]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/ti/cpsw.c
sh: switch to NO_BOOTMEM
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39
40 #include <linux/pinctrl/consumer.h>
41
42 #include "cpsw.h"
43 #include "cpsw_ale.h"
44 #include "cpts.h"
45 #include "davinci_cpdma.h"
46
47 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
48 NETIF_MSG_DRV | NETIF_MSG_LINK | \
49 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
50 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
51 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
52 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
53 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
54 NETIF_MSG_RX_STATUS)
55
56 #define cpsw_info(priv, type, format, ...) \
57 do { \
58 if (netif_msg_##type(priv) && net_ratelimit()) \
59 dev_info(priv->dev, format, ## __VA_ARGS__); \
60 } while (0)
61
62 #define cpsw_err(priv, type, format, ...) \
63 do { \
64 if (netif_msg_##type(priv) && net_ratelimit()) \
65 dev_err(priv->dev, format, ## __VA_ARGS__); \
66 } while (0)
67
68 #define cpsw_dbg(priv, type, format, ...) \
69 do { \
70 if (netif_msg_##type(priv) && net_ratelimit()) \
71 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
72 } while (0)
73
74 #define cpsw_notice(priv, type, format, ...) \
75 do { \
76 if (netif_msg_##type(priv) && net_ratelimit()) \
77 dev_notice(priv->dev, format, ## __VA_ARGS__); \
78 } while (0)
79
80 #define ALE_ALL_PORTS 0x7
81
82 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
83 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
84 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
85
86 #define CPSW_VERSION_1 0x19010a
87 #define CPSW_VERSION_2 0x19010c
88 #define CPSW_VERSION_3 0x19010f
89 #define CPSW_VERSION_4 0x190112
90
91 #define HOST_PORT_NUM 0
92 #define CPSW_ALE_PORTS_NUM 3
93 #define SLIVER_SIZE 0x40
94
95 #define CPSW1_HOST_PORT_OFFSET 0x028
96 #define CPSW1_SLAVE_OFFSET 0x050
97 #define CPSW1_SLAVE_SIZE 0x040
98 #define CPSW1_CPDMA_OFFSET 0x100
99 #define CPSW1_STATERAM_OFFSET 0x200
100 #define CPSW1_HW_STATS 0x400
101 #define CPSW1_CPTS_OFFSET 0x500
102 #define CPSW1_ALE_OFFSET 0x600
103 #define CPSW1_SLIVER_OFFSET 0x700
104
105 #define CPSW2_HOST_PORT_OFFSET 0x108
106 #define CPSW2_SLAVE_OFFSET 0x200
107 #define CPSW2_SLAVE_SIZE 0x100
108 #define CPSW2_CPDMA_OFFSET 0x800
109 #define CPSW2_HW_STATS 0x900
110 #define CPSW2_STATERAM_OFFSET 0xa00
111 #define CPSW2_CPTS_OFFSET 0xc00
112 #define CPSW2_ALE_OFFSET 0xd00
113 #define CPSW2_SLIVER_OFFSET 0xd80
114 #define CPSW2_BD_OFFSET 0x2000
115
116 #define CPDMA_RXTHRESH 0x0c0
117 #define CPDMA_RXFREE 0x0e0
118 #define CPDMA_TXHDP 0x00
119 #define CPDMA_RXHDP 0x20
120 #define CPDMA_TXCP 0x40
121 #define CPDMA_RXCP 0x60
122
123 #define CPSW_POLL_WEIGHT 64
124 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4
125 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN)
126 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\
127 ETH_FCS_LEN +\
128 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
129
130 #define RX_PRIORITY_MAPPING 0x76543210
131 #define TX_PRIORITY_MAPPING 0x33221100
132 #define CPDMA_TX_PRIORITY_MAP 0x76543210
133
134 #define CPSW_VLAN_AWARE BIT(1)
135 #define CPSW_RX_VLAN_ENCAP BIT(2)
136 #define CPSW_ALE_VLAN_AWARE 1
137
138 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
139 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
140 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
141
142 #define CPSW_INTPACEEN (0x3f << 16)
143 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
144 #define CPSW_CMINTMAX_CNT 63
145 #define CPSW_CMINTMIN_CNT 2
146 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
147 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
148
149 #define cpsw_slave_index(cpsw, priv) \
150 ((cpsw->data.dual_emac) ? priv->emac_port : \
151 cpsw->data.active_slave)
152 #define IRQ_NUM 2
153 #define CPSW_MAX_QUEUES 8
154 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
155
156 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29
157 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0)
158 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16
159 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8
160 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0)
161 enum {
162 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
163 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
164 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
165 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
166 };
167
168 static int debug_level;
169 module_param(debug_level, int, 0);
170 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
171
172 static int ale_ageout = 10;
173 module_param(ale_ageout, int, 0);
174 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
175
176 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
177 module_param(rx_packet_max, int, 0);
178 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
179
180 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
181 module_param(descs_pool_size, int, 0444);
182 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
183
184 struct cpsw_wr_regs {
185 u32 id_ver;
186 u32 soft_reset;
187 u32 control;
188 u32 int_control;
189 u32 rx_thresh_en;
190 u32 rx_en;
191 u32 tx_en;
192 u32 misc_en;
193 u32 mem_allign1[8];
194 u32 rx_thresh_stat;
195 u32 rx_stat;
196 u32 tx_stat;
197 u32 misc_stat;
198 u32 mem_allign2[8];
199 u32 rx_imax;
200 u32 tx_imax;
201
202 };
203
204 struct cpsw_ss_regs {
205 u32 id_ver;
206 u32 control;
207 u32 soft_reset;
208 u32 stat_port_en;
209 u32 ptype;
210 u32 soft_idle;
211 u32 thru_rate;
212 u32 gap_thresh;
213 u32 tx_start_wds;
214 u32 flow_control;
215 u32 vlan_ltype;
216 u32 ts_ltype;
217 u32 dlr_ltype;
218 };
219
220 /* CPSW_PORT_V1 */
221 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
222 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
223 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
224 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
225 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
226 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
227 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
228 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
229
230 /* CPSW_PORT_V2 */
231 #define CPSW2_CONTROL 0x00 /* Control Register */
232 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
233 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
234 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
235 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
236 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
237 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
238
239 /* CPSW_PORT_V1 and V2 */
240 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
241 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
242 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
243
244 /* CPSW_PORT_V2 only */
245 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
246 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
247 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
248 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
249 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
250 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
251 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
252 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
253
254 /* Bit definitions for the CPSW2_CONTROL register */
255 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
256 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
257 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
258 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
259 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
260 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
261 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
262 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
263 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
264 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
265 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
266 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
267 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
268 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
269 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
270 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
271 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
272
273 #define CTRL_V2_TS_BITS \
274 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
275 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
276
277 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
278 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
279 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
280
281
282 #define CTRL_V3_TS_BITS \
283 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
284 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
285 TS_LTYPE1_EN)
286
287 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
288 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
289 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
290
291 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
292 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
293 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
294 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
295 #define TS_MSG_TYPE_EN_MASK (0xffff)
296
297 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
298 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
299
300 /* Bit definitions for the CPSW1_TS_CTL register */
301 #define CPSW_V1_TS_RX_EN BIT(0)
302 #define CPSW_V1_TS_TX_EN BIT(4)
303 #define CPSW_V1_MSG_TYPE_OFS 16
304
305 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
306 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
307
308 #define CPSW_MAX_BLKS_TX 15
309 #define CPSW_MAX_BLKS_TX_SHIFT 4
310 #define CPSW_MAX_BLKS_RX 5
311
312 struct cpsw_host_regs {
313 u32 max_blks;
314 u32 blk_cnt;
315 u32 tx_in_ctl;
316 u32 port_vlan;
317 u32 tx_pri_map;
318 u32 cpdma_tx_pri_map;
319 u32 cpdma_rx_chan_map;
320 };
321
322 struct cpsw_sliver_regs {
323 u32 id_ver;
324 u32 mac_control;
325 u32 mac_status;
326 u32 soft_reset;
327 u32 rx_maxlen;
328 u32 __reserved_0;
329 u32 rx_pause;
330 u32 tx_pause;
331 u32 __reserved_1;
332 u32 rx_pri_map;
333 };
334
335 struct cpsw_hw_stats {
336 u32 rxgoodframes;
337 u32 rxbroadcastframes;
338 u32 rxmulticastframes;
339 u32 rxpauseframes;
340 u32 rxcrcerrors;
341 u32 rxaligncodeerrors;
342 u32 rxoversizedframes;
343 u32 rxjabberframes;
344 u32 rxundersizedframes;
345 u32 rxfragments;
346 u32 __pad_0[2];
347 u32 rxoctets;
348 u32 txgoodframes;
349 u32 txbroadcastframes;
350 u32 txmulticastframes;
351 u32 txpauseframes;
352 u32 txdeferredframes;
353 u32 txcollisionframes;
354 u32 txsinglecollframes;
355 u32 txmultcollframes;
356 u32 txexcessivecollisions;
357 u32 txlatecollisions;
358 u32 txunderrun;
359 u32 txcarriersenseerrors;
360 u32 txoctets;
361 u32 octetframes64;
362 u32 octetframes65t127;
363 u32 octetframes128t255;
364 u32 octetframes256t511;
365 u32 octetframes512t1023;
366 u32 octetframes1024tup;
367 u32 netoctets;
368 u32 rxsofoverruns;
369 u32 rxmofoverruns;
370 u32 rxdmaoverruns;
371 };
372
373 struct cpsw_slave_data {
374 struct device_node *phy_node;
375 char phy_id[MII_BUS_ID_SIZE];
376 int phy_if;
377 u8 mac_addr[ETH_ALEN];
378 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */
379 };
380
381 struct cpsw_platform_data {
382 struct cpsw_slave_data *slave_data;
383 u32 ss_reg_ofs; /* Subsystem control register offset */
384 u32 channels; /* number of cpdma channels (symmetric) */
385 u32 slaves; /* number of slave cpgmac ports */
386 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
387 u32 ale_entries; /* ale table size */
388 u32 bd_ram_size; /*buffer descriptor ram size */
389 u32 mac_control; /* Mac control register */
390 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/
391 bool dual_emac; /* Enable Dual EMAC mode */
392 };
393
394 struct cpsw_slave {
395 void __iomem *regs;
396 struct cpsw_sliver_regs __iomem *sliver;
397 int slave_num;
398 u32 mac_control;
399 struct cpsw_slave_data *data;
400 struct phy_device *phy;
401 struct net_device *ndev;
402 u32 port_vlan;
403 };
404
405 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
406 {
407 return readl_relaxed(slave->regs + offset);
408 }
409
410 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
411 {
412 writel_relaxed(val, slave->regs + offset);
413 }
414
415 struct cpsw_vector {
416 struct cpdma_chan *ch;
417 int budget;
418 };
419
420 struct cpsw_common {
421 struct device *dev;
422 struct cpsw_platform_data data;
423 struct napi_struct napi_rx;
424 struct napi_struct napi_tx;
425 struct cpsw_ss_regs __iomem *regs;
426 struct cpsw_wr_regs __iomem *wr_regs;
427 u8 __iomem *hw_stats;
428 struct cpsw_host_regs __iomem *host_port_regs;
429 u32 version;
430 u32 coal_intvl;
431 u32 bus_freq_mhz;
432 int rx_packet_max;
433 struct cpsw_slave *slaves;
434 struct cpdma_ctlr *dma;
435 struct cpsw_vector txv[CPSW_MAX_QUEUES];
436 struct cpsw_vector rxv[CPSW_MAX_QUEUES];
437 struct cpsw_ale *ale;
438 bool quirk_irq;
439 bool rx_irq_disabled;
440 bool tx_irq_disabled;
441 u32 irqs_table[IRQ_NUM];
442 struct cpts *cpts;
443 int rx_ch_num, tx_ch_num;
444 int speed;
445 int usage_count;
446 };
447
448 struct cpsw_priv {
449 struct net_device *ndev;
450 struct device *dev;
451 u32 msg_enable;
452 u8 mac_addr[ETH_ALEN];
453 bool rx_pause;
454 bool tx_pause;
455 u32 emac_port;
456 struct cpsw_common *cpsw;
457 };
458
459 struct cpsw_stats {
460 char stat_string[ETH_GSTRING_LEN];
461 int type;
462 int sizeof_stat;
463 int stat_offset;
464 };
465
466 enum {
467 CPSW_STATS,
468 CPDMA_RX_STATS,
469 CPDMA_TX_STATS,
470 };
471
472 #define CPSW_STAT(m) CPSW_STATS, \
473 sizeof(((struct cpsw_hw_stats *)0)->m), \
474 offsetof(struct cpsw_hw_stats, m)
475 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
476 sizeof(((struct cpdma_chan_stats *)0)->m), \
477 offsetof(struct cpdma_chan_stats, m)
478 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
479 sizeof(((struct cpdma_chan_stats *)0)->m), \
480 offsetof(struct cpdma_chan_stats, m)
481
482 static const struct cpsw_stats cpsw_gstrings_stats[] = {
483 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
484 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
485 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
486 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
487 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
488 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
489 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
490 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
491 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
492 { "Rx Fragments", CPSW_STAT(rxfragments) },
493 { "Rx Octets", CPSW_STAT(rxoctets) },
494 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
495 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
496 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
497 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
498 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
499 { "Collisions", CPSW_STAT(txcollisionframes) },
500 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
501 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
502 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
503 { "Late Collisions", CPSW_STAT(txlatecollisions) },
504 { "Tx Underrun", CPSW_STAT(txunderrun) },
505 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
506 { "Tx Octets", CPSW_STAT(txoctets) },
507 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
508 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
509 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
510 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
511 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
512 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
513 { "Net Octets", CPSW_STAT(netoctets) },
514 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
515 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
516 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
517 };
518
519 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
520 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
521 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
522 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
523 { "misqueued", CPDMA_RX_STAT(misqueued) },
524 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
525 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
526 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
527 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
528 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
529 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
530 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
531 { "requeue", CPDMA_RX_STAT(requeue) },
532 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
533 };
534
535 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
536 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
537
538 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
539 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
540 #define for_each_slave(priv, func, arg...) \
541 do { \
542 struct cpsw_slave *slave; \
543 struct cpsw_common *cpsw = (priv)->cpsw; \
544 int n; \
545 if (cpsw->data.dual_emac) \
546 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
547 else \
548 for (n = cpsw->data.slaves, \
549 slave = cpsw->slaves; \
550 n; n--) \
551 (func)(slave++, ##arg); \
552 } while (0)
553
554 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \
555 do { \
556 if (!cpsw->data.dual_emac) \
557 break; \
558 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
559 ndev = cpsw->slaves[0].ndev; \
560 skb->dev = ndev; \
561 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
562 ndev = cpsw->slaves[1].ndev; \
563 skb->dev = ndev; \
564 } \
565 } while (0)
566 #define cpsw_add_mcast(cpsw, priv, addr) \
567 do { \
568 if (cpsw->data.dual_emac) { \
569 struct cpsw_slave *slave = cpsw->slaves + \
570 priv->emac_port; \
571 int slave_port = cpsw_get_slave_port( \
572 slave->slave_num); \
573 cpsw_ale_add_mcast(cpsw->ale, addr, \
574 1 << slave_port | ALE_PORT_HOST, \
575 ALE_VLAN, slave->port_vlan, 0); \
576 } else { \
577 cpsw_ale_add_mcast(cpsw->ale, addr, \
578 ALE_ALL_PORTS, \
579 0, 0, 0); \
580 } \
581 } while (0)
582
583 static inline int cpsw_get_slave_port(u32 slave_num)
584 {
585 return slave_num + 1;
586 }
587
588 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
589 {
590 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
591 struct cpsw_ale *ale = cpsw->ale;
592 int i;
593
594 if (cpsw->data.dual_emac) {
595 bool flag = false;
596
597 /* Enabling promiscuous mode for one interface will be
598 * common for both the interface as the interface shares
599 * the same hardware resource.
600 */
601 for (i = 0; i < cpsw->data.slaves; i++)
602 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
603 flag = true;
604
605 if (!enable && flag) {
606 enable = true;
607 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
608 }
609
610 if (enable) {
611 /* Enable Bypass */
612 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
613
614 dev_dbg(&ndev->dev, "promiscuity enabled\n");
615 } else {
616 /* Disable Bypass */
617 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
618 dev_dbg(&ndev->dev, "promiscuity disabled\n");
619 }
620 } else {
621 if (enable) {
622 unsigned long timeout = jiffies + HZ;
623
624 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
625 for (i = 0; i <= cpsw->data.slaves; i++) {
626 cpsw_ale_control_set(ale, i,
627 ALE_PORT_NOLEARN, 1);
628 cpsw_ale_control_set(ale, i,
629 ALE_PORT_NO_SA_UPDATE, 1);
630 }
631
632 /* Clear All Untouched entries */
633 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
634 do {
635 cpu_relax();
636 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
637 break;
638 } while (time_after(timeout, jiffies));
639 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
640
641 /* Clear all mcast from ALE */
642 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
643
644 /* Flood All Unicast Packets to Host port */
645 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
646 dev_dbg(&ndev->dev, "promiscuity enabled\n");
647 } else {
648 /* Don't Flood All Unicast Packets to Host port */
649 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
650
651 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
652 for (i = 0; i <= cpsw->data.slaves; i++) {
653 cpsw_ale_control_set(ale, i,
654 ALE_PORT_NOLEARN, 0);
655 cpsw_ale_control_set(ale, i,
656 ALE_PORT_NO_SA_UPDATE, 0);
657 }
658 dev_dbg(&ndev->dev, "promiscuity disabled\n");
659 }
660 }
661 }
662
663 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
664 {
665 struct cpsw_priv *priv = netdev_priv(ndev);
666 struct cpsw_common *cpsw = priv->cpsw;
667 int vid;
668
669 if (cpsw->data.dual_emac)
670 vid = cpsw->slaves[priv->emac_port].port_vlan;
671 else
672 vid = cpsw->data.default_vlan;
673
674 if (ndev->flags & IFF_PROMISC) {
675 /* Enable promiscuous mode */
676 cpsw_set_promiscious(ndev, true);
677 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
678 return;
679 } else {
680 /* Disable promiscuous mode */
681 cpsw_set_promiscious(ndev, false);
682 }
683
684 /* Restore allmulti on vlans if necessary */
685 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
686
687 /* Clear all mcast from ALE */
688 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
689
690 if (!netdev_mc_empty(ndev)) {
691 struct netdev_hw_addr *ha;
692
693 /* program multicast address list into ALE register */
694 netdev_for_each_mc_addr(ha, ndev) {
695 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
696 }
697 }
698 }
699
700 static void cpsw_intr_enable(struct cpsw_common *cpsw)
701 {
702 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
703 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
704
705 cpdma_ctlr_int_ctrl(cpsw->dma, true);
706 return;
707 }
708
709 static void cpsw_intr_disable(struct cpsw_common *cpsw)
710 {
711 writel_relaxed(0, &cpsw->wr_regs->tx_en);
712 writel_relaxed(0, &cpsw->wr_regs->rx_en);
713
714 cpdma_ctlr_int_ctrl(cpsw->dma, false);
715 return;
716 }
717
718 static void cpsw_tx_handler(void *token, int len, int status)
719 {
720 struct netdev_queue *txq;
721 struct sk_buff *skb = token;
722 struct net_device *ndev = skb->dev;
723 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
724
725 /* Check whether the queue is stopped due to stalled tx dma, if the
726 * queue is stopped then start the queue as we have free desc for tx
727 */
728 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
729 if (unlikely(netif_tx_queue_stopped(txq)))
730 netif_tx_wake_queue(txq);
731
732 cpts_tx_timestamp(cpsw->cpts, skb);
733 ndev->stats.tx_packets++;
734 ndev->stats.tx_bytes += len;
735 dev_kfree_skb_any(skb);
736 }
737
738 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
739 {
740 struct cpsw_priv *priv = netdev_priv(skb->dev);
741 struct cpsw_common *cpsw = priv->cpsw;
742 u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
743 u16 vtag, vid, prio, pkt_type;
744
745 /* Remove VLAN header encapsulation word */
746 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
747
748 pkt_type = (rx_vlan_encap_hdr >>
749 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
750 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
751 /* Ignore unknown & Priority-tagged packets*/
752 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
753 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
754 return;
755
756 vid = (rx_vlan_encap_hdr >>
757 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
758 VLAN_VID_MASK;
759 /* Ignore vid 0 and pass packet as is */
760 if (!vid)
761 return;
762 /* Ignore default vlans in dual mac mode */
763 if (cpsw->data.dual_emac &&
764 vid == cpsw->slaves[priv->emac_port].port_vlan)
765 return;
766
767 prio = (rx_vlan_encap_hdr >>
768 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
769 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
770
771 vtag = (prio << VLAN_PRIO_SHIFT) | vid;
772 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
773
774 /* strip vlan tag for VLAN-tagged packet */
775 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
776 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
777 skb_pull(skb, VLAN_HLEN);
778 }
779 }
780
781 static void cpsw_rx_handler(void *token, int len, int status)
782 {
783 struct cpdma_chan *ch;
784 struct sk_buff *skb = token;
785 struct sk_buff *new_skb;
786 struct net_device *ndev = skb->dev;
787 int ret = 0;
788 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
789
790 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
791
792 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
793 /* In dual emac mode check for all interfaces */
794 if (cpsw->data.dual_emac && cpsw->usage_count &&
795 (status >= 0)) {
796 /* The packet received is for the interface which
797 * is already down and the other interface is up
798 * and running, instead of freeing which results
799 * in reducing of the number of rx descriptor in
800 * DMA engine, requeue skb back to cpdma.
801 */
802 new_skb = skb;
803 goto requeue;
804 }
805
806 /* the interface is going down, skbs are purged */
807 dev_kfree_skb_any(skb);
808 return;
809 }
810
811 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
812 if (new_skb) {
813 skb_copy_queue_mapping(new_skb, skb);
814 skb_put(skb, len);
815 if (status & CPDMA_RX_VLAN_ENCAP)
816 cpsw_rx_vlan_encap(skb);
817 cpts_rx_timestamp(cpsw->cpts, skb);
818 skb->protocol = eth_type_trans(skb, ndev);
819 netif_receive_skb(skb);
820 ndev->stats.rx_bytes += len;
821 ndev->stats.rx_packets++;
822 kmemleak_not_leak(new_skb);
823 } else {
824 ndev->stats.rx_dropped++;
825 new_skb = skb;
826 }
827
828 requeue:
829 if (netif_dormant(ndev)) {
830 dev_kfree_skb_any(new_skb);
831 return;
832 }
833
834 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
835 ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
836 skb_tailroom(new_skb), 0);
837 if (WARN_ON(ret < 0))
838 dev_kfree_skb_any(new_skb);
839 }
840
841 static void cpsw_split_res(struct net_device *ndev)
842 {
843 struct cpsw_priv *priv = netdev_priv(ndev);
844 u32 consumed_rate = 0, bigest_rate = 0;
845 struct cpsw_common *cpsw = priv->cpsw;
846 struct cpsw_vector *txv = cpsw->txv;
847 int i, ch_weight, rlim_ch_num = 0;
848 int budget, bigest_rate_ch = 0;
849 u32 ch_rate, max_rate;
850 int ch_budget = 0;
851
852 for (i = 0; i < cpsw->tx_ch_num; i++) {
853 ch_rate = cpdma_chan_get_rate(txv[i].ch);
854 if (!ch_rate)
855 continue;
856
857 rlim_ch_num++;
858 consumed_rate += ch_rate;
859 }
860
861 if (cpsw->tx_ch_num == rlim_ch_num) {
862 max_rate = consumed_rate;
863 } else if (!rlim_ch_num) {
864 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
865 bigest_rate = 0;
866 max_rate = consumed_rate;
867 } else {
868 max_rate = cpsw->speed * 1000;
869
870 /* if max_rate is less then expected due to reduced link speed,
871 * split proportionally according next potential max speed
872 */
873 if (max_rate < consumed_rate)
874 max_rate *= 10;
875
876 if (max_rate < consumed_rate)
877 max_rate *= 10;
878
879 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
880 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
881 (cpsw->tx_ch_num - rlim_ch_num);
882 bigest_rate = (max_rate - consumed_rate) /
883 (cpsw->tx_ch_num - rlim_ch_num);
884 }
885
886 /* split tx weight/budget */
887 budget = CPSW_POLL_WEIGHT;
888 for (i = 0; i < cpsw->tx_ch_num; i++) {
889 ch_rate = cpdma_chan_get_rate(txv[i].ch);
890 if (ch_rate) {
891 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
892 if (!txv[i].budget)
893 txv[i].budget++;
894 if (ch_rate > bigest_rate) {
895 bigest_rate_ch = i;
896 bigest_rate = ch_rate;
897 }
898
899 ch_weight = (ch_rate * 100) / max_rate;
900 if (!ch_weight)
901 ch_weight++;
902 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
903 } else {
904 txv[i].budget = ch_budget;
905 if (!bigest_rate_ch)
906 bigest_rate_ch = i;
907 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
908 }
909
910 budget -= txv[i].budget;
911 }
912
913 if (budget)
914 txv[bigest_rate_ch].budget += budget;
915
916 /* split rx budget */
917 budget = CPSW_POLL_WEIGHT;
918 ch_budget = budget / cpsw->rx_ch_num;
919 for (i = 0; i < cpsw->rx_ch_num; i++) {
920 cpsw->rxv[i].budget = ch_budget;
921 budget -= ch_budget;
922 }
923
924 if (budget)
925 cpsw->rxv[0].budget += budget;
926 }
927
928 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
929 {
930 struct cpsw_common *cpsw = dev_id;
931
932 writel(0, &cpsw->wr_regs->tx_en);
933 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
934
935 if (cpsw->quirk_irq) {
936 disable_irq_nosync(cpsw->irqs_table[1]);
937 cpsw->tx_irq_disabled = true;
938 }
939
940 napi_schedule(&cpsw->napi_tx);
941 return IRQ_HANDLED;
942 }
943
944 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
945 {
946 struct cpsw_common *cpsw = dev_id;
947
948 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
949 writel(0, &cpsw->wr_regs->rx_en);
950
951 if (cpsw->quirk_irq) {
952 disable_irq_nosync(cpsw->irqs_table[0]);
953 cpsw->rx_irq_disabled = true;
954 }
955
956 napi_schedule(&cpsw->napi_rx);
957 return IRQ_HANDLED;
958 }
959
960 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
961 {
962 u32 ch_map;
963 int num_tx, cur_budget, ch;
964 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
965 struct cpsw_vector *txv;
966
967 /* process every unprocessed channel */
968 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
969 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
970 if (!(ch_map & 0x01))
971 continue;
972
973 txv = &cpsw->txv[ch];
974 if (unlikely(txv->budget > budget - num_tx))
975 cur_budget = budget - num_tx;
976 else
977 cur_budget = txv->budget;
978
979 num_tx += cpdma_chan_process(txv->ch, cur_budget);
980 if (num_tx >= budget)
981 break;
982 }
983
984 if (num_tx < budget) {
985 napi_complete(napi_tx);
986 writel(0xff, &cpsw->wr_regs->tx_en);
987 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
988 cpsw->tx_irq_disabled = false;
989 enable_irq(cpsw->irqs_table[1]);
990 }
991 }
992
993 return num_tx;
994 }
995
996 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
997 {
998 u32 ch_map;
999 int num_rx, cur_budget, ch;
1000 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1001 struct cpsw_vector *rxv;
1002
1003 /* process every unprocessed channel */
1004 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1005 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1006 if (!(ch_map & 0x01))
1007 continue;
1008
1009 rxv = &cpsw->rxv[ch];
1010 if (unlikely(rxv->budget > budget - num_rx))
1011 cur_budget = budget - num_rx;
1012 else
1013 cur_budget = rxv->budget;
1014
1015 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1016 if (num_rx >= budget)
1017 break;
1018 }
1019
1020 if (num_rx < budget) {
1021 napi_complete_done(napi_rx, num_rx);
1022 writel(0xff, &cpsw->wr_regs->rx_en);
1023 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
1024 cpsw->rx_irq_disabled = false;
1025 enable_irq(cpsw->irqs_table[0]);
1026 }
1027 }
1028
1029 return num_rx;
1030 }
1031
1032 static inline void soft_reset(const char *module, void __iomem *reg)
1033 {
1034 unsigned long timeout = jiffies + HZ;
1035
1036 writel_relaxed(1, reg);
1037 do {
1038 cpu_relax();
1039 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1040
1041 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1042 }
1043
1044 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1045 struct cpsw_priv *priv)
1046 {
1047 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1048 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1049 }
1050
1051 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1052 struct cpsw_priv *priv, bool *link)
1053 {
1054 struct phy_device *phy = slave->phy;
1055 u32 mac_control = 0;
1056 u32 slave_port;
1057 struct cpsw_common *cpsw = priv->cpsw;
1058
1059 if (!phy)
1060 return;
1061
1062 slave_port = cpsw_get_slave_port(slave->slave_num);
1063
1064 if (phy->link) {
1065 mac_control = cpsw->data.mac_control;
1066
1067 /* enable forwarding */
1068 cpsw_ale_control_set(cpsw->ale, slave_port,
1069 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1070
1071 if (phy->speed == 1000)
1072 mac_control |= BIT(7); /* GIGABITEN */
1073 if (phy->duplex)
1074 mac_control |= BIT(0); /* FULLDUPLEXEN */
1075
1076 /* set speed_in input in case RMII mode is used in 100Mbps */
1077 if (phy->speed == 100)
1078 mac_control |= BIT(15);
1079 /* in band mode only works in 10Mbps RGMII mode */
1080 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1081 mac_control |= BIT(18); /* In Band mode */
1082
1083 if (priv->rx_pause)
1084 mac_control |= BIT(3);
1085
1086 if (priv->tx_pause)
1087 mac_control |= BIT(4);
1088
1089 *link = true;
1090 } else {
1091 mac_control = 0;
1092 /* disable forwarding */
1093 cpsw_ale_control_set(cpsw->ale, slave_port,
1094 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1095 }
1096
1097 if (mac_control != slave->mac_control) {
1098 phy_print_status(phy);
1099 writel_relaxed(mac_control, &slave->sliver->mac_control);
1100 }
1101
1102 slave->mac_control = mac_control;
1103 }
1104
1105 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1106 {
1107 int i, speed;
1108
1109 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1110 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1111 speed += cpsw->slaves[i].phy->speed;
1112
1113 return speed;
1114 }
1115
1116 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1117 {
1118 int i, rlim_ch_num;
1119 int speed, ch_rate;
1120
1121 /* re-split resources only in case speed was changed */
1122 speed = cpsw_get_common_speed(cpsw);
1123 if (speed == cpsw->speed || !speed)
1124 return 0;
1125
1126 cpsw->speed = speed;
1127
1128 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1129 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1130 if (!ch_rate)
1131 break;
1132
1133 rlim_ch_num++;
1134 }
1135
1136 /* cases not dependent on speed */
1137 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1138 return 0;
1139
1140 return 1;
1141 }
1142
1143 static void cpsw_adjust_link(struct net_device *ndev)
1144 {
1145 struct cpsw_priv *priv = netdev_priv(ndev);
1146 struct cpsw_common *cpsw = priv->cpsw;
1147 bool link = false;
1148
1149 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1150
1151 if (link) {
1152 if (cpsw_need_resplit(cpsw))
1153 cpsw_split_res(ndev);
1154
1155 netif_carrier_on(ndev);
1156 if (netif_running(ndev))
1157 netif_tx_wake_all_queues(ndev);
1158 } else {
1159 netif_carrier_off(ndev);
1160 netif_tx_stop_all_queues(ndev);
1161 }
1162 }
1163
1164 static int cpsw_get_coalesce(struct net_device *ndev,
1165 struct ethtool_coalesce *coal)
1166 {
1167 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1168
1169 coal->rx_coalesce_usecs = cpsw->coal_intvl;
1170 return 0;
1171 }
1172
1173 static int cpsw_set_coalesce(struct net_device *ndev,
1174 struct ethtool_coalesce *coal)
1175 {
1176 struct cpsw_priv *priv = netdev_priv(ndev);
1177 u32 int_ctrl;
1178 u32 num_interrupts = 0;
1179 u32 prescale = 0;
1180 u32 addnl_dvdr = 1;
1181 u32 coal_intvl = 0;
1182 struct cpsw_common *cpsw = priv->cpsw;
1183
1184 coal_intvl = coal->rx_coalesce_usecs;
1185
1186 int_ctrl = readl(&cpsw->wr_regs->int_control);
1187 prescale = cpsw->bus_freq_mhz * 4;
1188
1189 if (!coal->rx_coalesce_usecs) {
1190 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1191 goto update_return;
1192 }
1193
1194 if (coal_intvl < CPSW_CMINTMIN_INTVL)
1195 coal_intvl = CPSW_CMINTMIN_INTVL;
1196
1197 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1198 /* Interrupt pacer works with 4us Pulse, we can
1199 * throttle further by dilating the 4us pulse.
1200 */
1201 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1202
1203 if (addnl_dvdr > 1) {
1204 prescale *= addnl_dvdr;
1205 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1206 coal_intvl = (CPSW_CMINTMAX_INTVL
1207 * addnl_dvdr);
1208 } else {
1209 addnl_dvdr = 1;
1210 coal_intvl = CPSW_CMINTMAX_INTVL;
1211 }
1212 }
1213
1214 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1215 writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1216 writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1217
1218 int_ctrl |= CPSW_INTPACEEN;
1219 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1220 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1221
1222 update_return:
1223 writel(int_ctrl, &cpsw->wr_regs->int_control);
1224
1225 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1226 cpsw->coal_intvl = coal_intvl;
1227
1228 return 0;
1229 }
1230
1231 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1232 {
1233 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1234
1235 switch (sset) {
1236 case ETH_SS_STATS:
1237 return (CPSW_STATS_COMMON_LEN +
1238 (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1239 CPSW_STATS_CH_LEN);
1240 default:
1241 return -EOPNOTSUPP;
1242 }
1243 }
1244
1245 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1246 {
1247 int ch_stats_len;
1248 int line;
1249 int i;
1250
1251 ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1252 for (i = 0; i < ch_stats_len; i++) {
1253 line = i % CPSW_STATS_CH_LEN;
1254 snprintf(*p, ETH_GSTRING_LEN,
1255 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1256 i / CPSW_STATS_CH_LEN,
1257 cpsw_gstrings_ch_stats[line].stat_string);
1258 *p += ETH_GSTRING_LEN;
1259 }
1260 }
1261
1262 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1263 {
1264 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1265 u8 *p = data;
1266 int i;
1267
1268 switch (stringset) {
1269 case ETH_SS_STATS:
1270 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1271 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1272 ETH_GSTRING_LEN);
1273 p += ETH_GSTRING_LEN;
1274 }
1275
1276 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1277 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1278 break;
1279 }
1280 }
1281
1282 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1283 struct ethtool_stats *stats, u64 *data)
1284 {
1285 u8 *p;
1286 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1287 struct cpdma_chan_stats ch_stats;
1288 int i, l, ch;
1289
1290 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1291 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1292 data[l] = readl(cpsw->hw_stats +
1293 cpsw_gstrings_stats[l].stat_offset);
1294
1295 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1296 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1297 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1298 p = (u8 *)&ch_stats +
1299 cpsw_gstrings_ch_stats[i].stat_offset;
1300 data[l] = *(u32 *)p;
1301 }
1302 }
1303
1304 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1305 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1306 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1307 p = (u8 *)&ch_stats +
1308 cpsw_gstrings_ch_stats[i].stat_offset;
1309 data[l] = *(u32 *)p;
1310 }
1311 }
1312 }
1313
1314 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1315 struct sk_buff *skb,
1316 struct cpdma_chan *txch)
1317 {
1318 struct cpsw_common *cpsw = priv->cpsw;
1319
1320 skb_tx_timestamp(skb);
1321 return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1322 priv->emac_port + cpsw->data.dual_emac);
1323 }
1324
1325 static inline void cpsw_add_dual_emac_def_ale_entries(
1326 struct cpsw_priv *priv, struct cpsw_slave *slave,
1327 u32 slave_port)
1328 {
1329 struct cpsw_common *cpsw = priv->cpsw;
1330 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1331
1332 if (cpsw->version == CPSW_VERSION_1)
1333 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1334 else
1335 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1336 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1337 port_mask, port_mask, 0);
1338 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1339 port_mask, ALE_VLAN, slave->port_vlan, 0);
1340 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1341 HOST_PORT_NUM, ALE_VLAN |
1342 ALE_SECURE, slave->port_vlan);
1343 }
1344
1345 static void soft_reset_slave(struct cpsw_slave *slave)
1346 {
1347 char name[32];
1348
1349 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1350 soft_reset(name, &slave->sliver->soft_reset);
1351 }
1352
1353 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1354 {
1355 u32 slave_port;
1356 struct phy_device *phy;
1357 struct cpsw_common *cpsw = priv->cpsw;
1358
1359 soft_reset_slave(slave);
1360
1361 /* setup priority mapping */
1362 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1363
1364 switch (cpsw->version) {
1365 case CPSW_VERSION_1:
1366 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1367 /* Increase RX FIFO size to 5 for supporting fullduplex
1368 * flow control mode
1369 */
1370 slave_write(slave,
1371 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1372 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1373 break;
1374 case CPSW_VERSION_2:
1375 case CPSW_VERSION_3:
1376 case CPSW_VERSION_4:
1377 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1378 /* Increase RX FIFO size to 5 for supporting fullduplex
1379 * flow control mode
1380 */
1381 slave_write(slave,
1382 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1383 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1384 break;
1385 }
1386
1387 /* setup max packet size, and mac address */
1388 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1389 cpsw_set_slave_mac(slave, priv);
1390
1391 slave->mac_control = 0; /* no link yet */
1392
1393 slave_port = cpsw_get_slave_port(slave->slave_num);
1394
1395 if (cpsw->data.dual_emac)
1396 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1397 else
1398 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1399 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1400
1401 if (slave->data->phy_node) {
1402 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1403 &cpsw_adjust_link, 0, slave->data->phy_if);
1404 if (!phy) {
1405 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1406 slave->data->phy_node,
1407 slave->slave_num);
1408 return;
1409 }
1410 } else {
1411 phy = phy_connect(priv->ndev, slave->data->phy_id,
1412 &cpsw_adjust_link, slave->data->phy_if);
1413 if (IS_ERR(phy)) {
1414 dev_err(priv->dev,
1415 "phy \"%s\" not found on slave %d, err %ld\n",
1416 slave->data->phy_id, slave->slave_num,
1417 PTR_ERR(phy));
1418 return;
1419 }
1420 }
1421
1422 slave->phy = phy;
1423
1424 phy_attached_info(slave->phy);
1425
1426 phy_start(slave->phy);
1427
1428 /* Configure GMII_SEL register */
1429 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1430 }
1431
1432 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1433 {
1434 struct cpsw_common *cpsw = priv->cpsw;
1435 const int vlan = cpsw->data.default_vlan;
1436 u32 reg;
1437 int i;
1438 int unreg_mcast_mask;
1439
1440 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1441 CPSW2_PORT_VLAN;
1442
1443 writel(vlan, &cpsw->host_port_regs->port_vlan);
1444
1445 for (i = 0; i < cpsw->data.slaves; i++)
1446 slave_write(cpsw->slaves + i, vlan, reg);
1447
1448 if (priv->ndev->flags & IFF_ALLMULTI)
1449 unreg_mcast_mask = ALE_ALL_PORTS;
1450 else
1451 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1452
1453 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1454 ALE_ALL_PORTS, ALE_ALL_PORTS,
1455 unreg_mcast_mask);
1456 }
1457
1458 static void cpsw_init_host_port(struct cpsw_priv *priv)
1459 {
1460 u32 fifo_mode;
1461 u32 control_reg;
1462 struct cpsw_common *cpsw = priv->cpsw;
1463
1464 /* soft reset the controller and initialize ale */
1465 soft_reset("cpsw", &cpsw->regs->soft_reset);
1466 cpsw_ale_start(cpsw->ale);
1467
1468 /* switch to vlan unaware mode */
1469 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1470 CPSW_ALE_VLAN_AWARE);
1471 control_reg = readl(&cpsw->regs->control);
1472 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1473 writel(control_reg, &cpsw->regs->control);
1474 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1475 CPSW_FIFO_NORMAL_MODE;
1476 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1477
1478 /* setup host port priority mapping */
1479 writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1480 &cpsw->host_port_regs->cpdma_tx_pri_map);
1481 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1482
1483 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1484 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1485
1486 if (!cpsw->data.dual_emac) {
1487 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1488 0, 0);
1489 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1490 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1491 }
1492 }
1493
1494 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1495 {
1496 struct cpsw_common *cpsw = priv->cpsw;
1497 struct sk_buff *skb;
1498 int ch_buf_num;
1499 int ch, i, ret;
1500
1501 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1502 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1503 for (i = 0; i < ch_buf_num; i++) {
1504 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1505 cpsw->rx_packet_max,
1506 GFP_KERNEL);
1507 if (!skb) {
1508 cpsw_err(priv, ifup, "cannot allocate skb\n");
1509 return -ENOMEM;
1510 }
1511
1512 skb_set_queue_mapping(skb, ch);
1513 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1514 skb->data, skb_tailroom(skb),
1515 0);
1516 if (ret < 0) {
1517 cpsw_err(priv, ifup,
1518 "cannot submit skb to channel %d rx, error %d\n",
1519 ch, ret);
1520 kfree_skb(skb);
1521 return ret;
1522 }
1523 kmemleak_not_leak(skb);
1524 }
1525
1526 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1527 ch, ch_buf_num);
1528 }
1529
1530 return 0;
1531 }
1532
1533 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1534 {
1535 u32 slave_port;
1536
1537 slave_port = cpsw_get_slave_port(slave->slave_num);
1538
1539 if (!slave->phy)
1540 return;
1541 phy_stop(slave->phy);
1542 phy_disconnect(slave->phy);
1543 slave->phy = NULL;
1544 cpsw_ale_control_set(cpsw->ale, slave_port,
1545 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1546 soft_reset_slave(slave);
1547 }
1548
1549 static int cpsw_ndo_open(struct net_device *ndev)
1550 {
1551 struct cpsw_priv *priv = netdev_priv(ndev);
1552 struct cpsw_common *cpsw = priv->cpsw;
1553 int ret;
1554 u32 reg;
1555
1556 ret = pm_runtime_get_sync(cpsw->dev);
1557 if (ret < 0) {
1558 pm_runtime_put_noidle(cpsw->dev);
1559 return ret;
1560 }
1561
1562 netif_carrier_off(ndev);
1563
1564 /* Notify the stack of the actual queue counts. */
1565 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1566 if (ret) {
1567 dev_err(priv->dev, "cannot set real number of tx queues\n");
1568 goto err_cleanup;
1569 }
1570
1571 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1572 if (ret) {
1573 dev_err(priv->dev, "cannot set real number of rx queues\n");
1574 goto err_cleanup;
1575 }
1576
1577 reg = cpsw->version;
1578
1579 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1580 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1581 CPSW_RTL_VERSION(reg));
1582
1583 /* Initialize host and slave ports */
1584 if (!cpsw->usage_count)
1585 cpsw_init_host_port(priv);
1586 for_each_slave(priv, cpsw_slave_open, priv);
1587
1588 /* Add default VLAN */
1589 if (!cpsw->data.dual_emac)
1590 cpsw_add_default_vlan(priv);
1591 else
1592 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1593 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1594
1595 /* initialize shared resources for every ndev */
1596 if (!cpsw->usage_count) {
1597 /* disable priority elevation */
1598 writel_relaxed(0, &cpsw->regs->ptype);
1599
1600 /* enable statistics collection only on all ports */
1601 writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1602
1603 /* Enable internal fifo flow control */
1604 writel(0x7, &cpsw->regs->flow_control);
1605
1606 napi_enable(&cpsw->napi_rx);
1607 napi_enable(&cpsw->napi_tx);
1608
1609 if (cpsw->tx_irq_disabled) {
1610 cpsw->tx_irq_disabled = false;
1611 enable_irq(cpsw->irqs_table[1]);
1612 }
1613
1614 if (cpsw->rx_irq_disabled) {
1615 cpsw->rx_irq_disabled = false;
1616 enable_irq(cpsw->irqs_table[0]);
1617 }
1618
1619 ret = cpsw_fill_rx_channels(priv);
1620 if (ret < 0)
1621 goto err_cleanup;
1622
1623 if (cpts_register(cpsw->cpts))
1624 dev_err(priv->dev, "error registering cpts device\n");
1625
1626 }
1627
1628 /* Enable Interrupt pacing if configured */
1629 if (cpsw->coal_intvl != 0) {
1630 struct ethtool_coalesce coal;
1631
1632 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1633 cpsw_set_coalesce(ndev, &coal);
1634 }
1635
1636 cpdma_ctlr_start(cpsw->dma);
1637 cpsw_intr_enable(cpsw);
1638 cpsw->usage_count++;
1639
1640 return 0;
1641
1642 err_cleanup:
1643 cpdma_ctlr_stop(cpsw->dma);
1644 for_each_slave(priv, cpsw_slave_stop, cpsw);
1645 pm_runtime_put_sync(cpsw->dev);
1646 netif_carrier_off(priv->ndev);
1647 return ret;
1648 }
1649
1650 static int cpsw_ndo_stop(struct net_device *ndev)
1651 {
1652 struct cpsw_priv *priv = netdev_priv(ndev);
1653 struct cpsw_common *cpsw = priv->cpsw;
1654
1655 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1656 netif_tx_stop_all_queues(priv->ndev);
1657 netif_carrier_off(priv->ndev);
1658
1659 if (cpsw->usage_count <= 1) {
1660 napi_disable(&cpsw->napi_rx);
1661 napi_disable(&cpsw->napi_tx);
1662 cpts_unregister(cpsw->cpts);
1663 cpsw_intr_disable(cpsw);
1664 cpdma_ctlr_stop(cpsw->dma);
1665 cpsw_ale_stop(cpsw->ale);
1666 }
1667 for_each_slave(priv, cpsw_slave_stop, cpsw);
1668
1669 if (cpsw_need_resplit(cpsw))
1670 cpsw_split_res(ndev);
1671
1672 cpsw->usage_count--;
1673 pm_runtime_put_sync(cpsw->dev);
1674 return 0;
1675 }
1676
1677 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1678 struct net_device *ndev)
1679 {
1680 struct cpsw_priv *priv = netdev_priv(ndev);
1681 struct cpsw_common *cpsw = priv->cpsw;
1682 struct cpts *cpts = cpsw->cpts;
1683 struct netdev_queue *txq;
1684 struct cpdma_chan *txch;
1685 int ret, q_idx;
1686
1687 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1688 cpsw_err(priv, tx_err, "packet pad failed\n");
1689 ndev->stats.tx_dropped++;
1690 return NET_XMIT_DROP;
1691 }
1692
1693 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1694 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1695 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1696
1697 q_idx = skb_get_queue_mapping(skb);
1698 if (q_idx >= cpsw->tx_ch_num)
1699 q_idx = q_idx % cpsw->tx_ch_num;
1700
1701 txch = cpsw->txv[q_idx].ch;
1702 txq = netdev_get_tx_queue(ndev, q_idx);
1703 ret = cpsw_tx_packet_submit(priv, skb, txch);
1704 if (unlikely(ret != 0)) {
1705 cpsw_err(priv, tx_err, "desc submit failed\n");
1706 goto fail;
1707 }
1708
1709 /* If there is no more tx desc left free then we need to
1710 * tell the kernel to stop sending us tx frames.
1711 */
1712 if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1713 netif_tx_stop_queue(txq);
1714
1715 /* Barrier, so that stop_queue visible to other cpus */
1716 smp_mb__after_atomic();
1717
1718 if (cpdma_check_free_tx_desc(txch))
1719 netif_tx_wake_queue(txq);
1720 }
1721
1722 return NETDEV_TX_OK;
1723 fail:
1724 ndev->stats.tx_dropped++;
1725 netif_tx_stop_queue(txq);
1726
1727 /* Barrier, so that stop_queue visible to other cpus */
1728 smp_mb__after_atomic();
1729
1730 if (cpdma_check_free_tx_desc(txch))
1731 netif_tx_wake_queue(txq);
1732
1733 return NETDEV_TX_BUSY;
1734 }
1735
1736 #if IS_ENABLED(CONFIG_TI_CPTS)
1737
1738 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1739 {
1740 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1741 u32 ts_en, seq_id;
1742
1743 if (!cpts_is_tx_enabled(cpsw->cpts) &&
1744 !cpts_is_rx_enabled(cpsw->cpts)) {
1745 slave_write(slave, 0, CPSW1_TS_CTL);
1746 return;
1747 }
1748
1749 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1750 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1751
1752 if (cpts_is_tx_enabled(cpsw->cpts))
1753 ts_en |= CPSW_V1_TS_TX_EN;
1754
1755 if (cpts_is_rx_enabled(cpsw->cpts))
1756 ts_en |= CPSW_V1_TS_RX_EN;
1757
1758 slave_write(slave, ts_en, CPSW1_TS_CTL);
1759 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1760 }
1761
1762 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1763 {
1764 struct cpsw_slave *slave;
1765 struct cpsw_common *cpsw = priv->cpsw;
1766 u32 ctrl, mtype;
1767
1768 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1769
1770 ctrl = slave_read(slave, CPSW2_CONTROL);
1771 switch (cpsw->version) {
1772 case CPSW_VERSION_2:
1773 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1774
1775 if (cpts_is_tx_enabled(cpsw->cpts))
1776 ctrl |= CTRL_V2_TX_TS_BITS;
1777
1778 if (cpts_is_rx_enabled(cpsw->cpts))
1779 ctrl |= CTRL_V2_RX_TS_BITS;
1780 break;
1781 case CPSW_VERSION_3:
1782 default:
1783 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1784
1785 if (cpts_is_tx_enabled(cpsw->cpts))
1786 ctrl |= CTRL_V3_TX_TS_BITS;
1787
1788 if (cpts_is_rx_enabled(cpsw->cpts))
1789 ctrl |= CTRL_V3_RX_TS_BITS;
1790 break;
1791 }
1792
1793 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1794
1795 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1796 slave_write(slave, ctrl, CPSW2_CONTROL);
1797 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1798 }
1799
1800 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1801 {
1802 struct cpsw_priv *priv = netdev_priv(dev);
1803 struct hwtstamp_config cfg;
1804 struct cpsw_common *cpsw = priv->cpsw;
1805 struct cpts *cpts = cpsw->cpts;
1806
1807 if (cpsw->version != CPSW_VERSION_1 &&
1808 cpsw->version != CPSW_VERSION_2 &&
1809 cpsw->version != CPSW_VERSION_3)
1810 return -EOPNOTSUPP;
1811
1812 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1813 return -EFAULT;
1814
1815 /* reserved for future extensions */
1816 if (cfg.flags)
1817 return -EINVAL;
1818
1819 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1820 return -ERANGE;
1821
1822 switch (cfg.rx_filter) {
1823 case HWTSTAMP_FILTER_NONE:
1824 cpts_rx_enable(cpts, 0);
1825 break;
1826 case HWTSTAMP_FILTER_ALL:
1827 case HWTSTAMP_FILTER_NTP_ALL:
1828 return -ERANGE;
1829 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1830 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1831 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1832 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1833 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1834 break;
1835 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1836 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1837 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1838 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1839 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1840 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1841 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1842 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1843 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1844 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1845 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1846 break;
1847 default:
1848 return -ERANGE;
1849 }
1850
1851 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1852
1853 switch (cpsw->version) {
1854 case CPSW_VERSION_1:
1855 cpsw_hwtstamp_v1(cpsw);
1856 break;
1857 case CPSW_VERSION_2:
1858 case CPSW_VERSION_3:
1859 cpsw_hwtstamp_v2(priv);
1860 break;
1861 default:
1862 WARN_ON(1);
1863 }
1864
1865 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1866 }
1867
1868 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1869 {
1870 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1871 struct cpts *cpts = cpsw->cpts;
1872 struct hwtstamp_config cfg;
1873
1874 if (cpsw->version != CPSW_VERSION_1 &&
1875 cpsw->version != CPSW_VERSION_2 &&
1876 cpsw->version != CPSW_VERSION_3)
1877 return -EOPNOTSUPP;
1878
1879 cfg.flags = 0;
1880 cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1881 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1882 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1883 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1884
1885 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1886 }
1887 #else
1888 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1889 {
1890 return -EOPNOTSUPP;
1891 }
1892
1893 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1894 {
1895 return -EOPNOTSUPP;
1896 }
1897 #endif /*CONFIG_TI_CPTS*/
1898
1899 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1900 {
1901 struct cpsw_priv *priv = netdev_priv(dev);
1902 struct cpsw_common *cpsw = priv->cpsw;
1903 int slave_no = cpsw_slave_index(cpsw, priv);
1904
1905 if (!netif_running(dev))
1906 return -EINVAL;
1907
1908 switch (cmd) {
1909 case SIOCSHWTSTAMP:
1910 return cpsw_hwtstamp_set(dev, req);
1911 case SIOCGHWTSTAMP:
1912 return cpsw_hwtstamp_get(dev, req);
1913 }
1914
1915 if (!cpsw->slaves[slave_no].phy)
1916 return -EOPNOTSUPP;
1917 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1918 }
1919
1920 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1921 {
1922 struct cpsw_priv *priv = netdev_priv(ndev);
1923 struct cpsw_common *cpsw = priv->cpsw;
1924 int ch;
1925
1926 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1927 ndev->stats.tx_errors++;
1928 cpsw_intr_disable(cpsw);
1929 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1930 cpdma_chan_stop(cpsw->txv[ch].ch);
1931 cpdma_chan_start(cpsw->txv[ch].ch);
1932 }
1933
1934 cpsw_intr_enable(cpsw);
1935 netif_trans_update(ndev);
1936 netif_tx_wake_all_queues(ndev);
1937 }
1938
1939 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1940 {
1941 struct cpsw_priv *priv = netdev_priv(ndev);
1942 struct sockaddr *addr = (struct sockaddr *)p;
1943 struct cpsw_common *cpsw = priv->cpsw;
1944 int flags = 0;
1945 u16 vid = 0;
1946 int ret;
1947
1948 if (!is_valid_ether_addr(addr->sa_data))
1949 return -EADDRNOTAVAIL;
1950
1951 ret = pm_runtime_get_sync(cpsw->dev);
1952 if (ret < 0) {
1953 pm_runtime_put_noidle(cpsw->dev);
1954 return ret;
1955 }
1956
1957 if (cpsw->data.dual_emac) {
1958 vid = cpsw->slaves[priv->emac_port].port_vlan;
1959 flags = ALE_VLAN;
1960 }
1961
1962 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1963 flags, vid);
1964 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1965 flags, vid);
1966
1967 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1968 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1969 for_each_slave(priv, cpsw_set_slave_mac, priv);
1970
1971 pm_runtime_put(cpsw->dev);
1972
1973 return 0;
1974 }
1975
1976 #ifdef CONFIG_NET_POLL_CONTROLLER
1977 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1978 {
1979 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1980
1981 cpsw_intr_disable(cpsw);
1982 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1983 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1984 cpsw_intr_enable(cpsw);
1985 }
1986 #endif
1987
1988 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1989 unsigned short vid)
1990 {
1991 int ret;
1992 int unreg_mcast_mask = 0;
1993 u32 port_mask;
1994 struct cpsw_common *cpsw = priv->cpsw;
1995
1996 if (cpsw->data.dual_emac) {
1997 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1998
1999 if (priv->ndev->flags & IFF_ALLMULTI)
2000 unreg_mcast_mask = port_mask;
2001 } else {
2002 port_mask = ALE_ALL_PORTS;
2003
2004 if (priv->ndev->flags & IFF_ALLMULTI)
2005 unreg_mcast_mask = ALE_ALL_PORTS;
2006 else
2007 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2008 }
2009
2010 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2011 unreg_mcast_mask);
2012 if (ret != 0)
2013 return ret;
2014
2015 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2016 HOST_PORT_NUM, ALE_VLAN, vid);
2017 if (ret != 0)
2018 goto clean_vid;
2019
2020 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2021 port_mask, ALE_VLAN, vid, 0);
2022 if (ret != 0)
2023 goto clean_vlan_ucast;
2024 return 0;
2025
2026 clean_vlan_ucast:
2027 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2028 HOST_PORT_NUM, ALE_VLAN, vid);
2029 clean_vid:
2030 cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2031 return ret;
2032 }
2033
2034 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2035 __be16 proto, u16 vid)
2036 {
2037 struct cpsw_priv *priv = netdev_priv(ndev);
2038 struct cpsw_common *cpsw = priv->cpsw;
2039 int ret;
2040
2041 if (vid == cpsw->data.default_vlan)
2042 return 0;
2043
2044 ret = pm_runtime_get_sync(cpsw->dev);
2045 if (ret < 0) {
2046 pm_runtime_put_noidle(cpsw->dev);
2047 return ret;
2048 }
2049
2050 if (cpsw->data.dual_emac) {
2051 /* In dual EMAC, reserved VLAN id should not be used for
2052 * creating VLAN interfaces as this can break the dual
2053 * EMAC port separation
2054 */
2055 int i;
2056
2057 for (i = 0; i < cpsw->data.slaves; i++) {
2058 if (vid == cpsw->slaves[i].port_vlan)
2059 return -EINVAL;
2060 }
2061 }
2062
2063 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2064 ret = cpsw_add_vlan_ale_entry(priv, vid);
2065
2066 pm_runtime_put(cpsw->dev);
2067 return ret;
2068 }
2069
2070 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2071 __be16 proto, u16 vid)
2072 {
2073 struct cpsw_priv *priv = netdev_priv(ndev);
2074 struct cpsw_common *cpsw = priv->cpsw;
2075 int ret;
2076
2077 if (vid == cpsw->data.default_vlan)
2078 return 0;
2079
2080 ret = pm_runtime_get_sync(cpsw->dev);
2081 if (ret < 0) {
2082 pm_runtime_put_noidle(cpsw->dev);
2083 return ret;
2084 }
2085
2086 if (cpsw->data.dual_emac) {
2087 int i;
2088
2089 for (i = 0; i < cpsw->data.slaves; i++) {
2090 if (vid == cpsw->slaves[i].port_vlan)
2091 return -EINVAL;
2092 }
2093 }
2094
2095 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2096 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2097 if (ret != 0)
2098 return ret;
2099
2100 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2101 HOST_PORT_NUM, ALE_VLAN, vid);
2102 if (ret != 0)
2103 return ret;
2104
2105 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2106 0, ALE_VLAN, vid);
2107 pm_runtime_put(cpsw->dev);
2108 return ret;
2109 }
2110
2111 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2112 {
2113 struct cpsw_priv *priv = netdev_priv(ndev);
2114 struct cpsw_common *cpsw = priv->cpsw;
2115 struct cpsw_slave *slave;
2116 u32 min_rate;
2117 u32 ch_rate;
2118 int i, ret;
2119
2120 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2121 if (ch_rate == rate)
2122 return 0;
2123
2124 ch_rate = rate * 1000;
2125 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2126 if ((ch_rate < min_rate && ch_rate)) {
2127 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2128 min_rate);
2129 return -EINVAL;
2130 }
2131
2132 if (rate > cpsw->speed) {
2133 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2134 return -EINVAL;
2135 }
2136
2137 ret = pm_runtime_get_sync(cpsw->dev);
2138 if (ret < 0) {
2139 pm_runtime_put_noidle(cpsw->dev);
2140 return ret;
2141 }
2142
2143 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2144 pm_runtime_put(cpsw->dev);
2145
2146 if (ret)
2147 return ret;
2148
2149 /* update rates for slaves tx queues */
2150 for (i = 0; i < cpsw->data.slaves; i++) {
2151 slave = &cpsw->slaves[i];
2152 if (!slave->ndev)
2153 continue;
2154
2155 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2156 }
2157
2158 cpsw_split_res(ndev);
2159 return ret;
2160 }
2161
2162 static const struct net_device_ops cpsw_netdev_ops = {
2163 .ndo_open = cpsw_ndo_open,
2164 .ndo_stop = cpsw_ndo_stop,
2165 .ndo_start_xmit = cpsw_ndo_start_xmit,
2166 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
2167 .ndo_do_ioctl = cpsw_ndo_ioctl,
2168 .ndo_validate_addr = eth_validate_addr,
2169 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
2170 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
2171 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
2172 #ifdef CONFIG_NET_POLL_CONTROLLER
2173 .ndo_poll_controller = cpsw_ndo_poll_controller,
2174 #endif
2175 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
2176 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
2177 };
2178
2179 static int cpsw_get_regs_len(struct net_device *ndev)
2180 {
2181 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2182
2183 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2184 }
2185
2186 static void cpsw_get_regs(struct net_device *ndev,
2187 struct ethtool_regs *regs, void *p)
2188 {
2189 u32 *reg = p;
2190 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2191
2192 /* update CPSW IP version */
2193 regs->version = cpsw->version;
2194
2195 cpsw_ale_dump(cpsw->ale, reg);
2196 }
2197
2198 static void cpsw_get_drvinfo(struct net_device *ndev,
2199 struct ethtool_drvinfo *info)
2200 {
2201 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2202 struct platform_device *pdev = to_platform_device(cpsw->dev);
2203
2204 strlcpy(info->driver, "cpsw", sizeof(info->driver));
2205 strlcpy(info->version, "1.0", sizeof(info->version));
2206 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2207 }
2208
2209 static u32 cpsw_get_msglevel(struct net_device *ndev)
2210 {
2211 struct cpsw_priv *priv = netdev_priv(ndev);
2212 return priv->msg_enable;
2213 }
2214
2215 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2216 {
2217 struct cpsw_priv *priv = netdev_priv(ndev);
2218 priv->msg_enable = value;
2219 }
2220
2221 #if IS_ENABLED(CONFIG_TI_CPTS)
2222 static int cpsw_get_ts_info(struct net_device *ndev,
2223 struct ethtool_ts_info *info)
2224 {
2225 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2226
2227 info->so_timestamping =
2228 SOF_TIMESTAMPING_TX_HARDWARE |
2229 SOF_TIMESTAMPING_TX_SOFTWARE |
2230 SOF_TIMESTAMPING_RX_HARDWARE |
2231 SOF_TIMESTAMPING_RX_SOFTWARE |
2232 SOF_TIMESTAMPING_SOFTWARE |
2233 SOF_TIMESTAMPING_RAW_HARDWARE;
2234 info->phc_index = cpsw->cpts->phc_index;
2235 info->tx_types =
2236 (1 << HWTSTAMP_TX_OFF) |
2237 (1 << HWTSTAMP_TX_ON);
2238 info->rx_filters =
2239 (1 << HWTSTAMP_FILTER_NONE) |
2240 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2241 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2242 return 0;
2243 }
2244 #else
2245 static int cpsw_get_ts_info(struct net_device *ndev,
2246 struct ethtool_ts_info *info)
2247 {
2248 info->so_timestamping =
2249 SOF_TIMESTAMPING_TX_SOFTWARE |
2250 SOF_TIMESTAMPING_RX_SOFTWARE |
2251 SOF_TIMESTAMPING_SOFTWARE;
2252 info->phc_index = -1;
2253 info->tx_types = 0;
2254 info->rx_filters = 0;
2255 return 0;
2256 }
2257 #endif
2258
2259 static int cpsw_get_link_ksettings(struct net_device *ndev,
2260 struct ethtool_link_ksettings *ecmd)
2261 {
2262 struct cpsw_priv *priv = netdev_priv(ndev);
2263 struct cpsw_common *cpsw = priv->cpsw;
2264 int slave_no = cpsw_slave_index(cpsw, priv);
2265
2266 if (!cpsw->slaves[slave_no].phy)
2267 return -EOPNOTSUPP;
2268
2269 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2270 return 0;
2271 }
2272
2273 static int cpsw_set_link_ksettings(struct net_device *ndev,
2274 const struct ethtool_link_ksettings *ecmd)
2275 {
2276 struct cpsw_priv *priv = netdev_priv(ndev);
2277 struct cpsw_common *cpsw = priv->cpsw;
2278 int slave_no = cpsw_slave_index(cpsw, priv);
2279
2280 if (cpsw->slaves[slave_no].phy)
2281 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2282 ecmd);
2283 else
2284 return -EOPNOTSUPP;
2285 }
2286
2287 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2288 {
2289 struct cpsw_priv *priv = netdev_priv(ndev);
2290 struct cpsw_common *cpsw = priv->cpsw;
2291 int slave_no = cpsw_slave_index(cpsw, priv);
2292
2293 wol->supported = 0;
2294 wol->wolopts = 0;
2295
2296 if (cpsw->slaves[slave_no].phy)
2297 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2298 }
2299
2300 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2301 {
2302 struct cpsw_priv *priv = netdev_priv(ndev);
2303 struct cpsw_common *cpsw = priv->cpsw;
2304 int slave_no = cpsw_slave_index(cpsw, priv);
2305
2306 if (cpsw->slaves[slave_no].phy)
2307 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2308 else
2309 return -EOPNOTSUPP;
2310 }
2311
2312 static void cpsw_get_pauseparam(struct net_device *ndev,
2313 struct ethtool_pauseparam *pause)
2314 {
2315 struct cpsw_priv *priv = netdev_priv(ndev);
2316
2317 pause->autoneg = AUTONEG_DISABLE;
2318 pause->rx_pause = priv->rx_pause ? true : false;
2319 pause->tx_pause = priv->tx_pause ? true : false;
2320 }
2321
2322 static int cpsw_set_pauseparam(struct net_device *ndev,
2323 struct ethtool_pauseparam *pause)
2324 {
2325 struct cpsw_priv *priv = netdev_priv(ndev);
2326 bool link;
2327
2328 priv->rx_pause = pause->rx_pause ? true : false;
2329 priv->tx_pause = pause->tx_pause ? true : false;
2330
2331 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2332 return 0;
2333 }
2334
2335 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2336 {
2337 struct cpsw_priv *priv = netdev_priv(ndev);
2338 struct cpsw_common *cpsw = priv->cpsw;
2339 int ret;
2340
2341 ret = pm_runtime_get_sync(cpsw->dev);
2342 if (ret < 0) {
2343 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2344 pm_runtime_put_noidle(cpsw->dev);
2345 }
2346
2347 return ret;
2348 }
2349
2350 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2351 {
2352 struct cpsw_priv *priv = netdev_priv(ndev);
2353 int ret;
2354
2355 ret = pm_runtime_put(priv->cpsw->dev);
2356 if (ret < 0)
2357 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2358 }
2359
2360 static void cpsw_get_channels(struct net_device *ndev,
2361 struct ethtool_channels *ch)
2362 {
2363 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2364
2365 ch->max_combined = 0;
2366 ch->max_rx = CPSW_MAX_QUEUES;
2367 ch->max_tx = CPSW_MAX_QUEUES;
2368 ch->max_other = 0;
2369 ch->other_count = 0;
2370 ch->rx_count = cpsw->rx_ch_num;
2371 ch->tx_count = cpsw->tx_ch_num;
2372 ch->combined_count = 0;
2373 }
2374
2375 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2376 struct ethtool_channels *ch)
2377 {
2378 if (ch->combined_count)
2379 return -EINVAL;
2380
2381 /* verify we have at least one channel in each direction */
2382 if (!ch->rx_count || !ch->tx_count)
2383 return -EINVAL;
2384
2385 if (ch->rx_count > cpsw->data.channels ||
2386 ch->tx_count > cpsw->data.channels)
2387 return -EINVAL;
2388
2389 return 0;
2390 }
2391
2392 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2393 {
2394 struct cpsw_common *cpsw = priv->cpsw;
2395 void (*handler)(void *, int, int);
2396 struct netdev_queue *queue;
2397 struct cpsw_vector *vec;
2398 int ret, *ch;
2399
2400 if (rx) {
2401 ch = &cpsw->rx_ch_num;
2402 vec = cpsw->rxv;
2403 handler = cpsw_rx_handler;
2404 } else {
2405 ch = &cpsw->tx_ch_num;
2406 vec = cpsw->txv;
2407 handler = cpsw_tx_handler;
2408 }
2409
2410 while (*ch < ch_num) {
2411 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2412 queue = netdev_get_tx_queue(priv->ndev, *ch);
2413 queue->tx_maxrate = 0;
2414
2415 if (IS_ERR(vec[*ch].ch))
2416 return PTR_ERR(vec[*ch].ch);
2417
2418 if (!vec[*ch].ch)
2419 return -EINVAL;
2420
2421 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2422 (rx ? "rx" : "tx"));
2423 (*ch)++;
2424 }
2425
2426 while (*ch > ch_num) {
2427 (*ch)--;
2428
2429 ret = cpdma_chan_destroy(vec[*ch].ch);
2430 if (ret)
2431 return ret;
2432
2433 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2434 (rx ? "rx" : "tx"));
2435 }
2436
2437 return 0;
2438 }
2439
2440 static int cpsw_update_channels(struct cpsw_priv *priv,
2441 struct ethtool_channels *ch)
2442 {
2443 int ret;
2444
2445 ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2446 if (ret)
2447 return ret;
2448
2449 ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2450 if (ret)
2451 return ret;
2452
2453 return 0;
2454 }
2455
2456 static void cpsw_suspend_data_pass(struct net_device *ndev)
2457 {
2458 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2459 struct cpsw_slave *slave;
2460 int i;
2461
2462 /* Disable NAPI scheduling */
2463 cpsw_intr_disable(cpsw);
2464
2465 /* Stop all transmit queues for every network device.
2466 * Disable re-using rx descriptors with dormant_on.
2467 */
2468 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2469 if (!(slave->ndev && netif_running(slave->ndev)))
2470 continue;
2471
2472 netif_tx_stop_all_queues(slave->ndev);
2473 netif_dormant_on(slave->ndev);
2474 }
2475
2476 /* Handle rest of tx packets and stop cpdma channels */
2477 cpdma_ctlr_stop(cpsw->dma);
2478 }
2479
2480 static int cpsw_resume_data_pass(struct net_device *ndev)
2481 {
2482 struct cpsw_priv *priv = netdev_priv(ndev);
2483 struct cpsw_common *cpsw = priv->cpsw;
2484 struct cpsw_slave *slave;
2485 int i, ret;
2486
2487 /* Allow rx packets handling */
2488 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2489 if (slave->ndev && netif_running(slave->ndev))
2490 netif_dormant_off(slave->ndev);
2491
2492 /* After this receive is started */
2493 if (cpsw->usage_count) {
2494 ret = cpsw_fill_rx_channels(priv);
2495 if (ret)
2496 return ret;
2497
2498 cpdma_ctlr_start(cpsw->dma);
2499 cpsw_intr_enable(cpsw);
2500 }
2501
2502 /* Resume transmit for every affected interface */
2503 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2504 if (slave->ndev && netif_running(slave->ndev))
2505 netif_tx_start_all_queues(slave->ndev);
2506
2507 return 0;
2508 }
2509
2510 static int cpsw_set_channels(struct net_device *ndev,
2511 struct ethtool_channels *chs)
2512 {
2513 struct cpsw_priv *priv = netdev_priv(ndev);
2514 struct cpsw_common *cpsw = priv->cpsw;
2515 struct cpsw_slave *slave;
2516 int i, ret;
2517
2518 ret = cpsw_check_ch_settings(cpsw, chs);
2519 if (ret < 0)
2520 return ret;
2521
2522 cpsw_suspend_data_pass(ndev);
2523 ret = cpsw_update_channels(priv, chs);
2524 if (ret)
2525 goto err;
2526
2527 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2528 if (!(slave->ndev && netif_running(slave->ndev)))
2529 continue;
2530
2531 /* Inform stack about new count of queues */
2532 ret = netif_set_real_num_tx_queues(slave->ndev,
2533 cpsw->tx_ch_num);
2534 if (ret) {
2535 dev_err(priv->dev, "cannot set real number of tx queues\n");
2536 goto err;
2537 }
2538
2539 ret = netif_set_real_num_rx_queues(slave->ndev,
2540 cpsw->rx_ch_num);
2541 if (ret) {
2542 dev_err(priv->dev, "cannot set real number of rx queues\n");
2543 goto err;
2544 }
2545 }
2546
2547 if (cpsw->usage_count)
2548 cpsw_split_res(ndev);
2549
2550 ret = cpsw_resume_data_pass(ndev);
2551 if (!ret)
2552 return 0;
2553 err:
2554 dev_err(priv->dev, "cannot update channels number, closing device\n");
2555 dev_close(ndev);
2556 return ret;
2557 }
2558
2559 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2560 {
2561 struct cpsw_priv *priv = netdev_priv(ndev);
2562 struct cpsw_common *cpsw = priv->cpsw;
2563 int slave_no = cpsw_slave_index(cpsw, priv);
2564
2565 if (cpsw->slaves[slave_no].phy)
2566 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2567 else
2568 return -EOPNOTSUPP;
2569 }
2570
2571 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2572 {
2573 struct cpsw_priv *priv = netdev_priv(ndev);
2574 struct cpsw_common *cpsw = priv->cpsw;
2575 int slave_no = cpsw_slave_index(cpsw, priv);
2576
2577 if (cpsw->slaves[slave_no].phy)
2578 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2579 else
2580 return -EOPNOTSUPP;
2581 }
2582
2583 static int cpsw_nway_reset(struct net_device *ndev)
2584 {
2585 struct cpsw_priv *priv = netdev_priv(ndev);
2586 struct cpsw_common *cpsw = priv->cpsw;
2587 int slave_no = cpsw_slave_index(cpsw, priv);
2588
2589 if (cpsw->slaves[slave_no].phy)
2590 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2591 else
2592 return -EOPNOTSUPP;
2593 }
2594
2595 static void cpsw_get_ringparam(struct net_device *ndev,
2596 struct ethtool_ringparam *ering)
2597 {
2598 struct cpsw_priv *priv = netdev_priv(ndev);
2599 struct cpsw_common *cpsw = priv->cpsw;
2600
2601 /* not supported */
2602 ering->tx_max_pending = 0;
2603 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2604 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2605 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2606 }
2607
2608 static int cpsw_set_ringparam(struct net_device *ndev,
2609 struct ethtool_ringparam *ering)
2610 {
2611 struct cpsw_priv *priv = netdev_priv(ndev);
2612 struct cpsw_common *cpsw = priv->cpsw;
2613 int ret;
2614
2615 /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2616
2617 if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2618 ering->rx_pending < CPSW_MAX_QUEUES ||
2619 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2620 return -EINVAL;
2621
2622 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2623 return 0;
2624
2625 cpsw_suspend_data_pass(ndev);
2626
2627 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2628
2629 if (cpsw->usage_count)
2630 cpdma_chan_split_pool(cpsw->dma);
2631
2632 ret = cpsw_resume_data_pass(ndev);
2633 if (!ret)
2634 return 0;
2635
2636 dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2637 dev_close(ndev);
2638 return ret;
2639 }
2640
2641 static const struct ethtool_ops cpsw_ethtool_ops = {
2642 .get_drvinfo = cpsw_get_drvinfo,
2643 .get_msglevel = cpsw_get_msglevel,
2644 .set_msglevel = cpsw_set_msglevel,
2645 .get_link = ethtool_op_get_link,
2646 .get_ts_info = cpsw_get_ts_info,
2647 .get_coalesce = cpsw_get_coalesce,
2648 .set_coalesce = cpsw_set_coalesce,
2649 .get_sset_count = cpsw_get_sset_count,
2650 .get_strings = cpsw_get_strings,
2651 .get_ethtool_stats = cpsw_get_ethtool_stats,
2652 .get_pauseparam = cpsw_get_pauseparam,
2653 .set_pauseparam = cpsw_set_pauseparam,
2654 .get_wol = cpsw_get_wol,
2655 .set_wol = cpsw_set_wol,
2656 .get_regs_len = cpsw_get_regs_len,
2657 .get_regs = cpsw_get_regs,
2658 .begin = cpsw_ethtool_op_begin,
2659 .complete = cpsw_ethtool_op_complete,
2660 .get_channels = cpsw_get_channels,
2661 .set_channels = cpsw_set_channels,
2662 .get_link_ksettings = cpsw_get_link_ksettings,
2663 .set_link_ksettings = cpsw_set_link_ksettings,
2664 .get_eee = cpsw_get_eee,
2665 .set_eee = cpsw_set_eee,
2666 .nway_reset = cpsw_nway_reset,
2667 .get_ringparam = cpsw_get_ringparam,
2668 .set_ringparam = cpsw_set_ringparam,
2669 };
2670
2671 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2672 u32 slave_reg_ofs, u32 sliver_reg_ofs)
2673 {
2674 void __iomem *regs = cpsw->regs;
2675 int slave_num = slave->slave_num;
2676 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num;
2677
2678 slave->data = data;
2679 slave->regs = regs + slave_reg_ofs;
2680 slave->sliver = regs + sliver_reg_ofs;
2681 slave->port_vlan = data->dual_emac_res_vlan;
2682 }
2683
2684 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2685 struct platform_device *pdev)
2686 {
2687 struct device_node *node = pdev->dev.of_node;
2688 struct device_node *slave_node;
2689 int i = 0, ret;
2690 u32 prop;
2691
2692 if (!node)
2693 return -EINVAL;
2694
2695 if (of_property_read_u32(node, "slaves", &prop)) {
2696 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2697 return -EINVAL;
2698 }
2699 data->slaves = prop;
2700
2701 if (of_property_read_u32(node, "active_slave", &prop)) {
2702 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2703 return -EINVAL;
2704 }
2705 data->active_slave = prop;
2706
2707 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2708 * sizeof(struct cpsw_slave_data),
2709 GFP_KERNEL);
2710 if (!data->slave_data)
2711 return -ENOMEM;
2712
2713 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2714 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2715 return -EINVAL;
2716 }
2717 data->channels = prop;
2718
2719 if (of_property_read_u32(node, "ale_entries", &prop)) {
2720 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2721 return -EINVAL;
2722 }
2723 data->ale_entries = prop;
2724
2725 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2726 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2727 return -EINVAL;
2728 }
2729 data->bd_ram_size = prop;
2730
2731 if (of_property_read_u32(node, "mac_control", &prop)) {
2732 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2733 return -EINVAL;
2734 }
2735 data->mac_control = prop;
2736
2737 if (of_property_read_bool(node, "dual_emac"))
2738 data->dual_emac = 1;
2739
2740 /*
2741 * Populate all the child nodes here...
2742 */
2743 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2744 /* We do not want to force this, as in some cases may not have child */
2745 if (ret)
2746 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2747
2748 for_each_available_child_of_node(node, slave_node) {
2749 struct cpsw_slave_data *slave_data = data->slave_data + i;
2750 const void *mac_addr = NULL;
2751 int lenp;
2752 const __be32 *parp;
2753
2754 /* This is no slave child node, continue */
2755 if (strcmp(slave_node->name, "slave"))
2756 continue;
2757
2758 slave_data->phy_node = of_parse_phandle(slave_node,
2759 "phy-handle", 0);
2760 parp = of_get_property(slave_node, "phy_id", &lenp);
2761 if (slave_data->phy_node) {
2762 dev_dbg(&pdev->dev,
2763 "slave[%d] using phy-handle=\"%pOF\"\n",
2764 i, slave_data->phy_node);
2765 } else if (of_phy_is_fixed_link(slave_node)) {
2766 /* In the case of a fixed PHY, the DT node associated
2767 * to the PHY is the Ethernet MAC DT node.
2768 */
2769 ret = of_phy_register_fixed_link(slave_node);
2770 if (ret) {
2771 if (ret != -EPROBE_DEFER)
2772 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2773 return ret;
2774 }
2775 slave_data->phy_node = of_node_get(slave_node);
2776 } else if (parp) {
2777 u32 phyid;
2778 struct device_node *mdio_node;
2779 struct platform_device *mdio;
2780
2781 if (lenp != (sizeof(__be32) * 2)) {
2782 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2783 goto no_phy_slave;
2784 }
2785 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2786 phyid = be32_to_cpup(parp+1);
2787 mdio = of_find_device_by_node(mdio_node);
2788 of_node_put(mdio_node);
2789 if (!mdio) {
2790 dev_err(&pdev->dev, "Missing mdio platform device\n");
2791 return -EINVAL;
2792 }
2793 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2794 PHY_ID_FMT, mdio->name, phyid);
2795 put_device(&mdio->dev);
2796 } else {
2797 dev_err(&pdev->dev,
2798 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2799 i);
2800 goto no_phy_slave;
2801 }
2802 slave_data->phy_if = of_get_phy_mode(slave_node);
2803 if (slave_data->phy_if < 0) {
2804 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2805 i);
2806 return slave_data->phy_if;
2807 }
2808
2809 no_phy_slave:
2810 mac_addr = of_get_mac_address(slave_node);
2811 if (mac_addr) {
2812 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2813 } else {
2814 ret = ti_cm_get_macid(&pdev->dev, i,
2815 slave_data->mac_addr);
2816 if (ret)
2817 return ret;
2818 }
2819 if (data->dual_emac) {
2820 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2821 &prop)) {
2822 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2823 slave_data->dual_emac_res_vlan = i+1;
2824 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2825 slave_data->dual_emac_res_vlan, i);
2826 } else {
2827 slave_data->dual_emac_res_vlan = prop;
2828 }
2829 }
2830
2831 i++;
2832 if (i == data->slaves)
2833 break;
2834 }
2835
2836 return 0;
2837 }
2838
2839 static void cpsw_remove_dt(struct platform_device *pdev)
2840 {
2841 struct net_device *ndev = platform_get_drvdata(pdev);
2842 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2843 struct cpsw_platform_data *data = &cpsw->data;
2844 struct device_node *node = pdev->dev.of_node;
2845 struct device_node *slave_node;
2846 int i = 0;
2847
2848 for_each_available_child_of_node(node, slave_node) {
2849 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2850
2851 if (strcmp(slave_node->name, "slave"))
2852 continue;
2853
2854 if (of_phy_is_fixed_link(slave_node))
2855 of_phy_deregister_fixed_link(slave_node);
2856
2857 of_node_put(slave_data->phy_node);
2858
2859 i++;
2860 if (i == data->slaves)
2861 break;
2862 }
2863
2864 of_platform_depopulate(&pdev->dev);
2865 }
2866
2867 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2868 {
2869 struct cpsw_common *cpsw = priv->cpsw;
2870 struct cpsw_platform_data *data = &cpsw->data;
2871 struct net_device *ndev;
2872 struct cpsw_priv *priv_sl2;
2873 int ret = 0;
2874
2875 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2876 if (!ndev) {
2877 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2878 return -ENOMEM;
2879 }
2880
2881 priv_sl2 = netdev_priv(ndev);
2882 priv_sl2->cpsw = cpsw;
2883 priv_sl2->ndev = ndev;
2884 priv_sl2->dev = &ndev->dev;
2885 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2886
2887 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2888 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2889 ETH_ALEN);
2890 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2891 priv_sl2->mac_addr);
2892 } else {
2893 random_ether_addr(priv_sl2->mac_addr);
2894 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2895 priv_sl2->mac_addr);
2896 }
2897 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2898
2899 priv_sl2->emac_port = 1;
2900 cpsw->slaves[1].ndev = ndev;
2901 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2902
2903 ndev->netdev_ops = &cpsw_netdev_ops;
2904 ndev->ethtool_ops = &cpsw_ethtool_ops;
2905
2906 /* register the network device */
2907 SET_NETDEV_DEV(ndev, cpsw->dev);
2908 ret = register_netdev(ndev);
2909 if (ret) {
2910 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2911 free_netdev(ndev);
2912 ret = -ENODEV;
2913 }
2914
2915 return ret;
2916 }
2917
2918 #define CPSW_QUIRK_IRQ BIT(0)
2919
2920 static const struct platform_device_id cpsw_devtype[] = {
2921 {
2922 /* keep it for existing comaptibles */
2923 .name = "cpsw",
2924 .driver_data = CPSW_QUIRK_IRQ,
2925 }, {
2926 .name = "am335x-cpsw",
2927 .driver_data = CPSW_QUIRK_IRQ,
2928 }, {
2929 .name = "am4372-cpsw",
2930 .driver_data = 0,
2931 }, {
2932 .name = "dra7-cpsw",
2933 .driver_data = 0,
2934 }, {
2935 /* sentinel */
2936 }
2937 };
2938 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2939
2940 enum ti_cpsw_type {
2941 CPSW = 0,
2942 AM335X_CPSW,
2943 AM4372_CPSW,
2944 DRA7_CPSW,
2945 };
2946
2947 static const struct of_device_id cpsw_of_mtable[] = {
2948 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2949 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2950 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2951 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2952 { /* sentinel */ },
2953 };
2954 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2955
2956 static int cpsw_probe(struct platform_device *pdev)
2957 {
2958 struct clk *clk;
2959 struct cpsw_platform_data *data;
2960 struct net_device *ndev;
2961 struct cpsw_priv *priv;
2962 struct cpdma_params dma_params;
2963 struct cpsw_ale_params ale_params;
2964 void __iomem *ss_regs;
2965 void __iomem *cpts_regs;
2966 struct resource *res, *ss_res;
2967 const struct of_device_id *of_id;
2968 struct gpio_descs *mode;
2969 u32 slave_offset, sliver_offset, slave_size;
2970 struct cpsw_common *cpsw;
2971 int ret = 0, i;
2972 int irq;
2973
2974 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2975 if (!cpsw)
2976 return -ENOMEM;
2977
2978 cpsw->dev = &pdev->dev;
2979
2980 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2981 if (!ndev) {
2982 dev_err(&pdev->dev, "error allocating net_device\n");
2983 return -ENOMEM;
2984 }
2985
2986 platform_set_drvdata(pdev, ndev);
2987 priv = netdev_priv(ndev);
2988 priv->cpsw = cpsw;
2989 priv->ndev = ndev;
2990 priv->dev = &ndev->dev;
2991 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2992 cpsw->rx_packet_max = max(rx_packet_max, 128);
2993
2994 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2995 if (IS_ERR(mode)) {
2996 ret = PTR_ERR(mode);
2997 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2998 goto clean_ndev_ret;
2999 }
3000
3001 /*
3002 * This may be required here for child devices.
3003 */
3004 pm_runtime_enable(&pdev->dev);
3005
3006 /* Select default pin state */
3007 pinctrl_pm_select_default_state(&pdev->dev);
3008
3009 /* Need to enable clocks with runtime PM api to access module
3010 * registers
3011 */
3012 ret = pm_runtime_get_sync(&pdev->dev);
3013 if (ret < 0) {
3014 pm_runtime_put_noidle(&pdev->dev);
3015 goto clean_runtime_disable_ret;
3016 }
3017
3018 ret = cpsw_probe_dt(&cpsw->data, pdev);
3019 if (ret)
3020 goto clean_dt_ret;
3021
3022 data = &cpsw->data;
3023 cpsw->rx_ch_num = 1;
3024 cpsw->tx_ch_num = 1;
3025
3026 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3027 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3028 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3029 } else {
3030 eth_random_addr(priv->mac_addr);
3031 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3032 }
3033
3034 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3035
3036 cpsw->slaves = devm_kzalloc(&pdev->dev,
3037 sizeof(struct cpsw_slave) * data->slaves,
3038 GFP_KERNEL);
3039 if (!cpsw->slaves) {
3040 ret = -ENOMEM;
3041 goto clean_dt_ret;
3042 }
3043 for (i = 0; i < data->slaves; i++)
3044 cpsw->slaves[i].slave_num = i;
3045
3046 cpsw->slaves[0].ndev = ndev;
3047 priv->emac_port = 0;
3048
3049 clk = devm_clk_get(&pdev->dev, "fck");
3050 if (IS_ERR(clk)) {
3051 dev_err(priv->dev, "fck is not found\n");
3052 ret = -ENODEV;
3053 goto clean_dt_ret;
3054 }
3055 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3056
3057 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3058 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3059 if (IS_ERR(ss_regs)) {
3060 ret = PTR_ERR(ss_regs);
3061 goto clean_dt_ret;
3062 }
3063 cpsw->regs = ss_regs;
3064
3065 cpsw->version = readl(&cpsw->regs->id_ver);
3066
3067 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3068 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3069 if (IS_ERR(cpsw->wr_regs)) {
3070 ret = PTR_ERR(cpsw->wr_regs);
3071 goto clean_dt_ret;
3072 }
3073
3074 memset(&dma_params, 0, sizeof(dma_params));
3075 memset(&ale_params, 0, sizeof(ale_params));
3076
3077 switch (cpsw->version) {
3078 case CPSW_VERSION_1:
3079 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3080 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
3081 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
3082 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
3083 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
3084 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
3085 slave_offset = CPSW1_SLAVE_OFFSET;
3086 slave_size = CPSW1_SLAVE_SIZE;
3087 sliver_offset = CPSW1_SLIVER_OFFSET;
3088 dma_params.desc_mem_phys = 0;
3089 break;
3090 case CPSW_VERSION_2:
3091 case CPSW_VERSION_3:
3092 case CPSW_VERSION_4:
3093 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3094 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
3095 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
3096 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
3097 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
3098 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
3099 slave_offset = CPSW2_SLAVE_OFFSET;
3100 slave_size = CPSW2_SLAVE_SIZE;
3101 sliver_offset = CPSW2_SLIVER_OFFSET;
3102 dma_params.desc_mem_phys =
3103 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3104 break;
3105 default:
3106 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3107 ret = -ENODEV;
3108 goto clean_dt_ret;
3109 }
3110 for (i = 0; i < cpsw->data.slaves; i++) {
3111 struct cpsw_slave *slave = &cpsw->slaves[i];
3112
3113 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3114 slave_offset += slave_size;
3115 sliver_offset += SLIVER_SIZE;
3116 }
3117
3118 dma_params.dev = &pdev->dev;
3119 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
3120 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
3121 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
3122 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
3123 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
3124
3125 dma_params.num_chan = data->channels;
3126 dma_params.has_soft_reset = true;
3127 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
3128 dma_params.desc_mem_size = data->bd_ram_size;
3129 dma_params.desc_align = 16;
3130 dma_params.has_ext_regs = true;
3131 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
3132 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
3133 dma_params.descs_pool_size = descs_pool_size;
3134
3135 cpsw->dma = cpdma_ctlr_create(&dma_params);
3136 if (!cpsw->dma) {
3137 dev_err(priv->dev, "error initializing dma\n");
3138 ret = -ENOMEM;
3139 goto clean_dt_ret;
3140 }
3141
3142 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3143 if (IS_ERR(cpsw->txv[0].ch)) {
3144 dev_err(priv->dev, "error initializing tx dma channel\n");
3145 ret = PTR_ERR(cpsw->txv[0].ch);
3146 goto clean_dma_ret;
3147 }
3148
3149 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3150 if (IS_ERR(cpsw->rxv[0].ch)) {
3151 dev_err(priv->dev, "error initializing rx dma channel\n");
3152 ret = PTR_ERR(cpsw->rxv[0].ch);
3153 goto clean_dma_ret;
3154 }
3155
3156 ale_params.dev = &pdev->dev;
3157 ale_params.ale_ageout = ale_ageout;
3158 ale_params.ale_entries = data->ale_entries;
3159 ale_params.ale_ports = CPSW_ALE_PORTS_NUM;
3160
3161 cpsw->ale = cpsw_ale_create(&ale_params);
3162 if (!cpsw->ale) {
3163 dev_err(priv->dev, "error initializing ale engine\n");
3164 ret = -ENODEV;
3165 goto clean_dma_ret;
3166 }
3167
3168 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3169 if (IS_ERR(cpsw->cpts)) {
3170 ret = PTR_ERR(cpsw->cpts);
3171 goto clean_dma_ret;
3172 }
3173
3174 ndev->irq = platform_get_irq(pdev, 1);
3175 if (ndev->irq < 0) {
3176 dev_err(priv->dev, "error getting irq resource\n");
3177 ret = ndev->irq;
3178 goto clean_dma_ret;
3179 }
3180
3181 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3182 if (of_id) {
3183 pdev->id_entry = of_id->data;
3184 if (pdev->id_entry->driver_data)
3185 cpsw->quirk_irq = true;
3186 }
3187
3188 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3189
3190 ndev->netdev_ops = &cpsw_netdev_ops;
3191 ndev->ethtool_ops = &cpsw_ethtool_ops;
3192 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3193 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3194 cpsw_split_res(ndev);
3195
3196 /* register the network device */
3197 SET_NETDEV_DEV(ndev, &pdev->dev);
3198 ret = register_netdev(ndev);
3199 if (ret) {
3200 dev_err(priv->dev, "error registering net device\n");
3201 ret = -ENODEV;
3202 goto clean_dma_ret;
3203 }
3204
3205 if (cpsw->data.dual_emac) {
3206 ret = cpsw_probe_dual_emac(priv);
3207 if (ret) {
3208 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3209 goto clean_unregister_netdev_ret;
3210 }
3211 }
3212
3213 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3214 * MISC IRQs which are always kept disabled with this driver so
3215 * we will not request them.
3216 *
3217 * If anyone wants to implement support for those, make sure to
3218 * first request and append them to irqs_table array.
3219 */
3220
3221 /* RX IRQ */
3222 irq = platform_get_irq(pdev, 1);
3223 if (irq < 0) {
3224 ret = irq;
3225 goto clean_dma_ret;
3226 }
3227
3228 cpsw->irqs_table[0] = irq;
3229 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3230 0, dev_name(&pdev->dev), cpsw);
3231 if (ret < 0) {
3232 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3233 goto clean_dma_ret;
3234 }
3235
3236 /* TX IRQ */
3237 irq = platform_get_irq(pdev, 2);
3238 if (irq < 0) {
3239 ret = irq;
3240 goto clean_dma_ret;
3241 }
3242
3243 cpsw->irqs_table[1] = irq;
3244 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3245 0, dev_name(&pdev->dev), cpsw);
3246 if (ret < 0) {
3247 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3248 goto clean_dma_ret;
3249 }
3250
3251 cpsw_notice(priv, probe,
3252 "initialized device (regs %pa, irq %d, pool size %d)\n",
3253 &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3254
3255 pm_runtime_put(&pdev->dev);
3256
3257 return 0;
3258
3259 clean_unregister_netdev_ret:
3260 unregister_netdev(ndev);
3261 clean_dma_ret:
3262 cpdma_ctlr_destroy(cpsw->dma);
3263 clean_dt_ret:
3264 cpsw_remove_dt(pdev);
3265 pm_runtime_put_sync(&pdev->dev);
3266 clean_runtime_disable_ret:
3267 pm_runtime_disable(&pdev->dev);
3268 clean_ndev_ret:
3269 free_netdev(priv->ndev);
3270 return ret;
3271 }
3272
3273 static int cpsw_remove(struct platform_device *pdev)
3274 {
3275 struct net_device *ndev = platform_get_drvdata(pdev);
3276 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3277 int ret;
3278
3279 ret = pm_runtime_get_sync(&pdev->dev);
3280 if (ret < 0) {
3281 pm_runtime_put_noidle(&pdev->dev);
3282 return ret;
3283 }
3284
3285 if (cpsw->data.dual_emac)
3286 unregister_netdev(cpsw->slaves[1].ndev);
3287 unregister_netdev(ndev);
3288
3289 cpts_release(cpsw->cpts);
3290 cpdma_ctlr_destroy(cpsw->dma);
3291 cpsw_remove_dt(pdev);
3292 pm_runtime_put_sync(&pdev->dev);
3293 pm_runtime_disable(&pdev->dev);
3294 if (cpsw->data.dual_emac)
3295 free_netdev(cpsw->slaves[1].ndev);
3296 free_netdev(ndev);
3297 return 0;
3298 }
3299
3300 #ifdef CONFIG_PM_SLEEP
3301 static int cpsw_suspend(struct device *dev)
3302 {
3303 struct platform_device *pdev = to_platform_device(dev);
3304 struct net_device *ndev = platform_get_drvdata(pdev);
3305 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3306
3307 if (cpsw->data.dual_emac) {
3308 int i;
3309
3310 for (i = 0; i < cpsw->data.slaves; i++) {
3311 if (netif_running(cpsw->slaves[i].ndev))
3312 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3313 }
3314 } else {
3315 if (netif_running(ndev))
3316 cpsw_ndo_stop(ndev);
3317 }
3318
3319 /* Select sleep pin state */
3320 pinctrl_pm_select_sleep_state(dev);
3321
3322 return 0;
3323 }
3324
3325 static int cpsw_resume(struct device *dev)
3326 {
3327 struct platform_device *pdev = to_platform_device(dev);
3328 struct net_device *ndev = platform_get_drvdata(pdev);
3329 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3330
3331 /* Select default pin state */
3332 pinctrl_pm_select_default_state(dev);
3333
3334 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3335 rtnl_lock();
3336 if (cpsw->data.dual_emac) {
3337 int i;
3338
3339 for (i = 0; i < cpsw->data.slaves; i++) {
3340 if (netif_running(cpsw->slaves[i].ndev))
3341 cpsw_ndo_open(cpsw->slaves[i].ndev);
3342 }
3343 } else {
3344 if (netif_running(ndev))
3345 cpsw_ndo_open(ndev);
3346 }
3347 rtnl_unlock();
3348
3349 return 0;
3350 }
3351 #endif
3352
3353 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3354
3355 static struct platform_driver cpsw_driver = {
3356 .driver = {
3357 .name = "cpsw",
3358 .pm = &cpsw_pm_ops,
3359 .of_match_table = cpsw_of_mtable,
3360 },
3361 .probe = cpsw_probe,
3362 .remove = cpsw_remove,
3363 };
3364
3365 module_platform_driver(cpsw_driver);
3366
3367 MODULE_LICENSE("GPL");
3368 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3369 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3370 MODULE_DESCRIPTION("TI CPSW Ethernet driver");