]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/ti/cpsw.c
net: ethernet: ti: cpsw: wake tx queues on ndo_tx_timeout
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38
39 #include <linux/pinctrl/consumer.h>
40
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45
46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
53 NETIF_MSG_RX_STATUS)
54
55 #define cpsw_info(priv, type, format, ...) \
56 do { \
57 if (netif_msg_##type(priv) && net_ratelimit()) \
58 dev_info(priv->dev, format, ## __VA_ARGS__); \
59 } while (0)
60
61 #define cpsw_err(priv, type, format, ...) \
62 do { \
63 if (netif_msg_##type(priv) && net_ratelimit()) \
64 dev_err(priv->dev, format, ## __VA_ARGS__); \
65 } while (0)
66
67 #define cpsw_dbg(priv, type, format, ...) \
68 do { \
69 if (netif_msg_##type(priv) && net_ratelimit()) \
70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
71 } while (0)
72
73 #define cpsw_notice(priv, type, format, ...) \
74 do { \
75 if (netif_msg_##type(priv) && net_ratelimit()) \
76 dev_notice(priv->dev, format, ## __VA_ARGS__); \
77 } while (0)
78
79 #define ALE_ALL_PORTS 0x7
80
81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
84
85 #define CPSW_VERSION_1 0x19010a
86 #define CPSW_VERSION_2 0x19010c
87 #define CPSW_VERSION_3 0x19010f
88 #define CPSW_VERSION_4 0x190112
89
90 #define HOST_PORT_NUM 0
91 #define SLIVER_SIZE 0x40
92
93 #define CPSW1_HOST_PORT_OFFSET 0x028
94 #define CPSW1_SLAVE_OFFSET 0x050
95 #define CPSW1_SLAVE_SIZE 0x040
96 #define CPSW1_CPDMA_OFFSET 0x100
97 #define CPSW1_STATERAM_OFFSET 0x200
98 #define CPSW1_HW_STATS 0x400
99 #define CPSW1_CPTS_OFFSET 0x500
100 #define CPSW1_ALE_OFFSET 0x600
101 #define CPSW1_SLIVER_OFFSET 0x700
102
103 #define CPSW2_HOST_PORT_OFFSET 0x108
104 #define CPSW2_SLAVE_OFFSET 0x200
105 #define CPSW2_SLAVE_SIZE 0x100
106 #define CPSW2_CPDMA_OFFSET 0x800
107 #define CPSW2_HW_STATS 0x900
108 #define CPSW2_STATERAM_OFFSET 0xa00
109 #define CPSW2_CPTS_OFFSET 0xc00
110 #define CPSW2_ALE_OFFSET 0xd00
111 #define CPSW2_SLIVER_OFFSET 0xd80
112 #define CPSW2_BD_OFFSET 0x2000
113
114 #define CPDMA_RXTHRESH 0x0c0
115 #define CPDMA_RXFREE 0x0e0
116 #define CPDMA_TXHDP 0x00
117 #define CPDMA_RXHDP 0x20
118 #define CPDMA_TXCP 0x40
119 #define CPDMA_RXCP 0x60
120
121 #define CPSW_POLL_WEIGHT 64
122 #define CPSW_MIN_PACKET_SIZE 60
123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4)
124
125 #define RX_PRIORITY_MAPPING 0x76543210
126 #define TX_PRIORITY_MAPPING 0x33221100
127 #define CPDMA_TX_PRIORITY_MAP 0x01234567
128
129 #define CPSW_VLAN_AWARE BIT(1)
130 #define CPSW_ALE_VLAN_AWARE 1
131
132 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
135
136 #define CPSW_INTPACEEN (0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT 63
139 #define CPSW_CMINTMIN_CNT 2
140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
142
143 #define cpsw_slave_index(cpsw, priv) \
144 ((cpsw->data.dual_emac) ? priv->emac_port : \
145 cpsw->data.active_slave)
146 #define IRQ_NUM 2
147 #define CPSW_MAX_QUEUES 8
148 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149
150 static int debug_level;
151 module_param(debug_level, int, 0);
152 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
153
154 static int ale_ageout = 10;
155 module_param(ale_ageout, int, 0);
156 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
157
158 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
159 module_param(rx_packet_max, int, 0);
160 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
161
162 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
163 module_param(descs_pool_size, int, 0444);
164 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
165
166 struct cpsw_wr_regs {
167 u32 id_ver;
168 u32 soft_reset;
169 u32 control;
170 u32 int_control;
171 u32 rx_thresh_en;
172 u32 rx_en;
173 u32 tx_en;
174 u32 misc_en;
175 u32 mem_allign1[8];
176 u32 rx_thresh_stat;
177 u32 rx_stat;
178 u32 tx_stat;
179 u32 misc_stat;
180 u32 mem_allign2[8];
181 u32 rx_imax;
182 u32 tx_imax;
183
184 };
185
186 struct cpsw_ss_regs {
187 u32 id_ver;
188 u32 control;
189 u32 soft_reset;
190 u32 stat_port_en;
191 u32 ptype;
192 u32 soft_idle;
193 u32 thru_rate;
194 u32 gap_thresh;
195 u32 tx_start_wds;
196 u32 flow_control;
197 u32 vlan_ltype;
198 u32 ts_ltype;
199 u32 dlr_ltype;
200 };
201
202 /* CPSW_PORT_V1 */
203 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
204 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
205 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
206 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
207 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
208 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
209 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
210 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
211
212 /* CPSW_PORT_V2 */
213 #define CPSW2_CONTROL 0x00 /* Control Register */
214 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
215 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
216 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
217 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
218 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
219 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
220
221 /* CPSW_PORT_V1 and V2 */
222 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
223 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
224 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
225
226 /* CPSW_PORT_V2 only */
227 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
235
236 /* Bit definitions for the CPSW2_CONTROL register */
237 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
238 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
239 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
240 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
241 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
242 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
243 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
244 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
245 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
246 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
247 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
248 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
249 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
250 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
251 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
252 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
253 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
254
255 #define CTRL_V2_TS_BITS \
256 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258
259 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
260 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
261 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
262
263
264 #define CTRL_V3_TS_BITS \
265 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
266 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
267 TS_LTYPE1_EN)
268
269 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
270 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
271 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
272
273 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
274 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
275 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
276 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
277 #define TS_MSG_TYPE_EN_MASK (0xffff)
278
279 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
280 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281
282 /* Bit definitions for the CPSW1_TS_CTL register */
283 #define CPSW_V1_TS_RX_EN BIT(0)
284 #define CPSW_V1_TS_TX_EN BIT(4)
285 #define CPSW_V1_MSG_TYPE_OFS 16
286
287 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
288 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
289
290 struct cpsw_host_regs {
291 u32 max_blks;
292 u32 blk_cnt;
293 u32 tx_in_ctl;
294 u32 port_vlan;
295 u32 tx_pri_map;
296 u32 cpdma_tx_pri_map;
297 u32 cpdma_rx_chan_map;
298 };
299
300 struct cpsw_sliver_regs {
301 u32 id_ver;
302 u32 mac_control;
303 u32 mac_status;
304 u32 soft_reset;
305 u32 rx_maxlen;
306 u32 __reserved_0;
307 u32 rx_pause;
308 u32 tx_pause;
309 u32 __reserved_1;
310 u32 rx_pri_map;
311 };
312
313 struct cpsw_hw_stats {
314 u32 rxgoodframes;
315 u32 rxbroadcastframes;
316 u32 rxmulticastframes;
317 u32 rxpauseframes;
318 u32 rxcrcerrors;
319 u32 rxaligncodeerrors;
320 u32 rxoversizedframes;
321 u32 rxjabberframes;
322 u32 rxundersizedframes;
323 u32 rxfragments;
324 u32 __pad_0[2];
325 u32 rxoctets;
326 u32 txgoodframes;
327 u32 txbroadcastframes;
328 u32 txmulticastframes;
329 u32 txpauseframes;
330 u32 txdeferredframes;
331 u32 txcollisionframes;
332 u32 txsinglecollframes;
333 u32 txmultcollframes;
334 u32 txexcessivecollisions;
335 u32 txlatecollisions;
336 u32 txunderrun;
337 u32 txcarriersenseerrors;
338 u32 txoctets;
339 u32 octetframes64;
340 u32 octetframes65t127;
341 u32 octetframes128t255;
342 u32 octetframes256t511;
343 u32 octetframes512t1023;
344 u32 octetframes1024tup;
345 u32 netoctets;
346 u32 rxsofoverruns;
347 u32 rxmofoverruns;
348 u32 rxdmaoverruns;
349 };
350
351 struct cpsw_slave {
352 void __iomem *regs;
353 struct cpsw_sliver_regs __iomem *sliver;
354 int slave_num;
355 u32 mac_control;
356 struct cpsw_slave_data *data;
357 struct phy_device *phy;
358 struct net_device *ndev;
359 u32 port_vlan;
360 };
361
362 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
363 {
364 return __raw_readl(slave->regs + offset);
365 }
366
367 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
368 {
369 __raw_writel(val, slave->regs + offset);
370 }
371
372 struct cpsw_vector {
373 struct cpdma_chan *ch;
374 int budget;
375 };
376
377 struct cpsw_common {
378 struct device *dev;
379 struct cpsw_platform_data data;
380 struct napi_struct napi_rx;
381 struct napi_struct napi_tx;
382 struct cpsw_ss_regs __iomem *regs;
383 struct cpsw_wr_regs __iomem *wr_regs;
384 u8 __iomem *hw_stats;
385 struct cpsw_host_regs __iomem *host_port_regs;
386 u32 version;
387 u32 coal_intvl;
388 u32 bus_freq_mhz;
389 int rx_packet_max;
390 struct cpsw_slave *slaves;
391 struct cpdma_ctlr *dma;
392 struct cpsw_vector txv[CPSW_MAX_QUEUES];
393 struct cpsw_vector rxv[CPSW_MAX_QUEUES];
394 struct cpsw_ale *ale;
395 bool quirk_irq;
396 bool rx_irq_disabled;
397 bool tx_irq_disabled;
398 u32 irqs_table[IRQ_NUM];
399 struct cpts *cpts;
400 int rx_ch_num, tx_ch_num;
401 int speed;
402 int usage_count;
403 };
404
405 struct cpsw_priv {
406 struct net_device *ndev;
407 struct device *dev;
408 u32 msg_enable;
409 u8 mac_addr[ETH_ALEN];
410 bool rx_pause;
411 bool tx_pause;
412 u32 emac_port;
413 struct cpsw_common *cpsw;
414 };
415
416 struct cpsw_stats {
417 char stat_string[ETH_GSTRING_LEN];
418 int type;
419 int sizeof_stat;
420 int stat_offset;
421 };
422
423 enum {
424 CPSW_STATS,
425 CPDMA_RX_STATS,
426 CPDMA_TX_STATS,
427 };
428
429 #define CPSW_STAT(m) CPSW_STATS, \
430 sizeof(((struct cpsw_hw_stats *)0)->m), \
431 offsetof(struct cpsw_hw_stats, m)
432 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
433 sizeof(((struct cpdma_chan_stats *)0)->m), \
434 offsetof(struct cpdma_chan_stats, m)
435 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
436 sizeof(((struct cpdma_chan_stats *)0)->m), \
437 offsetof(struct cpdma_chan_stats, m)
438
439 static const struct cpsw_stats cpsw_gstrings_stats[] = {
440 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
441 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
442 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
443 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
444 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
445 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
446 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
447 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
448 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
449 { "Rx Fragments", CPSW_STAT(rxfragments) },
450 { "Rx Octets", CPSW_STAT(rxoctets) },
451 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
452 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
453 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
454 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
455 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
456 { "Collisions", CPSW_STAT(txcollisionframes) },
457 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
458 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
459 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
460 { "Late Collisions", CPSW_STAT(txlatecollisions) },
461 { "Tx Underrun", CPSW_STAT(txunderrun) },
462 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
463 { "Tx Octets", CPSW_STAT(txoctets) },
464 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
465 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
466 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
467 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
468 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
469 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
470 { "Net Octets", CPSW_STAT(netoctets) },
471 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
472 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
473 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
474 };
475
476 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
477 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
478 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
479 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
480 { "misqueued", CPDMA_RX_STAT(misqueued) },
481 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
482 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
483 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
484 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
485 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
486 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
487 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
488 { "requeue", CPDMA_RX_STAT(requeue) },
489 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
490 };
491
492 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
493 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
494
495 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
496 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
497 #define for_each_slave(priv, func, arg...) \
498 do { \
499 struct cpsw_slave *slave; \
500 struct cpsw_common *cpsw = (priv)->cpsw; \
501 int n; \
502 if (cpsw->data.dual_emac) \
503 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
504 else \
505 for (n = cpsw->data.slaves, \
506 slave = cpsw->slaves; \
507 n; n--) \
508 (func)(slave++, ##arg); \
509 } while (0)
510
511 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \
512 do { \
513 if (!cpsw->data.dual_emac) \
514 break; \
515 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
516 ndev = cpsw->slaves[0].ndev; \
517 skb->dev = ndev; \
518 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
519 ndev = cpsw->slaves[1].ndev; \
520 skb->dev = ndev; \
521 } \
522 } while (0)
523 #define cpsw_add_mcast(cpsw, priv, addr) \
524 do { \
525 if (cpsw->data.dual_emac) { \
526 struct cpsw_slave *slave = cpsw->slaves + \
527 priv->emac_port; \
528 int slave_port = cpsw_get_slave_port( \
529 slave->slave_num); \
530 cpsw_ale_add_mcast(cpsw->ale, addr, \
531 1 << slave_port | ALE_PORT_HOST, \
532 ALE_VLAN, slave->port_vlan, 0); \
533 } else { \
534 cpsw_ale_add_mcast(cpsw->ale, addr, \
535 ALE_ALL_PORTS, \
536 0, 0, 0); \
537 } \
538 } while (0)
539
540 static inline int cpsw_get_slave_port(u32 slave_num)
541 {
542 return slave_num + 1;
543 }
544
545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
546 {
547 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
548 struct cpsw_ale *ale = cpsw->ale;
549 int i;
550
551 if (cpsw->data.dual_emac) {
552 bool flag = false;
553
554 /* Enabling promiscuous mode for one interface will be
555 * common for both the interface as the interface shares
556 * the same hardware resource.
557 */
558 for (i = 0; i < cpsw->data.slaves; i++)
559 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
560 flag = true;
561
562 if (!enable && flag) {
563 enable = true;
564 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
565 }
566
567 if (enable) {
568 /* Enable Bypass */
569 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
570
571 dev_dbg(&ndev->dev, "promiscuity enabled\n");
572 } else {
573 /* Disable Bypass */
574 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
575 dev_dbg(&ndev->dev, "promiscuity disabled\n");
576 }
577 } else {
578 if (enable) {
579 unsigned long timeout = jiffies + HZ;
580
581 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582 for (i = 0; i <= cpsw->data.slaves; i++) {
583 cpsw_ale_control_set(ale, i,
584 ALE_PORT_NOLEARN, 1);
585 cpsw_ale_control_set(ale, i,
586 ALE_PORT_NO_SA_UPDATE, 1);
587 }
588
589 /* Clear All Untouched entries */
590 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
591 do {
592 cpu_relax();
593 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
594 break;
595 } while (time_after(timeout, jiffies));
596 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597
598 /* Clear all mcast from ALE */
599 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600
601 /* Flood All Unicast Packets to Host port */
602 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
603 dev_dbg(&ndev->dev, "promiscuity enabled\n");
604 } else {
605 /* Don't Flood All Unicast Packets to Host port */
606 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
607
608 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609 for (i = 0; i <= cpsw->data.slaves; i++) {
610 cpsw_ale_control_set(ale, i,
611 ALE_PORT_NOLEARN, 0);
612 cpsw_ale_control_set(ale, i,
613 ALE_PORT_NO_SA_UPDATE, 0);
614 }
615 dev_dbg(&ndev->dev, "promiscuity disabled\n");
616 }
617 }
618 }
619
620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
621 {
622 struct cpsw_priv *priv = netdev_priv(ndev);
623 struct cpsw_common *cpsw = priv->cpsw;
624 int vid;
625
626 if (cpsw->data.dual_emac)
627 vid = cpsw->slaves[priv->emac_port].port_vlan;
628 else
629 vid = cpsw->data.default_vlan;
630
631 if (ndev->flags & IFF_PROMISC) {
632 /* Enable promiscuous mode */
633 cpsw_set_promiscious(ndev, true);
634 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
635 return;
636 } else {
637 /* Disable promiscuous mode */
638 cpsw_set_promiscious(ndev, false);
639 }
640
641 /* Restore allmulti on vlans if necessary */
642 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
643
644 /* Clear all mcast from ALE */
645 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
646
647 if (!netdev_mc_empty(ndev)) {
648 struct netdev_hw_addr *ha;
649
650 /* program multicast address list into ALE register */
651 netdev_for_each_mc_addr(ha, ndev) {
652 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
653 }
654 }
655 }
656
657 static void cpsw_intr_enable(struct cpsw_common *cpsw)
658 {
659 __raw_writel(0xFF, &cpsw->wr_regs->tx_en);
660 __raw_writel(0xFF, &cpsw->wr_regs->rx_en);
661
662 cpdma_ctlr_int_ctrl(cpsw->dma, true);
663 return;
664 }
665
666 static void cpsw_intr_disable(struct cpsw_common *cpsw)
667 {
668 __raw_writel(0, &cpsw->wr_regs->tx_en);
669 __raw_writel(0, &cpsw->wr_regs->rx_en);
670
671 cpdma_ctlr_int_ctrl(cpsw->dma, false);
672 return;
673 }
674
675 static void cpsw_tx_handler(void *token, int len, int status)
676 {
677 struct netdev_queue *txq;
678 struct sk_buff *skb = token;
679 struct net_device *ndev = skb->dev;
680 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
681
682 /* Check whether the queue is stopped due to stalled tx dma, if the
683 * queue is stopped then start the queue as we have free desc for tx
684 */
685 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
686 if (unlikely(netif_tx_queue_stopped(txq)))
687 netif_tx_wake_queue(txq);
688
689 cpts_tx_timestamp(cpsw->cpts, skb);
690 ndev->stats.tx_packets++;
691 ndev->stats.tx_bytes += len;
692 dev_kfree_skb_any(skb);
693 }
694
695 static void cpsw_rx_handler(void *token, int len, int status)
696 {
697 struct cpdma_chan *ch;
698 struct sk_buff *skb = token;
699 struct sk_buff *new_skb;
700 struct net_device *ndev = skb->dev;
701 int ret = 0;
702 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
703
704 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
705
706 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
707 /* In dual emac mode check for all interfaces */
708 if (cpsw->data.dual_emac && cpsw->usage_count &&
709 (status >= 0)) {
710 /* The packet received is for the interface which
711 * is already down and the other interface is up
712 * and running, instead of freeing which results
713 * in reducing of the number of rx descriptor in
714 * DMA engine, requeue skb back to cpdma.
715 */
716 new_skb = skb;
717 goto requeue;
718 }
719
720 /* the interface is going down, skbs are purged */
721 dev_kfree_skb_any(skb);
722 return;
723 }
724
725 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
726 if (new_skb) {
727 skb_copy_queue_mapping(new_skb, skb);
728 skb_put(skb, len);
729 cpts_rx_timestamp(cpsw->cpts, skb);
730 skb->protocol = eth_type_trans(skb, ndev);
731 netif_receive_skb(skb);
732 ndev->stats.rx_bytes += len;
733 ndev->stats.rx_packets++;
734 kmemleak_not_leak(new_skb);
735 } else {
736 ndev->stats.rx_dropped++;
737 new_skb = skb;
738 }
739
740 requeue:
741 if (netif_dormant(ndev)) {
742 dev_kfree_skb_any(new_skb);
743 return;
744 }
745
746 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
747 ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
748 skb_tailroom(new_skb), 0);
749 if (WARN_ON(ret < 0))
750 dev_kfree_skb_any(new_skb);
751 }
752
753 static void cpsw_split_res(struct net_device *ndev)
754 {
755 struct cpsw_priv *priv = netdev_priv(ndev);
756 u32 consumed_rate = 0, bigest_rate = 0;
757 struct cpsw_common *cpsw = priv->cpsw;
758 struct cpsw_vector *txv = cpsw->txv;
759 int i, ch_weight, rlim_ch_num = 0;
760 int budget, bigest_rate_ch = 0;
761 u32 ch_rate, max_rate;
762 int ch_budget = 0;
763
764 for (i = 0; i < cpsw->tx_ch_num; i++) {
765 ch_rate = cpdma_chan_get_rate(txv[i].ch);
766 if (!ch_rate)
767 continue;
768
769 rlim_ch_num++;
770 consumed_rate += ch_rate;
771 }
772
773 if (cpsw->tx_ch_num == rlim_ch_num) {
774 max_rate = consumed_rate;
775 } else if (!rlim_ch_num) {
776 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
777 bigest_rate = 0;
778 max_rate = consumed_rate;
779 } else {
780 max_rate = cpsw->speed * 1000;
781
782 /* if max_rate is less then expected due to reduced link speed,
783 * split proportionally according next potential max speed
784 */
785 if (max_rate < consumed_rate)
786 max_rate *= 10;
787
788 if (max_rate < consumed_rate)
789 max_rate *= 10;
790
791 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
792 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
793 (cpsw->tx_ch_num - rlim_ch_num);
794 bigest_rate = (max_rate - consumed_rate) /
795 (cpsw->tx_ch_num - rlim_ch_num);
796 }
797
798 /* split tx weight/budget */
799 budget = CPSW_POLL_WEIGHT;
800 for (i = 0; i < cpsw->tx_ch_num; i++) {
801 ch_rate = cpdma_chan_get_rate(txv[i].ch);
802 if (ch_rate) {
803 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
804 if (!txv[i].budget)
805 txv[i].budget++;
806 if (ch_rate > bigest_rate) {
807 bigest_rate_ch = i;
808 bigest_rate = ch_rate;
809 }
810
811 ch_weight = (ch_rate * 100) / max_rate;
812 if (!ch_weight)
813 ch_weight++;
814 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
815 } else {
816 txv[i].budget = ch_budget;
817 if (!bigest_rate_ch)
818 bigest_rate_ch = i;
819 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
820 }
821
822 budget -= txv[i].budget;
823 }
824
825 if (budget)
826 txv[bigest_rate_ch].budget += budget;
827
828 /* split rx budget */
829 budget = CPSW_POLL_WEIGHT;
830 ch_budget = budget / cpsw->rx_ch_num;
831 for (i = 0; i < cpsw->rx_ch_num; i++) {
832 cpsw->rxv[i].budget = ch_budget;
833 budget -= ch_budget;
834 }
835
836 if (budget)
837 cpsw->rxv[0].budget += budget;
838 }
839
840 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
841 {
842 struct cpsw_common *cpsw = dev_id;
843
844 writel(0, &cpsw->wr_regs->tx_en);
845 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
846
847 if (cpsw->quirk_irq) {
848 disable_irq_nosync(cpsw->irqs_table[1]);
849 cpsw->tx_irq_disabled = true;
850 }
851
852 napi_schedule(&cpsw->napi_tx);
853 return IRQ_HANDLED;
854 }
855
856 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
857 {
858 struct cpsw_common *cpsw = dev_id;
859
860 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
861 writel(0, &cpsw->wr_regs->rx_en);
862
863 if (cpsw->quirk_irq) {
864 disable_irq_nosync(cpsw->irqs_table[0]);
865 cpsw->rx_irq_disabled = true;
866 }
867
868 napi_schedule(&cpsw->napi_rx);
869 return IRQ_HANDLED;
870 }
871
872 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
873 {
874 u32 ch_map;
875 int num_tx, cur_budget, ch;
876 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
877 struct cpsw_vector *txv;
878
879 /* process every unprocessed channel */
880 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
881 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
882 if (!(ch_map & 0x01))
883 continue;
884
885 txv = &cpsw->txv[ch];
886 if (unlikely(txv->budget > budget - num_tx))
887 cur_budget = budget - num_tx;
888 else
889 cur_budget = txv->budget;
890
891 num_tx += cpdma_chan_process(txv->ch, cur_budget);
892 if (num_tx >= budget)
893 break;
894 }
895
896 if (num_tx < budget) {
897 napi_complete(napi_tx);
898 writel(0xff, &cpsw->wr_regs->tx_en);
899 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
900 cpsw->tx_irq_disabled = false;
901 enable_irq(cpsw->irqs_table[1]);
902 }
903 }
904
905 return num_tx;
906 }
907
908 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
909 {
910 u32 ch_map;
911 int num_rx, cur_budget, ch;
912 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
913 struct cpsw_vector *rxv;
914
915 /* process every unprocessed channel */
916 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
917 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
918 if (!(ch_map & 0x01))
919 continue;
920
921 rxv = &cpsw->rxv[ch];
922 if (unlikely(rxv->budget > budget - num_rx))
923 cur_budget = budget - num_rx;
924 else
925 cur_budget = rxv->budget;
926
927 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
928 if (num_rx >= budget)
929 break;
930 }
931
932 if (num_rx < budget) {
933 napi_complete_done(napi_rx, num_rx);
934 writel(0xff, &cpsw->wr_regs->rx_en);
935 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
936 cpsw->rx_irq_disabled = false;
937 enable_irq(cpsw->irqs_table[0]);
938 }
939 }
940
941 return num_rx;
942 }
943
944 static inline void soft_reset(const char *module, void __iomem *reg)
945 {
946 unsigned long timeout = jiffies + HZ;
947
948 __raw_writel(1, reg);
949 do {
950 cpu_relax();
951 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
952
953 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
954 }
955
956 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
957 ((mac)[2] << 16) | ((mac)[3] << 24))
958 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
959
960 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
961 struct cpsw_priv *priv)
962 {
963 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
964 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
965 }
966
967 static void _cpsw_adjust_link(struct cpsw_slave *slave,
968 struct cpsw_priv *priv, bool *link)
969 {
970 struct phy_device *phy = slave->phy;
971 u32 mac_control = 0;
972 u32 slave_port;
973 struct cpsw_common *cpsw = priv->cpsw;
974
975 if (!phy)
976 return;
977
978 slave_port = cpsw_get_slave_port(slave->slave_num);
979
980 if (phy->link) {
981 mac_control = cpsw->data.mac_control;
982
983 /* enable forwarding */
984 cpsw_ale_control_set(cpsw->ale, slave_port,
985 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
986
987 if (phy->speed == 1000)
988 mac_control |= BIT(7); /* GIGABITEN */
989 if (phy->duplex)
990 mac_control |= BIT(0); /* FULLDUPLEXEN */
991
992 /* set speed_in input in case RMII mode is used in 100Mbps */
993 if (phy->speed == 100)
994 mac_control |= BIT(15);
995 else if (phy->speed == 10)
996 mac_control |= BIT(18); /* In Band mode */
997
998 if (priv->rx_pause)
999 mac_control |= BIT(3);
1000
1001 if (priv->tx_pause)
1002 mac_control |= BIT(4);
1003
1004 *link = true;
1005 } else {
1006 mac_control = 0;
1007 /* disable forwarding */
1008 cpsw_ale_control_set(cpsw->ale, slave_port,
1009 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1010 }
1011
1012 if (mac_control != slave->mac_control) {
1013 phy_print_status(phy);
1014 __raw_writel(mac_control, &slave->sliver->mac_control);
1015 }
1016
1017 slave->mac_control = mac_control;
1018 }
1019
1020 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1021 {
1022 int i, speed;
1023
1024 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1025 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1026 speed += cpsw->slaves[i].phy->speed;
1027
1028 return speed;
1029 }
1030
1031 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1032 {
1033 int i, rlim_ch_num;
1034 int speed, ch_rate;
1035
1036 /* re-split resources only in case speed was changed */
1037 speed = cpsw_get_common_speed(cpsw);
1038 if (speed == cpsw->speed || !speed)
1039 return 0;
1040
1041 cpsw->speed = speed;
1042
1043 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1044 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1045 if (!ch_rate)
1046 break;
1047
1048 rlim_ch_num++;
1049 }
1050
1051 /* cases not dependent on speed */
1052 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1053 return 0;
1054
1055 return 1;
1056 }
1057
1058 static void cpsw_adjust_link(struct net_device *ndev)
1059 {
1060 struct cpsw_priv *priv = netdev_priv(ndev);
1061 struct cpsw_common *cpsw = priv->cpsw;
1062 bool link = false;
1063
1064 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1065
1066 if (link) {
1067 if (cpsw_need_resplit(cpsw))
1068 cpsw_split_res(ndev);
1069
1070 netif_carrier_on(ndev);
1071 if (netif_running(ndev))
1072 netif_tx_wake_all_queues(ndev);
1073 } else {
1074 netif_carrier_off(ndev);
1075 netif_tx_stop_all_queues(ndev);
1076 }
1077 }
1078
1079 static int cpsw_get_coalesce(struct net_device *ndev,
1080 struct ethtool_coalesce *coal)
1081 {
1082 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1083
1084 coal->rx_coalesce_usecs = cpsw->coal_intvl;
1085 return 0;
1086 }
1087
1088 static int cpsw_set_coalesce(struct net_device *ndev,
1089 struct ethtool_coalesce *coal)
1090 {
1091 struct cpsw_priv *priv = netdev_priv(ndev);
1092 u32 int_ctrl;
1093 u32 num_interrupts = 0;
1094 u32 prescale = 0;
1095 u32 addnl_dvdr = 1;
1096 u32 coal_intvl = 0;
1097 struct cpsw_common *cpsw = priv->cpsw;
1098
1099 coal_intvl = coal->rx_coalesce_usecs;
1100
1101 int_ctrl = readl(&cpsw->wr_regs->int_control);
1102 prescale = cpsw->bus_freq_mhz * 4;
1103
1104 if (!coal->rx_coalesce_usecs) {
1105 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1106 goto update_return;
1107 }
1108
1109 if (coal_intvl < CPSW_CMINTMIN_INTVL)
1110 coal_intvl = CPSW_CMINTMIN_INTVL;
1111
1112 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1113 /* Interrupt pacer works with 4us Pulse, we can
1114 * throttle further by dilating the 4us pulse.
1115 */
1116 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1117
1118 if (addnl_dvdr > 1) {
1119 prescale *= addnl_dvdr;
1120 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1121 coal_intvl = (CPSW_CMINTMAX_INTVL
1122 * addnl_dvdr);
1123 } else {
1124 addnl_dvdr = 1;
1125 coal_intvl = CPSW_CMINTMAX_INTVL;
1126 }
1127 }
1128
1129 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1130 writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1131 writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1132
1133 int_ctrl |= CPSW_INTPACEEN;
1134 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1135 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1136
1137 update_return:
1138 writel(int_ctrl, &cpsw->wr_regs->int_control);
1139
1140 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1141 cpsw->coal_intvl = coal_intvl;
1142
1143 return 0;
1144 }
1145
1146 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1147 {
1148 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1149
1150 switch (sset) {
1151 case ETH_SS_STATS:
1152 return (CPSW_STATS_COMMON_LEN +
1153 (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1154 CPSW_STATS_CH_LEN);
1155 default:
1156 return -EOPNOTSUPP;
1157 }
1158 }
1159
1160 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1161 {
1162 int ch_stats_len;
1163 int line;
1164 int i;
1165
1166 ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1167 for (i = 0; i < ch_stats_len; i++) {
1168 line = i % CPSW_STATS_CH_LEN;
1169 snprintf(*p, ETH_GSTRING_LEN,
1170 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1171 i / CPSW_STATS_CH_LEN,
1172 cpsw_gstrings_ch_stats[line].stat_string);
1173 *p += ETH_GSTRING_LEN;
1174 }
1175 }
1176
1177 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1178 {
1179 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1180 u8 *p = data;
1181 int i;
1182
1183 switch (stringset) {
1184 case ETH_SS_STATS:
1185 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1186 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1187 ETH_GSTRING_LEN);
1188 p += ETH_GSTRING_LEN;
1189 }
1190
1191 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1192 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1193 break;
1194 }
1195 }
1196
1197 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1198 struct ethtool_stats *stats, u64 *data)
1199 {
1200 u8 *p;
1201 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1202 struct cpdma_chan_stats ch_stats;
1203 int i, l, ch;
1204
1205 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1206 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1207 data[l] = readl(cpsw->hw_stats +
1208 cpsw_gstrings_stats[l].stat_offset);
1209
1210 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1211 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1212 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1213 p = (u8 *)&ch_stats +
1214 cpsw_gstrings_ch_stats[i].stat_offset;
1215 data[l] = *(u32 *)p;
1216 }
1217 }
1218
1219 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1220 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1221 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1222 p = (u8 *)&ch_stats +
1223 cpsw_gstrings_ch_stats[i].stat_offset;
1224 data[l] = *(u32 *)p;
1225 }
1226 }
1227 }
1228
1229 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1230 struct sk_buff *skb,
1231 struct cpdma_chan *txch)
1232 {
1233 struct cpsw_common *cpsw = priv->cpsw;
1234
1235 return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1236 priv->emac_port + cpsw->data.dual_emac);
1237 }
1238
1239 static inline void cpsw_add_dual_emac_def_ale_entries(
1240 struct cpsw_priv *priv, struct cpsw_slave *slave,
1241 u32 slave_port)
1242 {
1243 struct cpsw_common *cpsw = priv->cpsw;
1244 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1245
1246 if (cpsw->version == CPSW_VERSION_1)
1247 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1248 else
1249 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1250 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1251 port_mask, port_mask, 0);
1252 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1253 port_mask, ALE_VLAN, slave->port_vlan, 0);
1254 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1255 HOST_PORT_NUM, ALE_VLAN |
1256 ALE_SECURE, slave->port_vlan);
1257 }
1258
1259 static void soft_reset_slave(struct cpsw_slave *slave)
1260 {
1261 char name[32];
1262
1263 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1264 soft_reset(name, &slave->sliver->soft_reset);
1265 }
1266
1267 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1268 {
1269 u32 slave_port;
1270 struct cpsw_common *cpsw = priv->cpsw;
1271
1272 soft_reset_slave(slave);
1273
1274 /* setup priority mapping */
1275 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1276
1277 switch (cpsw->version) {
1278 case CPSW_VERSION_1:
1279 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1280 break;
1281 case CPSW_VERSION_2:
1282 case CPSW_VERSION_3:
1283 case CPSW_VERSION_4:
1284 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1285 break;
1286 }
1287
1288 /* setup max packet size, and mac address */
1289 __raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1290 cpsw_set_slave_mac(slave, priv);
1291
1292 slave->mac_control = 0; /* no link yet */
1293
1294 slave_port = cpsw_get_slave_port(slave->slave_num);
1295
1296 if (cpsw->data.dual_emac)
1297 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1298 else
1299 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1300 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1301
1302 if (slave->data->phy_node) {
1303 slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1304 &cpsw_adjust_link, 0, slave->data->phy_if);
1305 if (!slave->phy) {
1306 dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1307 slave->data->phy_node->full_name,
1308 slave->slave_num);
1309 return;
1310 }
1311 } else {
1312 slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1313 &cpsw_adjust_link, slave->data->phy_if);
1314 if (IS_ERR(slave->phy)) {
1315 dev_err(priv->dev,
1316 "phy \"%s\" not found on slave %d, err %ld\n",
1317 slave->data->phy_id, slave->slave_num,
1318 PTR_ERR(slave->phy));
1319 slave->phy = NULL;
1320 return;
1321 }
1322 }
1323
1324 phy_attached_info(slave->phy);
1325
1326 phy_start(slave->phy);
1327
1328 /* Configure GMII_SEL register */
1329 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1330 }
1331
1332 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1333 {
1334 struct cpsw_common *cpsw = priv->cpsw;
1335 const int vlan = cpsw->data.default_vlan;
1336 u32 reg;
1337 int i;
1338 int unreg_mcast_mask;
1339
1340 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1341 CPSW2_PORT_VLAN;
1342
1343 writel(vlan, &cpsw->host_port_regs->port_vlan);
1344
1345 for (i = 0; i < cpsw->data.slaves; i++)
1346 slave_write(cpsw->slaves + i, vlan, reg);
1347
1348 if (priv->ndev->flags & IFF_ALLMULTI)
1349 unreg_mcast_mask = ALE_ALL_PORTS;
1350 else
1351 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1352
1353 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1354 ALE_ALL_PORTS, ALE_ALL_PORTS,
1355 unreg_mcast_mask);
1356 }
1357
1358 static void cpsw_init_host_port(struct cpsw_priv *priv)
1359 {
1360 u32 fifo_mode;
1361 u32 control_reg;
1362 struct cpsw_common *cpsw = priv->cpsw;
1363
1364 /* soft reset the controller and initialize ale */
1365 soft_reset("cpsw", &cpsw->regs->soft_reset);
1366 cpsw_ale_start(cpsw->ale);
1367
1368 /* switch to vlan unaware mode */
1369 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1370 CPSW_ALE_VLAN_AWARE);
1371 control_reg = readl(&cpsw->regs->control);
1372 control_reg |= CPSW_VLAN_AWARE;
1373 writel(control_reg, &cpsw->regs->control);
1374 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1375 CPSW_FIFO_NORMAL_MODE;
1376 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1377
1378 /* setup host port priority mapping */
1379 __raw_writel(CPDMA_TX_PRIORITY_MAP,
1380 &cpsw->host_port_regs->cpdma_tx_pri_map);
1381 __raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1382
1383 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1384 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1385
1386 if (!cpsw->data.dual_emac) {
1387 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1388 0, 0);
1389 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1390 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1391 }
1392 }
1393
1394 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1395 {
1396 struct cpsw_common *cpsw = priv->cpsw;
1397 struct sk_buff *skb;
1398 int ch_buf_num;
1399 int ch, i, ret;
1400
1401 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1402 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1403 for (i = 0; i < ch_buf_num; i++) {
1404 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1405 cpsw->rx_packet_max,
1406 GFP_KERNEL);
1407 if (!skb) {
1408 cpsw_err(priv, ifup, "cannot allocate skb\n");
1409 return -ENOMEM;
1410 }
1411
1412 skb_set_queue_mapping(skb, ch);
1413 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1414 skb->data, skb_tailroom(skb),
1415 0);
1416 if (ret < 0) {
1417 cpsw_err(priv, ifup,
1418 "cannot submit skb to channel %d rx, error %d\n",
1419 ch, ret);
1420 kfree_skb(skb);
1421 return ret;
1422 }
1423 kmemleak_not_leak(skb);
1424 }
1425
1426 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1427 ch, ch_buf_num);
1428 }
1429
1430 return 0;
1431 }
1432
1433 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1434 {
1435 u32 slave_port;
1436
1437 slave_port = cpsw_get_slave_port(slave->slave_num);
1438
1439 if (!slave->phy)
1440 return;
1441 phy_stop(slave->phy);
1442 phy_disconnect(slave->phy);
1443 slave->phy = NULL;
1444 cpsw_ale_control_set(cpsw->ale, slave_port,
1445 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1446 soft_reset_slave(slave);
1447 }
1448
1449 static int cpsw_ndo_open(struct net_device *ndev)
1450 {
1451 struct cpsw_priv *priv = netdev_priv(ndev);
1452 struct cpsw_common *cpsw = priv->cpsw;
1453 int ret;
1454 u32 reg;
1455
1456 ret = pm_runtime_get_sync(cpsw->dev);
1457 if (ret < 0) {
1458 pm_runtime_put_noidle(cpsw->dev);
1459 return ret;
1460 }
1461
1462 netif_carrier_off(ndev);
1463
1464 /* Notify the stack of the actual queue counts. */
1465 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1466 if (ret) {
1467 dev_err(priv->dev, "cannot set real number of tx queues\n");
1468 goto err_cleanup;
1469 }
1470
1471 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1472 if (ret) {
1473 dev_err(priv->dev, "cannot set real number of rx queues\n");
1474 goto err_cleanup;
1475 }
1476
1477 reg = cpsw->version;
1478
1479 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1480 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1481 CPSW_RTL_VERSION(reg));
1482
1483 /* Initialize host and slave ports */
1484 if (!cpsw->usage_count)
1485 cpsw_init_host_port(priv);
1486 for_each_slave(priv, cpsw_slave_open, priv);
1487
1488 /* Add default VLAN */
1489 if (!cpsw->data.dual_emac)
1490 cpsw_add_default_vlan(priv);
1491 else
1492 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1493 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1494
1495 /* initialize shared resources for every ndev */
1496 if (!cpsw->usage_count) {
1497 /* disable priority elevation */
1498 __raw_writel(0, &cpsw->regs->ptype);
1499
1500 /* enable statistics collection only on all ports */
1501 __raw_writel(0x7, &cpsw->regs->stat_port_en);
1502
1503 /* Enable internal fifo flow control */
1504 writel(0x7, &cpsw->regs->flow_control);
1505
1506 napi_enable(&cpsw->napi_rx);
1507 napi_enable(&cpsw->napi_tx);
1508
1509 if (cpsw->tx_irq_disabled) {
1510 cpsw->tx_irq_disabled = false;
1511 enable_irq(cpsw->irqs_table[1]);
1512 }
1513
1514 if (cpsw->rx_irq_disabled) {
1515 cpsw->rx_irq_disabled = false;
1516 enable_irq(cpsw->irqs_table[0]);
1517 }
1518
1519 ret = cpsw_fill_rx_channels(priv);
1520 if (ret < 0)
1521 goto err_cleanup;
1522
1523 if (cpts_register(cpsw->cpts))
1524 dev_err(priv->dev, "error registering cpts device\n");
1525
1526 }
1527
1528 /* Enable Interrupt pacing if configured */
1529 if (cpsw->coal_intvl != 0) {
1530 struct ethtool_coalesce coal;
1531
1532 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1533 cpsw_set_coalesce(ndev, &coal);
1534 }
1535
1536 cpdma_ctlr_start(cpsw->dma);
1537 cpsw_intr_enable(cpsw);
1538 cpsw->usage_count++;
1539
1540 return 0;
1541
1542 err_cleanup:
1543 cpdma_ctlr_stop(cpsw->dma);
1544 for_each_slave(priv, cpsw_slave_stop, cpsw);
1545 pm_runtime_put_sync(cpsw->dev);
1546 netif_carrier_off(priv->ndev);
1547 return ret;
1548 }
1549
1550 static int cpsw_ndo_stop(struct net_device *ndev)
1551 {
1552 struct cpsw_priv *priv = netdev_priv(ndev);
1553 struct cpsw_common *cpsw = priv->cpsw;
1554
1555 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1556 netif_tx_stop_all_queues(priv->ndev);
1557 netif_carrier_off(priv->ndev);
1558
1559 if (cpsw->usage_count <= 1) {
1560 napi_disable(&cpsw->napi_rx);
1561 napi_disable(&cpsw->napi_tx);
1562 cpts_unregister(cpsw->cpts);
1563 cpsw_intr_disable(cpsw);
1564 cpdma_ctlr_stop(cpsw->dma);
1565 cpsw_ale_stop(cpsw->ale);
1566 }
1567 for_each_slave(priv, cpsw_slave_stop, cpsw);
1568
1569 if (cpsw_need_resplit(cpsw))
1570 cpsw_split_res(ndev);
1571
1572 cpsw->usage_count--;
1573 pm_runtime_put_sync(cpsw->dev);
1574 return 0;
1575 }
1576
1577 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1578 struct net_device *ndev)
1579 {
1580 struct cpsw_priv *priv = netdev_priv(ndev);
1581 struct cpsw_common *cpsw = priv->cpsw;
1582 struct netdev_queue *txq;
1583 struct cpdma_chan *txch;
1584 int ret, q_idx;
1585
1586 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1587 cpsw_err(priv, tx_err, "packet pad failed\n");
1588 ndev->stats.tx_dropped++;
1589 return NET_XMIT_DROP;
1590 }
1591
1592 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1593 cpts_is_tx_enabled(cpsw->cpts))
1594 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1595
1596 skb_tx_timestamp(skb);
1597
1598 q_idx = skb_get_queue_mapping(skb);
1599 if (q_idx >= cpsw->tx_ch_num)
1600 q_idx = q_idx % cpsw->tx_ch_num;
1601
1602 txch = cpsw->txv[q_idx].ch;
1603 ret = cpsw_tx_packet_submit(priv, skb, txch);
1604 if (unlikely(ret != 0)) {
1605 cpsw_err(priv, tx_err, "desc submit failed\n");
1606 goto fail;
1607 }
1608
1609 /* If there is no more tx desc left free then we need to
1610 * tell the kernel to stop sending us tx frames.
1611 */
1612 if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1613 txq = netdev_get_tx_queue(ndev, q_idx);
1614 netif_tx_stop_queue(txq);
1615 }
1616
1617 return NETDEV_TX_OK;
1618 fail:
1619 ndev->stats.tx_dropped++;
1620 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1621 netif_tx_stop_queue(txq);
1622 return NETDEV_TX_BUSY;
1623 }
1624
1625 #if IS_ENABLED(CONFIG_TI_CPTS)
1626
1627 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1628 {
1629 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1630 u32 ts_en, seq_id;
1631
1632 if (!cpts_is_tx_enabled(cpsw->cpts) &&
1633 !cpts_is_rx_enabled(cpsw->cpts)) {
1634 slave_write(slave, 0, CPSW1_TS_CTL);
1635 return;
1636 }
1637
1638 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1639 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1640
1641 if (cpts_is_tx_enabled(cpsw->cpts))
1642 ts_en |= CPSW_V1_TS_TX_EN;
1643
1644 if (cpts_is_rx_enabled(cpsw->cpts))
1645 ts_en |= CPSW_V1_TS_RX_EN;
1646
1647 slave_write(slave, ts_en, CPSW1_TS_CTL);
1648 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1649 }
1650
1651 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1652 {
1653 struct cpsw_slave *slave;
1654 struct cpsw_common *cpsw = priv->cpsw;
1655 u32 ctrl, mtype;
1656
1657 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1658
1659 ctrl = slave_read(slave, CPSW2_CONTROL);
1660 switch (cpsw->version) {
1661 case CPSW_VERSION_2:
1662 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1663
1664 if (cpts_is_tx_enabled(cpsw->cpts))
1665 ctrl |= CTRL_V2_TX_TS_BITS;
1666
1667 if (cpts_is_rx_enabled(cpsw->cpts))
1668 ctrl |= CTRL_V2_RX_TS_BITS;
1669 break;
1670 case CPSW_VERSION_3:
1671 default:
1672 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1673
1674 if (cpts_is_tx_enabled(cpsw->cpts))
1675 ctrl |= CTRL_V3_TX_TS_BITS;
1676
1677 if (cpts_is_rx_enabled(cpsw->cpts))
1678 ctrl |= CTRL_V3_RX_TS_BITS;
1679 break;
1680 }
1681
1682 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1683
1684 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1685 slave_write(slave, ctrl, CPSW2_CONTROL);
1686 __raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1687 }
1688
1689 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1690 {
1691 struct cpsw_priv *priv = netdev_priv(dev);
1692 struct hwtstamp_config cfg;
1693 struct cpsw_common *cpsw = priv->cpsw;
1694 struct cpts *cpts = cpsw->cpts;
1695
1696 if (cpsw->version != CPSW_VERSION_1 &&
1697 cpsw->version != CPSW_VERSION_2 &&
1698 cpsw->version != CPSW_VERSION_3)
1699 return -EOPNOTSUPP;
1700
1701 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1702 return -EFAULT;
1703
1704 /* reserved for future extensions */
1705 if (cfg.flags)
1706 return -EINVAL;
1707
1708 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1709 return -ERANGE;
1710
1711 switch (cfg.rx_filter) {
1712 case HWTSTAMP_FILTER_NONE:
1713 cpts_rx_enable(cpts, 0);
1714 break;
1715 case HWTSTAMP_FILTER_ALL:
1716 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1717 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1718 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1719 return -ERANGE;
1720 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1721 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1722 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1723 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1724 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1725 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1726 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1727 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1728 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1729 cpts_rx_enable(cpts, 1);
1730 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1731 break;
1732 default:
1733 return -ERANGE;
1734 }
1735
1736 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1737
1738 switch (cpsw->version) {
1739 case CPSW_VERSION_1:
1740 cpsw_hwtstamp_v1(cpsw);
1741 break;
1742 case CPSW_VERSION_2:
1743 case CPSW_VERSION_3:
1744 cpsw_hwtstamp_v2(priv);
1745 break;
1746 default:
1747 WARN_ON(1);
1748 }
1749
1750 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1751 }
1752
1753 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1754 {
1755 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1756 struct cpts *cpts = cpsw->cpts;
1757 struct hwtstamp_config cfg;
1758
1759 if (cpsw->version != CPSW_VERSION_1 &&
1760 cpsw->version != CPSW_VERSION_2 &&
1761 cpsw->version != CPSW_VERSION_3)
1762 return -EOPNOTSUPP;
1763
1764 cfg.flags = 0;
1765 cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1766 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1767 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1768 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1769
1770 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1771 }
1772 #else
1773 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1774 {
1775 return -EOPNOTSUPP;
1776 }
1777
1778 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1779 {
1780 return -EOPNOTSUPP;
1781 }
1782 #endif /*CONFIG_TI_CPTS*/
1783
1784 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1785 {
1786 struct cpsw_priv *priv = netdev_priv(dev);
1787 struct cpsw_common *cpsw = priv->cpsw;
1788 int slave_no = cpsw_slave_index(cpsw, priv);
1789
1790 if (!netif_running(dev))
1791 return -EINVAL;
1792
1793 switch (cmd) {
1794 case SIOCSHWTSTAMP:
1795 return cpsw_hwtstamp_set(dev, req);
1796 case SIOCGHWTSTAMP:
1797 return cpsw_hwtstamp_get(dev, req);
1798 }
1799
1800 if (!cpsw->slaves[slave_no].phy)
1801 return -EOPNOTSUPP;
1802 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1803 }
1804
1805 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1806 {
1807 struct cpsw_priv *priv = netdev_priv(ndev);
1808 struct cpsw_common *cpsw = priv->cpsw;
1809 int ch;
1810
1811 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1812 ndev->stats.tx_errors++;
1813 cpsw_intr_disable(cpsw);
1814 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1815 cpdma_chan_stop(cpsw->txv[ch].ch);
1816 cpdma_chan_start(cpsw->txv[ch].ch);
1817 }
1818
1819 cpsw_intr_enable(cpsw);
1820 netif_trans_update(ndev);
1821 netif_tx_wake_all_queues(ndev);
1822 }
1823
1824 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1825 {
1826 struct cpsw_priv *priv = netdev_priv(ndev);
1827 struct sockaddr *addr = (struct sockaddr *)p;
1828 struct cpsw_common *cpsw = priv->cpsw;
1829 int flags = 0;
1830 u16 vid = 0;
1831 int ret;
1832
1833 if (!is_valid_ether_addr(addr->sa_data))
1834 return -EADDRNOTAVAIL;
1835
1836 ret = pm_runtime_get_sync(cpsw->dev);
1837 if (ret < 0) {
1838 pm_runtime_put_noidle(cpsw->dev);
1839 return ret;
1840 }
1841
1842 if (cpsw->data.dual_emac) {
1843 vid = cpsw->slaves[priv->emac_port].port_vlan;
1844 flags = ALE_VLAN;
1845 }
1846
1847 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1848 flags, vid);
1849 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1850 flags, vid);
1851
1852 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1853 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1854 for_each_slave(priv, cpsw_set_slave_mac, priv);
1855
1856 pm_runtime_put(cpsw->dev);
1857
1858 return 0;
1859 }
1860
1861 #ifdef CONFIG_NET_POLL_CONTROLLER
1862 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1863 {
1864 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1865
1866 cpsw_intr_disable(cpsw);
1867 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1868 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1869 cpsw_intr_enable(cpsw);
1870 }
1871 #endif
1872
1873 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1874 unsigned short vid)
1875 {
1876 int ret;
1877 int unreg_mcast_mask = 0;
1878 u32 port_mask;
1879 struct cpsw_common *cpsw = priv->cpsw;
1880
1881 if (cpsw->data.dual_emac) {
1882 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1883
1884 if (priv->ndev->flags & IFF_ALLMULTI)
1885 unreg_mcast_mask = port_mask;
1886 } else {
1887 port_mask = ALE_ALL_PORTS;
1888
1889 if (priv->ndev->flags & IFF_ALLMULTI)
1890 unreg_mcast_mask = ALE_ALL_PORTS;
1891 else
1892 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1893 }
1894
1895 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1896 unreg_mcast_mask);
1897 if (ret != 0)
1898 return ret;
1899
1900 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1901 HOST_PORT_NUM, ALE_VLAN, vid);
1902 if (ret != 0)
1903 goto clean_vid;
1904
1905 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1906 port_mask, ALE_VLAN, vid, 0);
1907 if (ret != 0)
1908 goto clean_vlan_ucast;
1909 return 0;
1910
1911 clean_vlan_ucast:
1912 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1913 HOST_PORT_NUM, ALE_VLAN, vid);
1914 clean_vid:
1915 cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1916 return ret;
1917 }
1918
1919 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1920 __be16 proto, u16 vid)
1921 {
1922 struct cpsw_priv *priv = netdev_priv(ndev);
1923 struct cpsw_common *cpsw = priv->cpsw;
1924 int ret;
1925
1926 if (vid == cpsw->data.default_vlan)
1927 return 0;
1928
1929 ret = pm_runtime_get_sync(cpsw->dev);
1930 if (ret < 0) {
1931 pm_runtime_put_noidle(cpsw->dev);
1932 return ret;
1933 }
1934
1935 if (cpsw->data.dual_emac) {
1936 /* In dual EMAC, reserved VLAN id should not be used for
1937 * creating VLAN interfaces as this can break the dual
1938 * EMAC port separation
1939 */
1940 int i;
1941
1942 for (i = 0; i < cpsw->data.slaves; i++) {
1943 if (vid == cpsw->slaves[i].port_vlan)
1944 return -EINVAL;
1945 }
1946 }
1947
1948 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1949 ret = cpsw_add_vlan_ale_entry(priv, vid);
1950
1951 pm_runtime_put(cpsw->dev);
1952 return ret;
1953 }
1954
1955 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1956 __be16 proto, u16 vid)
1957 {
1958 struct cpsw_priv *priv = netdev_priv(ndev);
1959 struct cpsw_common *cpsw = priv->cpsw;
1960 int ret;
1961
1962 if (vid == cpsw->data.default_vlan)
1963 return 0;
1964
1965 ret = pm_runtime_get_sync(cpsw->dev);
1966 if (ret < 0) {
1967 pm_runtime_put_noidle(cpsw->dev);
1968 return ret;
1969 }
1970
1971 if (cpsw->data.dual_emac) {
1972 int i;
1973
1974 for (i = 0; i < cpsw->data.slaves; i++) {
1975 if (vid == cpsw->slaves[i].port_vlan)
1976 return -EINVAL;
1977 }
1978 }
1979
1980 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1981 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1982 if (ret != 0)
1983 return ret;
1984
1985 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1986 HOST_PORT_NUM, ALE_VLAN, vid);
1987 if (ret != 0)
1988 return ret;
1989
1990 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1991 0, ALE_VLAN, vid);
1992 pm_runtime_put(cpsw->dev);
1993 return ret;
1994 }
1995
1996 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
1997 {
1998 struct cpsw_priv *priv = netdev_priv(ndev);
1999 struct cpsw_common *cpsw = priv->cpsw;
2000 struct cpsw_slave *slave;
2001 u32 min_rate;
2002 u32 ch_rate;
2003 int i, ret;
2004
2005 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2006 if (ch_rate == rate)
2007 return 0;
2008
2009 ch_rate = rate * 1000;
2010 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2011 if ((ch_rate < min_rate && ch_rate)) {
2012 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2013 min_rate);
2014 return -EINVAL;
2015 }
2016
2017 if (rate > cpsw->speed) {
2018 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2019 return -EINVAL;
2020 }
2021
2022 ret = pm_runtime_get_sync(cpsw->dev);
2023 if (ret < 0) {
2024 pm_runtime_put_noidle(cpsw->dev);
2025 return ret;
2026 }
2027
2028 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2029 pm_runtime_put(cpsw->dev);
2030
2031 if (ret)
2032 return ret;
2033
2034 /* update rates for slaves tx queues */
2035 for (i = 0; i < cpsw->data.slaves; i++) {
2036 slave = &cpsw->slaves[i];
2037 if (!slave->ndev)
2038 continue;
2039
2040 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2041 }
2042
2043 cpsw_split_res(ndev);
2044 return ret;
2045 }
2046
2047 static const struct net_device_ops cpsw_netdev_ops = {
2048 .ndo_open = cpsw_ndo_open,
2049 .ndo_stop = cpsw_ndo_stop,
2050 .ndo_start_xmit = cpsw_ndo_start_xmit,
2051 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
2052 .ndo_do_ioctl = cpsw_ndo_ioctl,
2053 .ndo_validate_addr = eth_validate_addr,
2054 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
2055 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
2056 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
2057 #ifdef CONFIG_NET_POLL_CONTROLLER
2058 .ndo_poll_controller = cpsw_ndo_poll_controller,
2059 #endif
2060 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
2061 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
2062 };
2063
2064 static int cpsw_get_regs_len(struct net_device *ndev)
2065 {
2066 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2067
2068 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2069 }
2070
2071 static void cpsw_get_regs(struct net_device *ndev,
2072 struct ethtool_regs *regs, void *p)
2073 {
2074 u32 *reg = p;
2075 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2076
2077 /* update CPSW IP version */
2078 regs->version = cpsw->version;
2079
2080 cpsw_ale_dump(cpsw->ale, reg);
2081 }
2082
2083 static void cpsw_get_drvinfo(struct net_device *ndev,
2084 struct ethtool_drvinfo *info)
2085 {
2086 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2087 struct platform_device *pdev = to_platform_device(cpsw->dev);
2088
2089 strlcpy(info->driver, "cpsw", sizeof(info->driver));
2090 strlcpy(info->version, "1.0", sizeof(info->version));
2091 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2092 }
2093
2094 static u32 cpsw_get_msglevel(struct net_device *ndev)
2095 {
2096 struct cpsw_priv *priv = netdev_priv(ndev);
2097 return priv->msg_enable;
2098 }
2099
2100 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2101 {
2102 struct cpsw_priv *priv = netdev_priv(ndev);
2103 priv->msg_enable = value;
2104 }
2105
2106 #if IS_ENABLED(CONFIG_TI_CPTS)
2107 static int cpsw_get_ts_info(struct net_device *ndev,
2108 struct ethtool_ts_info *info)
2109 {
2110 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2111
2112 info->so_timestamping =
2113 SOF_TIMESTAMPING_TX_HARDWARE |
2114 SOF_TIMESTAMPING_TX_SOFTWARE |
2115 SOF_TIMESTAMPING_RX_HARDWARE |
2116 SOF_TIMESTAMPING_RX_SOFTWARE |
2117 SOF_TIMESTAMPING_SOFTWARE |
2118 SOF_TIMESTAMPING_RAW_HARDWARE;
2119 info->phc_index = cpsw->cpts->phc_index;
2120 info->tx_types =
2121 (1 << HWTSTAMP_TX_OFF) |
2122 (1 << HWTSTAMP_TX_ON);
2123 info->rx_filters =
2124 (1 << HWTSTAMP_FILTER_NONE) |
2125 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2126 return 0;
2127 }
2128 #else
2129 static int cpsw_get_ts_info(struct net_device *ndev,
2130 struct ethtool_ts_info *info)
2131 {
2132 info->so_timestamping =
2133 SOF_TIMESTAMPING_TX_SOFTWARE |
2134 SOF_TIMESTAMPING_RX_SOFTWARE |
2135 SOF_TIMESTAMPING_SOFTWARE;
2136 info->phc_index = -1;
2137 info->tx_types = 0;
2138 info->rx_filters = 0;
2139 return 0;
2140 }
2141 #endif
2142
2143 static int cpsw_get_link_ksettings(struct net_device *ndev,
2144 struct ethtool_link_ksettings *ecmd)
2145 {
2146 struct cpsw_priv *priv = netdev_priv(ndev);
2147 struct cpsw_common *cpsw = priv->cpsw;
2148 int slave_no = cpsw_slave_index(cpsw, priv);
2149
2150 if (cpsw->slaves[slave_no].phy)
2151 return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
2152 ecmd);
2153 else
2154 return -EOPNOTSUPP;
2155 }
2156
2157 static int cpsw_set_link_ksettings(struct net_device *ndev,
2158 const struct ethtool_link_ksettings *ecmd)
2159 {
2160 struct cpsw_priv *priv = netdev_priv(ndev);
2161 struct cpsw_common *cpsw = priv->cpsw;
2162 int slave_no = cpsw_slave_index(cpsw, priv);
2163
2164 if (cpsw->slaves[slave_no].phy)
2165 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2166 ecmd);
2167 else
2168 return -EOPNOTSUPP;
2169 }
2170
2171 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2172 {
2173 struct cpsw_priv *priv = netdev_priv(ndev);
2174 struct cpsw_common *cpsw = priv->cpsw;
2175 int slave_no = cpsw_slave_index(cpsw, priv);
2176
2177 wol->supported = 0;
2178 wol->wolopts = 0;
2179
2180 if (cpsw->slaves[slave_no].phy)
2181 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2182 }
2183
2184 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2185 {
2186 struct cpsw_priv *priv = netdev_priv(ndev);
2187 struct cpsw_common *cpsw = priv->cpsw;
2188 int slave_no = cpsw_slave_index(cpsw, priv);
2189
2190 if (cpsw->slaves[slave_no].phy)
2191 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2192 else
2193 return -EOPNOTSUPP;
2194 }
2195
2196 static void cpsw_get_pauseparam(struct net_device *ndev,
2197 struct ethtool_pauseparam *pause)
2198 {
2199 struct cpsw_priv *priv = netdev_priv(ndev);
2200
2201 pause->autoneg = AUTONEG_DISABLE;
2202 pause->rx_pause = priv->rx_pause ? true : false;
2203 pause->tx_pause = priv->tx_pause ? true : false;
2204 }
2205
2206 static int cpsw_set_pauseparam(struct net_device *ndev,
2207 struct ethtool_pauseparam *pause)
2208 {
2209 struct cpsw_priv *priv = netdev_priv(ndev);
2210 bool link;
2211
2212 priv->rx_pause = pause->rx_pause ? true : false;
2213 priv->tx_pause = pause->tx_pause ? true : false;
2214
2215 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2216 return 0;
2217 }
2218
2219 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2220 {
2221 struct cpsw_priv *priv = netdev_priv(ndev);
2222 struct cpsw_common *cpsw = priv->cpsw;
2223 int ret;
2224
2225 ret = pm_runtime_get_sync(cpsw->dev);
2226 if (ret < 0) {
2227 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2228 pm_runtime_put_noidle(cpsw->dev);
2229 }
2230
2231 return ret;
2232 }
2233
2234 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2235 {
2236 struct cpsw_priv *priv = netdev_priv(ndev);
2237 int ret;
2238
2239 ret = pm_runtime_put(priv->cpsw->dev);
2240 if (ret < 0)
2241 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2242 }
2243
2244 static void cpsw_get_channels(struct net_device *ndev,
2245 struct ethtool_channels *ch)
2246 {
2247 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2248
2249 ch->max_combined = 0;
2250 ch->max_rx = CPSW_MAX_QUEUES;
2251 ch->max_tx = CPSW_MAX_QUEUES;
2252 ch->max_other = 0;
2253 ch->other_count = 0;
2254 ch->rx_count = cpsw->rx_ch_num;
2255 ch->tx_count = cpsw->tx_ch_num;
2256 ch->combined_count = 0;
2257 }
2258
2259 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2260 struct ethtool_channels *ch)
2261 {
2262 if (ch->combined_count)
2263 return -EINVAL;
2264
2265 /* verify we have at least one channel in each direction */
2266 if (!ch->rx_count || !ch->tx_count)
2267 return -EINVAL;
2268
2269 if (ch->rx_count > cpsw->data.channels ||
2270 ch->tx_count > cpsw->data.channels)
2271 return -EINVAL;
2272
2273 return 0;
2274 }
2275
2276 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2277 {
2278 int (*poll)(struct napi_struct *, int);
2279 struct cpsw_common *cpsw = priv->cpsw;
2280 void (*handler)(void *, int, int);
2281 struct netdev_queue *queue;
2282 struct cpsw_vector *vec;
2283 int ret, *ch;
2284
2285 if (rx) {
2286 ch = &cpsw->rx_ch_num;
2287 vec = cpsw->rxv;
2288 handler = cpsw_rx_handler;
2289 poll = cpsw_rx_poll;
2290 } else {
2291 ch = &cpsw->tx_ch_num;
2292 vec = cpsw->txv;
2293 handler = cpsw_tx_handler;
2294 poll = cpsw_tx_poll;
2295 }
2296
2297 while (*ch < ch_num) {
2298 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2299 queue = netdev_get_tx_queue(priv->ndev, *ch);
2300 queue->tx_maxrate = 0;
2301
2302 if (IS_ERR(vec[*ch].ch))
2303 return PTR_ERR(vec[*ch].ch);
2304
2305 if (!vec[*ch].ch)
2306 return -EINVAL;
2307
2308 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2309 (rx ? "rx" : "tx"));
2310 (*ch)++;
2311 }
2312
2313 while (*ch > ch_num) {
2314 (*ch)--;
2315
2316 ret = cpdma_chan_destroy(vec[*ch].ch);
2317 if (ret)
2318 return ret;
2319
2320 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2321 (rx ? "rx" : "tx"));
2322 }
2323
2324 return 0;
2325 }
2326
2327 static int cpsw_update_channels(struct cpsw_priv *priv,
2328 struct ethtool_channels *ch)
2329 {
2330 int ret;
2331
2332 ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2333 if (ret)
2334 return ret;
2335
2336 ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2337 if (ret)
2338 return ret;
2339
2340 return 0;
2341 }
2342
2343 static void cpsw_suspend_data_pass(struct net_device *ndev)
2344 {
2345 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2346 struct cpsw_slave *slave;
2347 int i;
2348
2349 /* Disable NAPI scheduling */
2350 cpsw_intr_disable(cpsw);
2351
2352 /* Stop all transmit queues for every network device.
2353 * Disable re-using rx descriptors with dormant_on.
2354 */
2355 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2356 if (!(slave->ndev && netif_running(slave->ndev)))
2357 continue;
2358
2359 netif_tx_stop_all_queues(slave->ndev);
2360 netif_dormant_on(slave->ndev);
2361 }
2362
2363 /* Handle rest of tx packets and stop cpdma channels */
2364 cpdma_ctlr_stop(cpsw->dma);
2365 }
2366
2367 static int cpsw_resume_data_pass(struct net_device *ndev)
2368 {
2369 struct cpsw_priv *priv = netdev_priv(ndev);
2370 struct cpsw_common *cpsw = priv->cpsw;
2371 struct cpsw_slave *slave;
2372 int i, ret;
2373
2374 /* Allow rx packets handling */
2375 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2376 if (slave->ndev && netif_running(slave->ndev))
2377 netif_dormant_off(slave->ndev);
2378
2379 /* After this receive is started */
2380 if (cpsw->usage_count) {
2381 ret = cpsw_fill_rx_channels(priv);
2382 if (ret)
2383 return ret;
2384
2385 cpdma_ctlr_start(cpsw->dma);
2386 cpsw_intr_enable(cpsw);
2387 }
2388
2389 /* Resume transmit for every affected interface */
2390 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2391 if (slave->ndev && netif_running(slave->ndev))
2392 netif_tx_start_all_queues(slave->ndev);
2393
2394 return 0;
2395 }
2396
2397 static int cpsw_set_channels(struct net_device *ndev,
2398 struct ethtool_channels *chs)
2399 {
2400 struct cpsw_priv *priv = netdev_priv(ndev);
2401 struct cpsw_common *cpsw = priv->cpsw;
2402 struct cpsw_slave *slave;
2403 int i, ret;
2404
2405 ret = cpsw_check_ch_settings(cpsw, chs);
2406 if (ret < 0)
2407 return ret;
2408
2409 cpsw_suspend_data_pass(ndev);
2410 ret = cpsw_update_channels(priv, chs);
2411 if (ret)
2412 goto err;
2413
2414 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2415 if (!(slave->ndev && netif_running(slave->ndev)))
2416 continue;
2417
2418 /* Inform stack about new count of queues */
2419 ret = netif_set_real_num_tx_queues(slave->ndev,
2420 cpsw->tx_ch_num);
2421 if (ret) {
2422 dev_err(priv->dev, "cannot set real number of tx queues\n");
2423 goto err;
2424 }
2425
2426 ret = netif_set_real_num_rx_queues(slave->ndev,
2427 cpsw->rx_ch_num);
2428 if (ret) {
2429 dev_err(priv->dev, "cannot set real number of rx queues\n");
2430 goto err;
2431 }
2432 }
2433
2434 if (cpsw->usage_count)
2435 cpsw_split_res(ndev);
2436
2437 ret = cpsw_resume_data_pass(ndev);
2438 if (!ret)
2439 return 0;
2440 err:
2441 dev_err(priv->dev, "cannot update channels number, closing device\n");
2442 dev_close(ndev);
2443 return ret;
2444 }
2445
2446 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2447 {
2448 struct cpsw_priv *priv = netdev_priv(ndev);
2449 struct cpsw_common *cpsw = priv->cpsw;
2450 int slave_no = cpsw_slave_index(cpsw, priv);
2451
2452 if (cpsw->slaves[slave_no].phy)
2453 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2454 else
2455 return -EOPNOTSUPP;
2456 }
2457
2458 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2459 {
2460 struct cpsw_priv *priv = netdev_priv(ndev);
2461 struct cpsw_common *cpsw = priv->cpsw;
2462 int slave_no = cpsw_slave_index(cpsw, priv);
2463
2464 if (cpsw->slaves[slave_no].phy)
2465 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2466 else
2467 return -EOPNOTSUPP;
2468 }
2469
2470 static int cpsw_nway_reset(struct net_device *ndev)
2471 {
2472 struct cpsw_priv *priv = netdev_priv(ndev);
2473 struct cpsw_common *cpsw = priv->cpsw;
2474 int slave_no = cpsw_slave_index(cpsw, priv);
2475
2476 if (cpsw->slaves[slave_no].phy)
2477 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2478 else
2479 return -EOPNOTSUPP;
2480 }
2481
2482 static void cpsw_get_ringparam(struct net_device *ndev,
2483 struct ethtool_ringparam *ering)
2484 {
2485 struct cpsw_priv *priv = netdev_priv(ndev);
2486 struct cpsw_common *cpsw = priv->cpsw;
2487
2488 /* not supported */
2489 ering->tx_max_pending = 0;
2490 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2491 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2492 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2493 }
2494
2495 static int cpsw_set_ringparam(struct net_device *ndev,
2496 struct ethtool_ringparam *ering)
2497 {
2498 struct cpsw_priv *priv = netdev_priv(ndev);
2499 struct cpsw_common *cpsw = priv->cpsw;
2500 int ret;
2501
2502 /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2503
2504 if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2505 ering->rx_pending < CPSW_MAX_QUEUES ||
2506 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2507 return -EINVAL;
2508
2509 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2510 return 0;
2511
2512 cpsw_suspend_data_pass(ndev);
2513
2514 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2515
2516 if (cpsw->usage_count)
2517 cpdma_chan_split_pool(cpsw->dma);
2518
2519 ret = cpsw_resume_data_pass(ndev);
2520 if (!ret)
2521 return 0;
2522
2523 dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2524 dev_close(ndev);
2525 return ret;
2526 }
2527
2528 static const struct ethtool_ops cpsw_ethtool_ops = {
2529 .get_drvinfo = cpsw_get_drvinfo,
2530 .get_msglevel = cpsw_get_msglevel,
2531 .set_msglevel = cpsw_set_msglevel,
2532 .get_link = ethtool_op_get_link,
2533 .get_ts_info = cpsw_get_ts_info,
2534 .get_coalesce = cpsw_get_coalesce,
2535 .set_coalesce = cpsw_set_coalesce,
2536 .get_sset_count = cpsw_get_sset_count,
2537 .get_strings = cpsw_get_strings,
2538 .get_ethtool_stats = cpsw_get_ethtool_stats,
2539 .get_pauseparam = cpsw_get_pauseparam,
2540 .set_pauseparam = cpsw_set_pauseparam,
2541 .get_wol = cpsw_get_wol,
2542 .set_wol = cpsw_set_wol,
2543 .get_regs_len = cpsw_get_regs_len,
2544 .get_regs = cpsw_get_regs,
2545 .begin = cpsw_ethtool_op_begin,
2546 .complete = cpsw_ethtool_op_complete,
2547 .get_channels = cpsw_get_channels,
2548 .set_channels = cpsw_set_channels,
2549 .get_link_ksettings = cpsw_get_link_ksettings,
2550 .set_link_ksettings = cpsw_set_link_ksettings,
2551 .get_eee = cpsw_get_eee,
2552 .set_eee = cpsw_set_eee,
2553 .nway_reset = cpsw_nway_reset,
2554 .get_ringparam = cpsw_get_ringparam,
2555 .set_ringparam = cpsw_set_ringparam,
2556 };
2557
2558 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2559 u32 slave_reg_ofs, u32 sliver_reg_ofs)
2560 {
2561 void __iomem *regs = cpsw->regs;
2562 int slave_num = slave->slave_num;
2563 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num;
2564
2565 slave->data = data;
2566 slave->regs = regs + slave_reg_ofs;
2567 slave->sliver = regs + sliver_reg_ofs;
2568 slave->port_vlan = data->dual_emac_res_vlan;
2569 }
2570
2571 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2572 struct platform_device *pdev)
2573 {
2574 struct device_node *node = pdev->dev.of_node;
2575 struct device_node *slave_node;
2576 int i = 0, ret;
2577 u32 prop;
2578
2579 if (!node)
2580 return -EINVAL;
2581
2582 if (of_property_read_u32(node, "slaves", &prop)) {
2583 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2584 return -EINVAL;
2585 }
2586 data->slaves = prop;
2587
2588 if (of_property_read_u32(node, "active_slave", &prop)) {
2589 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2590 return -EINVAL;
2591 }
2592 data->active_slave = prop;
2593
2594 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2595 * sizeof(struct cpsw_slave_data),
2596 GFP_KERNEL);
2597 if (!data->slave_data)
2598 return -ENOMEM;
2599
2600 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2601 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2602 return -EINVAL;
2603 }
2604 data->channels = prop;
2605
2606 if (of_property_read_u32(node, "ale_entries", &prop)) {
2607 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2608 return -EINVAL;
2609 }
2610 data->ale_entries = prop;
2611
2612 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2613 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2614 return -EINVAL;
2615 }
2616 data->bd_ram_size = prop;
2617
2618 if (of_property_read_u32(node, "mac_control", &prop)) {
2619 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2620 return -EINVAL;
2621 }
2622 data->mac_control = prop;
2623
2624 if (of_property_read_bool(node, "dual_emac"))
2625 data->dual_emac = 1;
2626
2627 /*
2628 * Populate all the child nodes here...
2629 */
2630 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2631 /* We do not want to force this, as in some cases may not have child */
2632 if (ret)
2633 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2634
2635 for_each_available_child_of_node(node, slave_node) {
2636 struct cpsw_slave_data *slave_data = data->slave_data + i;
2637 const void *mac_addr = NULL;
2638 int lenp;
2639 const __be32 *parp;
2640
2641 /* This is no slave child node, continue */
2642 if (strcmp(slave_node->name, "slave"))
2643 continue;
2644
2645 slave_data->phy_node = of_parse_phandle(slave_node,
2646 "phy-handle", 0);
2647 parp = of_get_property(slave_node, "phy_id", &lenp);
2648 if (slave_data->phy_node) {
2649 dev_dbg(&pdev->dev,
2650 "slave[%d] using phy-handle=\"%s\"\n",
2651 i, slave_data->phy_node->full_name);
2652 } else if (of_phy_is_fixed_link(slave_node)) {
2653 /* In the case of a fixed PHY, the DT node associated
2654 * to the PHY is the Ethernet MAC DT node.
2655 */
2656 ret = of_phy_register_fixed_link(slave_node);
2657 if (ret) {
2658 if (ret != -EPROBE_DEFER)
2659 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2660 return ret;
2661 }
2662 slave_data->phy_node = of_node_get(slave_node);
2663 } else if (parp) {
2664 u32 phyid;
2665 struct device_node *mdio_node;
2666 struct platform_device *mdio;
2667
2668 if (lenp != (sizeof(__be32) * 2)) {
2669 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2670 goto no_phy_slave;
2671 }
2672 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2673 phyid = be32_to_cpup(parp+1);
2674 mdio = of_find_device_by_node(mdio_node);
2675 of_node_put(mdio_node);
2676 if (!mdio) {
2677 dev_err(&pdev->dev, "Missing mdio platform device\n");
2678 return -EINVAL;
2679 }
2680 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2681 PHY_ID_FMT, mdio->name, phyid);
2682 put_device(&mdio->dev);
2683 } else {
2684 dev_err(&pdev->dev,
2685 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2686 i);
2687 goto no_phy_slave;
2688 }
2689 slave_data->phy_if = of_get_phy_mode(slave_node);
2690 if (slave_data->phy_if < 0) {
2691 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2692 i);
2693 return slave_data->phy_if;
2694 }
2695
2696 no_phy_slave:
2697 mac_addr = of_get_mac_address(slave_node);
2698 if (mac_addr) {
2699 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2700 } else {
2701 ret = ti_cm_get_macid(&pdev->dev, i,
2702 slave_data->mac_addr);
2703 if (ret)
2704 return ret;
2705 }
2706 if (data->dual_emac) {
2707 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2708 &prop)) {
2709 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2710 slave_data->dual_emac_res_vlan = i+1;
2711 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2712 slave_data->dual_emac_res_vlan, i);
2713 } else {
2714 slave_data->dual_emac_res_vlan = prop;
2715 }
2716 }
2717
2718 i++;
2719 if (i == data->slaves)
2720 break;
2721 }
2722
2723 return 0;
2724 }
2725
2726 static void cpsw_remove_dt(struct platform_device *pdev)
2727 {
2728 struct net_device *ndev = platform_get_drvdata(pdev);
2729 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2730 struct cpsw_platform_data *data = &cpsw->data;
2731 struct device_node *node = pdev->dev.of_node;
2732 struct device_node *slave_node;
2733 int i = 0;
2734
2735 for_each_available_child_of_node(node, slave_node) {
2736 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2737
2738 if (strcmp(slave_node->name, "slave"))
2739 continue;
2740
2741 if (of_phy_is_fixed_link(slave_node))
2742 of_phy_deregister_fixed_link(slave_node);
2743
2744 of_node_put(slave_data->phy_node);
2745
2746 i++;
2747 if (i == data->slaves)
2748 break;
2749 }
2750
2751 of_platform_depopulate(&pdev->dev);
2752 }
2753
2754 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2755 {
2756 struct cpsw_common *cpsw = priv->cpsw;
2757 struct cpsw_platform_data *data = &cpsw->data;
2758 struct net_device *ndev;
2759 struct cpsw_priv *priv_sl2;
2760 int ret = 0;
2761
2762 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2763 if (!ndev) {
2764 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2765 return -ENOMEM;
2766 }
2767
2768 priv_sl2 = netdev_priv(ndev);
2769 priv_sl2->cpsw = cpsw;
2770 priv_sl2->ndev = ndev;
2771 priv_sl2->dev = &ndev->dev;
2772 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2773
2774 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2775 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2776 ETH_ALEN);
2777 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2778 priv_sl2->mac_addr);
2779 } else {
2780 random_ether_addr(priv_sl2->mac_addr);
2781 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2782 priv_sl2->mac_addr);
2783 }
2784 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2785
2786 priv_sl2->emac_port = 1;
2787 cpsw->slaves[1].ndev = ndev;
2788 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2789
2790 ndev->netdev_ops = &cpsw_netdev_ops;
2791 ndev->ethtool_ops = &cpsw_ethtool_ops;
2792
2793 /* register the network device */
2794 SET_NETDEV_DEV(ndev, cpsw->dev);
2795 ret = register_netdev(ndev);
2796 if (ret) {
2797 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2798 free_netdev(ndev);
2799 ret = -ENODEV;
2800 }
2801
2802 return ret;
2803 }
2804
2805 #define CPSW_QUIRK_IRQ BIT(0)
2806
2807 static struct platform_device_id cpsw_devtype[] = {
2808 {
2809 /* keep it for existing comaptibles */
2810 .name = "cpsw",
2811 .driver_data = CPSW_QUIRK_IRQ,
2812 }, {
2813 .name = "am335x-cpsw",
2814 .driver_data = CPSW_QUIRK_IRQ,
2815 }, {
2816 .name = "am4372-cpsw",
2817 .driver_data = 0,
2818 }, {
2819 .name = "dra7-cpsw",
2820 .driver_data = 0,
2821 }, {
2822 /* sentinel */
2823 }
2824 };
2825 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2826
2827 enum ti_cpsw_type {
2828 CPSW = 0,
2829 AM335X_CPSW,
2830 AM4372_CPSW,
2831 DRA7_CPSW,
2832 };
2833
2834 static const struct of_device_id cpsw_of_mtable[] = {
2835 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2836 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2837 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2838 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2839 { /* sentinel */ },
2840 };
2841 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2842
2843 static int cpsw_probe(struct platform_device *pdev)
2844 {
2845 struct clk *clk;
2846 struct cpsw_platform_data *data;
2847 struct net_device *ndev;
2848 struct cpsw_priv *priv;
2849 struct cpdma_params dma_params;
2850 struct cpsw_ale_params ale_params;
2851 void __iomem *ss_regs;
2852 void __iomem *cpts_regs;
2853 struct resource *res, *ss_res;
2854 const struct of_device_id *of_id;
2855 struct gpio_descs *mode;
2856 u32 slave_offset, sliver_offset, slave_size;
2857 struct cpsw_common *cpsw;
2858 int ret = 0, i;
2859 int irq;
2860
2861 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2862 if (!cpsw)
2863 return -ENOMEM;
2864
2865 cpsw->dev = &pdev->dev;
2866
2867 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2868 if (!ndev) {
2869 dev_err(&pdev->dev, "error allocating net_device\n");
2870 return -ENOMEM;
2871 }
2872
2873 platform_set_drvdata(pdev, ndev);
2874 priv = netdev_priv(ndev);
2875 priv->cpsw = cpsw;
2876 priv->ndev = ndev;
2877 priv->dev = &ndev->dev;
2878 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2879 cpsw->rx_packet_max = max(rx_packet_max, 128);
2880
2881 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2882 if (IS_ERR(mode)) {
2883 ret = PTR_ERR(mode);
2884 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2885 goto clean_ndev_ret;
2886 }
2887
2888 /*
2889 * This may be required here for child devices.
2890 */
2891 pm_runtime_enable(&pdev->dev);
2892
2893 /* Select default pin state */
2894 pinctrl_pm_select_default_state(&pdev->dev);
2895
2896 /* Need to enable clocks with runtime PM api to access module
2897 * registers
2898 */
2899 ret = pm_runtime_get_sync(&pdev->dev);
2900 if (ret < 0) {
2901 pm_runtime_put_noidle(&pdev->dev);
2902 goto clean_runtime_disable_ret;
2903 }
2904
2905 ret = cpsw_probe_dt(&cpsw->data, pdev);
2906 if (ret)
2907 goto clean_dt_ret;
2908
2909 data = &cpsw->data;
2910 cpsw->rx_ch_num = 1;
2911 cpsw->tx_ch_num = 1;
2912
2913 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2914 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2915 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2916 } else {
2917 eth_random_addr(priv->mac_addr);
2918 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2919 }
2920
2921 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2922
2923 cpsw->slaves = devm_kzalloc(&pdev->dev,
2924 sizeof(struct cpsw_slave) * data->slaves,
2925 GFP_KERNEL);
2926 if (!cpsw->slaves) {
2927 ret = -ENOMEM;
2928 goto clean_dt_ret;
2929 }
2930 for (i = 0; i < data->slaves; i++)
2931 cpsw->slaves[i].slave_num = i;
2932
2933 cpsw->slaves[0].ndev = ndev;
2934 priv->emac_port = 0;
2935
2936 clk = devm_clk_get(&pdev->dev, "fck");
2937 if (IS_ERR(clk)) {
2938 dev_err(priv->dev, "fck is not found\n");
2939 ret = -ENODEV;
2940 goto clean_dt_ret;
2941 }
2942 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2943
2944 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2945 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2946 if (IS_ERR(ss_regs)) {
2947 ret = PTR_ERR(ss_regs);
2948 goto clean_dt_ret;
2949 }
2950 cpsw->regs = ss_regs;
2951
2952 cpsw->version = readl(&cpsw->regs->id_ver);
2953
2954 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2955 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2956 if (IS_ERR(cpsw->wr_regs)) {
2957 ret = PTR_ERR(cpsw->wr_regs);
2958 goto clean_dt_ret;
2959 }
2960
2961 memset(&dma_params, 0, sizeof(dma_params));
2962 memset(&ale_params, 0, sizeof(ale_params));
2963
2964 switch (cpsw->version) {
2965 case CPSW_VERSION_1:
2966 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2967 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
2968 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
2969 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
2970 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
2971 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
2972 slave_offset = CPSW1_SLAVE_OFFSET;
2973 slave_size = CPSW1_SLAVE_SIZE;
2974 sliver_offset = CPSW1_SLIVER_OFFSET;
2975 dma_params.desc_mem_phys = 0;
2976 break;
2977 case CPSW_VERSION_2:
2978 case CPSW_VERSION_3:
2979 case CPSW_VERSION_4:
2980 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2981 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
2982 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
2983 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
2984 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
2985 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
2986 slave_offset = CPSW2_SLAVE_OFFSET;
2987 slave_size = CPSW2_SLAVE_SIZE;
2988 sliver_offset = CPSW2_SLIVER_OFFSET;
2989 dma_params.desc_mem_phys =
2990 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2991 break;
2992 default:
2993 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2994 ret = -ENODEV;
2995 goto clean_dt_ret;
2996 }
2997 for (i = 0; i < cpsw->data.slaves; i++) {
2998 struct cpsw_slave *slave = &cpsw->slaves[i];
2999
3000 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3001 slave_offset += slave_size;
3002 sliver_offset += SLIVER_SIZE;
3003 }
3004
3005 dma_params.dev = &pdev->dev;
3006 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
3007 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
3008 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
3009 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
3010 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
3011
3012 dma_params.num_chan = data->channels;
3013 dma_params.has_soft_reset = true;
3014 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
3015 dma_params.desc_mem_size = data->bd_ram_size;
3016 dma_params.desc_align = 16;
3017 dma_params.has_ext_regs = true;
3018 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
3019 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
3020 dma_params.descs_pool_size = descs_pool_size;
3021
3022 cpsw->dma = cpdma_ctlr_create(&dma_params);
3023 if (!cpsw->dma) {
3024 dev_err(priv->dev, "error initializing dma\n");
3025 ret = -ENOMEM;
3026 goto clean_dt_ret;
3027 }
3028
3029 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3030 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3031 if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3032 dev_err(priv->dev, "error initializing dma channels\n");
3033 ret = -ENOMEM;
3034 goto clean_dma_ret;
3035 }
3036
3037 ale_params.dev = &pdev->dev;
3038 ale_params.ale_ageout = ale_ageout;
3039 ale_params.ale_entries = data->ale_entries;
3040 ale_params.ale_ports = data->slaves;
3041
3042 cpsw->ale = cpsw_ale_create(&ale_params);
3043 if (!cpsw->ale) {
3044 dev_err(priv->dev, "error initializing ale engine\n");
3045 ret = -ENODEV;
3046 goto clean_dma_ret;
3047 }
3048
3049 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3050 if (IS_ERR(cpsw->cpts)) {
3051 ret = PTR_ERR(cpsw->cpts);
3052 goto clean_ale_ret;
3053 }
3054
3055 ndev->irq = platform_get_irq(pdev, 1);
3056 if (ndev->irq < 0) {
3057 dev_err(priv->dev, "error getting irq resource\n");
3058 ret = ndev->irq;
3059 goto clean_ale_ret;
3060 }
3061
3062 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3063 if (of_id) {
3064 pdev->id_entry = of_id->data;
3065 if (pdev->id_entry->driver_data)
3066 cpsw->quirk_irq = true;
3067 }
3068
3069 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3070 * MISC IRQs which are always kept disabled with this driver so
3071 * we will not request them.
3072 *
3073 * If anyone wants to implement support for those, make sure to
3074 * first request and append them to irqs_table array.
3075 */
3076
3077 /* RX IRQ */
3078 irq = platform_get_irq(pdev, 1);
3079 if (irq < 0) {
3080 ret = irq;
3081 goto clean_ale_ret;
3082 }
3083
3084 cpsw->irqs_table[0] = irq;
3085 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3086 0, dev_name(&pdev->dev), cpsw);
3087 if (ret < 0) {
3088 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3089 goto clean_ale_ret;
3090 }
3091
3092 /* TX IRQ */
3093 irq = platform_get_irq(pdev, 2);
3094 if (irq < 0) {
3095 ret = irq;
3096 goto clean_ale_ret;
3097 }
3098
3099 cpsw->irqs_table[1] = irq;
3100 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3101 0, dev_name(&pdev->dev), cpsw);
3102 if (ret < 0) {
3103 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3104 goto clean_ale_ret;
3105 }
3106
3107 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3108
3109 ndev->netdev_ops = &cpsw_netdev_ops;
3110 ndev->ethtool_ops = &cpsw_ethtool_ops;
3111 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3112 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3113 cpsw_split_res(ndev);
3114
3115 /* register the network device */
3116 SET_NETDEV_DEV(ndev, &pdev->dev);
3117 ret = register_netdev(ndev);
3118 if (ret) {
3119 dev_err(priv->dev, "error registering net device\n");
3120 ret = -ENODEV;
3121 goto clean_ale_ret;
3122 }
3123
3124 cpsw_notice(priv, probe,
3125 "initialized device (regs %pa, irq %d, pool size %d)\n",
3126 &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3127 if (cpsw->data.dual_emac) {
3128 ret = cpsw_probe_dual_emac(priv);
3129 if (ret) {
3130 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3131 goto clean_unregister_netdev_ret;
3132 }
3133 }
3134
3135 pm_runtime_put(&pdev->dev);
3136
3137 return 0;
3138
3139 clean_unregister_netdev_ret:
3140 unregister_netdev(ndev);
3141 clean_ale_ret:
3142 cpsw_ale_destroy(cpsw->ale);
3143 clean_dma_ret:
3144 cpdma_ctlr_destroy(cpsw->dma);
3145 clean_dt_ret:
3146 cpsw_remove_dt(pdev);
3147 pm_runtime_put_sync(&pdev->dev);
3148 clean_runtime_disable_ret:
3149 pm_runtime_disable(&pdev->dev);
3150 clean_ndev_ret:
3151 free_netdev(priv->ndev);
3152 return ret;
3153 }
3154
3155 static int cpsw_remove(struct platform_device *pdev)
3156 {
3157 struct net_device *ndev = platform_get_drvdata(pdev);
3158 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3159 int ret;
3160
3161 ret = pm_runtime_get_sync(&pdev->dev);
3162 if (ret < 0) {
3163 pm_runtime_put_noidle(&pdev->dev);
3164 return ret;
3165 }
3166
3167 if (cpsw->data.dual_emac)
3168 unregister_netdev(cpsw->slaves[1].ndev);
3169 unregister_netdev(ndev);
3170
3171 cpts_release(cpsw->cpts);
3172 cpsw_ale_destroy(cpsw->ale);
3173 cpdma_ctlr_destroy(cpsw->dma);
3174 cpsw_remove_dt(pdev);
3175 pm_runtime_put_sync(&pdev->dev);
3176 pm_runtime_disable(&pdev->dev);
3177 if (cpsw->data.dual_emac)
3178 free_netdev(cpsw->slaves[1].ndev);
3179 free_netdev(ndev);
3180 return 0;
3181 }
3182
3183 #ifdef CONFIG_PM_SLEEP
3184 static int cpsw_suspend(struct device *dev)
3185 {
3186 struct platform_device *pdev = to_platform_device(dev);
3187 struct net_device *ndev = platform_get_drvdata(pdev);
3188 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3189
3190 if (cpsw->data.dual_emac) {
3191 int i;
3192
3193 for (i = 0; i < cpsw->data.slaves; i++) {
3194 if (netif_running(cpsw->slaves[i].ndev))
3195 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3196 }
3197 } else {
3198 if (netif_running(ndev))
3199 cpsw_ndo_stop(ndev);
3200 }
3201
3202 /* Select sleep pin state */
3203 pinctrl_pm_select_sleep_state(dev);
3204
3205 return 0;
3206 }
3207
3208 static int cpsw_resume(struct device *dev)
3209 {
3210 struct platform_device *pdev = to_platform_device(dev);
3211 struct net_device *ndev = platform_get_drvdata(pdev);
3212 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3213
3214 /* Select default pin state */
3215 pinctrl_pm_select_default_state(dev);
3216
3217 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3218 rtnl_lock();
3219 if (cpsw->data.dual_emac) {
3220 int i;
3221
3222 for (i = 0; i < cpsw->data.slaves; i++) {
3223 if (netif_running(cpsw->slaves[i].ndev))
3224 cpsw_ndo_open(cpsw->slaves[i].ndev);
3225 }
3226 } else {
3227 if (netif_running(ndev))
3228 cpsw_ndo_open(ndev);
3229 }
3230 rtnl_unlock();
3231
3232 return 0;
3233 }
3234 #endif
3235
3236 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3237
3238 static struct platform_driver cpsw_driver = {
3239 .driver = {
3240 .name = "cpsw",
3241 .pm = &cpsw_pm_ops,
3242 .of_match_table = cpsw_of_mtable,
3243 },
3244 .probe = cpsw_probe,
3245 .remove = cpsw_remove,
3246 };
3247
3248 module_platform_driver(cpsw_driver);
3249
3250 MODULE_LICENSE("GPL");
3251 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3252 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3253 MODULE_DESCRIPTION("TI CPSW Ethernet driver");