUEUES;
2274 ch->max_tx = CPSW_MAX_QUEUES;
2275 ch->max_other = 0;
2276 ch->other_count = 0;
2277 ch->rx_count = cpsw->rx_ch_num;
2278 ch->tx_count = cpsw->tx_ch_num;
2279 ch->combined_count = 0;
2280 }
2281
2282 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2283 struct ethtool_channels *ch)
2284 {
2285 if (ch->combined_count)
2286 return -EINVAL;
2287
2288 /* verify we have at least one channel in each direction */
2289 if (!ch->rx_count || !ch->tx_count)
2290 return -EINVAL;
2291
2292 if (ch->rx_count > cpsw->data.channels ||
2293 ch->tx_count > cpsw->data.channels)
2294 return -EINVAL;
2295
2296 return 0;
2297 }
2298
2299 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2300 {
2301 int (*poll)(struct napi_struct *, int);
2302 struct cpsw_common *cpsw = priv->cpsw;
2303 void (*handler)(void *, int, int);
2304 struct netdev_queue *queue;
2305 struct cpsw_vector *vec;
2306 int ret, *ch;
2307
2308 if (rx) {
2309 ch = &cpsw->rx_ch_num;
2310 vec = cpsw->rxv;
2311 handler = cpsw_rx_handler;
2312 poll = cpsw_rx_poll;
2313 } else {
2314 ch = &cpsw->tx_ch_num;
2315 vec = cpsw->txv;
2316 handler = cpsw_tx_handler;
2317 poll = cpsw_tx_poll;
2318 }
2319
2320 while (*ch < ch_num) {
2321 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2322 queue = netdev_get_tx_queue(priv->ndev, *ch);
2323 queue->tx_maxrate = 0;
2324
2325 if (IS_ERR(vec[*ch].ch))
2326 return PTR_ERR(vec[*ch].ch);
2327
2328 if (!vec[*ch].ch)
2329 return -EINVAL;
2330
2331 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2332 (rx ? "rx" : "tx"));
2333 (*ch)++;
2334 }
2335
2336 while (*ch > ch_num) {
2337 (*ch)--;
2338
2339 ret = cpdma_chan_destroy(vec[*ch].ch);
2340 if (ret)
2341 return ret;
2342
2343 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2344 (rx ? "rx" : "tx"));
2345 }
2346
2347 return 0;
2348 }
2349
2350 static int cpsw_update_channels(struct cpsw_priv *priv,
2351 struct ethtool_channels *ch)
2352 {
2353 int ret;
2354
2355 ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2356 if (ret)
2357 return ret;
2358
2359 ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2360 if (ret)
2361 return ret;
2362
2363 return 0;
2364 }
2365
2366 static void cpsw_suspend_data_pass(struct net_device *ndev)
2367 {
2368 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2369 struct cpsw_slave *slave;
2370 int i;
2371
2372 /* Disable NAPI scheduling */
2373 cpsw_intr_disable(cpsw);
2374
2375 /* Stop all transmit queues for every network device.
2376 * Disable re-using rx descriptors with dormant_on.
2377 */
2378 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2379 if (!(slave->ndev && netif_running(slave->ndev)))
2380 continue;
2381
2382 netif_tx_stop_all_queues(slave->ndev);
2383 netif_dormant_on(slave->ndev);
2384 }
2385
2386 /* Handle rest of tx packets and stop cpdma channels */
2387 cpdma_ctlr_stop(cpsw->dma);
2388 }
2389
2390 static int cpsw_resume_data_pass(struct net_device *ndev)
2391 {
2392 struct cpsw_priv *priv = netdev_priv(ndev);
2393 struct cpsw_common *cpsw = priv->cpsw;
2394 struct cpsw_slave *slave;
2395 int i, ret;
2396
2397 /* Allow rx packets handling */
2398 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2399 if (slave->ndev && netif_running(slave->ndev))
2400 netif_dormant_off(slave->ndev);
2401
2402 /* After this receive is started */
2403 if (cpsw->usage_count) {
2404 ret = cpsw_fill_rx_channels(priv);
2405 if (ret)
2406 return ret;
2407
2408 cpdma_ctlr_start(cpsw->dma);
2409 cpsw_intr_enable(cpsw);
2410 }
2411
2412 /* Resume transmit for every affected interface */
2413 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2414 if (slave->ndev && netif_running(slave->ndev))
2415 netif_tx_start_all_queues(slave->ndev);
2416
2417 return 0;
2418 }
2419
2420 static int cpsw_set_channels(struct net_device *ndev,
2421 struct ethtool_channels *chs)
2422 {
2423 struct cpsw_priv *priv = netdev_priv(ndev);
2424 struct cpsw_common *cpsw = priv->cpsw;
2425 struct cpsw_slave *slave;
2426 int i, ret;
2427
2428 ret = cpsw_check_ch_settings(cpsw, chs);
2429 if (ret < 0)
2430 return ret;
2431
2432 cpsw_suspend_data_pass(ndev);
2433 ret = cpsw_update_channels(priv, chs);
2434 if (ret)
2435 goto err;
2436
2437 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2438 if (!(slave->ndev && netif_running(slave->ndev)))
2439 continue;
2440
2441 /* Inform stack about new count of queues */
2442 ret = netif_set_real_num_tx_queues(slave->ndev,
2443 cpsw->tx_ch_num);
2444 if (ret) {
2445 dev_err(priv->dev, "cannot set real number of tx queues\n");
2446 goto err;
2447 }
2448
2449 ret = netif_set_real_num_rx_queues(slave->ndev,
2450 cpsw->rx_ch_num);
2451 if (ret) {
2452 dev_err(priv->dev, "cannot set real number of rx queues\n");
2453 goto err;
2454 }
2455 }
2456
2457 if (cpsw->usage_count)
2458 cpsw_split_res(ndev);
2459
2460 ret = cpsw_resume_data_pass(ndev);
2461 if (!ret)
2462 return 0;
2463 err:
2464 dev_err(priv->dev, "cannot update channels number, closing device\n");
2465 dev_close(ndev);
2466 return ret;
2467 }
2468
2469 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2470 {
2471 struct cpsw_priv *priv = netdev_priv(ndev);
2472 struct cpsw_common *cpsw = priv->cpsw;
2473 int slave_no = cpsw_slave_index(cpsw, priv);
2474
2475 if (cpsw->slaves[slave_no].phy)
2476 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2477 else
2478 return -EOPNOTSUPP;
2479 }
2480
2481 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2482 {
2483 struct cpsw_priv *priv = netdev_priv(ndev);
2484 struct cpsw_common *cpsw = priv->cpsw;
2485 int slave_no = cpsw_slave_index(cpsw, priv);
2486
2487 if (cpsw->slaves[slave_no].phy)
2488 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2489 else
2490 return -EOPNOTSUPP;
2491 }
2492
2493 static int cpsw_nway_reset(struct net_device *ndev)
2494 {
2495 struct cpsw_priv *priv = netdev_priv(ndev);
2496 struct cpsw_common *cpsw = priv->cpsw;
2497 int slave_no = cpsw_slave_index(cpsw, priv);
2498
2499 if (cpsw->slaves[slave_no].phy)
2500 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2501 else
2502 return -EOPNOTSUPP;
2503 }
2504
2505 static void cpsw_get_ringparam(struct net_device *ndev,
2506 struct ethtool_ringparam *ering)
2507 {
2508 struct cpsw_priv *priv = netdev_priv(ndev);
2509 struct cpsw_common *cpsw = priv->cpsw;
2510
2511 /* not supported */
2512 ering->tx_max_pending = 0;
2513 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2514 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2515 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2516 }
2517
2518 static int cpsw_set_ringparam(struct net_device *ndev,
2519 struct ethtool_ringparam *ering)
2520 {
2521 struct cpsw_priv *priv = netdev_priv(ndev);
2522 struct cpsw_common *cpsw = priv->cpsw;
2523 int ret;
2524
2525 /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2526
2527 if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2528 ering->rx_pending < CPSW_MAX_QUEUES ||
2529 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2530 return -EINVAL;
2531
2532 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2533 return 0;
2534
2535 cpsw_suspend_data_pass(ndev);
2536
2537 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2538
2539 if (cpsw->usage_count)
2540 cpdma_chan_split_pool(cpsw->dma);
2541
2542 ret = cpsw_resume_data_pass(ndev);
2543 if (!ret)
2544 return 0;
2545
2546 dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2547 dev_close(ndev);
2548 return ret;
2549 }
2550
2551 static const struct ethtool_ops cpsw_ethtool_ops = {
2552 .get_drvinfo = cpsw_get_drvinfo,
2553 .get_msglevel = cpsw_get_msglevel,
2554 .set_msglevel = cpsw_set_msglevel,
2555 .get_link = ethtool_op_get_link,
2556 .get_ts_info = cpsw_get_ts_info,
2557 .get_coalesce = cpsw_get_coalesce,
2558 .set_coalesce = cpsw_set_coalesce,
2559 .get_sset_count = cpsw_get_sset_count,
2560 .get_strings = cpsw_get_strings,
2561 .get_ethtool_stats = cpsw_get_ethtool_stats,
2562 .get_pauseparam = cpsw_get_pauseparam,
2563 .set_pauseparam = cpsw_set_pauseparam,
2564 .get_wol = cpsw_get_wol,
2565 .set_wol = cpsw_set_wol,
2566 .get_regs_len = cpsw_get_regs_len,
2567 .get_regs = cpsw_get_regs,
2568 .begin = cpsw_ethtool_op_begin,
2569 .complete = cpsw_ethtool_op_complete,
2570 .get_channels = cpsw_get_channels,
2571 .set_channels = cpsw_set_channels,
2572 .get_link_ksettings = cpsw_get_link_ksettings,
2573 .set_link_ksettings = cpsw_set_link_ksettings,
2574 .get_eee = cpsw_get_eee,
2575 .set_eee = cpsw_set_eee,
2576 .nway_reset = cpsw_nway_reset,
2577 .get_ringparam = cpsw_get_ringparam,
2578 .set_ringparam = cpsw_set_ringparam,
2579 };
2580
2581 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2582 u32 slave_reg_ofs, u32 sliver_reg_ofs)
2583 {
2584 void __iomem *regs = cpsw->regs;
2585 int slave_num = slave->slave_num;
2586 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num;
2587
2588 slave->data = data;
2589 slave->regs = regs + slave_reg_ofs;
2590 slave->sliver = regs + sliver_reg_ofs;
2591 slave->port_vlan = data->dual_emac_res_vlan;
2592 }
2593
2594 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2595 struct platform_device *pdev)
2596 {
2597 struct device_node *node = pdev->dev.of_node;
2598 struct device_node *slave_node;
2599 int i = 0, ret;
2600 u32 prop;
2601
2602 if (!node)
2603 return -EINVAL;
2604
2605 if (of_property_read_u32(node, "slaves", &prop)) {
2606 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2607 return -EINVAL;
2608 }
2609 data->slaves = prop;
2610
2611 if (of_property_read_u32(node, "active_slave", &prop)) {
2612 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2613 return -EINVAL;
2614 }
2615 data->active_slave = prop;
2616
2617 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2618 * sizeof(struct cpsw_slave_data),
2619 GFP_KERNEL);
2620 if (!data->slave_data)
2621 return -ENOMEM;
2622
2623 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2624 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2625 return -EINVAL;
2626 }
2627 data->channels = prop;
2628
2629 if (of_property_read_u32(node, "ale_entries", &prop)) {
2630 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2631 return -EINVAL;
2632 }
2633 data->ale_entries = prop;
2634
2635 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2636 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2637 return -EINVAL;
2638 }
2639 data->bd_ram_size = prop;
2640
2641 if (of_property_read_u32(node, "mac_control", &prop)) {
2642 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2643 return -EINVAL;
2644 }
2645 data->mac_control = prop;
2646
2647 if (of_property_read_bool(node, "dual_emac"))
2648 data->dual_emac = 1;
2649
2650 /*
2651 * Populate all the child nodes here...
2652 */
2653 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2654 /* We do not want to force this, as in some cases may not have child */
2655 if (ret)
2656 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2657
2658 for_each_available_child_of_node(node, slave_node) {
2659 struct cpsw_slave_data *slave_data = data->slave_data + i;
2660 const void *mac_addr = NULL;
2661 int lenp;
2662 const __be32 *parp;
2663
2664 /* This is no slave child node, continue */
2665 if (strcmp(slave_node->name, "slave"))
2666 continue;
2667
2668 slave_data->phy_node = of_parse_phandle(slave_node,
2669 "phy-handle", 0);
2670 parp = of_get_property(slave_node, "phy_id", &lenp);
2671 if (slave_data->phy_node) {
2672 dev_dbg(&pdev->dev,
2673 "slave[%d] using phy-handle=\"%s\"\n",
2674 i, slave_data->phy_node->full_name);
2675 } else if (of_phy_is_fixed_link(slave_node)) {
2676 /* In the case of a fixed PHY, the DT node associated
2677 * to the PHY is the Ethernet MAC DT node.
2678 */
2679 ret = of_phy_register_fixed_link(slave_node);
2680 if (ret) {
2681 if (ret != -EPROBE_DEFER)
2682 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2683 return ret;
2684 }
2685 slave_data->phy_node = of_node_get(slave_node);
2686 } else if (parp) {
2687 u32 phyid;
2688 struct device_node *mdio_node;
2689 struct platform_device *mdio;
2690
2691 if (lenp != (sizeof(__be32) * 2)) {
2692 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2693 goto no_phy_slave;
2694 }
2695 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2696 phyid = be32_to_cpup(parp+1);
2697 mdio = of_find_device_by_node(mdio_node);
2698 of_node_put(mdio_node);
2699 if (!mdio) {
2700 dev_err(&pdev->dev, "Missing mdio platform device\n");
2701 return -EINVAL;
2702 }
2703 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2704 PHY_ID_FMT, mdio->name, phyid);
2705 put_device(&mdio->dev);
2706 } else {
2707 dev_err(&pdev->dev,
2708 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2709 i);
2710 goto no_phy_slave;
2711 }
2712 slave_data->phy_if = of_get_phy_mode(slave_node);
2713 if (slave_data->phy_if < 0) {
2714 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2715 i);
2716 return slave_data->phy_if;
2717 }
2718
2719 no_phy_slave:
2720 mac_addr = of_get_mac_address(slave_node);
2721 if (mac_addr) {
2722 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2723 } else {
2724 ret = ti_cm_get_macid(&pdev->dev, i,
2725 slave_data->mac_addr);
2726 if (ret)
2727 return ret;
2728 }
2729 if (data->dual_emac) {
2730 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2731 &prop)) {
2732 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2733 slave_data->dual_emac_res_vlan = i+1;
2734 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2735 slave_data->dual_emac_res_vlan, i);
2736 } else {
2737 slave_data->dual_emac_res_vlan = prop;
2738 }
2739 }
2740
2741 i++;
2742 if (i == data->slaves)
2743 break;
2744 }
2745
2746 return 0;
2747 }
2748
2749 static void cpsw_remove_dt(struct platform_device *pdev)
2750 {
2751 struct net_device *ndev = platform_get_drvdata(pdev);
2752 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2753 struct cpsw_platform_data *data = &cpsw->data;
2754 struct device_node *node = pdev->dev.of_node;
2755 struct device_node *slave_node;
2756 int i = 0;
2757
2758 for_each_available_child_of_node(node, slave_node) {
2759 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2760
2761 if (strcmp(slave_node->name, "slave"))
2762 continue;
2763
2764 if (of_phy_is_fixed_link(slave_node))
2765 of_phy_deregister_fixed_link(slave_node);
2766
2767 of_node_put(slave_data->phy_node);
2768
2769 i++;
2770 if (i == data->slaves)
2771 break;
2772 }
2773
2774 of_platform_depopulate(&pdev->dev);
2775 }
2776
2777 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2778 {
2779 struct cpsw_common *cpsw = priv->cpsw;
2780 struct cpsw_platform_data *data = &cpsw->data;
2781 struct net_device *ndev;
2782 struct cpsw_priv *priv_sl2;
2783 int ret = 0;
2784
2785 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2786 if (!ndev) {
2787 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2788 return -ENOMEM;
2789 }
2790
2791 priv_sl2 = netdev_priv(ndev);
2792 priv_sl2->cpsw = cpsw;
2793 priv_sl2->ndev = ndev;
2794 priv_sl2->dev = &ndev->dev;
2795 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2796
2797 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2798 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2799 ETH_ALEN);
2800 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2801 priv_sl2->mac_addr);
2802 } else {
2803 random_ether_addr(priv_sl2->mac_addr);
2804 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2805 priv_sl2->mac_addr);
2806 }
2807 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2808
2809 priv_sl2->emac_port = 1;
2810 cpsw->slaves[1].ndev = ndev;
2811 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2812
2813 ndev->netdev_ops = &cpsw_netdev_ops;
2814 ndev->ethtool_ops = &cpsw_ethtool_ops;
2815
2816 /* register the network device */
2817 SET_NETDEV_DEV(ndev, cpsw->dev);
2818 ret = register_netdev(ndev);
2819 if (ret) {
2820 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2821 free_netdev(ndev);
2822 ret = -ENODEV;
2823 }
2824
2825 return ret;
2826 }
2827
2828 #define CPSW_QUIRK_IRQ BIT(0)
2829
2830 static struct platform_device_id cpsw_devtype[] = {
2831 {
2832 /* keep it for existing comaptibles */
2833 .name = "cpsw",
2834 .driver_data = CPSW_QUIRK_IRQ,
2835 }, {
2836 .name = "am335x-cpsw",
2837 .driver_data = CPSW_QUIRK_IRQ,
2838 }, {
2839 .name = "am4372-cpsw",
2840 .driver_data = 0,
2841 }, {
2842 .name = "dra7-cpsw",
2843 .driver_data = 0,
2844 }, {
2845 /* sentinel */
2846 }
2847 };
2848 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2849
2850 enum ti_cpsw_type {
2851 CPSW = 0,
2852 AM335X_CPSW,
2853 AM4372_CPSW,
2854 DRA7_CPSW,
2855 };
2856
2857 static const struct of_device_id cpsw_of_mtable[] = {
2858 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2859 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2860 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2861 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2862 { /* sentinel */ },
2863 };
2864 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2865
2866 static int cpsw_probe(struct platform_device *pdev)
2867 {
2868 struct clk *clk;
2869 struct cpsw_platform_data *data;
2870 struct net_device *ndev;
2871 struct cpsw_priv *priv;
2872 struct cpdma_params dma_params;
2873 struct cpsw_ale_params ale_params;
2874 void __iomem *ss_regs;
2875 void __iomem *cpts_regs;
2876 struct resource *res, *ss_res;
2877 const struct of_device_id *of_id;
2878 struct gpio_descs *mode;
2879 u32 slave_offset, sliver_offset, slave_size;
2880 struct cpsw_common *cpsw;
2881 int ret = 0, i;
2882 int irq;
2883
2884 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2885 if (!cpsw)
2886 return -ENOMEM;
2887
2888 cpsw->dev = &pdev->dev;
2889
2890 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2891 if (!ndev) {
2892 dev_err(&pdev->dev, "error allocating net_device\n");
2893 return -ENOMEM;
2894 }
2895
2896 platform_set_drvdata(pdev, ndev);
2897 priv = netdev_priv(ndev);
2898 priv->cpsw = cpsw;
2899 priv->ndev = ndev;
2900 priv->dev = &ndev->dev;
2901 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2902 cpsw->rx_packet_max = max(rx_packet_max, 128);
2903
2904 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2905 if (IS_ERR(mode)) {
2906 ret = PTR_ERR(mode);
2907 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2908 goto clean_ndev_ret;
2909 }
2910
2911 /*
2912 * This may be required here for child devices.
2913 */
2914 pm_runtime_enable(&pdev->dev);
2915
2916 /* Select default pin state */
2917 pinctrl_pm_select_default_state(&pdev->dev);
2918
2919 /* Need to enable clocks with runtime PM api to access module
2920 * registers
2921 */
2922 ret = pm_runtime_get_sync(&pdev->dev);
2923 if (ret < 0) {
2924 pm_runtime_put_noidle(&pdev->dev);
2925 goto clean_runtime_disable_ret;
2926 }
2927
2928 ret = cpsw_probe_dt(&cpsw->data, pdev);
2929 if (ret)
2930 goto clean_dt_ret;
2931
2932 data = &cpsw->data;
2933 cpsw->rx_ch_num = 1;
2934 cpsw->tx_ch_num = 1;
2935
2936 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2937 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2938 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2939 } else {
2940 eth_random_addr(priv->mac_addr);
2941 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2942 }
2943
2944 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2945
2946 cpsw->slaves = devm_kzalloc(&pdev->dev,
2947 sizeof(struct cpsw_slave) * data->slaves,
2948 GFP_KERNEL);
2949 if (!cpsw->slaves) {
2950 ret = -ENOMEM;
2951 goto clean_dt_ret;
2952 }
2953 for (i = 0; i < data->slaves; i++)
2954 cpsw->slaves[i].slave_num = i;
2955
2956 cpsw->slaves[0].ndev = ndev;
2957 priv->emac_port = 0;
2958
2959 clk = devm_clk_get(&pdev->dev, "fck");
2960 if (IS_ERR(clk)) {
2961 dev_err(priv->dev, "fck is not found\n");
2962 ret = -ENODEV;
2963 goto clean_dt_ret;
2964 }
2965 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2966
2967 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2968 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2969 if (IS_ERR(ss_regs)) {
2970 ret = PTR_ERR(ss_regs);
2971 goto clean_dt_ret;
2972 }
2973 cpsw->regs = ss_regs;
2974
2975 cpsw->version = readl(&cpsw->regs->id_ver);
2976
2977 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2978 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2979 if (IS_ERR(cpsw->wr_regs)) {
2980 ret = PTR_ERR(cpsw->wr_regs);
2981 goto clean_dt_ret;
2982 }
2983
2984 memset(&dma_params, 0, sizeof(dma_params));
2985 memset(&ale_params, 0, sizeof(ale_params));
2986
2987 switch (cpsw->version) {
2988 case CPSW_VERSION_1:
2989 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2990 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
2991 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
2992 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
2993 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
2994 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
2995 slave_offset = CPSW1_SLAVE_OFFSET;
2996 slave_size = CPSW1_SLAVE_SIZE;
2997 sliver_offset = CPSW1_SLIVER_OFFSET;
2998 dma_params.desc_mem_phys = 0;
2999 break;
3000 case CPSW_VERSION_2:
3001 case CPSW_VERSION_3:
3002 case CPSW_VERSION_4:
3003 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3004 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
3005 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
3006 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
3007 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
3008 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
3009 slave_offset = CPSW2_SLAVE_OFFSET;
3010 slave_size = CPSW2_SLAVE_SIZE;
3011 sliver_offset = CPSW2_SLIVER_OFFSET;
3012 dma_params.desc_mem_phys =
3013 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3014 break;
3015 default:
3016 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3017 ret = -ENODEV;
3018 goto clean_dt_ret;
3019 }
3020 for (i = 0; i < cpsw->data.slaves; i++) {
3021 struct cpsw_slave *slave = &cpsw->slaves[i];
3022
3023 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3024 slave_offset += slave_size;
3025 sliver_offset += SLIVER_SIZE;
3026 }
3027
3028 dma_params.dev = &pdev->dev;
3029 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
3030 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
3031 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
3032 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
3033 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
3034
3035 dma_params.num_chan = data->channels;
3036 dma_params.has_soft_reset = true;
3037 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
3038 dma_params.desc_mem_size = data->bd_ram_size;
3039 dma_params.desc_align = 16;
3040 dma_params.has_ext_regs = true;
3041 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
3042 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
3043 dma_params.descs_pool_size = descs_pool_size;
3044
3045 cpsw->dma = cpdma_ctlr_create(&dma_params);
3046 if (!cpsw->dma) {
3047 dev_err(priv->dev, "error initializing dma\n");
3048 ret = -ENOMEM;
3049 goto clean_dt_ret;
3050 }
3051
3052 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3053 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3054 if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3055 dev_err(priv->dev, "error initializing dma channels\n");
3056 ret = -ENOMEM;
3057 goto clean_dma_ret;
3058 }
3059
3060 ale_params.dev = &pdev->dev;
3061 ale_params.ale_ageout = ale_ageout;
3062 ale_params.ale_entries = data->ale_entries;
3063 ale_params.ale_ports = data->slaves;
3064
3065 cpsw->ale = cpsw_ale_create(&ale_params);
3066 if (!cpsw->ale) {
3067 dev_err(priv->dev, "error initializing ale engine\n");
3068 ret = -ENODEV;
3069 goto clean_dma_ret;
3070 }
3071
3072 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3073 if (IS_ERR(cpsw->cpts)) {
3074 ret = PTR_ERR(cpsw->cpts);
3075 goto clean_ale_ret;
3076 }
3077
3078 ndev->irq = platform_get_irq(pdev, 1);
3079 if (ndev->irq < 0) {
3080 dev_err(priv->dev, "error getting irq resource\n");
3081 ret = ndev->irq;
3082 goto clean_ale_ret;
3083 }
3084
3085 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3086 if (of_id) {
3087 pdev->id_entry = of_id->data;
3088 if (pdev->id_entry->driver_data)
3089 cpsw->quirk_irq = true;
3090 }
3091
3092 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3093 * MISC IRQs which are always kept disabled with this driver so
3094 * we will not request them.
3095 *
3096 * If anyone wants to implement support for those, make sure to
3097 * first request and append them to irqs_table array.
3098 */
3099
3100 /* RX IRQ */
3101 irq = platform_get_irq(pdev, 1);
3102 if (irq < 0) {
3103 ret = irq;
3104 goto clean_ale_ret;
3105 }
3106
3107 cpsw->irqs_table[0] = irq;
3108 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3109 0, dev_name(&pdev->dev), cpsw);
3110 if (ret < 0) {
3111 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3112 goto clean_ale_ret;
3113 }
3114
3115 /* TX IRQ */
3116 irq = platform_get_irq(pdev, 2);
3117 if (irq < 0) {
3118 ret = irq;
3119 goto clean_ale_ret;
3120 }
3121
3122 cpsw->irqs_table[1] = irq;
3123 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3124 0, dev_name(&pdev->dev), cpsw);
3125 if (ret < 0) {
3126 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3127 goto clean_ale_ret;
3128 }
3129
3130 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3131
3132 ndev->netdev_ops = &cpsw_netdev_ops;
3133 ndev->ethtool_ops = &cpsw_ethtool_ops;
3134 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3135 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3136 cpsw_split_res(ndev);
3137
3138 /* register the network device */
3139 SET_NETDEV_DEV(ndev, &pdev->dev);
3140 ret = register_netdev(ndev);
3141 if (ret) {
3142 dev_err(priv->dev, "error registering net device\n");
3143 ret = -ENODEV;
3144 goto clean_ale_ret;
3145 }
3146
3147 cpsw_notice(priv, probe,
3148 "initialized device (regs %pa, irq %d, pool size %d)\n",
3149 &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3150 if (cpsw->data.dual_emac) {
3151 ret = cpsw_probe_dual_emac(priv);
3152 if (ret) {
3153 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3154 goto clean_unregister_netdev_ret;
3155 }
3156 }
3157
3158 pm_runtime_put(&pdev->dev);
3159
3160 return 0;
3161
3162 clean_unregister_netdev_ret:
3163 unregister_netdev(ndev);
3164 clean_ale_ret:
3165 cpsw_ale_destroy(cpsw->ale);
3166 clean_dma_ret:
3167 cpdma_ctlr_destroy(cpsw->dma);
3168 clean_dt_ret:
3169 cpsw_remove_dt(pdev);
3170 pm_runtime_put_sync(&pdev->dev);
3171 clean_runtime_disable_ret:
3172 pm_runtime_disable(&pdev->dev);
3173 clean_ndev_ret:
3174 free_netdev(priv->ndev);
3175 return ret;
3176 }
3177
3178 static int cpsw_remove(struct platform_device *pdev)
3179 {
3180 struct net_device *ndev = platform_get_drvdata(pdev);
3181 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3182 int ret;
3183
3184 ret = pm_runtime_get_sync(&pdev->dev);
3185 if (ret < 0) {
3186 pm_runtime_put_noidle(&pdev->dev);
3187 return ret;
3188 }
3189
3190 if (cpsw->data.dual_emac)
3191 unregister_netdev(cpsw->slaves[1].ndev);
3192 unregister_netdev(ndev);
3193
3194 cpts_release(cpsw->cpts);
3195 cpsw_ale_destroy(cpsw->ale);
3196 cpdma_ctlr_destroy(cpsw->dma);
3197 cpsw_remove_dt(pdev);
3198 pm_runtime_put_sync(&pdev->dev);
3199 pm_runtime_disable(&pdev->dev);
3200 if (cpsw->data.dual_emac)
3201 free_netdev(cpsw->slaves[1].ndev);
3202 free_netdev(ndev);
3203 return 0;
3204 }
3205
3206 #ifdef CONFIG_PM_SLEEP
3207 static int cpsw_suspend(struct device *dev)
3208 {
3209 struct platform_device *pdev = to_platform_device(dev);
3210 struct net_device *ndev = platform_get_drvdata(pdev);
3211 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3212
3213 if (cpsw->data.dual_emac) {
3214 int i;
3215
3216 for (i = 0; i < cpsw->data.slaves; i++) {
3217 if (netif_running(cpsw->slaves[i].ndev))
3218 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3219 }
3220 } else {
3221 if (netif_running(ndev))
3222 cpsw_ndo_stop(ndev);
3223 }
3224
3225 /* Select sleep pin state */
3226 pinctrl_pm_select_sleep_state(dev);
3227
3228 return 0;
3229 }
3230
3231 static int cpsw_resume(struct device *dev)
3232 {
3233 struct platform_device *pdev = to_platform_device(dev);
3234 struct net_device *ndev = platform_get_drvdata(pdev);
3235 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3236
3237 /* Select default pin state */
3238 pinctrl_pm_select_default_state(dev);
3239
3240 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3241 rtnl_lock();
3242 if (cpsw->data.dual_emac) {
3243 int i;
3244
3245 for (i = 0; i < cpsw->data.slaves; i++) {
3246 if (netif_running(cpsw->slaves[i].ndev))
3247 cpsw_ndo_open(cpsw->slaves[i].ndev);
3248 }
3249 } else {
3250 if (netif_running(ndev))
3251 cpsw_ndo_open(ndev);
3252 }
3253 rtnl_unlock();
3254
3255 return 0;
3256 }
3257 #endif
3258
3259 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3260
3261 static struct platform_driver cpsw_driver = {
3262 .driver = {
3263 .name = "cpsw",
3264 .pm = &cpsw_pm_ops,
3265 .of_match_table = cpsw_of_mtable,
3266 },
3267 .probe = cpsw_probe,
3268 .remove = cpsw_remove,
3269 };
3270
3271 module_platform_driver(cpsw_driver);
3272
3273 MODULE_LICENSE("GPL");
3274 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3275 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3276 MODULE_DESCRIPTION("TI CPSW Ethernet driver");