]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/ti/cpsw.c
iommu/rockchip: Support sharing IOMMU between masters
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38
39 #include <linux/pinctrl/consumer.h>
40
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45
46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
53 NETIF_MSG_RX_STATUS)
54
55 #define cpsw_info(priv, type, format, ...) \
56 do { \
57 if (netif_msg_##type(priv) && net_ratelimit()) \
58 dev_info(priv->dev, format, ## __VA_ARGS__); \
59 } while (0)
60
61 #define cpsw_err(priv, type, format, ...) \
62 do { \
63 if (netif_msg_##type(priv) && net_ratelimit()) \
64 dev_err(priv->dev, format, ## __VA_ARGS__); \
65 } while (0)
66
67 #define cpsw_dbg(priv, type, format, ...) \
68 do { \
69 if (netif_msg_##type(priv) && net_ratelimit()) \
70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
71 } while (0)
72
73 #define cpsw_notice(priv, type, format, ...) \
74 do { \
75 if (netif_msg_##type(priv) && net_ratelimit()) \
76 dev_notice(priv->dev, format, ## __VA_ARGS__); \
77 } while (0)
78
79 #define ALE_ALL_PORTS 0x7
80
81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
84
85 #define CPSW_VERSION_1 0x19010a
86 #define CPSW_VERSION_2 0x19010c
87 #define CPSW_VERSION_3 0x19010f
88 #define CPSW_VERSION_4 0x190112
89
90 #define HOST_PORT_NUM 0
91 #define CPSW_ALE_PORTS_NUM 3
92 #define SLIVER_SIZE 0x40
93
94 #define CPSW1_HOST_PORT_OFFSET 0x028
95 #define CPSW1_SLAVE_OFFSET 0x050
96 #define CPSW1_SLAVE_SIZE 0x040
97 #define CPSW1_CPDMA_OFFSET 0x100
98 #define CPSW1_STATERAM_OFFSET 0x200
99 #define CPSW1_HW_STATS 0x400
100 #define CPSW1_CPTS_OFFSET 0x500
101 #define CPSW1_ALE_OFFSET 0x600
102 #define CPSW1_SLIVER_OFFSET 0x700
103
104 #define CPSW2_HOST_PORT_OFFSET 0x108
105 #define CPSW2_SLAVE_OFFSET 0x200
106 #define CPSW2_SLAVE_SIZE 0x100
107 #define CPSW2_CPDMA_OFFSET 0x800
108 #define CPSW2_HW_STATS 0x900
109 #define CPSW2_STATERAM_OFFSET 0xa00
110 #define CPSW2_CPTS_OFFSET 0xc00
111 #define CPSW2_ALE_OFFSET 0xd00
112 #define CPSW2_SLIVER_OFFSET 0xd80
113 #define CPSW2_BD_OFFSET 0x2000
114
115 #define CPDMA_RXTHRESH 0x0c0
116 #define CPDMA_RXFREE 0x0e0
117 #define CPDMA_TXHDP 0x00
118 #define CPDMA_RXHDP 0x20
119 #define CPDMA_TXCP 0x40
120 #define CPDMA_RXCP 0x60
121
122 #define CPSW_POLL_WEIGHT 64
123 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN)
124 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
125
126 #define RX_PRIORITY_MAPPING 0x76543210
127 #define TX_PRIORITY_MAPPING 0x33221100
128 #define CPDMA_TX_PRIORITY_MAP 0x01234567
129
130 #define CPSW_VLAN_AWARE BIT(1)
131 #define CPSW_ALE_VLAN_AWARE 1
132
133 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
134 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
135 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
136
137 #define CPSW_INTPACEEN (0x3f << 16)
138 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
139 #define CPSW_CMINTMAX_CNT 63
140 #define CPSW_CMINTMIN_CNT 2
141 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
142 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
143
144 #define cpsw_slave_index(cpsw, priv) \
145 ((cpsw->data.dual_emac) ? priv->emac_port : \
146 cpsw->data.active_slave)
147 #define IRQ_NUM 2
148 #define CPSW_MAX_QUEUES 8
149 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
150
151 static int debug_level;
152 module_param(debug_level, int, 0);
153 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
154
155 static int ale_ageout = 10;
156 module_param(ale_ageout, int, 0);
157 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
158
159 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
160 module_param(rx_packet_max, int, 0);
161 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
162
163 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
164 module_param(descs_pool_size, int, 0444);
165 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
166
167 struct cpsw_wr_regs {
168 u32 id_ver;
169 u32 soft_reset;
170 u32 control;
171 u32 int_control;
172 u32 rx_thresh_en;
173 u32 rx_en;
174 u32 tx_en;
175 u32 misc_en;
176 u32 mem_allign1[8];
177 u32 rx_thresh_stat;
178 u32 rx_stat;
179 u32 tx_stat;
180 u32 misc_stat;
181 u32 mem_allign2[8];
182 u32 rx_imax;
183 u32 tx_imax;
184
185 };
186
187 struct cpsw_ss_regs {
188 u32 id_ver;
189 u32 control;
190 u32 soft_reset;
191 u32 stat_port_en;
192 u32 ptype;
193 u32 soft_idle;
194 u32 thru_rate;
195 u32 gap_thresh;
196 u32 tx_start_wds;
197 u32 flow_control;
198 u32 vlan_ltype;
199 u32 ts_ltype;
200 u32 dlr_ltype;
201 };
202
203 /* CPSW_PORT_V1 */
204 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
205 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
206 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
207 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
208 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
209 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
210 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
211 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
212
213 /* CPSW_PORT_V2 */
214 #define CPSW2_CONTROL 0x00 /* Control Register */
215 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
216 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
217 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
218 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
219 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
220 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
221
222 /* CPSW_PORT_V1 and V2 */
223 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
224 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
225 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
226
227 /* CPSW_PORT_V2 only */
228 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
235 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
236
237 /* Bit definitions for the CPSW2_CONTROL register */
238 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
239 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
240 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
241 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
242 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
243 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
244 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
245 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
246 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
247 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
248 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
249 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
250 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
251 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
252 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
253 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
254 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
255
256 #define CTRL_V2_TS_BITS \
257 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
258 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
259
260 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
261 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
262 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
263
264
265 #define CTRL_V3_TS_BITS \
266 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
267 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
268 TS_LTYPE1_EN)
269
270 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
271 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
272 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
273
274 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
275 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
276 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
277 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
278 #define TS_MSG_TYPE_EN_MASK (0xffff)
279
280 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
281 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
282
283 /* Bit definitions for the CPSW1_TS_CTL register */
284 #define CPSW_V1_TS_RX_EN BIT(0)
285 #define CPSW_V1_TS_TX_EN BIT(4)
286 #define CPSW_V1_MSG_TYPE_OFS 16
287
288 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
289 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
290
291 #define CPSW_MAX_BLKS_TX 15
292 #define CPSW_MAX_BLKS_TX_SHIFT 4
293 #define CPSW_MAX_BLKS_RX 5
294
295 struct cpsw_host_regs {
296 u32 max_blks;
297 u32 blk_cnt;
298 u32 tx_in_ctl;
299 u32 port_vlan;
300 u32 tx_pri_map;
301 u32 cpdma_tx_pri_map;
302 u32 cpdma_rx_chan_map;
303 };
304
305 struct cpsw_sliver_regs {
306 u32 id_ver;
307 u32 mac_control;
308 u32 mac_status;
309 u32 soft_reset;
310 u32 rx_maxlen;
311 u32 __reserved_0;
312 u32 rx_pause;
313 u32 tx_pause;
314 u32 __reserved_1;
315 u32 rx_pri_map;
316 };
317
318 struct cpsw_hw_stats {
319 u32 rxgoodframes;
320 u32 rxbroadcastframes;
321 u32 rxmulticastframes;
322 u32 rxpauseframes;
323 u32 rxcrcerrors;
324 u32 rxaligncodeerrors;
325 u32 rxoversizedframes;
326 u32 rxjabberframes;
327 u32 rxundersizedframes;
328 u32 rxfragments;
329 u32 __pad_0[2];
330 u32 rxoctets;
331 u32 txgoodframes;
332 u32 txbroadcastframes;
333 u32 txmulticastframes;
334 u32 txpauseframes;
335 u32 txdeferredframes;
336 u32 txcollisionframes;
337 u32 txsinglecollframes;
338 u32 txmultcollframes;
339 u32 txexcessivecollisions;
340 u32 txlatecollisions;
341 u32 txunderrun;
342 u32 txcarriersenseerrors;
343 u32 txoctets;
344 u32 octetframes64;
345 u32 octetframes65t127;
346 u32 octetframes128t255;
347 u32 octetframes256t511;
348 u32 octetframes512t1023;
349 u32 octetframes1024tup;
350 u32 netoctets;
351 u32 rxsofoverruns;
352 u32 rxmofoverruns;
353 u32 rxdmaoverruns;
354 };
355
356 struct cpsw_slave_data {
357 struct device_node *phy_node;
358 char phy_id[MII_BUS_ID_SIZE];
359 int phy_if;
360 u8 mac_addr[ETH_ALEN];
361 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */
362 };
363
364 struct cpsw_platform_data {
365 struct cpsw_slave_data *slave_data;
366 u32 ss_reg_ofs; /* Subsystem control register offset */
367 u32 channels; /* number of cpdma channels (symmetric) */
368 u32 slaves; /* number of slave cpgmac ports */
369 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
370 u32 ale_entries; /* ale table size */
371 u32 bd_ram_size; /*buffer descriptor ram size */
372 u32 mac_control; /* Mac control register */
373 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/
374 bool dual_emac; /* Enable Dual EMAC mode */
375 };
376
377 struct cpsw_slave {
378 void __iomem *regs;
379 struct cpsw_sliver_regs __iomem *sliver;
380 int slave_num;
381 u32 mac_control;
382 struct cpsw_slave_data *data;
383 struct phy_device *phy;
384 struct net_device *ndev;
385 u32 port_vlan;
386 };
387
388 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
389 {
390 return readl_relaxed(slave->regs + offset);
391 }
392
393 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
394 {
395 writel_relaxed(val, slave->regs + offset);
396 }
397
398 struct cpsw_vector {
399 struct cpdma_chan *ch;
400 int budget;
401 };
402
403 struct cpsw_common {
404 struct device *dev;
405 struct cpsw_platform_data data;
406 struct napi_struct napi_rx;
407 struct napi_struct napi_tx;
408 struct cpsw_ss_regs __iomem *regs;
409 struct cpsw_wr_regs __iomem *wr_regs;
410 u8 __iomem *hw_stats;
411 struct cpsw_host_regs __iomem *host_port_regs;
412 u32 version;
413 u32 coal_intvl;
414 u32 bus_freq_mhz;
415 int rx_packet_max;
416 struct cpsw_slave *slaves;
417 struct cpdma_ctlr *dma;
418 struct cpsw_vector txv[CPSW_MAX_QUEUES];
419 struct cpsw_vector rxv[CPSW_MAX_QUEUES];
420 struct cpsw_ale *ale;
421 bool quirk_irq;
422 bool rx_irq_disabled;
423 bool tx_irq_disabled;
424 u32 irqs_table[IRQ_NUM];
425 struct cpts *cpts;
426 int rx_ch_num, tx_ch_num;
427 int speed;
428 int usage_count;
429 };
430
431 struct cpsw_priv {
432 struct net_device *ndev;
433 struct device *dev;
434 u32 msg_enable;
435 u8 mac_addr[ETH_ALEN];
436 bool rx_pause;
437 bool tx_pause;
438 u32 emac_port;
439 struct cpsw_common *cpsw;
440 };
441
442 struct cpsw_stats {
443 char stat_string[ETH_GSTRING_LEN];
444 int type;
445 int sizeof_stat;
446 int stat_offset;
447 };
448
449 enum {
450 CPSW_STATS,
451 CPDMA_RX_STATS,
452 CPDMA_TX_STATS,
453 };
454
455 #define CPSW_STAT(m) CPSW_STATS, \
456 sizeof(((struct cpsw_hw_stats *)0)->m), \
457 offsetof(struct cpsw_hw_stats, m)
458 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
459 sizeof(((struct cpdma_chan_stats *)0)->m), \
460 offsetof(struct cpdma_chan_stats, m)
461 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
462 sizeof(((struct cpdma_chan_stats *)0)->m), \
463 offsetof(struct cpdma_chan_stats, m)
464
465 static const struct cpsw_stats cpsw_gstrings_stats[] = {
466 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
467 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
468 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
469 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
470 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
471 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
472 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
473 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
474 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
475 { "Rx Fragments", CPSW_STAT(rxfragments) },
476 { "Rx Octets", CPSW_STAT(rxoctets) },
477 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
478 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
479 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
480 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
481 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
482 { "Collisions", CPSW_STAT(txcollisionframes) },
483 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
484 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
485 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
486 { "Late Collisions", CPSW_STAT(txlatecollisions) },
487 { "Tx Underrun", CPSW_STAT(txunderrun) },
488 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
489 { "Tx Octets", CPSW_STAT(txoctets) },
490 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
491 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
492 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
493 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
494 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
495 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
496 { "Net Octets", CPSW_STAT(netoctets) },
497 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
498 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
499 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
500 };
501
502 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
503 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
504 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
505 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
506 { "misqueued", CPDMA_RX_STAT(misqueued) },
507 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
508 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
509 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
510 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
511 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
512 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
513 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
514 { "requeue", CPDMA_RX_STAT(requeue) },
515 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
516 };
517
518 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
519 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
520
521 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
522 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
523 #define for_each_slave(priv, func, arg...) \
524 do { \
525 struct cpsw_slave *slave; \
526 struct cpsw_common *cpsw = (priv)->cpsw; \
527 int n; \
528 if (cpsw->data.dual_emac) \
529 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
530 else \
531 for (n = cpsw->data.slaves, \
532 slave = cpsw->slaves; \
533 n; n--) \
534 (func)(slave++, ##arg); \
535 } while (0)
536
537 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \
538 do { \
539 if (!cpsw->data.dual_emac) \
540 break; \
541 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
542 ndev = cpsw->slaves[0].ndev; \
543 skb->dev = ndev; \
544 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
545 ndev = cpsw->slaves[1].ndev; \
546 skb->dev = ndev; \
547 } \
548 } while (0)
549 #define cpsw_add_mcast(cpsw, priv, addr) \
550 do { \
551 if (cpsw->data.dual_emac) { \
552 struct cpsw_slave *slave = cpsw->slaves + \
553 priv->emac_port; \
554 int slave_port = cpsw_get_slave_port( \
555 slave->slave_num); \
556 cpsw_ale_add_mcast(cpsw->ale, addr, \
557 1 << slave_port | ALE_PORT_HOST, \
558 ALE_VLAN, slave->port_vlan, 0); \
559 } else { \
560 cpsw_ale_add_mcast(cpsw->ale, addr, \
561 ALE_ALL_PORTS, \
562 0, 0, 0); \
563 } \
564 } while (0)
565
566 static inline int cpsw_get_slave_port(u32 slave_num)
567 {
568 return slave_num + 1;
569 }
570
571 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
572 {
573 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
574 struct cpsw_ale *ale = cpsw->ale;
575 int i;
576
577 if (cpsw->data.dual_emac) {
578 bool flag = false;
579
580 /* Enabling promiscuous mode for one interface will be
581 * common for both the interface as the interface shares
582 * the same hardware resource.
583 */
584 for (i = 0; i < cpsw->data.slaves; i++)
585 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
586 flag = true;
587
588 if (!enable && flag) {
589 enable = true;
590 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
591 }
592
593 if (enable) {
594 /* Enable Bypass */
595 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
596
597 dev_dbg(&ndev->dev, "promiscuity enabled\n");
598 } else {
599 /* Disable Bypass */
600 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
601 dev_dbg(&ndev->dev, "promiscuity disabled\n");
602 }
603 } else {
604 if (enable) {
605 unsigned long timeout = jiffies + HZ;
606
607 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
608 for (i = 0; i <= cpsw->data.slaves; i++) {
609 cpsw_ale_control_set(ale, i,
610 ALE_PORT_NOLEARN, 1);
611 cpsw_ale_control_set(ale, i,
612 ALE_PORT_NO_SA_UPDATE, 1);
613 }
614
615 /* Clear All Untouched entries */
616 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
617 do {
618 cpu_relax();
619 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
620 break;
621 } while (time_after(timeout, jiffies));
622 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
623
624 /* Clear all mcast from ALE */
625 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
626
627 /* Flood All Unicast Packets to Host port */
628 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
629 dev_dbg(&ndev->dev, "promiscuity enabled\n");
630 } else {
631 /* Don't Flood All Unicast Packets to Host port */
632 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
633
634 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
635 for (i = 0; i <= cpsw->data.slaves; i++) {
636 cpsw_ale_control_set(ale, i,
637 ALE_PORT_NOLEARN, 0);
638 cpsw_ale_control_set(ale, i,
639 ALE_PORT_NO_SA_UPDATE, 0);
640 }
641 dev_dbg(&ndev->dev, "promiscuity disabled\n");
642 }
643 }
644 }
645
646 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
647 {
648 struct cpsw_priv *priv = netdev_priv(ndev);
649 struct cpsw_common *cpsw = priv->cpsw;
650 int vid;
651
652 if (cpsw->data.dual_emac)
653 vid = cpsw->slaves[priv->emac_port].port_vlan;
654 else
655 vid = cpsw->data.default_vlan;
656
657 if (ndev->flags & IFF_PROMISC) {
658 /* Enable promiscuous mode */
659 cpsw_set_promiscious(ndev, true);
660 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
661 return;
662 } else {
663 /* Disable promiscuous mode */
664 cpsw_set_promiscious(ndev, false);
665 }
666
667 /* Restore allmulti on vlans if necessary */
668 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
669
670 /* Clear all mcast from ALE */
671 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
672
673 if (!netdev_mc_empty(ndev)) {
674 struct netdev_hw_addr *ha;
675
676 /* program multicast address list into ALE register */
677 netdev_for_each_mc_addr(ha, ndev) {
678 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
679 }
680 }
681 }
682
683 static void cpsw_intr_enable(struct cpsw_common *cpsw)
684 {
685 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
686 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
687
688 cpdma_ctlr_int_ctrl(cpsw->dma, true);
689 return;
690 }
691
692 static void cpsw_intr_disable(struct cpsw_common *cpsw)
693 {
694 writel_relaxed(0, &cpsw->wr_regs->tx_en);
695 writel_relaxed(0, &cpsw->wr_regs->rx_en);
696
697 cpdma_ctlr_int_ctrl(cpsw->dma, false);
698 return;
699 }
700
701 static void cpsw_tx_handler(void *token, int len, int status)
702 {
703 struct netdev_queue *txq;
704 struct sk_buff *skb = token;
705 struct net_device *ndev = skb->dev;
706 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
707
708 /* Check whether the queue is stopped due to stalled tx dma, if the
709 * queue is stopped then start the queue as we have free desc for tx
710 */
711 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
712 if (unlikely(netif_tx_queue_stopped(txq)))
713 netif_tx_wake_queue(txq);
714
715 cpts_tx_timestamp(cpsw->cpts, skb);
716 ndev->stats.tx_packets++;
717 ndev->stats.tx_bytes += len;
718 dev_kfree_skb_any(skb);
719 }
720
721 static void cpsw_rx_handler(void *token, int len, int status)
722 {
723 struct cpdma_chan *ch;
724 struct sk_buff *skb = token;
725 struct sk_buff *new_skb;
726 struct net_device *ndev = skb->dev;
727 int ret = 0;
728 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
729
730 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
731
732 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
733 /* In dual emac mode check for all interfaces */
734 if (cpsw->data.dual_emac && cpsw->usage_count &&
735 (status >= 0)) {
736 /* The packet received is for the interface which
737 * is already down and the other interface is up
738 * and running, instead of freeing which results
739 * in reducing of the number of rx descriptor in
740 * DMA engine, requeue skb back to cpdma.
741 */
742 new_skb = skb;
743 goto requeue;
744 }
745
746 /* the interface is going down, skbs are purged */
747 dev_kfree_skb_any(skb);
748 return;
749 }
750
751 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
752 if (new_skb) {
753 skb_copy_queue_mapping(new_skb, skb);
754 skb_put(skb, len);
755 cpts_rx_timestamp(cpsw->cpts, skb);
756 skb->protocol = eth_type_trans(skb, ndev);
757 netif_receive_skb(skb);
758 ndev->stats.rx_bytes += len;
759 ndev->stats.rx_packets++;
760 kmemleak_not_leak(new_skb);
761 } else {
762 ndev->stats.rx_dropped++;
763 new_skb = skb;
764 }
765
766 requeue:
767 if (netif_dormant(ndev)) {
768 dev_kfree_skb_any(new_skb);
769 return;
770 }
771
772 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
773 ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
774 skb_tailroom(new_skb), 0);
775 if (WARN_ON(ret < 0))
776 dev_kfree_skb_any(new_skb);
777 }
778
779 static void cpsw_split_res(struct net_device *ndev)
780 {
781 struct cpsw_priv *priv = netdev_priv(ndev);
782 u32 consumed_rate = 0, bigest_rate = 0;
783 struct cpsw_common *cpsw = priv->cpsw;
784 struct cpsw_vector *txv = cpsw->txv;
785 int i, ch_weight, rlim_ch_num = 0;
786 int budget, bigest_rate_ch = 0;
787 u32 ch_rate, max_rate;
788 int ch_budget = 0;
789
790 for (i = 0; i < cpsw->tx_ch_num; i++) {
791 ch_rate = cpdma_chan_get_rate(txv[i].ch);
792 if (!ch_rate)
793 continue;
794
795 rlim_ch_num++;
796 consumed_rate += ch_rate;
797 }
798
799 if (cpsw->tx_ch_num == rlim_ch_num) {
800 max_rate = consumed_rate;
801 } else if (!rlim_ch_num) {
802 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
803 bigest_rate = 0;
804 max_rate = consumed_rate;
805 } else {
806 max_rate = cpsw->speed * 1000;
807
808 /* if max_rate is less then expected due to reduced link speed,
809 * split proportionally according next potential max speed
810 */
811 if (max_rate < consumed_rate)
812 max_rate *= 10;
813
814 if (max_rate < consumed_rate)
815 max_rate *= 10;
816
817 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
818 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
819 (cpsw->tx_ch_num - rlim_ch_num);
820 bigest_rate = (max_rate - consumed_rate) /
821 (cpsw->tx_ch_num - rlim_ch_num);
822 }
823
824 /* split tx weight/budget */
825 budget = CPSW_POLL_WEIGHT;
826 for (i = 0; i < cpsw->tx_ch_num; i++) {
827 ch_rate = cpdma_chan_get_rate(txv[i].ch);
828 if (ch_rate) {
829 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
830 if (!txv[i].budget)
831 txv[i].budget++;
832 if (ch_rate > bigest_rate) {
833 bigest_rate_ch = i;
834 bigest_rate = ch_rate;
835 }
836
837 ch_weight = (ch_rate * 100) / max_rate;
838 if (!ch_weight)
839 ch_weight++;
840 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
841 } else {
842 txv[i].budget = ch_budget;
843 if (!bigest_rate_ch)
844 bigest_rate_ch = i;
845 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
846 }
847
848 budget -= txv[i].budget;
849 }
850
851 if (budget)
852 txv[bigest_rate_ch].budget += budget;
853
854 /* split rx budget */
855 budget = CPSW_POLL_WEIGHT;
856 ch_budget = budget / cpsw->rx_ch_num;
857 for (i = 0; i < cpsw->rx_ch_num; i++) {
858 cpsw->rxv[i].budget = ch_budget;
859 budget -= ch_budget;
860 }
861
862 if (budget)
863 cpsw->rxv[0].budget += budget;
864 }
865
866 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
867 {
868 struct cpsw_common *cpsw = dev_id;
869
870 writel(0, &cpsw->wr_regs->tx_en);
871 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
872
873 if (cpsw->quirk_irq) {
874 disable_irq_nosync(cpsw->irqs_table[1]);
875 cpsw->tx_irq_disabled = true;
876 }
877
878 napi_schedule(&cpsw->napi_tx);
879 return IRQ_HANDLED;
880 }
881
882 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
883 {
884 struct cpsw_common *cpsw = dev_id;
885
886 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
887 writel(0, &cpsw->wr_regs->rx_en);
888
889 if (cpsw->quirk_irq) {
890 disable_irq_nosync(cpsw->irqs_table[0]);
891 cpsw->rx_irq_disabled = true;
892 }
893
894 napi_schedule(&cpsw->napi_rx);
895 return IRQ_HANDLED;
896 }
897
898 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
899 {
900 u32 ch_map;
901 int num_tx, cur_budget, ch;
902 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
903 struct cpsw_vector *txv;
904
905 /* process every unprocessed channel */
906 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
907 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
908 if (!(ch_map & 0x01))
909 continue;
910
911 txv = &cpsw->txv[ch];
912 if (unlikely(txv->budget > budget - num_tx))
913 cur_budget = budget - num_tx;
914 else
915 cur_budget = txv->budget;
916
917 num_tx += cpdma_chan_process(txv->ch, cur_budget);
918 if (num_tx >= budget)
919 break;
920 }
921
922 if (num_tx < budget) {
923 napi_complete(napi_tx);
924 writel(0xff, &cpsw->wr_regs->tx_en);
925 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
926 cpsw->tx_irq_disabled = false;
927 enable_irq(cpsw->irqs_table[1]);
928 }
929 }
930
931 return num_tx;
932 }
933
934 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
935 {
936 u32 ch_map;
937 int num_rx, cur_budget, ch;
938 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
939 struct cpsw_vector *rxv;
940
941 /* process every unprocessed channel */
942 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
943 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
944 if (!(ch_map & 0x01))
945 continue;
946
947 rxv = &cpsw->rxv[ch];
948 if (unlikely(rxv->budget > budget - num_rx))
949 cur_budget = budget - num_rx;
950 else
951 cur_budget = rxv->budget;
952
953 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
954 if (num_rx >= budget)
955 break;
956 }
957
958 if (num_rx < budget) {
959 napi_complete_done(napi_rx, num_rx);
960 writel(0xff, &cpsw->wr_regs->rx_en);
961 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
962 cpsw->rx_irq_disabled = false;
963 enable_irq(cpsw->irqs_table[0]);
964 }
965 }
966
967 return num_rx;
968 }
969
970 static inline void soft_reset(const char *module, void __iomem *reg)
971 {
972 unsigned long timeout = jiffies + HZ;
973
974 writel_relaxed(1, reg);
975 do {
976 cpu_relax();
977 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
978
979 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
980 }
981
982 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
983 struct cpsw_priv *priv)
984 {
985 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
986 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
987 }
988
989 static void _cpsw_adjust_link(struct cpsw_slave *slave,
990 struct cpsw_priv *priv, bool *link)
991 {
992 struct phy_device *phy = slave->phy;
993 u32 mac_control = 0;
994 u32 slave_port;
995 struct cpsw_common *cpsw = priv->cpsw;
996
997 if (!phy)
998 return;
999
1000 slave_port = cpsw_get_slave_port(slave->slave_num);
1001
1002 if (phy->link) {
1003 mac_control = cpsw->data.mac_control;
1004
1005 /* enable forwarding */
1006 cpsw_ale_control_set(cpsw->ale, slave_port,
1007 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1008
1009 if (phy->speed == 1000)
1010 mac_control |= BIT(7); /* GIGABITEN */
1011 if (phy->duplex)
1012 mac_control |= BIT(0); /* FULLDUPLEXEN */
1013
1014 /* set speed_in input in case RMII mode is used in 100Mbps */
1015 if (phy->speed == 100)
1016 mac_control |= BIT(15);
1017 else if (phy->speed == 10)
1018 mac_control |= BIT(18); /* In Band mode */
1019
1020 if (priv->rx_pause)
1021 mac_control |= BIT(3);
1022
1023 if (priv->tx_pause)
1024 mac_control |= BIT(4);
1025
1026 *link = true;
1027 } else {
1028 mac_control = 0;
1029 /* disable forwarding */
1030 cpsw_ale_control_set(cpsw->ale, slave_port,
1031 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1032 }
1033
1034 if (mac_control != slave->mac_control) {
1035 phy_print_status(phy);
1036 writel_relaxed(mac_control, &slave->sliver->mac_control);
1037 }
1038
1039 slave->mac_control = mac_control;
1040 }
1041
1042 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1043 {
1044 int i, speed;
1045
1046 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1047 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1048 speed += cpsw->slaves[i].phy->speed;
1049
1050 return speed;
1051 }
1052
1053 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1054 {
1055 int i, rlim_ch_num;
1056 int speed, ch_rate;
1057
1058 /* re-split resources only in case speed was changed */
1059 speed = cpsw_get_common_speed(cpsw);
1060 if (speed == cpsw->speed || !speed)
1061 return 0;
1062
1063 cpsw->speed = speed;
1064
1065 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1066 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1067 if (!ch_rate)
1068 break;
1069
1070 rlim_ch_num++;
1071 }
1072
1073 /* cases not dependent on speed */
1074 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1075 return 0;
1076
1077 return 1;
1078 }
1079
1080 static void cpsw_adjust_link(struct net_device *ndev)
1081 {
1082 struct cpsw_priv *priv = netdev_priv(ndev);
1083 struct cpsw_common *cpsw = priv->cpsw;
1084 bool link = false;
1085
1086 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1087
1088 if (link) {
1089 if (cpsw_need_resplit(cpsw))
1090 cpsw_split_res(ndev);
1091
1092 netif_carrier_on(ndev);
1093 if (netif_running(ndev))
1094 netif_tx_wake_all_queues(ndev);
1095 } else {
1096 netif_carrier_off(ndev);
1097 netif_tx_stop_all_queues(ndev);
1098 }
1099 }
1100
1101 static int cpsw_get_coalesce(struct net_device *ndev,
1102 struct ethtool_coalesce *coal)
1103 {
1104 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1105
1106 coal->rx_coalesce_usecs = cpsw->coal_intvl;
1107 return 0;
1108 }
1109
1110 static int cpsw_set_coalesce(struct net_device *ndev,
1111 struct ethtool_coalesce *coal)
1112 {
1113 struct cpsw_priv *priv = netdev_priv(ndev);
1114 u32 int_ctrl;
1115 u32 num_interrupts = 0;
1116 u32 prescale = 0;
1117 u32 addnl_dvdr = 1;
1118 u32 coal_intvl = 0;
1119 struct cpsw_common *cpsw = priv->cpsw;
1120
1121 coal_intvl = coal->rx_coalesce_usecs;
1122
1123 int_ctrl = readl(&cpsw->wr_regs->int_control);
1124 prescale = cpsw->bus_freq_mhz * 4;
1125
1126 if (!coal->rx_coalesce_usecs) {
1127 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1128 goto update_return;
1129 }
1130
1131 if (coal_intvl < CPSW_CMINTMIN_INTVL)
1132 coal_intvl = CPSW_CMINTMIN_INTVL;
1133
1134 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1135 /* Interrupt pacer works with 4us Pulse, we can
1136 * throttle further by dilating the 4us pulse.
1137 */
1138 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1139
1140 if (addnl_dvdr > 1) {
1141 prescale *= addnl_dvdr;
1142 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1143 coal_intvl = (CPSW_CMINTMAX_INTVL
1144 * addnl_dvdr);
1145 } else {
1146 addnl_dvdr = 1;
1147 coal_intvl = CPSW_CMINTMAX_INTVL;
1148 }
1149 }
1150
1151 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1152 writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1153 writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1154
1155 int_ctrl |= CPSW_INTPACEEN;
1156 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1157 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1158
1159 update_return:
1160 writel(int_ctrl, &cpsw->wr_regs->int_control);
1161
1162 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1163 cpsw->coal_intvl = coal_intvl;
1164
1165 return 0;
1166 }
1167
1168 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1169 {
1170 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1171
1172 switch (sset) {
1173 case ETH_SS_STATS:
1174 return (CPSW_STATS_COMMON_LEN +
1175 (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1176 CPSW_STATS_CH_LEN);
1177 default:
1178 return -EOPNOTSUPP;
1179 }
1180 }
1181
1182 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1183 {
1184 int ch_stats_len;
1185 int line;
1186 int i;
1187
1188 ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1189 for (i = 0; i < ch_stats_len; i++) {
1190 line = i % CPSW_STATS_CH_LEN;
1191 snprintf(*p, ETH_GSTRING_LEN,
1192 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1193 i / CPSW_STATS_CH_LEN,
1194 cpsw_gstrings_ch_stats[line].stat_string);
1195 *p += ETH_GSTRING_LEN;
1196 }
1197 }
1198
1199 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1200 {
1201 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1202 u8 *p = data;
1203 int i;
1204
1205 switch (stringset) {
1206 case ETH_SS_STATS:
1207 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1208 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1209 ETH_GSTRING_LEN);
1210 p += ETH_GSTRING_LEN;
1211 }
1212
1213 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1214 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1215 break;
1216 }
1217 }
1218
1219 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1220 struct ethtool_stats *stats, u64 *data)
1221 {
1222 u8 *p;
1223 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1224 struct cpdma_chan_stats ch_stats;
1225 int i, l, ch;
1226
1227 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1228 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1229 data[l] = readl(cpsw->hw_stats +
1230 cpsw_gstrings_stats[l].stat_offset);
1231
1232 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1233 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1234 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1235 p = (u8 *)&ch_stats +
1236 cpsw_gstrings_ch_stats[i].stat_offset;
1237 data[l] = *(u32 *)p;
1238 }
1239 }
1240
1241 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1242 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1243 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1244 p = (u8 *)&ch_stats +
1245 cpsw_gstrings_ch_stats[i].stat_offset;
1246 data[l] = *(u32 *)p;
1247 }
1248 }
1249 }
1250
1251 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1252 struct sk_buff *skb,
1253 struct cpdma_chan *txch)
1254 {
1255 struct cpsw_common *cpsw = priv->cpsw;
1256
1257 skb_tx_timestamp(skb);
1258 return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1259 priv->emac_port + cpsw->data.dual_emac);
1260 }
1261
1262 static inline void cpsw_add_dual_emac_def_ale_entries(
1263 struct cpsw_priv *priv, struct cpsw_slave *slave,
1264 u32 slave_port)
1265 {
1266 struct cpsw_common *cpsw = priv->cpsw;
1267 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1268
1269 if (cpsw->version == CPSW_VERSION_1)
1270 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1271 else
1272 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1273 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1274 port_mask, port_mask, 0);
1275 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1276 port_mask, ALE_VLAN, slave->port_vlan, 0);
1277 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1278 HOST_PORT_NUM, ALE_VLAN |
1279 ALE_SECURE, slave->port_vlan);
1280 }
1281
1282 static void soft_reset_slave(struct cpsw_slave *slave)
1283 {
1284 char name[32];
1285
1286 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1287 soft_reset(name, &slave->sliver->soft_reset);
1288 }
1289
1290 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1291 {
1292 u32 slave_port;
1293 struct phy_device *phy;
1294 struct cpsw_common *cpsw = priv->cpsw;
1295
1296 soft_reset_slave(slave);
1297
1298 /* setup priority mapping */
1299 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1300
1301 switch (cpsw->version) {
1302 case CPSW_VERSION_1:
1303 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1304 /* Increase RX FIFO size to 5 for supporting fullduplex
1305 * flow control mode
1306 */
1307 slave_write(slave,
1308 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1309 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1310 break;
1311 case CPSW_VERSION_2:
1312 case CPSW_VERSION_3:
1313 case CPSW_VERSION_4:
1314 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1315 /* Increase RX FIFO size to 5 for supporting fullduplex
1316 * flow control mode
1317 */
1318 slave_write(slave,
1319 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1320 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1321 break;
1322 }
1323
1324 /* setup max packet size, and mac address */
1325 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1326 cpsw_set_slave_mac(slave, priv);
1327
1328 slave->mac_control = 0; /* no link yet */
1329
1330 slave_port = cpsw_get_slave_port(slave->slave_num);
1331
1332 if (cpsw->data.dual_emac)
1333 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1334 else
1335 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1336 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1337
1338 if (slave->data->phy_node) {
1339 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1340 &cpsw_adjust_link, 0, slave->data->phy_if);
1341 if (!phy) {
1342 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1343 slave->data->phy_node,
1344 slave->slave_num);
1345 return;
1346 }
1347 } else {
1348 phy = phy_connect(priv->ndev, slave->data->phy_id,
1349 &cpsw_adjust_link, slave->data->phy_if);
1350 if (IS_ERR(phy)) {
1351 dev_err(priv->dev,
1352 "phy \"%s\" not found on slave %d, err %ld\n",
1353 slave->data->phy_id, slave->slave_num,
1354 PTR_ERR(phy));
1355 return;
1356 }
1357 }
1358
1359 slave->phy = phy;
1360
1361 phy_attached_info(slave->phy);
1362
1363 phy_start(slave->phy);
1364
1365 /* Configure GMII_SEL register */
1366 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1367 }
1368
1369 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1370 {
1371 struct cpsw_common *cpsw = priv->cpsw;
1372 const int vlan = cpsw->data.default_vlan;
1373 u32 reg;
1374 int i;
1375 int unreg_mcast_mask;
1376
1377 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1378 CPSW2_PORT_VLAN;
1379
1380 writel(vlan, &cpsw->host_port_regs->port_vlan);
1381
1382 for (i = 0; i < cpsw->data.slaves; i++)
1383 slave_write(cpsw->slaves + i, vlan, reg);
1384
1385 if (priv->ndev->flags & IFF_ALLMULTI)
1386 unreg_mcast_mask = ALE_ALL_PORTS;
1387 else
1388 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1389
1390 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1391 ALE_ALL_PORTS, ALE_ALL_PORTS,
1392 unreg_mcast_mask);
1393 }
1394
1395 static void cpsw_init_host_port(struct cpsw_priv *priv)
1396 {
1397 u32 fifo_mode;
1398 u32 control_reg;
1399 struct cpsw_common *cpsw = priv->cpsw;
1400
1401 /* soft reset the controller and initialize ale */
1402 soft_reset("cpsw", &cpsw->regs->soft_reset);
1403 cpsw_ale_start(cpsw->ale);
1404
1405 /* switch to vlan unaware mode */
1406 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1407 CPSW_ALE_VLAN_AWARE);
1408 control_reg = readl(&cpsw->regs->control);
1409 control_reg |= CPSW_VLAN_AWARE;
1410 writel(control_reg, &cpsw->regs->control);
1411 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1412 CPSW_FIFO_NORMAL_MODE;
1413 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1414
1415 /* setup host port priority mapping */
1416 writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1417 &cpsw->host_port_regs->cpdma_tx_pri_map);
1418 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1419
1420 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1421 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1422
1423 if (!cpsw->data.dual_emac) {
1424 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1425 0, 0);
1426 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1427 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1428 }
1429 }
1430
1431 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1432 {
1433 struct cpsw_common *cpsw = priv->cpsw;
1434 struct sk_buff *skb;
1435 int ch_buf_num;
1436 int ch, i, ret;
1437
1438 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1439 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1440 for (i = 0; i < ch_buf_num; i++) {
1441 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1442 cpsw->rx_packet_max,
1443 GFP_KERNEL);
1444 if (!skb) {
1445 cpsw_err(priv, ifup, "cannot allocate skb\n");
1446 return -ENOMEM;
1447 }
1448
1449 skb_set_queue_mapping(skb, ch);
1450 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1451 skb->data, skb_tailroom(skb),
1452 0);
1453 if (ret < 0) {
1454 cpsw_err(priv, ifup,
1455 "cannot submit skb to channel %d rx, error %d\n",
1456 ch, ret);
1457 kfree_skb(skb);
1458 return ret;
1459 }
1460 kmemleak_not_leak(skb);
1461 }
1462
1463 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1464 ch, ch_buf_num);
1465 }
1466
1467 return 0;
1468 }
1469
1470 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1471 {
1472 u32 slave_port;
1473
1474 slave_port = cpsw_get_slave_port(slave->slave_num);
1475
1476 if (!slave->phy)
1477 return;
1478 phy_stop(slave->phy);
1479 phy_disconnect(slave->phy);
1480 slave->phy = NULL;
1481 cpsw_ale_control_set(cpsw->ale, slave_port,
1482 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1483 soft_reset_slave(slave);
1484 }
1485
1486 static int cpsw_ndo_open(struct net_device *ndev)
1487 {
1488 struct cpsw_priv *priv = netdev_priv(ndev);
1489 struct cpsw_common *cpsw = priv->cpsw;
1490 int ret;
1491 u32 reg;
1492
1493 ret = pm_runtime_get_sync(cpsw->dev);
1494 if (ret < 0) {
1495 pm_runtime_put_noidle(cpsw->dev);
1496 return ret;
1497 }
1498
1499 netif_carrier_off(ndev);
1500
1501 /* Notify the stack of the actual queue counts. */
1502 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1503 if (ret) {
1504 dev_err(priv->dev, "cannot set real number of tx queues\n");
1505 goto err_cleanup;
1506 }
1507
1508 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1509 if (ret) {
1510 dev_err(priv->dev, "cannot set real number of rx queues\n");
1511 goto err_cleanup;
1512 }
1513
1514 reg = cpsw->version;
1515
1516 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1517 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1518 CPSW_RTL_VERSION(reg));
1519
1520 /* Initialize host and slave ports */
1521 if (!cpsw->usage_count)
1522 cpsw_init_host_port(priv);
1523 for_each_slave(priv, cpsw_slave_open, priv);
1524
1525 /* Add default VLAN */
1526 if (!cpsw->data.dual_emac)
1527 cpsw_add_default_vlan(priv);
1528 else
1529 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1530 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1531
1532 /* initialize shared resources for every ndev */
1533 if (!cpsw->usage_count) {
1534 /* disable priority elevation */
1535 writel_relaxed(0, &cpsw->regs->ptype);
1536
1537 /* enable statistics collection only on all ports */
1538 writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1539
1540 /* Enable internal fifo flow control */
1541 writel(0x7, &cpsw->regs->flow_control);
1542
1543 napi_enable(&cpsw->napi_rx);
1544 napi_enable(&cpsw->napi_tx);
1545
1546 if (cpsw->tx_irq_disabled) {
1547 cpsw->tx_irq_disabled = false;
1548 enable_irq(cpsw->irqs_table[1]);
1549 }
1550
1551 if (cpsw->rx_irq_disabled) {
1552 cpsw->rx_irq_disabled = false;
1553 enable_irq(cpsw->irqs_table[0]);
1554 }
1555
1556 ret = cpsw_fill_rx_channels(priv);
1557 if (ret < 0)
1558 goto err_cleanup;
1559
1560 if (cpts_register(cpsw->cpts))
1561 dev_err(priv->dev, "error registering cpts device\n");
1562
1563 }
1564
1565 /* Enable Interrupt pacing if configured */
1566 if (cpsw->coal_intvl != 0) {
1567 struct ethtool_coalesce coal;
1568
1569 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1570 cpsw_set_coalesce(ndev, &coal);
1571 }
1572
1573 cpdma_ctlr_start(cpsw->dma);
1574 cpsw_intr_enable(cpsw);
1575 cpsw->usage_count++;
1576
1577 return 0;
1578
1579 err_cleanup:
1580 cpdma_ctlr_stop(cpsw->dma);
1581 for_each_slave(priv, cpsw_slave_stop, cpsw);
1582 pm_runtime_put_sync(cpsw->dev);
1583 netif_carrier_off(priv->ndev);
1584 return ret;
1585 }
1586
1587 static int cpsw_ndo_stop(struct net_device *ndev)
1588 {
1589 struct cpsw_priv *priv = netdev_priv(ndev);
1590 struct cpsw_common *cpsw = priv->cpsw;
1591
1592 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1593 netif_tx_stop_all_queues(priv->ndev);
1594 netif_carrier_off(priv->ndev);
1595
1596 if (cpsw->usage_count <= 1) {
1597 napi_disable(&cpsw->napi_rx);
1598 napi_disable(&cpsw->napi_tx);
1599 cpts_unregister(cpsw->cpts);
1600 cpsw_intr_disable(cpsw);
1601 cpdma_ctlr_stop(cpsw->dma);
1602 cpsw_ale_stop(cpsw->ale);
1603 }
1604 for_each_slave(priv, cpsw_slave_stop, cpsw);
1605
1606 if (cpsw_need_resplit(cpsw))
1607 cpsw_split_res(ndev);
1608
1609 cpsw->usage_count--;
1610 pm_runtime_put_sync(cpsw->dev);
1611 return 0;
1612 }
1613
1614 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1615 struct net_device *ndev)
1616 {
1617 struct cpsw_priv *priv = netdev_priv(ndev);
1618 struct cpsw_common *cpsw = priv->cpsw;
1619 struct cpts *cpts = cpsw->cpts;
1620 struct netdev_queue *txq;
1621 struct cpdma_chan *txch;
1622 int ret, q_idx;
1623
1624 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1625 cpsw_err(priv, tx_err, "packet pad failed\n");
1626 ndev->stats.tx_dropped++;
1627 return NET_XMIT_DROP;
1628 }
1629
1630 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1631 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1632 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1633
1634 q_idx = skb_get_queue_mapping(skb);
1635 if (q_idx >= cpsw->tx_ch_num)
1636 q_idx = q_idx % cpsw->tx_ch_num;
1637
1638 txch = cpsw->txv[q_idx].ch;
1639 txq = netdev_get_tx_queue(ndev, q_idx);
1640 ret = cpsw_tx_packet_submit(priv, skb, txch);
1641 if (unlikely(ret != 0)) {
1642 cpsw_err(priv, tx_err, "desc submit failed\n");
1643 goto fail;
1644 }
1645
1646 /* If there is no more tx desc left free then we need to
1647 * tell the kernel to stop sending us tx frames.
1648 */
1649 if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1650 netif_tx_stop_queue(txq);
1651
1652 /* Barrier, so that stop_queue visible to other cpus */
1653 smp_mb__after_atomic();
1654
1655 if (cpdma_check_free_tx_desc(txch))
1656 netif_tx_wake_queue(txq);
1657 }
1658
1659 return NETDEV_TX_OK;
1660 fail:
1661 ndev->stats.tx_dropped++;
1662 netif_tx_stop_queue(txq);
1663
1664 /* Barrier, so that stop_queue visible to other cpus */
1665 smp_mb__after_atomic();
1666
1667 if (cpdma_check_free_tx_desc(txch))
1668 netif_tx_wake_queue(txq);
1669
1670 return NETDEV_TX_BUSY;
1671 }
1672
1673 #if IS_ENABLED(CONFIG_TI_CPTS)
1674
1675 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1676 {
1677 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1678 u32 ts_en, seq_id;
1679
1680 if (!cpts_is_tx_enabled(cpsw->cpts) &&
1681 !cpts_is_rx_enabled(cpsw->cpts)) {
1682 slave_write(slave, 0, CPSW1_TS_CTL);
1683 return;
1684 }
1685
1686 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1687 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1688
1689 if (cpts_is_tx_enabled(cpsw->cpts))
1690 ts_en |= CPSW_V1_TS_TX_EN;
1691
1692 if (cpts_is_rx_enabled(cpsw->cpts))
1693 ts_en |= CPSW_V1_TS_RX_EN;
1694
1695 slave_write(slave, ts_en, CPSW1_TS_CTL);
1696 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1697 }
1698
1699 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1700 {
1701 struct cpsw_slave *slave;
1702 struct cpsw_common *cpsw = priv->cpsw;
1703 u32 ctrl, mtype;
1704
1705 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1706
1707 ctrl = slave_read(slave, CPSW2_CONTROL);
1708 switch (cpsw->version) {
1709 case CPSW_VERSION_2:
1710 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1711
1712 if (cpts_is_tx_enabled(cpsw->cpts))
1713 ctrl |= CTRL_V2_TX_TS_BITS;
1714
1715 if (cpts_is_rx_enabled(cpsw->cpts))
1716 ctrl |= CTRL_V2_RX_TS_BITS;
1717 break;
1718 case CPSW_VERSION_3:
1719 default:
1720 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1721
1722 if (cpts_is_tx_enabled(cpsw->cpts))
1723 ctrl |= CTRL_V3_TX_TS_BITS;
1724
1725 if (cpts_is_rx_enabled(cpsw->cpts))
1726 ctrl |= CTRL_V3_RX_TS_BITS;
1727 break;
1728 }
1729
1730 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1731
1732 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1733 slave_write(slave, ctrl, CPSW2_CONTROL);
1734 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1735 }
1736
1737 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1738 {
1739 struct cpsw_priv *priv = netdev_priv(dev);
1740 struct hwtstamp_config cfg;
1741 struct cpsw_common *cpsw = priv->cpsw;
1742 struct cpts *cpts = cpsw->cpts;
1743
1744 if (cpsw->version != CPSW_VERSION_1 &&
1745 cpsw->version != CPSW_VERSION_2 &&
1746 cpsw->version != CPSW_VERSION_3)
1747 return -EOPNOTSUPP;
1748
1749 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1750 return -EFAULT;
1751
1752 /* reserved for future extensions */
1753 if (cfg.flags)
1754 return -EINVAL;
1755
1756 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1757 return -ERANGE;
1758
1759 switch (cfg.rx_filter) {
1760 case HWTSTAMP_FILTER_NONE:
1761 cpts_rx_enable(cpts, 0);
1762 break;
1763 case HWTSTAMP_FILTER_ALL:
1764 case HWTSTAMP_FILTER_NTP_ALL:
1765 return -ERANGE;
1766 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1767 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1768 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1769 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1770 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1771 break;
1772 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1773 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1774 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1775 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1776 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1777 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1778 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1779 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1780 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1781 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1782 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1783 break;
1784 default:
1785 return -ERANGE;
1786 }
1787
1788 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1789
1790 switch (cpsw->version) {
1791 case CPSW_VERSION_1:
1792 cpsw_hwtstamp_v1(cpsw);
1793 break;
1794 case CPSW_VERSION_2:
1795 case CPSW_VERSION_3:
1796 cpsw_hwtstamp_v2(priv);
1797 break;
1798 default:
1799 WARN_ON(1);
1800 }
1801
1802 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1803 }
1804
1805 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1806 {
1807 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1808 struct cpts *cpts = cpsw->cpts;
1809 struct hwtstamp_config cfg;
1810
1811 if (cpsw->version != CPSW_VERSION_1 &&
1812 cpsw->version != CPSW_VERSION_2 &&
1813 cpsw->version != CPSW_VERSION_3)
1814 return -EOPNOTSUPP;
1815
1816 cfg.flags = 0;
1817 cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1818 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1819 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1820 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1821
1822 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1823 }
1824 #else
1825 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1826 {
1827 return -EOPNOTSUPP;
1828 }
1829
1830 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1831 {
1832 return -EOPNOTSUPP;
1833 }
1834 #endif /*CONFIG_TI_CPTS*/
1835
1836 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1837 {
1838 struct cpsw_priv *priv = netdev_priv(dev);
1839 struct cpsw_common *cpsw = priv->cpsw;
1840 int slave_no = cpsw_slave_index(cpsw, priv);
1841
1842 if (!netif_running(dev))
1843 return -EINVAL;
1844
1845 switch (cmd) {
1846 case SIOCSHWTSTAMP:
1847 return cpsw_hwtstamp_set(dev, req);
1848 case SIOCGHWTSTAMP:
1849 return cpsw_hwtstamp_get(dev, req);
1850 }
1851
1852 if (!cpsw->slaves[slave_no].phy)
1853 return -EOPNOTSUPP;
1854 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1855 }
1856
1857 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1858 {
1859 struct cpsw_priv *priv = netdev_priv(ndev);
1860 struct cpsw_common *cpsw = priv->cpsw;
1861 int ch;
1862
1863 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1864 ndev->stats.tx_errors++;
1865 cpsw_intr_disable(cpsw);
1866 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1867 cpdma_chan_stop(cpsw->txv[ch].ch);
1868 cpdma_chan_start(cpsw->txv[ch].ch);
1869 }
1870
1871 cpsw_intr_enable(cpsw);
1872 netif_trans_update(ndev);
1873 netif_tx_wake_all_queues(ndev);
1874 }
1875
1876 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1877 {
1878 struct cpsw_priv *priv = netdev_priv(ndev);
1879 struct sockaddr *addr = (struct sockaddr *)p;
1880 struct cpsw_common *cpsw = priv->cpsw;
1881 int flags = 0;
1882 u16 vid = 0;
1883 int ret;
1884
1885 if (!is_valid_ether_addr(addr->sa_data))
1886 return -EADDRNOTAVAIL;
1887
1888 ret = pm_runtime_get_sync(cpsw->dev);
1889 if (ret < 0) {
1890 pm_runtime_put_noidle(cpsw->dev);
1891 return ret;
1892 }
1893
1894 if (cpsw->data.dual_emac) {
1895 vid = cpsw->slaves[priv->emac_port].port_vlan;
1896 flags = ALE_VLAN;
1897 }
1898
1899 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1900 flags, vid);
1901 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1902 flags, vid);
1903
1904 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1905 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1906 for_each_slave(priv, cpsw_set_slave_mac, priv);
1907
1908 pm_runtime_put(cpsw->dev);
1909
1910 return 0;
1911 }
1912
1913 #ifdef CONFIG_NET_POLL_CONTROLLER
1914 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1915 {
1916 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1917
1918 cpsw_intr_disable(cpsw);
1919 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1920 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1921 cpsw_intr_enable(cpsw);
1922 }
1923 #endif
1924
1925 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1926 unsigned short vid)
1927 {
1928 int ret;
1929 int unreg_mcast_mask = 0;
1930 u32 port_mask;
1931 struct cpsw_common *cpsw = priv->cpsw;
1932
1933 if (cpsw->data.dual_emac) {
1934 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1935
1936 if (priv->ndev->flags & IFF_ALLMULTI)
1937 unreg_mcast_mask = port_mask;
1938 } else {
1939 port_mask = ALE_ALL_PORTS;
1940
1941 if (priv->ndev->flags & IFF_ALLMULTI)
1942 unreg_mcast_mask = ALE_ALL_PORTS;
1943 else
1944 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1945 }
1946
1947 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1948 unreg_mcast_mask);
1949 if (ret != 0)
1950 return ret;
1951
1952 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1953 HOST_PORT_NUM, ALE_VLAN, vid);
1954 if (ret != 0)
1955 goto clean_vid;
1956
1957 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1958 port_mask, ALE_VLAN, vid, 0);
1959 if (ret != 0)
1960 goto clean_vlan_ucast;
1961 return 0;
1962
1963 clean_vlan_ucast:
1964 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1965 HOST_PORT_NUM, ALE_VLAN, vid);
1966 clean_vid:
1967 cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1968 return ret;
1969 }
1970
1971 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1972 __be16 proto, u16 vid)
1973 {
1974 struct cpsw_priv *priv = netdev_priv(ndev);
1975 struct cpsw_common *cpsw = priv->cpsw;
1976 int ret;
1977
1978 if (vid == cpsw->data.default_vlan)
1979 return 0;
1980
1981 ret = pm_runtime_get_sync(cpsw->dev);
1982 if (ret < 0) {
1983 pm_runtime_put_noidle(cpsw->dev);
1984 return ret;
1985 }
1986
1987 if (cpsw->data.dual_emac) {
1988 /* In dual EMAC, reserved VLAN id should not be used for
1989 * creating VLAN interfaces as this can break the dual
1990 * EMAC port separation
1991 */
1992 int i;
1993
1994 for (i = 0; i < cpsw->data.slaves; i++) {
1995 if (vid == cpsw->slaves[i].port_vlan)
1996 return -EINVAL;
1997 }
1998 }
1999
2000 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2001 ret = cpsw_add_vlan_ale_entry(priv, vid);
2002
2003 pm_runtime_put(cpsw->dev);
2004 return ret;
2005 }
2006
2007 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2008 __be16 proto, u16 vid)
2009 {
2010 struct cpsw_priv *priv = netdev_priv(ndev);
2011 struct cpsw_common *cpsw = priv->cpsw;
2012 int ret;
2013
2014 if (vid == cpsw->data.default_vlan)
2015 return 0;
2016
2017 ret = pm_runtime_get_sync(cpsw->dev);
2018 if (ret < 0) {
2019 pm_runtime_put_noidle(cpsw->dev);
2020 return ret;
2021 }
2022
2023 if (cpsw->data.dual_emac) {
2024 int i;
2025
2026 for (i = 0; i < cpsw->data.slaves; i++) {
2027 if (vid == cpsw->slaves[i].port_vlan)
2028 return -EINVAL;
2029 }
2030 }
2031
2032 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2033 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2034 if (ret != 0)
2035 return ret;
2036
2037 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2038 HOST_PORT_NUM, ALE_VLAN, vid);
2039 if (ret != 0)
2040 return ret;
2041
2042 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2043 0, ALE_VLAN, vid);
2044 pm_runtime_put(cpsw->dev);
2045 return ret;
2046 }
2047
2048 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2049 {
2050 struct cpsw_priv *priv = netdev_priv(ndev);
2051 struct cpsw_common *cpsw = priv->cpsw;
2052 struct cpsw_slave *slave;
2053 u32 min_rate;
2054 u32 ch_rate;
2055 int i, ret;
2056
2057 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2058 if (ch_rate == rate)
2059 return 0;
2060
2061 ch_rate = rate * 1000;
2062 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2063 if ((ch_rate < min_rate && ch_rate)) {
2064 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2065 min_rate);
2066 return -EINVAL;
2067 }
2068
2069 if (rate > cpsw->speed) {
2070 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2071 return -EINVAL;
2072 }
2073
2074 ret = pm_runtime_get_sync(cpsw->dev);
2075 if (ret < 0) {
2076 pm_runtime_put_noidle(cpsw->dev);
2077 return ret;
2078 }
2079
2080 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2081 pm_runtime_put(cpsw->dev);
2082
2083 if (ret)
2084 return ret;
2085
2086 /* update rates for slaves tx queues */
2087 for (i = 0; i < cpsw->data.slaves; i++) {
2088 slave = &cpsw->slaves[i];
2089 if (!slave->ndev)
2090 continue;
2091
2092 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2093 }
2094
2095 cpsw_split_res(ndev);
2096 return ret;
2097 }
2098
2099 static const struct net_device_ops cpsw_netdev_ops = {
2100 .ndo_open = cpsw_ndo_open,
2101 .ndo_stop = cpsw_ndo_stop,
2102 .ndo_start_xmit = cpsw_ndo_start_xmit,
2103 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
2104 .ndo_do_ioctl = cpsw_ndo_ioctl,
2105 .ndo_validate_addr = eth_validate_addr,
2106 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
2107 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
2108 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
2109 #ifdef CONFIG_NET_POLL_CONTROLLER
2110 .ndo_poll_controller = cpsw_ndo_poll_controller,
2111 #endif
2112 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
2113 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
2114 };
2115
2116 static int cpsw_get_regs_len(struct net_device *ndev)
2117 {
2118 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2119
2120 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2121 }
2122
2123 static void cpsw_get_regs(struct net_device *ndev,
2124 struct ethtool_regs *regs, void *p)
2125 {
2126 u32 *reg = p;
2127 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2128
2129 /* update CPSW IP version */
2130 regs->version = cpsw->version;
2131
2132 cpsw_ale_dump(cpsw->ale, reg);
2133 }
2134
2135 static void cpsw_get_drvinfo(struct net_device *ndev,
2136 struct ethtool_drvinfo *info)
2137 {
2138 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2139 struct platform_device *pdev = to_platform_device(cpsw->dev);
2140
2141 strlcpy(info->driver, "cpsw", sizeof(info->driver));
2142 strlcpy(info->version, "1.0", sizeof(info->version));
2143 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2144 }
2145
2146 static u32 cpsw_get_msglevel(struct net_device *ndev)
2147 {
2148 struct cpsw_priv *priv = netdev_priv(ndev);
2149 return priv->msg_enable;
2150 }
2151
2152 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2153 {
2154 struct cpsw_priv *priv = netdev_priv(ndev);
2155 priv->msg_enable = value;
2156 }
2157
2158 #if IS_ENABLED(CONFIG_TI_CPTS)
2159 static int cpsw_get_ts_info(struct net_device *ndev,
2160 struct ethtool_ts_info *info)
2161 {
2162 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2163
2164 info->so_timestamping =
2165 SOF_TIMESTAMPING_TX_HARDWARE |
2166 SOF_TIMESTAMPING_TX_SOFTWARE |
2167 SOF_TIMESTAMPING_RX_HARDWARE |
2168 SOF_TIMESTAMPING_RX_SOFTWARE |
2169 SOF_TIMESTAMPING_SOFTWARE |
2170 SOF_TIMESTAMPING_RAW_HARDWARE;
2171 info->phc_index = cpsw->cpts->phc_index;
2172 info->tx_types =
2173 (1 << HWTSTAMP_TX_OFF) |
2174 (1 << HWTSTAMP_TX_ON);
2175 info->rx_filters =
2176 (1 << HWTSTAMP_FILTER_NONE) |
2177 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2178 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2179 return 0;
2180 }
2181 #else
2182 static int cpsw_get_ts_info(struct net_device *ndev,
2183 struct ethtool_ts_info *info)
2184 {
2185 info->so_timestamping =
2186 SOF_TIMESTAMPING_TX_SOFTWARE |
2187 SOF_TIMESTAMPING_RX_SOFTWARE |
2188 SOF_TIMESTAMPING_SOFTWARE;
2189 info->phc_index = -1;
2190 info->tx_types = 0;
2191 info->rx_filters = 0;
2192 return 0;
2193 }
2194 #endif
2195
2196 static int cpsw_get_link_ksettings(struct net_device *ndev,
2197 struct ethtool_link_ksettings *ecmd)
2198 {
2199 struct cpsw_priv *priv = netdev_priv(ndev);
2200 struct cpsw_common *cpsw = priv->cpsw;
2201 int slave_no = cpsw_slave_index(cpsw, priv);
2202
2203 if (!cpsw->slaves[slave_no].phy)
2204 return -EOPNOTSUPP;
2205
2206 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2207 return 0;
2208 }
2209
2210 static int cpsw_set_link_ksettings(struct net_device *ndev,
2211 const struct ethtool_link_ksettings *ecmd)
2212 {
2213 struct cpsw_priv *priv = netdev_priv(ndev);
2214 struct cpsw_common *cpsw = priv->cpsw;
2215 int slave_no = cpsw_slave_index(cpsw, priv);
2216
2217 if (cpsw->slaves[slave_no].phy)
2218 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2219 ecmd);
2220 else
2221 return -EOPNOTSUPP;
2222 }
2223
2224 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2225 {
2226 struct cpsw_priv *priv = netdev_priv(ndev);
2227 struct cpsw_common *cpsw = priv->cpsw;
2228 int slave_no = cpsw_slave_index(cpsw, priv);
2229
2230 wol->supported = 0;
2231 wol->wolopts = 0;
2232
2233 if (cpsw->slaves[slave_no].phy)
2234 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2235 }
2236
2237 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2238 {
2239 struct cpsw_priv *priv = netdev_priv(ndev);
2240 struct cpsw_common *cpsw = priv->cpsw;
2241 int slave_no = cpsw_slave_index(cpsw, priv);
2242
2243 if (cpsw->slaves[slave_no].phy)
2244 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2245 else
2246 return -EOPNOTSUPP;
2247 }
2248
2249 static void cpsw_get_pauseparam(struct net_device *ndev,
2250 struct ethtool_pauseparam *pause)
2251 {
2252 struct cpsw_priv *priv = netdev_priv(ndev);
2253
2254 pause->autoneg = AUTONEG_DISABLE;
2255 pause->rx_pause = priv->rx_pause ? true : false;
2256 pause->tx_pause = priv->tx_pause ? true : false;
2257 }
2258
2259 static int cpsw_set_pauseparam(struct net_device *ndev,
2260 struct ethtool_pauseparam *pause)
2261 {
2262 struct cpsw_priv *priv = netdev_priv(ndev);
2263 bool link;
2264
2265 priv->rx_pause = pause->rx_pause ? true : false;
2266 priv->tx_pause = pause->tx_pause ? true : false;
2267
2268 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2269 return 0;
2270 }
2271
2272 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2273 {
2274 struct cpsw_priv *priv = netdev_priv(ndev);
2275 struct cpsw_common *cpsw = priv->cpsw;
2276 int ret;
2277
2278 ret = pm_runtime_get_sync(cpsw->dev);
2279 if (ret < 0) {
2280 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2281 pm_runtime_put_noidle(cpsw->dev);
2282 }
2283
2284 return ret;
2285 }
2286
2287 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2288 {
2289 struct cpsw_priv *priv = netdev_priv(ndev);
2290 int ret;
2291
2292 ret = pm_runtime_put(priv->cpsw->dev);
2293 if (ret < 0)
2294 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2295 }
2296
2297 static void cpsw_get_channels(struct net_device *ndev,
2298 struct ethtool_channels *ch)
2299 {
2300 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2301
2302 ch->max_combined = 0;
2303 ch->max_rx = CPSW_MAX_QUEUES;
2304 ch->max_tx = CPSW_MAX_QUEUES;
2305 ch->max_other = 0;
2306 ch->other_count = 0;
2307 ch->rx_count = cpsw->rx_ch_num;
2308 ch->tx_count = cpsw->tx_ch_num;
2309 ch->combined_count = 0;
2310 }
2311
2312 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2313 struct ethtool_channels *ch)
2314 {
2315 if (ch->combined_count)
2316 return -EINVAL;
2317
2318 /* verify we have at least one channel in each direction */
2319 if (!ch->rx_count || !ch->tx_count)
2320 return -EINVAL;
2321
2322 if (ch->rx_count > cpsw->data.channels ||
2323 ch->tx_count > cpsw->data.channels)
2324 return -EINVAL;
2325
2326 return 0;
2327 }
2328
2329 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2330 {
2331 struct cpsw_common *cpsw = priv->cpsw;
2332 void (*handler)(void *, int, int);
2333 struct netdev_queue *queue;
2334 struct cpsw_vector *vec;
2335 int ret, *ch;
2336
2337 if (rx) {
2338 ch = &cpsw->rx_ch_num;
2339 vec = cpsw->rxv;
2340 handler = cpsw_rx_handler;
2341 } else {
2342 ch = &cpsw->tx_ch_num;
2343 vec = cpsw->txv;
2344 handler = cpsw_tx_handler;
2345 }
2346
2347 while (*ch < ch_num) {
2348 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2349 queue = netdev_get_tx_queue(priv->ndev, *ch);
2350 queue->tx_maxrate = 0;
2351
2352 if (IS_ERR(vec[*ch].ch))
2353 return PTR_ERR(vec[*ch].ch);
2354
2355 if (!vec[*ch].ch)
2356 return -EINVAL;
2357
2358 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2359 (rx ? "rx" : "tx"));
2360 (*ch)++;
2361 }
2362
2363 while (*ch > ch_num) {
2364 (*ch)--;
2365
2366 ret = cpdma_chan_destroy(vec[*ch].ch);
2367 if (ret)
2368 return ret;
2369
2370 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2371 (rx ? "rx" : "tx"));
2372 }
2373
2374 return 0;
2375 }
2376
2377 static int cpsw_update_channels(struct cpsw_priv *priv,
2378 struct ethtool_channels *ch)
2379 {
2380 int ret;
2381
2382 ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2383 if (ret)
2384 return ret;
2385
2386 ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2387 if (ret)
2388 return ret;
2389
2390 return 0;
2391 }
2392
2393 static void cpsw_suspend_data_pass(struct net_device *ndev)
2394 {
2395 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2396 struct cpsw_slave *slave;
2397 int i;
2398
2399 /* Disable NAPI scheduling */
2400 cpsw_intr_disable(cpsw);
2401
2402 /* Stop all transmit queues for every network device.
2403 * Disable re-using rx descriptors with dormant_on.
2404 */
2405 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2406 if (!(slave->ndev && netif_running(slave->ndev)))
2407 continue;
2408
2409 netif_tx_stop_all_queues(slave->ndev);
2410 netif_dormant_on(slave->ndev);
2411 }
2412
2413 /* Handle rest of tx packets and stop cpdma channels */
2414 cpdma_ctlr_stop(cpsw->dma);
2415 }
2416
2417 static int cpsw_resume_data_pass(struct net_device *ndev)
2418 {
2419 struct cpsw_priv *priv = netdev_priv(ndev);
2420 struct cpsw_common *cpsw = priv->cpsw;
2421 struct cpsw_slave *slave;
2422 int i, ret;
2423
2424 /* Allow rx packets handling */
2425 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2426 if (slave->ndev && netif_running(slave->ndev))
2427 netif_dormant_off(slave->ndev);
2428
2429 /* After this receive is started */
2430 if (cpsw->usage_count) {
2431 ret = cpsw_fill_rx_channels(priv);
2432 if (ret)
2433 return ret;
2434
2435 cpdma_ctlr_start(cpsw->dma);
2436 cpsw_intr_enable(cpsw);
2437 }
2438
2439 /* Resume transmit for every affected interface */
2440 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2441 if (slave->ndev && netif_running(slave->ndev))
2442 netif_tx_start_all_queues(slave->ndev);
2443
2444 return 0;
2445 }
2446
2447 static int cpsw_set_channels(struct net_device *ndev,
2448 struct ethtool_channels *chs)
2449 {
2450 struct cpsw_priv *priv = netdev_priv(ndev);
2451 struct cpsw_common *cpsw = priv->cpsw;
2452 struct cpsw_slave *slave;
2453 int i, ret;
2454
2455 ret = cpsw_check_ch_settings(cpsw, chs);
2456 if (ret < 0)
2457 return ret;
2458
2459 cpsw_suspend_data_pass(ndev);
2460 ret = cpsw_update_channels(priv, chs);
2461 if (ret)
2462 goto err;
2463
2464 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2465 if (!(slave->ndev && netif_running(slave->ndev)))
2466 continue;
2467
2468 /* Inform stack about new count of queues */
2469 ret = netif_set_real_num_tx_queues(slave->ndev,
2470 cpsw->tx_ch_num);
2471 if (ret) {
2472 dev_err(priv->dev, "cannot set real number of tx queues\n");
2473 goto err;
2474 }
2475
2476 ret = netif_set_real_num_rx_queues(slave->ndev,
2477 cpsw->rx_ch_num);
2478 if (ret) {
2479 dev_err(priv->dev, "cannot set real number of rx queues\n");
2480 goto err;
2481 }
2482 }
2483
2484 if (cpsw->usage_count)
2485 cpsw_split_res(ndev);
2486
2487 ret = cpsw_resume_data_pass(ndev);
2488 if (!ret)
2489 return 0;
2490 err:
2491 dev_err(priv->dev, "cannot update channels number, closing device\n");
2492 dev_close(ndev);
2493 return ret;
2494 }
2495
2496 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2497 {
2498 struct cpsw_priv *priv = netdev_priv(ndev);
2499 struct cpsw_common *cpsw = priv->cpsw;
2500 int slave_no = cpsw_slave_index(cpsw, priv);
2501
2502 if (cpsw->slaves[slave_no].phy)
2503 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2504 else
2505 return -EOPNOTSUPP;
2506 }
2507
2508 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2509 {
2510 struct cpsw_priv *priv = netdev_priv(ndev);
2511 struct cpsw_common *cpsw = priv->cpsw;
2512 int slave_no = cpsw_slave_index(cpsw, priv);
2513
2514 if (cpsw->slaves[slave_no].phy)
2515 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2516 else
2517 return -EOPNOTSUPP;
2518 }
2519
2520 static int cpsw_nway_reset(struct net_device *ndev)
2521 {
2522 struct cpsw_priv *priv = netdev_priv(ndev);
2523 struct cpsw_common *cpsw = priv->cpsw;
2524 int slave_no = cpsw_slave_index(cpsw, priv);
2525
2526 if (cpsw->slaves[slave_no].phy)
2527 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2528 else
2529 return -EOPNOTSUPP;
2530 }
2531
2532 static void cpsw_get_ringparam(struct net_device *ndev,
2533 struct ethtool_ringparam *ering)
2534 {
2535 struct cpsw_priv *priv = netdev_priv(ndev);
2536 struct cpsw_common *cpsw = priv->cpsw;
2537
2538 /* not supported */
2539 ering->tx_max_pending = 0;
2540 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2541 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2542 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2543 }
2544
2545 static int cpsw_set_ringparam(struct net_device *ndev,
2546 struct ethtool_ringparam *ering)
2547 {
2548 struct cpsw_priv *priv = netdev_priv(ndev);
2549 struct cpsw_common *cpsw = priv->cpsw;
2550 int ret;
2551
2552 /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2553
2554 if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2555 ering->rx_pending < CPSW_MAX_QUEUES ||
2556 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2557 return -EINVAL;
2558
2559 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2560 return 0;
2561
2562 cpsw_suspend_data_pass(ndev);
2563
2564 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2565
2566 if (cpsw->usage_count)
2567 cpdma_chan_split_pool(cpsw->dma);
2568
2569 ret = cpsw_resume_data_pass(ndev);
2570 if (!ret)
2571 return 0;
2572
2573 dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2574 dev_close(ndev);
2575 return ret;
2576 }
2577
2578 static const struct ethtool_ops cpsw_ethtool_ops = {
2579 .get_drvinfo = cpsw_get_drvinfo,
2580 .get_msglevel = cpsw_get_msglevel,
2581 .set_msglevel = cpsw_set_msglevel,
2582 .get_link = ethtool_op_get_link,
2583 .get_ts_info = cpsw_get_ts_info,
2584 .get_coalesce = cpsw_get_coalesce,
2585 .set_coalesce = cpsw_set_coalesce,
2586 .get_sset_count = cpsw_get_sset_count,
2587 .get_strings = cpsw_get_strings,
2588 .get_ethtool_stats = cpsw_get_ethtool_stats,
2589 .get_pauseparam = cpsw_get_pauseparam,
2590 .set_pauseparam = cpsw_set_pauseparam,
2591 .get_wol = cpsw_get_wol,
2592 .set_wol = cpsw_set_wol,
2593 .get_regs_len = cpsw_get_regs_len,
2594 .get_regs = cpsw_get_regs,
2595 .begin = cpsw_ethtool_op_begin,
2596 .complete = cpsw_ethtool_op_complete,
2597 .get_channels = cpsw_get_channels,
2598 .set_channels = cpsw_set_channels,
2599 .get_link_ksettings = cpsw_get_link_ksettings,
2600 .set_link_ksettings = cpsw_set_link_ksettings,
2601 .get_eee = cpsw_get_eee,
2602 .set_eee = cpsw_set_eee,
2603 .nway_reset = cpsw_nway_reset,
2604 .get_ringparam = cpsw_get_ringparam,
2605 .set_ringparam = cpsw_set_ringparam,
2606 };
2607
2608 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2609 u32 slave_reg_ofs, u32 sliver_reg_ofs)
2610 {
2611 void __iomem *regs = cpsw->regs;
2612 int slave_num = slave->slave_num;
2613 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num;
2614
2615 slave->data = data;
2616 slave->regs = regs + slave_reg_ofs;
2617 slave->sliver = regs + sliver_reg_ofs;
2618 slave->port_vlan = data->dual_emac_res_vlan;
2619 }
2620
2621 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2622 struct platform_device *pdev)
2623 {
2624 struct device_node *node = pdev->dev.of_node;
2625 struct device_node *slave_node;
2626 int i = 0, ret;
2627 u32 prop;
2628
2629 if (!node)
2630 return -EINVAL;
2631
2632 if (of_property_read_u32(node, "slaves", &prop)) {
2633 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2634 return -EINVAL;
2635 }
2636 data->slaves = prop;
2637
2638 if (of_property_read_u32(node, "active_slave", &prop)) {
2639 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2640 return -EINVAL;
2641 }
2642 data->active_slave = prop;
2643
2644 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2645 * sizeof(struct cpsw_slave_data),
2646 GFP_KERNEL);
2647 if (!data->slave_data)
2648 return -ENOMEM;
2649
2650 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2651 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2652 return -EINVAL;
2653 }
2654 data->channels = prop;
2655
2656 if (of_property_read_u32(node, "ale_entries", &prop)) {
2657 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2658 return -EINVAL;
2659 }
2660 data->ale_entries = prop;
2661
2662 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2663 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2664 return -EINVAL;
2665 }
2666 data->bd_ram_size = prop;
2667
2668 if (of_property_read_u32(node, "mac_control", &prop)) {
2669 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2670 return -EINVAL;
2671 }
2672 data->mac_control = prop;
2673
2674 if (of_property_read_bool(node, "dual_emac"))
2675 data->dual_emac = 1;
2676
2677 /*
2678 * Populate all the child nodes here...
2679 */
2680 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2681 /* We do not want to force this, as in some cases may not have child */
2682 if (ret)
2683 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2684
2685 for_each_available_child_of_node(node, slave_node) {
2686 struct cpsw_slave_data *slave_data = data->slave_data + i;
2687 const void *mac_addr = NULL;
2688 int lenp;
2689 const __be32 *parp;
2690
2691 /* This is no slave child node, continue */
2692 if (strcmp(slave_node->name, "slave"))
2693 continue;
2694
2695 slave_data->phy_node = of_parse_phandle(slave_node,
2696 "phy-handle", 0);
2697 parp = of_get_property(slave_node, "phy_id", &lenp);
2698 if (slave_data->phy_node) {
2699 dev_dbg(&pdev->dev,
2700 "slave[%d] using phy-handle=\"%pOF\"\n",
2701 i, slave_data->phy_node);
2702 } else if (of_phy_is_fixed_link(slave_node)) {
2703 /* In the case of a fixed PHY, the DT node associated
2704 * to the PHY is the Ethernet MAC DT node.
2705 */
2706 ret = of_phy_register_fixed_link(slave_node);
2707 if (ret) {
2708 if (ret != -EPROBE_DEFER)
2709 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2710 return ret;
2711 }
2712 slave_data->phy_node = of_node_get(slave_node);
2713 } else if (parp) {
2714 u32 phyid;
2715 struct device_node *mdio_node;
2716 struct platform_device *mdio;
2717
2718 if (lenp != (sizeof(__be32) * 2)) {
2719 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2720 goto no_phy_slave;
2721 }
2722 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2723 phyid = be32_to_cpup(parp+1);
2724 mdio = of_find_device_by_node(mdio_node);
2725 of_node_put(mdio_node);
2726 if (!mdio) {
2727 dev_err(&pdev->dev, "Missing mdio platform device\n");
2728 return -EINVAL;
2729 }
2730 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2731 PHY_ID_FMT, mdio->name, phyid);
2732 put_device(&mdio->dev);
2733 } else {
2734 dev_err(&pdev->dev,
2735 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2736 i);
2737 goto no_phy_slave;
2738 }
2739 slave_data->phy_if = of_get_phy_mode(slave_node);
2740 if (slave_data->phy_if < 0) {
2741 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2742 i);
2743 return slave_data->phy_if;
2744 }
2745
2746 no_phy_slave:
2747 mac_addr = of_get_mac_address(slave_node);
2748 if (mac_addr) {
2749 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2750 } else {
2751 ret = ti_cm_get_macid(&pdev->dev, i,
2752 slave_data->mac_addr);
2753 if (ret)
2754 return ret;
2755 }
2756 if (data->dual_emac) {
2757 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2758 &prop)) {
2759 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2760 slave_data->dual_emac_res_vlan = i+1;
2761 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2762 slave_data->dual_emac_res_vlan, i);
2763 } else {
2764 slave_data->dual_emac_res_vlan = prop;
2765 }
2766 }
2767
2768 i++;
2769 if (i == data->slaves)
2770 break;
2771 }
2772
2773 return 0;
2774 }
2775
2776 static void cpsw_remove_dt(struct platform_device *pdev)
2777 {
2778 struct net_device *ndev = platform_get_drvdata(pdev);
2779 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2780 struct cpsw_platform_data *data = &cpsw->data;
2781 struct device_node *node = pdev->dev.of_node;
2782 struct device_node *slave_node;
2783 int i = 0;
2784
2785 for_each_available_child_of_node(node, slave_node) {
2786 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2787
2788 if (strcmp(slave_node->name, "slave"))
2789 continue;
2790
2791 if (of_phy_is_fixed_link(slave_node))
2792 of_phy_deregister_fixed_link(slave_node);
2793
2794 of_node_put(slave_data->phy_node);
2795
2796 i++;
2797 if (i == data->slaves)
2798 break;
2799 }
2800
2801 of_platform_depopulate(&pdev->dev);
2802 }
2803
2804 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2805 {
2806 struct cpsw_common *cpsw = priv->cpsw;
2807 struct cpsw_platform_data *data = &cpsw->data;
2808 struct net_device *ndev;
2809 struct cpsw_priv *priv_sl2;
2810 int ret = 0;
2811
2812 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2813 if (!ndev) {
2814 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2815 return -ENOMEM;
2816 }
2817
2818 priv_sl2 = netdev_priv(ndev);
2819 priv_sl2->cpsw = cpsw;
2820 priv_sl2->ndev = ndev;
2821 priv_sl2->dev = &ndev->dev;
2822 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2823
2824 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2825 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2826 ETH_ALEN);
2827 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2828 priv_sl2->mac_addr);
2829 } else {
2830 random_ether_addr(priv_sl2->mac_addr);
2831 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2832 priv_sl2->mac_addr);
2833 }
2834 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2835
2836 priv_sl2->emac_port = 1;
2837 cpsw->slaves[1].ndev = ndev;
2838 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2839
2840 ndev->netdev_ops = &cpsw_netdev_ops;
2841 ndev->ethtool_ops = &cpsw_ethtool_ops;
2842
2843 /* register the network device */
2844 SET_NETDEV_DEV(ndev, cpsw->dev);
2845 ret = register_netdev(ndev);
2846 if (ret) {
2847 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2848 free_netdev(ndev);
2849 ret = -ENODEV;
2850 }
2851
2852 return ret;
2853 }
2854
2855 #define CPSW_QUIRK_IRQ BIT(0)
2856
2857 static const struct platform_device_id cpsw_devtype[] = {
2858 {
2859 /* keep it for existing comaptibles */
2860 .name = "cpsw",
2861 .driver_data = CPSW_QUIRK_IRQ,
2862 }, {
2863 .name = "am335x-cpsw",
2864 .driver_data = CPSW_QUIRK_IRQ,
2865 }, {
2866 .name = "am4372-cpsw",
2867 .driver_data = 0,
2868 }, {
2869 .name = "dra7-cpsw",
2870 .driver_data = 0,
2871 }, {
2872 /* sentinel */
2873 }
2874 };
2875 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2876
2877 enum ti_cpsw_type {
2878 CPSW = 0,
2879 AM335X_CPSW,
2880 AM4372_CPSW,
2881 DRA7_CPSW,
2882 };
2883
2884 static const struct of_device_id cpsw_of_mtable[] = {
2885 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2886 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2887 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2888 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2889 { /* sentinel */ },
2890 };
2891 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2892
2893 static int cpsw_probe(struct platform_device *pdev)
2894 {
2895 struct clk *clk;
2896 struct cpsw_platform_data *data;
2897 struct net_device *ndev;
2898 struct cpsw_priv *priv;
2899 struct cpdma_params dma_params;
2900 struct cpsw_ale_params ale_params;
2901 void __iomem *ss_regs;
2902 void __iomem *cpts_regs;
2903 struct resource *res, *ss_res;
2904 const struct of_device_id *of_id;
2905 struct gpio_descs *mode;
2906 u32 slave_offset, sliver_offset, slave_size;
2907 struct cpsw_common *cpsw;
2908 int ret = 0, i;
2909 int irq;
2910
2911 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2912 if (!cpsw)
2913 return -ENOMEM;
2914
2915 cpsw->dev = &pdev->dev;
2916
2917 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2918 if (!ndev) {
2919 dev_err(&pdev->dev, "error allocating net_device\n");
2920 return -ENOMEM;
2921 }
2922
2923 platform_set_drvdata(pdev, ndev);
2924 priv = netdev_priv(ndev);
2925 priv->cpsw = cpsw;
2926 priv->ndev = ndev;
2927 priv->dev = &ndev->dev;
2928 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2929 cpsw->rx_packet_max = max(rx_packet_max, 128);
2930
2931 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2932 if (IS_ERR(mode)) {
2933 ret = PTR_ERR(mode);
2934 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2935 goto clean_ndev_ret;
2936 }
2937
2938 /*
2939 * This may be required here for child devices.
2940 */
2941 pm_runtime_enable(&pdev->dev);
2942
2943 /* Select default pin state */
2944 pinctrl_pm_select_default_state(&pdev->dev);
2945
2946 /* Need to enable clocks with runtime PM api to access module
2947 * registers
2948 */
2949 ret = pm_runtime_get_sync(&pdev->dev);
2950 if (ret < 0) {
2951 pm_runtime_put_noidle(&pdev->dev);
2952 goto clean_runtime_disable_ret;
2953 }
2954
2955 ret = cpsw_probe_dt(&cpsw->data, pdev);
2956 if (ret)
2957 goto clean_dt_ret;
2958
2959 data = &cpsw->data;
2960 cpsw->rx_ch_num = 1;
2961 cpsw->tx_ch_num = 1;
2962
2963 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2964 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2965 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2966 } else {
2967 eth_random_addr(priv->mac_addr);
2968 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2969 }
2970
2971 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2972
2973 cpsw->slaves = devm_kzalloc(&pdev->dev,
2974 sizeof(struct cpsw_slave) * data->slaves,
2975 GFP_KERNEL);
2976 if (!cpsw->slaves) {
2977 ret = -ENOMEM;
2978 goto clean_dt_ret;
2979 }
2980 for (i = 0; i < data->slaves; i++)
2981 cpsw->slaves[i].slave_num = i;
2982
2983 cpsw->slaves[0].ndev = ndev;
2984 priv->emac_port = 0;
2985
2986 clk = devm_clk_get(&pdev->dev, "fck");
2987 if (IS_ERR(clk)) {
2988 dev_err(priv->dev, "fck is not found\n");
2989 ret = -ENODEV;
2990 goto clean_dt_ret;
2991 }
2992 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2993
2994 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2995 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2996 if (IS_ERR(ss_regs)) {
2997 ret = PTR_ERR(ss_regs);
2998 goto clean_dt_ret;
2999 }
3000 cpsw->regs = ss_regs;
3001
3002 cpsw->version = readl(&cpsw->regs->id_ver);
3003
3004 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3005 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3006 if (IS_ERR(cpsw->wr_regs)) {
3007 ret = PTR_ERR(cpsw->wr_regs);
3008 goto clean_dt_ret;
3009 }
3010
3011 memset(&dma_params, 0, sizeof(dma_params));
3012 memset(&ale_params, 0, sizeof(ale_params));
3013
3014 switch (cpsw->version) {
3015 case CPSW_VERSION_1:
3016 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3017 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
3018 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
3019 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
3020 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
3021 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
3022 slave_offset = CPSW1_SLAVE_OFFSET;
3023 slave_size = CPSW1_SLAVE_SIZE;
3024 sliver_offset = CPSW1_SLIVER_OFFSET;
3025 dma_params.desc_mem_phys = 0;
3026 break;
3027 case CPSW_VERSION_2:
3028 case CPSW_VERSION_3:
3029 case CPSW_VERSION_4:
3030 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3031 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
3032 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
3033 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
3034 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
3035 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
3036 slave_offset = CPSW2_SLAVE_OFFSET;
3037 slave_size = CPSW2_SLAVE_SIZE;
3038 sliver_offset = CPSW2_SLIVER_OFFSET;
3039 dma_params.desc_mem_phys =
3040 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3041 break;
3042 default:
3043 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3044 ret = -ENODEV;
3045 goto clean_dt_ret;
3046 }
3047 for (i = 0; i < cpsw->data.slaves; i++) {
3048 struct cpsw_slave *slave = &cpsw->slaves[i];
3049
3050 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3051 slave_offset += slave_size;
3052 sliver_offset += SLIVER_SIZE;
3053 }
3054
3055 dma_params.dev = &pdev->dev;
3056 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
3057 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
3058 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
3059 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
3060 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
3061
3062 dma_params.num_chan = data->channels;
3063 dma_params.has_soft_reset = true;
3064 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
3065 dma_params.desc_mem_size = data->bd_ram_size;
3066 dma_params.desc_align = 16;
3067 dma_params.has_ext_regs = true;
3068 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
3069 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
3070 dma_params.descs_pool_size = descs_pool_size;
3071
3072 cpsw->dma = cpdma_ctlr_create(&dma_params);
3073 if (!cpsw->dma) {
3074 dev_err(priv->dev, "error initializing dma\n");
3075 ret = -ENOMEM;
3076 goto clean_dt_ret;
3077 }
3078
3079 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3080 if (IS_ERR(cpsw->txv[0].ch)) {
3081 dev_err(priv->dev, "error initializing tx dma channel\n");
3082 ret = PTR_ERR(cpsw->txv[0].ch);
3083 goto clean_dma_ret;
3084 }
3085
3086 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3087 if (IS_ERR(cpsw->rxv[0].ch)) {
3088 dev_err(priv->dev, "error initializing rx dma channel\n");
3089 ret = PTR_ERR(cpsw->rxv[0].ch);
3090 goto clean_dma_ret;
3091 }
3092
3093 ale_params.dev = &pdev->dev;
3094 ale_params.ale_ageout = ale_ageout;
3095 ale_params.ale_entries = data->ale_entries;
3096 ale_params.ale_ports = CPSW_ALE_PORTS_NUM;
3097
3098 cpsw->ale = cpsw_ale_create(&ale_params);
3099 if (!cpsw->ale) {
3100 dev_err(priv->dev, "error initializing ale engine\n");
3101 ret = -ENODEV;
3102 goto clean_dma_ret;
3103 }
3104
3105 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3106 if (IS_ERR(cpsw->cpts)) {
3107 ret = PTR_ERR(cpsw->cpts);
3108 goto clean_dma_ret;
3109 }
3110
3111 ndev->irq = platform_get_irq(pdev, 1);
3112 if (ndev->irq < 0) {
3113 dev_err(priv->dev, "error getting irq resource\n");
3114 ret = ndev->irq;
3115 goto clean_dma_ret;
3116 }
3117
3118 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3119 if (of_id) {
3120 pdev->id_entry = of_id->data;
3121 if (pdev->id_entry->driver_data)
3122 cpsw->quirk_irq = true;
3123 }
3124
3125 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3126
3127 ndev->netdev_ops = &cpsw_netdev_ops;
3128 ndev->ethtool_ops = &cpsw_ethtool_ops;
3129 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3130 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3131 cpsw_split_res(ndev);
3132
3133 /* register the network device */
3134 SET_NETDEV_DEV(ndev, &pdev->dev);
3135 ret = register_netdev(ndev);
3136 if (ret) {
3137 dev_err(priv->dev, "error registering net device\n");
3138 ret = -ENODEV;
3139 goto clean_dma_ret;
3140 }
3141
3142 if (cpsw->data.dual_emac) {
3143 ret = cpsw_probe_dual_emac(priv);
3144 if (ret) {
3145 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3146 goto clean_unregister_netdev_ret;
3147 }
3148 }
3149
3150 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3151 * MISC IRQs which are always kept disabled with this driver so
3152 * we will not request them.
3153 *
3154 * If anyone wants to implement support for those, make sure to
3155 * first request and append them to irqs_table array.
3156 */
3157
3158 /* RX IRQ */
3159 irq = platform_get_irq(pdev, 1);
3160 if (irq < 0) {
3161 ret = irq;
3162 goto clean_dma_ret;
3163 }
3164
3165 cpsw->irqs_table[0] = irq;
3166 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3167 0, dev_name(&pdev->dev), cpsw);
3168 if (ret < 0) {
3169 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3170 goto clean_dma_ret;
3171 }
3172
3173 /* TX IRQ */
3174 irq = platform_get_irq(pdev, 2);
3175 if (irq < 0) {
3176 ret = irq;
3177 goto clean_dma_ret;
3178 }
3179
3180 cpsw->irqs_table[1] = irq;
3181 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3182 0, dev_name(&pdev->dev), cpsw);
3183 if (ret < 0) {
3184 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3185 goto clean_dma_ret;
3186 }
3187
3188 cpsw_notice(priv, probe,
3189 "initialized device (regs %pa, irq %d, pool size %d)\n",
3190 &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3191
3192 pm_runtime_put(&pdev->dev);
3193
3194 return 0;
3195
3196 clean_unregister_netdev_ret:
3197 unregister_netdev(ndev);
3198 clean_dma_ret:
3199 cpdma_ctlr_destroy(cpsw->dma);
3200 clean_dt_ret:
3201 cpsw_remove_dt(pdev);
3202 pm_runtime_put_sync(&pdev->dev);
3203 clean_runtime_disable_ret:
3204 pm_runtime_disable(&pdev->dev);
3205 clean_ndev_ret:
3206 free_netdev(priv->ndev);
3207 return ret;
3208 }
3209
3210 static int cpsw_remove(struct platform_device *pdev)
3211 {
3212 struct net_device *ndev = platform_get_drvdata(pdev);
3213 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3214 int ret;
3215
3216 ret = pm_runtime_get_sync(&pdev->dev);
3217 if (ret < 0) {
3218 pm_runtime_put_noidle(&pdev->dev);
3219 return ret;
3220 }
3221
3222 if (cpsw->data.dual_emac)
3223 unregister_netdev(cpsw->slaves[1].ndev);
3224 unregister_netdev(ndev);
3225
3226 cpts_release(cpsw->cpts);
3227 cpdma_ctlr_destroy(cpsw->dma);
3228 cpsw_remove_dt(pdev);
3229 pm_runtime_put_sync(&pdev->dev);
3230 pm_runtime_disable(&pdev->dev);
3231 if (cpsw->data.dual_emac)
3232 free_netdev(cpsw->slaves[1].ndev);
3233 free_netdev(ndev);
3234 return 0;
3235 }
3236
3237 #ifdef CONFIG_PM_SLEEP
3238 static int cpsw_suspend(struct device *dev)
3239 {
3240 struct platform_device *pdev = to_platform_device(dev);
3241 struct net_device *ndev = platform_get_drvdata(pdev);
3242 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3243
3244 if (cpsw->data.dual_emac) {
3245 int i;
3246
3247 for (i = 0; i < cpsw->data.slaves; i++) {
3248 if (netif_running(cpsw->slaves[i].ndev))
3249 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3250 }
3251 } else {
3252 if (netif_running(ndev))
3253 cpsw_ndo_stop(ndev);
3254 }
3255
3256 /* Select sleep pin state */
3257 pinctrl_pm_select_sleep_state(dev);
3258
3259 return 0;
3260 }
3261
3262 static int cpsw_resume(struct device *dev)
3263 {
3264 struct platform_device *pdev = to_platform_device(dev);
3265 struct net_device *ndev = platform_get_drvdata(pdev);
3266 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3267
3268 /* Select default pin state */
3269 pinctrl_pm_select_default_state(dev);
3270
3271 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3272 rtnl_lock();
3273 if (cpsw->data.dual_emac) {
3274 int i;
3275
3276 for (i = 0; i < cpsw->data.slaves; i++) {
3277 if (netif_running(cpsw->slaves[i].ndev))
3278 cpsw_ndo_open(cpsw->slaves[i].ndev);
3279 }
3280 } else {
3281 if (netif_running(ndev))
3282 cpsw_ndo_open(ndev);
3283 }
3284 rtnl_unlock();
3285
3286 return 0;
3287 }
3288 #endif
3289
3290 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3291
3292 static struct platform_driver cpsw_driver = {
3293 .driver = {
3294 .name = "cpsw",
3295 .pm = &cpsw_pm_ops,
3296 .of_match_table = cpsw_of_mtable,
3297 },
3298 .probe = cpsw_probe,
3299 .remove = cpsw_remove,
3300 };
3301
3302 module_platform_driver(cpsw_driver);
3303
3304 MODULE_LICENSE("GPL");
3305 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3306 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3307 MODULE_DESCRIPTION("TI CPSW Ethernet driver");