]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/ti/cpsw.c
net: ethernet: ti: cpsw: re-split res only when speed is changed
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38
39 #include <linux/pinctrl/consumer.h>
40
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45
46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
53 NETIF_MSG_RX_STATUS)
54
55 #define cpsw_info(priv, type, format, ...) \
56 do { \
57 if (netif_msg_##type(priv) && net_ratelimit()) \
58 dev_info(priv->dev, format, ## __VA_ARGS__); \
59 } while (0)
60
61 #define cpsw_err(priv, type, format, ...) \
62 do { \
63 if (netif_msg_##type(priv) && net_ratelimit()) \
64 dev_err(priv->dev, format, ## __VA_ARGS__); \
65 } while (0)
66
67 #define cpsw_dbg(priv, type, format, ...) \
68 do { \
69 if (netif_msg_##type(priv) && net_ratelimit()) \
70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
71 } while (0)
72
73 #define cpsw_notice(priv, type, format, ...) \
74 do { \
75 if (netif_msg_##type(priv) && net_ratelimit()) \
76 dev_notice(priv->dev, format, ## __VA_ARGS__); \
77 } while (0)
78
79 #define ALE_ALL_PORTS 0x7
80
81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
84
85 #define CPSW_VERSION_1 0x19010a
86 #define CPSW_VERSION_2 0x19010c
87 #define CPSW_VERSION_3 0x19010f
88 #define CPSW_VERSION_4 0x190112
89
90 #define HOST_PORT_NUM 0
91 #define SLIVER_SIZE 0x40
92
93 #define CPSW1_HOST_PORT_OFFSET 0x028
94 #define CPSW1_SLAVE_OFFSET 0x050
95 #define CPSW1_SLAVE_SIZE 0x040
96 #define CPSW1_CPDMA_OFFSET 0x100
97 #define CPSW1_STATERAM_OFFSET 0x200
98 #define CPSW1_HW_STATS 0x400
99 #define CPSW1_CPTS_OFFSET 0x500
100 #define CPSW1_ALE_OFFSET 0x600
101 #define CPSW1_SLIVER_OFFSET 0x700
102
103 #define CPSW2_HOST_PORT_OFFSET 0x108
104 #define CPSW2_SLAVE_OFFSET 0x200
105 #define CPSW2_SLAVE_SIZE 0x100
106 #define CPSW2_CPDMA_OFFSET 0x800
107 #define CPSW2_HW_STATS 0x900
108 #define CPSW2_STATERAM_OFFSET 0xa00
109 #define CPSW2_CPTS_OFFSET 0xc00
110 #define CPSW2_ALE_OFFSET 0xd00
111 #define CPSW2_SLIVER_OFFSET 0xd80
112 #define CPSW2_BD_OFFSET 0x2000
113
114 #define CPDMA_RXTHRESH 0x0c0
115 #define CPDMA_RXFREE 0x0e0
116 #define CPDMA_TXHDP 0x00
117 #define CPDMA_RXHDP 0x20
118 #define CPDMA_TXCP 0x40
119 #define CPDMA_RXCP 0x60
120
121 #define CPSW_POLL_WEIGHT 64
122 #define CPSW_MIN_PACKET_SIZE 60
123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4)
124
125 #define RX_PRIORITY_MAPPING 0x76543210
126 #define TX_PRIORITY_MAPPING 0x33221100
127 #define CPDMA_TX_PRIORITY_MAP 0x01234567
128
129 #define CPSW_VLAN_AWARE BIT(1)
130 #define CPSW_ALE_VLAN_AWARE 1
131
132 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
135
136 #define CPSW_INTPACEEN (0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT 63
139 #define CPSW_CMINTMIN_CNT 2
140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
142
143 #define cpsw_slave_index(cpsw, priv) \
144 ((cpsw->data.dual_emac) ? priv->emac_port : \
145 cpsw->data.active_slave)
146 #define IRQ_NUM 2
147 #define CPSW_MAX_QUEUES 8
148
149 static int debug_level;
150 module_param(debug_level, int, 0);
151 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
152
153 static int ale_ageout = 10;
154 module_param(ale_ageout, int, 0);
155 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
156
157 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
158 module_param(rx_packet_max, int, 0);
159 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
160
161 struct cpsw_wr_regs {
162 u32 id_ver;
163 u32 soft_reset;
164 u32 control;
165 u32 int_control;
166 u32 rx_thresh_en;
167 u32 rx_en;
168 u32 tx_en;
169 u32 misc_en;
170 u32 mem_allign1[8];
171 u32 rx_thresh_stat;
172 u32 rx_stat;
173 u32 tx_stat;
174 u32 misc_stat;
175 u32 mem_allign2[8];
176 u32 rx_imax;
177 u32 tx_imax;
178
179 };
180
181 struct cpsw_ss_regs {
182 u32 id_ver;
183 u32 control;
184 u32 soft_reset;
185 u32 stat_port_en;
186 u32 ptype;
187 u32 soft_idle;
188 u32 thru_rate;
189 u32 gap_thresh;
190 u32 tx_start_wds;
191 u32 flow_control;
192 u32 vlan_ltype;
193 u32 ts_ltype;
194 u32 dlr_ltype;
195 };
196
197 /* CPSW_PORT_V1 */
198 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
199 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
200 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
201 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
202 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
203 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
204 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
205 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
206
207 /* CPSW_PORT_V2 */
208 #define CPSW2_CONTROL 0x00 /* Control Register */
209 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
210 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
211 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
212 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
213 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
214 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
215
216 /* CPSW_PORT_V1 and V2 */
217 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
218 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
219 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
220
221 /* CPSW_PORT_V2 only */
222 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
226 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
227 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
228 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
230
231 /* Bit definitions for the CPSW2_CONTROL register */
232 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
233 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
234 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
235 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
236 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
237 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
238 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
239 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
240 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
241 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
242 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
243 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
244 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
245 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
246 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
247 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
248 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
249
250 #define CTRL_V2_TS_BITS \
251 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
252 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
253
254 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
255 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
256 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
257
258
259 #define CTRL_V3_TS_BITS \
260 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
261 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
262 TS_LTYPE1_EN)
263
264 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
265 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
266 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
267
268 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
269 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
270 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
271 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
272 #define TS_MSG_TYPE_EN_MASK (0xffff)
273
274 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
275 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
276
277 /* Bit definitions for the CPSW1_TS_CTL register */
278 #define CPSW_V1_TS_RX_EN BIT(0)
279 #define CPSW_V1_TS_TX_EN BIT(4)
280 #define CPSW_V1_MSG_TYPE_OFS 16
281
282 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
283 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
284
285 struct cpsw_host_regs {
286 u32 max_blks;
287 u32 blk_cnt;
288 u32 tx_in_ctl;
289 u32 port_vlan;
290 u32 tx_pri_map;
291 u32 cpdma_tx_pri_map;
292 u32 cpdma_rx_chan_map;
293 };
294
295 struct cpsw_sliver_regs {
296 u32 id_ver;
297 u32 mac_control;
298 u32 mac_status;
299 u32 soft_reset;
300 u32 rx_maxlen;
301 u32 __reserved_0;
302 u32 rx_pause;
303 u32 tx_pause;
304 u32 __reserved_1;
305 u32 rx_pri_map;
306 };
307
308 struct cpsw_hw_stats {
309 u32 rxgoodframes;
310 u32 rxbroadcastframes;
311 u32 rxmulticastframes;
312 u32 rxpauseframes;
313 u32 rxcrcerrors;
314 u32 rxaligncodeerrors;
315 u32 rxoversizedframes;
316 u32 rxjabberframes;
317 u32 rxundersizedframes;
318 u32 rxfragments;
319 u32 __pad_0[2];
320 u32 rxoctets;
321 u32 txgoodframes;
322 u32 txbroadcastframes;
323 u32 txmulticastframes;
324 u32 txpauseframes;
325 u32 txdeferredframes;
326 u32 txcollisionframes;
327 u32 txsinglecollframes;
328 u32 txmultcollframes;
329 u32 txexcessivecollisions;
330 u32 txlatecollisions;
331 u32 txunderrun;
332 u32 txcarriersenseerrors;
333 u32 txoctets;
334 u32 octetframes64;
335 u32 octetframes65t127;
336 u32 octetframes128t255;
337 u32 octetframes256t511;
338 u32 octetframes512t1023;
339 u32 octetframes1024tup;
340 u32 netoctets;
341 u32 rxsofoverruns;
342 u32 rxmofoverruns;
343 u32 rxdmaoverruns;
344 };
345
346 struct cpsw_slave {
347 void __iomem *regs;
348 struct cpsw_sliver_regs __iomem *sliver;
349 int slave_num;
350 u32 mac_control;
351 struct cpsw_slave_data *data;
352 struct phy_device *phy;
353 struct net_device *ndev;
354 u32 port_vlan;
355 u32 open_stat;
356 };
357
358 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
359 {
360 return __raw_readl(slave->regs + offset);
361 }
362
363 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
364 {
365 __raw_writel(val, slave->regs + offset);
366 }
367
368 struct cpsw_vector {
369 struct cpdma_chan *ch;
370 int budget;
371 };
372
373 struct cpsw_common {
374 struct device *dev;
375 struct cpsw_platform_data data;
376 struct napi_struct napi_rx;
377 struct napi_struct napi_tx;
378 struct cpsw_ss_regs __iomem *regs;
379 struct cpsw_wr_regs __iomem *wr_regs;
380 u8 __iomem *hw_stats;
381 struct cpsw_host_regs __iomem *host_port_regs;
382 u32 version;
383 u32 coal_intvl;
384 u32 bus_freq_mhz;
385 int rx_packet_max;
386 struct cpsw_slave *slaves;
387 struct cpdma_ctlr *dma;
388 struct cpsw_vector txv[CPSW_MAX_QUEUES];
389 struct cpsw_vector rxv[CPSW_MAX_QUEUES];
390 struct cpsw_ale *ale;
391 bool quirk_irq;
392 bool rx_irq_disabled;
393 bool tx_irq_disabled;
394 u32 irqs_table[IRQ_NUM];
395 struct cpts *cpts;
396 int rx_ch_num, tx_ch_num;
397 int speed;
398 };
399
400 struct cpsw_priv {
401 struct net_device *ndev;
402 struct device *dev;
403 u32 msg_enable;
404 u8 mac_addr[ETH_ALEN];
405 bool rx_pause;
406 bool tx_pause;
407 u32 emac_port;
408 struct cpsw_common *cpsw;
409 };
410
411 struct cpsw_stats {
412 char stat_string[ETH_GSTRING_LEN];
413 int type;
414 int sizeof_stat;
415 int stat_offset;
416 };
417
418 enum {
419 CPSW_STATS,
420 CPDMA_RX_STATS,
421 CPDMA_TX_STATS,
422 };
423
424 #define CPSW_STAT(m) CPSW_STATS, \
425 sizeof(((struct cpsw_hw_stats *)0)->m), \
426 offsetof(struct cpsw_hw_stats, m)
427 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
428 sizeof(((struct cpdma_chan_stats *)0)->m), \
429 offsetof(struct cpdma_chan_stats, m)
430 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
431 sizeof(((struct cpdma_chan_stats *)0)->m), \
432 offsetof(struct cpdma_chan_stats, m)
433
434 static const struct cpsw_stats cpsw_gstrings_stats[] = {
435 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
436 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
437 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
438 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
439 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
440 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
441 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
442 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
443 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
444 { "Rx Fragments", CPSW_STAT(rxfragments) },
445 { "Rx Octets", CPSW_STAT(rxoctets) },
446 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
447 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
448 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
449 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
450 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
451 { "Collisions", CPSW_STAT(txcollisionframes) },
452 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
453 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
454 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
455 { "Late Collisions", CPSW_STAT(txlatecollisions) },
456 { "Tx Underrun", CPSW_STAT(txunderrun) },
457 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
458 { "Tx Octets", CPSW_STAT(txoctets) },
459 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
460 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
461 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
462 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
463 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
464 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
465 { "Net Octets", CPSW_STAT(netoctets) },
466 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
467 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
468 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
469 };
470
471 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
472 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
473 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
474 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
475 { "misqueued", CPDMA_RX_STAT(misqueued) },
476 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
477 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
478 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
479 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
480 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
481 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
482 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
483 { "requeue", CPDMA_RX_STAT(requeue) },
484 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
485 };
486
487 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
488 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
489
490 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
491 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
492 #define for_each_slave(priv, func, arg...) \
493 do { \
494 struct cpsw_slave *slave; \
495 struct cpsw_common *cpsw = (priv)->cpsw; \
496 int n; \
497 if (cpsw->data.dual_emac) \
498 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
499 else \
500 for (n = cpsw->data.slaves, \
501 slave = cpsw->slaves; \
502 n; n--) \
503 (func)(slave++, ##arg); \
504 } while (0)
505
506 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \
507 do { \
508 if (!cpsw->data.dual_emac) \
509 break; \
510 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
511 ndev = cpsw->slaves[0].ndev; \
512 skb->dev = ndev; \
513 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
514 ndev = cpsw->slaves[1].ndev; \
515 skb->dev = ndev; \
516 } \
517 } while (0)
518 #define cpsw_add_mcast(cpsw, priv, addr) \
519 do { \
520 if (cpsw->data.dual_emac) { \
521 struct cpsw_slave *slave = cpsw->slaves + \
522 priv->emac_port; \
523 int slave_port = cpsw_get_slave_port( \
524 slave->slave_num); \
525 cpsw_ale_add_mcast(cpsw->ale, addr, \
526 1 << slave_port | ALE_PORT_HOST, \
527 ALE_VLAN, slave->port_vlan, 0); \
528 } else { \
529 cpsw_ale_add_mcast(cpsw->ale, addr, \
530 ALE_ALL_PORTS, \
531 0, 0, 0); \
532 } \
533 } while (0)
534
535 static inline int cpsw_get_slave_port(u32 slave_num)
536 {
537 return slave_num + 1;
538 }
539
540 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
541 {
542 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
543 struct cpsw_ale *ale = cpsw->ale;
544 int i;
545
546 if (cpsw->data.dual_emac) {
547 bool flag = false;
548
549 /* Enabling promiscuous mode for one interface will be
550 * common for both the interface as the interface shares
551 * the same hardware resource.
552 */
553 for (i = 0; i < cpsw->data.slaves; i++)
554 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
555 flag = true;
556
557 if (!enable && flag) {
558 enable = true;
559 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
560 }
561
562 if (enable) {
563 /* Enable Bypass */
564 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
565
566 dev_dbg(&ndev->dev, "promiscuity enabled\n");
567 } else {
568 /* Disable Bypass */
569 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
570 dev_dbg(&ndev->dev, "promiscuity disabled\n");
571 }
572 } else {
573 if (enable) {
574 unsigned long timeout = jiffies + HZ;
575
576 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
577 for (i = 0; i <= cpsw->data.slaves; i++) {
578 cpsw_ale_control_set(ale, i,
579 ALE_PORT_NOLEARN, 1);
580 cpsw_ale_control_set(ale, i,
581 ALE_PORT_NO_SA_UPDATE, 1);
582 }
583
584 /* Clear All Untouched entries */
585 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
586 do {
587 cpu_relax();
588 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
589 break;
590 } while (time_after(timeout, jiffies));
591 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
592
593 /* Clear all mcast from ALE */
594 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
595
596 /* Flood All Unicast Packets to Host port */
597 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
598 dev_dbg(&ndev->dev, "promiscuity enabled\n");
599 } else {
600 /* Don't Flood All Unicast Packets to Host port */
601 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
602
603 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
604 for (i = 0; i <= cpsw->data.slaves; i++) {
605 cpsw_ale_control_set(ale, i,
606 ALE_PORT_NOLEARN, 0);
607 cpsw_ale_control_set(ale, i,
608 ALE_PORT_NO_SA_UPDATE, 0);
609 }
610 dev_dbg(&ndev->dev, "promiscuity disabled\n");
611 }
612 }
613 }
614
615 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
616 {
617 struct cpsw_priv *priv = netdev_priv(ndev);
618 struct cpsw_common *cpsw = priv->cpsw;
619 int vid;
620
621 if (cpsw->data.dual_emac)
622 vid = cpsw->slaves[priv->emac_port].port_vlan;
623 else
624 vid = cpsw->data.default_vlan;
625
626 if (ndev->flags & IFF_PROMISC) {
627 /* Enable promiscuous mode */
628 cpsw_set_promiscious(ndev, true);
629 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
630 return;
631 } else {
632 /* Disable promiscuous mode */
633 cpsw_set_promiscious(ndev, false);
634 }
635
636 /* Restore allmulti on vlans if necessary */
637 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
638
639 /* Clear all mcast from ALE */
640 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
641
642 if (!netdev_mc_empty(ndev)) {
643 struct netdev_hw_addr *ha;
644
645 /* program multicast address list into ALE register */
646 netdev_for_each_mc_addr(ha, ndev) {
647 cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
648 }
649 }
650 }
651
652 static void cpsw_intr_enable(struct cpsw_common *cpsw)
653 {
654 __raw_writel(0xFF, &cpsw->wr_regs->tx_en);
655 __raw_writel(0xFF, &cpsw->wr_regs->rx_en);
656
657 cpdma_ctlr_int_ctrl(cpsw->dma, true);
658 return;
659 }
660
661 static void cpsw_intr_disable(struct cpsw_common *cpsw)
662 {
663 __raw_writel(0, &cpsw->wr_regs->tx_en);
664 __raw_writel(0, &cpsw->wr_regs->rx_en);
665
666 cpdma_ctlr_int_ctrl(cpsw->dma, false);
667 return;
668 }
669
670 static void cpsw_tx_handler(void *token, int len, int status)
671 {
672 struct netdev_queue *txq;
673 struct sk_buff *skb = token;
674 struct net_device *ndev = skb->dev;
675 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
676
677 /* Check whether the queue is stopped due to stalled tx dma, if the
678 * queue is stopped then start the queue as we have free desc for tx
679 */
680 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
681 if (unlikely(netif_tx_queue_stopped(txq)))
682 netif_tx_wake_queue(txq);
683
684 cpts_tx_timestamp(cpsw->cpts, skb);
685 ndev->stats.tx_packets++;
686 ndev->stats.tx_bytes += len;
687 dev_kfree_skb_any(skb);
688 }
689
690 static void cpsw_rx_handler(void *token, int len, int status)
691 {
692 struct cpdma_chan *ch;
693 struct sk_buff *skb = token;
694 struct sk_buff *new_skb;
695 struct net_device *ndev = skb->dev;
696 int ret = 0;
697 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
698
699 cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
700
701 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
702 bool ndev_status = false;
703 struct cpsw_slave *slave = cpsw->slaves;
704 int n;
705
706 if (cpsw->data.dual_emac) {
707 /* In dual emac mode check for all interfaces */
708 for (n = cpsw->data.slaves; n; n--, slave++)
709 if (netif_running(slave->ndev))
710 ndev_status = true;
711 }
712
713 if (ndev_status && (status >= 0)) {
714 /* The packet received is for the interface which
715 * is already down and the other interface is up
716 * and running, instead of freeing which results
717 * in reducing of the number of rx descriptor in
718 * DMA engine, requeue skb back to cpdma.
719 */
720 new_skb = skb;
721 goto requeue;
722 }
723
724 /* the interface is going down, skbs are purged */
725 dev_kfree_skb_any(skb);
726 return;
727 }
728
729 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
730 if (new_skb) {
731 skb_copy_queue_mapping(new_skb, skb);
732 skb_put(skb, len);
733 cpts_rx_timestamp(cpsw->cpts, skb);
734 skb->protocol = eth_type_trans(skb, ndev);
735 netif_receive_skb(skb);
736 ndev->stats.rx_bytes += len;
737 ndev->stats.rx_packets++;
738 kmemleak_not_leak(new_skb);
739 } else {
740 ndev->stats.rx_dropped++;
741 new_skb = skb;
742 }
743
744 requeue:
745 if (netif_dormant(ndev)) {
746 dev_kfree_skb_any(new_skb);
747 return;
748 }
749
750 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
751 ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
752 skb_tailroom(new_skb), 0);
753 if (WARN_ON(ret < 0))
754 dev_kfree_skb_any(new_skb);
755 }
756
757 static void cpsw_split_res(struct net_device *ndev)
758 {
759 struct cpsw_priv *priv = netdev_priv(ndev);
760 u32 consumed_rate = 0, bigest_rate = 0;
761 struct cpsw_common *cpsw = priv->cpsw;
762 struct cpsw_vector *txv = cpsw->txv;
763 int i, ch_weight, rlim_ch_num = 0;
764 int budget, bigest_rate_ch = 0;
765 u32 ch_rate, max_rate;
766 int ch_budget = 0;
767
768 for (i = 0; i < cpsw->tx_ch_num; i++) {
769 ch_rate = cpdma_chan_get_rate(txv[i].ch);
770 if (!ch_rate)
771 continue;
772
773 rlim_ch_num++;
774 consumed_rate += ch_rate;
775 }
776
777 if (cpsw->tx_ch_num == rlim_ch_num) {
778 max_rate = consumed_rate;
779 } else if (!rlim_ch_num) {
780 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
781 bigest_rate = 0;
782 max_rate = consumed_rate;
783 } else {
784 max_rate = cpsw->speed * 1000;
785
786 /* if max_rate is less then expected due to reduced link speed,
787 * split proportionally according next potential max speed
788 */
789 if (max_rate < consumed_rate)
790 max_rate *= 10;
791
792 if (max_rate < consumed_rate)
793 max_rate *= 10;
794
795 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
796 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
797 (cpsw->tx_ch_num - rlim_ch_num);
798 bigest_rate = (max_rate - consumed_rate) /
799 (cpsw->tx_ch_num - rlim_ch_num);
800 }
801
802 /* split tx weight/budget */
803 budget = CPSW_POLL_WEIGHT;
804 for (i = 0; i < cpsw->tx_ch_num; i++) {
805 ch_rate = cpdma_chan_get_rate(txv[i].ch);
806 if (ch_rate) {
807 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
808 if (!txv[i].budget)
809 txv[i].budget++;
810 if (ch_rate > bigest_rate) {
811 bigest_rate_ch = i;
812 bigest_rate = ch_rate;
813 }
814
815 ch_weight = (ch_rate * 100) / max_rate;
816 if (!ch_weight)
817 ch_weight++;
818 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
819 } else {
820 txv[i].budget = ch_budget;
821 if (!bigest_rate_ch)
822 bigest_rate_ch = i;
823 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
824 }
825
826 budget -= txv[i].budget;
827 }
828
829 if (budget)
830 txv[bigest_rate_ch].budget += budget;
831
832 /* split rx budget */
833 budget = CPSW_POLL_WEIGHT;
834 ch_budget = budget / cpsw->rx_ch_num;
835 for (i = 0; i < cpsw->rx_ch_num; i++) {
836 cpsw->rxv[i].budget = ch_budget;
837 budget -= ch_budget;
838 }
839
840 if (budget)
841 cpsw->rxv[0].budget += budget;
842 }
843
844 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
845 {
846 struct cpsw_common *cpsw = dev_id;
847
848 writel(0, &cpsw->wr_regs->tx_en);
849 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
850
851 if (cpsw->quirk_irq) {
852 disable_irq_nosync(cpsw->irqs_table[1]);
853 cpsw->tx_irq_disabled = true;
854 }
855
856 napi_schedule(&cpsw->napi_tx);
857 return IRQ_HANDLED;
858 }
859
860 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
861 {
862 struct cpsw_common *cpsw = dev_id;
863
864 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
865 writel(0, &cpsw->wr_regs->rx_en);
866
867 if (cpsw->quirk_irq) {
868 disable_irq_nosync(cpsw->irqs_table[0]);
869 cpsw->rx_irq_disabled = true;
870 }
871
872 napi_schedule(&cpsw->napi_rx);
873 return IRQ_HANDLED;
874 }
875
876 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
877 {
878 u32 ch_map;
879 int num_tx, cur_budget, ch;
880 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
881 struct cpsw_vector *txv;
882
883 /* process every unprocessed channel */
884 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
885 for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
886 if (!(ch_map & 0x01))
887 continue;
888
889 txv = &cpsw->txv[ch];
890 if (unlikely(txv->budget > budget - num_tx))
891 cur_budget = budget - num_tx;
892 else
893 cur_budget = txv->budget;
894
895 num_tx += cpdma_chan_process(txv->ch, cur_budget);
896 if (num_tx >= budget)
897 break;
898 }
899
900 if (num_tx < budget) {
901 napi_complete(napi_tx);
902 writel(0xff, &cpsw->wr_regs->tx_en);
903 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
904 cpsw->tx_irq_disabled = false;
905 enable_irq(cpsw->irqs_table[1]);
906 }
907 }
908
909 return num_tx;
910 }
911
912 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
913 {
914 u32 ch_map;
915 int num_rx, cur_budget, ch;
916 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
917 struct cpsw_vector *rxv;
918
919 /* process every unprocessed channel */
920 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
921 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
922 if (!(ch_map & 0x01))
923 continue;
924
925 rxv = &cpsw->rxv[ch];
926 if (unlikely(rxv->budget > budget - num_rx))
927 cur_budget = budget - num_rx;
928 else
929 cur_budget = rxv->budget;
930
931 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
932 if (num_rx >= budget)
933 break;
934 }
935
936 if (num_rx < budget) {
937 napi_complete(napi_rx);
938 writel(0xff, &cpsw->wr_regs->rx_en);
939 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
940 cpsw->rx_irq_disabled = false;
941 enable_irq(cpsw->irqs_table[0]);
942 }
943 }
944
945 return num_rx;
946 }
947
948 static inline void soft_reset(const char *module, void __iomem *reg)
949 {
950 unsigned long timeout = jiffies + HZ;
951
952 __raw_writel(1, reg);
953 do {
954 cpu_relax();
955 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
956
957 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
958 }
959
960 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
961 ((mac)[2] << 16) | ((mac)[3] << 24))
962 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
963
964 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
965 struct cpsw_priv *priv)
966 {
967 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
968 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
969 }
970
971 static void _cpsw_adjust_link(struct cpsw_slave *slave,
972 struct cpsw_priv *priv, bool *link)
973 {
974 struct phy_device *phy = slave->phy;
975 u32 mac_control = 0;
976 u32 slave_port;
977 struct cpsw_common *cpsw = priv->cpsw;
978
979 if (!phy)
980 return;
981
982 slave_port = cpsw_get_slave_port(slave->slave_num);
983
984 if (phy->link) {
985 mac_control = cpsw->data.mac_control;
986
987 /* enable forwarding */
988 cpsw_ale_control_set(cpsw->ale, slave_port,
989 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
990
991 if (phy->speed == 1000)
992 mac_control |= BIT(7); /* GIGABITEN */
993 if (phy->duplex)
994 mac_control |= BIT(0); /* FULLDUPLEXEN */
995
996 /* set speed_in input in case RMII mode is used in 100Mbps */
997 if (phy->speed == 100)
998 mac_control |= BIT(15);
999 else if (phy->speed == 10)
1000 mac_control |= BIT(18); /* In Band mode */
1001
1002 if (priv->rx_pause)
1003 mac_control |= BIT(3);
1004
1005 if (priv->tx_pause)
1006 mac_control |= BIT(4);
1007
1008 *link = true;
1009 } else {
1010 mac_control = 0;
1011 /* disable forwarding */
1012 cpsw_ale_control_set(cpsw->ale, slave_port,
1013 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1014 }
1015
1016 if (mac_control != slave->mac_control) {
1017 phy_print_status(phy);
1018 __raw_writel(mac_control, &slave->sliver->mac_control);
1019 }
1020
1021 slave->mac_control = mac_control;
1022 }
1023
1024 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1025 {
1026 int i, speed;
1027
1028 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1029 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1030 speed += cpsw->slaves[i].phy->speed;
1031
1032 return speed;
1033 }
1034
1035 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1036 {
1037 int i, rlim_ch_num;
1038 int speed, ch_rate;
1039
1040 /* re-split resources only in case speed was changed */
1041 speed = cpsw_get_common_speed(cpsw);
1042 if (speed == cpsw->speed || !speed)
1043 return 0;
1044
1045 cpsw->speed = speed;
1046
1047 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1048 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1049 if (!ch_rate)
1050 break;
1051
1052 rlim_ch_num++;
1053 }
1054
1055 /* cases not dependent on speed */
1056 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1057 return 0;
1058
1059 return 1;
1060 }
1061
1062 static void cpsw_adjust_link(struct net_device *ndev)
1063 {
1064 struct cpsw_priv *priv = netdev_priv(ndev);
1065 struct cpsw_common *cpsw = priv->cpsw;
1066 bool link = false;
1067
1068 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1069
1070 if (link) {
1071 if (cpsw_need_resplit(cpsw))
1072 cpsw_split_res(ndev);
1073
1074 netif_carrier_on(ndev);
1075 if (netif_running(ndev))
1076 netif_tx_wake_all_queues(ndev);
1077 } else {
1078 netif_carrier_off(ndev);
1079 netif_tx_stop_all_queues(ndev);
1080 }
1081 }
1082
1083 static int cpsw_get_coalesce(struct net_device *ndev,
1084 struct ethtool_coalesce *coal)
1085 {
1086 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1087
1088 coal->rx_coalesce_usecs = cpsw->coal_intvl;
1089 return 0;
1090 }
1091
1092 static int cpsw_set_coalesce(struct net_device *ndev,
1093 struct ethtool_coalesce *coal)
1094 {
1095 struct cpsw_priv *priv = netdev_priv(ndev);
1096 u32 int_ctrl;
1097 u32 num_interrupts = 0;
1098 u32 prescale = 0;
1099 u32 addnl_dvdr = 1;
1100 u32 coal_intvl = 0;
1101 struct cpsw_common *cpsw = priv->cpsw;
1102
1103 coal_intvl = coal->rx_coalesce_usecs;
1104
1105 int_ctrl = readl(&cpsw->wr_regs->int_control);
1106 prescale = cpsw->bus_freq_mhz * 4;
1107
1108 if (!coal->rx_coalesce_usecs) {
1109 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1110 goto update_return;
1111 }
1112
1113 if (coal_intvl < CPSW_CMINTMIN_INTVL)
1114 coal_intvl = CPSW_CMINTMIN_INTVL;
1115
1116 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1117 /* Interrupt pacer works with 4us Pulse, we can
1118 * throttle further by dilating the 4us pulse.
1119 */
1120 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1121
1122 if (addnl_dvdr > 1) {
1123 prescale *= addnl_dvdr;
1124 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1125 coal_intvl = (CPSW_CMINTMAX_INTVL
1126 * addnl_dvdr);
1127 } else {
1128 addnl_dvdr = 1;
1129 coal_intvl = CPSW_CMINTMAX_INTVL;
1130 }
1131 }
1132
1133 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1134 writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1135 writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1136
1137 int_ctrl |= CPSW_INTPACEEN;
1138 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1139 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1140
1141 update_return:
1142 writel(int_ctrl, &cpsw->wr_regs->int_control);
1143
1144 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1145 cpsw->coal_intvl = coal_intvl;
1146
1147 return 0;
1148 }
1149
1150 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1151 {
1152 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1153
1154 switch (sset) {
1155 case ETH_SS_STATS:
1156 return (CPSW_STATS_COMMON_LEN +
1157 (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1158 CPSW_STATS_CH_LEN);
1159 default:
1160 return -EOPNOTSUPP;
1161 }
1162 }
1163
1164 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1165 {
1166 int ch_stats_len;
1167 int line;
1168 int i;
1169
1170 ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1171 for (i = 0; i < ch_stats_len; i++) {
1172 line = i % CPSW_STATS_CH_LEN;
1173 snprintf(*p, ETH_GSTRING_LEN,
1174 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1175 i / CPSW_STATS_CH_LEN,
1176 cpsw_gstrings_ch_stats[line].stat_string);
1177 *p += ETH_GSTRING_LEN;
1178 }
1179 }
1180
1181 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1182 {
1183 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1184 u8 *p = data;
1185 int i;
1186
1187 switch (stringset) {
1188 case ETH_SS_STATS:
1189 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1190 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1191 ETH_GSTRING_LEN);
1192 p += ETH_GSTRING_LEN;
1193 }
1194
1195 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1196 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1197 break;
1198 }
1199 }
1200
1201 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1202 struct ethtool_stats *stats, u64 *data)
1203 {
1204 u8 *p;
1205 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1206 struct cpdma_chan_stats ch_stats;
1207 int i, l, ch;
1208
1209 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1210 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1211 data[l] = readl(cpsw->hw_stats +
1212 cpsw_gstrings_stats[l].stat_offset);
1213
1214 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1215 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1216 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1217 p = (u8 *)&ch_stats +
1218 cpsw_gstrings_ch_stats[i].stat_offset;
1219 data[l] = *(u32 *)p;
1220 }
1221 }
1222
1223 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1224 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1225 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1226 p = (u8 *)&ch_stats +
1227 cpsw_gstrings_ch_stats[i].stat_offset;
1228 data[l] = *(u32 *)p;
1229 }
1230 }
1231 }
1232
1233 static int cpsw_common_res_usage_state(struct cpsw_common *cpsw)
1234 {
1235 u32 i;
1236 u32 usage_count = 0;
1237
1238 if (!cpsw->data.dual_emac)
1239 return 0;
1240
1241 for (i = 0; i < cpsw->data.slaves; i++)
1242 if (cpsw->slaves[i].open_stat)
1243 usage_count++;
1244
1245 return usage_count;
1246 }
1247
1248 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1249 struct sk_buff *skb,
1250 struct cpdma_chan *txch)
1251 {
1252 struct cpsw_common *cpsw = priv->cpsw;
1253
1254 return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1255 priv->emac_port + cpsw->data.dual_emac);
1256 }
1257
1258 static inline void cpsw_add_dual_emac_def_ale_entries(
1259 struct cpsw_priv *priv, struct cpsw_slave *slave,
1260 u32 slave_port)
1261 {
1262 struct cpsw_common *cpsw = priv->cpsw;
1263 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1264
1265 if (cpsw->version == CPSW_VERSION_1)
1266 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1267 else
1268 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1269 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1270 port_mask, port_mask, 0);
1271 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1272 port_mask, ALE_VLAN, slave->port_vlan, 0);
1273 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1274 HOST_PORT_NUM, ALE_VLAN |
1275 ALE_SECURE, slave->port_vlan);
1276 }
1277
1278 static void soft_reset_slave(struct cpsw_slave *slave)
1279 {
1280 char name[32];
1281
1282 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1283 soft_reset(name, &slave->sliver->soft_reset);
1284 }
1285
1286 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1287 {
1288 u32 slave_port;
1289 struct cpsw_common *cpsw = priv->cpsw;
1290
1291 soft_reset_slave(slave);
1292
1293 /* setup priority mapping */
1294 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1295
1296 switch (cpsw->version) {
1297 case CPSW_VERSION_1:
1298 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1299 break;
1300 case CPSW_VERSION_2:
1301 case CPSW_VERSION_3:
1302 case CPSW_VERSION_4:
1303 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1304 break;
1305 }
1306
1307 /* setup max packet size, and mac address */
1308 __raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1309 cpsw_set_slave_mac(slave, priv);
1310
1311 slave->mac_control = 0; /* no link yet */
1312
1313 slave_port = cpsw_get_slave_port(slave->slave_num);
1314
1315 if (cpsw->data.dual_emac)
1316 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1317 else
1318 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1319 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1320
1321 if (slave->data->phy_node) {
1322 slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1323 &cpsw_adjust_link, 0, slave->data->phy_if);
1324 if (!slave->phy) {
1325 dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1326 slave->data->phy_node->full_name,
1327 slave->slave_num);
1328 return;
1329 }
1330 } else {
1331 slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1332 &cpsw_adjust_link, slave->data->phy_if);
1333 if (IS_ERR(slave->phy)) {
1334 dev_err(priv->dev,
1335 "phy \"%s\" not found on slave %d, err %ld\n",
1336 slave->data->phy_id, slave->slave_num,
1337 PTR_ERR(slave->phy));
1338 slave->phy = NULL;
1339 return;
1340 }
1341 }
1342
1343 phy_attached_info(slave->phy);
1344
1345 phy_start(slave->phy);
1346
1347 /* Configure GMII_SEL register */
1348 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1349 }
1350
1351 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1352 {
1353 struct cpsw_common *cpsw = priv->cpsw;
1354 const int vlan = cpsw->data.default_vlan;
1355 u32 reg;
1356 int i;
1357 int unreg_mcast_mask;
1358
1359 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1360 CPSW2_PORT_VLAN;
1361
1362 writel(vlan, &cpsw->host_port_regs->port_vlan);
1363
1364 for (i = 0; i < cpsw->data.slaves; i++)
1365 slave_write(cpsw->slaves + i, vlan, reg);
1366
1367 if (priv->ndev->flags & IFF_ALLMULTI)
1368 unreg_mcast_mask = ALE_ALL_PORTS;
1369 else
1370 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1371
1372 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1373 ALE_ALL_PORTS, ALE_ALL_PORTS,
1374 unreg_mcast_mask);
1375 }
1376
1377 static void cpsw_init_host_port(struct cpsw_priv *priv)
1378 {
1379 u32 fifo_mode;
1380 u32 control_reg;
1381 struct cpsw_common *cpsw = priv->cpsw;
1382
1383 /* soft reset the controller and initialize ale */
1384 soft_reset("cpsw", &cpsw->regs->soft_reset);
1385 cpsw_ale_start(cpsw->ale);
1386
1387 /* switch to vlan unaware mode */
1388 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1389 CPSW_ALE_VLAN_AWARE);
1390 control_reg = readl(&cpsw->regs->control);
1391 control_reg |= CPSW_VLAN_AWARE;
1392 writel(control_reg, &cpsw->regs->control);
1393 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1394 CPSW_FIFO_NORMAL_MODE;
1395 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1396
1397 /* setup host port priority mapping */
1398 __raw_writel(CPDMA_TX_PRIORITY_MAP,
1399 &cpsw->host_port_regs->cpdma_tx_pri_map);
1400 __raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1401
1402 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1403 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1404
1405 if (!cpsw->data.dual_emac) {
1406 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1407 0, 0);
1408 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1409 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1410 }
1411 }
1412
1413 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1414 {
1415 struct cpsw_common *cpsw = priv->cpsw;
1416 struct sk_buff *skb;
1417 int ch_buf_num;
1418 int ch, i, ret;
1419
1420 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1421 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1422 for (i = 0; i < ch_buf_num; i++) {
1423 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1424 cpsw->rx_packet_max,
1425 GFP_KERNEL);
1426 if (!skb) {
1427 cpsw_err(priv, ifup, "cannot allocate skb\n");
1428 return -ENOMEM;
1429 }
1430
1431 skb_set_queue_mapping(skb, ch);
1432 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1433 skb->data, skb_tailroom(skb),
1434 0);
1435 if (ret < 0) {
1436 cpsw_err(priv, ifup,
1437 "cannot submit skb to channel %d rx, error %d\n",
1438 ch, ret);
1439 kfree_skb(skb);
1440 return ret;
1441 }
1442 kmemleak_not_leak(skb);
1443 }
1444
1445 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1446 ch, ch_buf_num);
1447 }
1448
1449 return 0;
1450 }
1451
1452 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1453 {
1454 u32 slave_port;
1455
1456 slave_port = cpsw_get_slave_port(slave->slave_num);
1457
1458 if (!slave->phy)
1459 return;
1460 phy_stop(slave->phy);
1461 phy_disconnect(slave->phy);
1462 slave->phy = NULL;
1463 cpsw_ale_control_set(cpsw->ale, slave_port,
1464 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1465 soft_reset_slave(slave);
1466 }
1467
1468 static int cpsw_ndo_open(struct net_device *ndev)
1469 {
1470 struct cpsw_priv *priv = netdev_priv(ndev);
1471 struct cpsw_common *cpsw = priv->cpsw;
1472 int ret;
1473 u32 reg;
1474
1475 ret = pm_runtime_get_sync(cpsw->dev);
1476 if (ret < 0) {
1477 pm_runtime_put_noidle(cpsw->dev);
1478 return ret;
1479 }
1480
1481 if (!cpsw_common_res_usage_state(cpsw))
1482 cpsw_intr_disable(cpsw);
1483 netif_carrier_off(ndev);
1484
1485 /* Notify the stack of the actual queue counts. */
1486 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1487 if (ret) {
1488 dev_err(priv->dev, "cannot set real number of tx queues\n");
1489 goto err_cleanup;
1490 }
1491
1492 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1493 if (ret) {
1494 dev_err(priv->dev, "cannot set real number of rx queues\n");
1495 goto err_cleanup;
1496 }
1497
1498 reg = cpsw->version;
1499
1500 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1501 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1502 CPSW_RTL_VERSION(reg));
1503
1504 /* initialize host and slave ports */
1505 if (!cpsw_common_res_usage_state(cpsw))
1506 cpsw_init_host_port(priv);
1507 for_each_slave(priv, cpsw_slave_open, priv);
1508
1509 /* Add default VLAN */
1510 if (!cpsw->data.dual_emac)
1511 cpsw_add_default_vlan(priv);
1512 else
1513 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1514 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1515
1516 if (!cpsw_common_res_usage_state(cpsw)) {
1517 /* disable priority elevation */
1518 __raw_writel(0, &cpsw->regs->ptype);
1519
1520 /* enable statistics collection only on all ports */
1521 __raw_writel(0x7, &cpsw->regs->stat_port_en);
1522
1523 /* Enable internal fifo flow control */
1524 writel(0x7, &cpsw->regs->flow_control);
1525
1526 napi_enable(&cpsw->napi_rx);
1527 napi_enable(&cpsw->napi_tx);
1528
1529 if (cpsw->tx_irq_disabled) {
1530 cpsw->tx_irq_disabled = false;
1531 enable_irq(cpsw->irqs_table[1]);
1532 }
1533
1534 if (cpsw->rx_irq_disabled) {
1535 cpsw->rx_irq_disabled = false;
1536 enable_irq(cpsw->irqs_table[0]);
1537 }
1538
1539 ret = cpsw_fill_rx_channels(priv);
1540 if (ret < 0)
1541 goto err_cleanup;
1542
1543 if (cpts_register(cpsw->cpts))
1544 dev_err(priv->dev, "error registering cpts device\n");
1545
1546 }
1547
1548 /* Enable Interrupt pacing if configured */
1549 if (cpsw->coal_intvl != 0) {
1550 struct ethtool_coalesce coal;
1551
1552 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1553 cpsw_set_coalesce(ndev, &coal);
1554 }
1555
1556 cpdma_ctlr_start(cpsw->dma);
1557 cpsw_intr_enable(cpsw);
1558
1559 if (cpsw->data.dual_emac)
1560 cpsw->slaves[priv->emac_port].open_stat = true;
1561
1562 return 0;
1563
1564 err_cleanup:
1565 cpdma_ctlr_stop(cpsw->dma);
1566 for_each_slave(priv, cpsw_slave_stop, cpsw);
1567 pm_runtime_put_sync(cpsw->dev);
1568 netif_carrier_off(priv->ndev);
1569 return ret;
1570 }
1571
1572 static int cpsw_ndo_stop(struct net_device *ndev)
1573 {
1574 struct cpsw_priv *priv = netdev_priv(ndev);
1575 struct cpsw_common *cpsw = priv->cpsw;
1576
1577 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1578 netif_tx_stop_all_queues(priv->ndev);
1579 netif_carrier_off(priv->ndev);
1580
1581 if (cpsw_common_res_usage_state(cpsw) <= 1) {
1582 napi_disable(&cpsw->napi_rx);
1583 napi_disable(&cpsw->napi_tx);
1584 cpts_unregister(cpsw->cpts);
1585 cpsw_intr_disable(cpsw);
1586 cpdma_ctlr_stop(cpsw->dma);
1587 cpsw_ale_stop(cpsw->ale);
1588 }
1589 for_each_slave(priv, cpsw_slave_stop, cpsw);
1590
1591 if (cpsw_need_resplit(cpsw))
1592 cpsw_split_res(ndev);
1593
1594 pm_runtime_put_sync(cpsw->dev);
1595 if (cpsw->data.dual_emac)
1596 cpsw->slaves[priv->emac_port].open_stat = false;
1597 return 0;
1598 }
1599
1600 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1601 struct net_device *ndev)
1602 {
1603 struct cpsw_priv *priv = netdev_priv(ndev);
1604 struct cpsw_common *cpsw = priv->cpsw;
1605 struct netdev_queue *txq;
1606 struct cpdma_chan *txch;
1607 int ret, q_idx;
1608
1609 netif_trans_update(ndev);
1610
1611 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1612 cpsw_err(priv, tx_err, "packet pad failed\n");
1613 ndev->stats.tx_dropped++;
1614 return NETDEV_TX_OK;
1615 }
1616
1617 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1618 cpts_is_tx_enabled(cpsw->cpts))
1619 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1620
1621 skb_tx_timestamp(skb);
1622
1623 q_idx = skb_get_queue_mapping(skb);
1624 if (q_idx >= cpsw->tx_ch_num)
1625 q_idx = q_idx % cpsw->tx_ch_num;
1626
1627 txch = cpsw->txv[q_idx].ch;
1628 ret = cpsw_tx_packet_submit(priv, skb, txch);
1629 if (unlikely(ret != 0)) {
1630 cpsw_err(priv, tx_err, "desc submit failed\n");
1631 goto fail;
1632 }
1633
1634 /* If there is no more tx desc left free then we need to
1635 * tell the kernel to stop sending us tx frames.
1636 */
1637 if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1638 txq = netdev_get_tx_queue(ndev, q_idx);
1639 netif_tx_stop_queue(txq);
1640 }
1641
1642 return NETDEV_TX_OK;
1643 fail:
1644 ndev->stats.tx_dropped++;
1645 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
1646 netif_tx_stop_queue(txq);
1647 return NETDEV_TX_BUSY;
1648 }
1649
1650 #if IS_ENABLED(CONFIG_TI_CPTS)
1651
1652 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1653 {
1654 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1655 u32 ts_en, seq_id;
1656
1657 if (!cpts_is_tx_enabled(cpsw->cpts) &&
1658 !cpts_is_rx_enabled(cpsw->cpts)) {
1659 slave_write(slave, 0, CPSW1_TS_CTL);
1660 return;
1661 }
1662
1663 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1664 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1665
1666 if (cpts_is_tx_enabled(cpsw->cpts))
1667 ts_en |= CPSW_V1_TS_TX_EN;
1668
1669 if (cpts_is_rx_enabled(cpsw->cpts))
1670 ts_en |= CPSW_V1_TS_RX_EN;
1671
1672 slave_write(slave, ts_en, CPSW1_TS_CTL);
1673 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1674 }
1675
1676 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1677 {
1678 struct cpsw_slave *slave;
1679 struct cpsw_common *cpsw = priv->cpsw;
1680 u32 ctrl, mtype;
1681
1682 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1683
1684 ctrl = slave_read(slave, CPSW2_CONTROL);
1685 switch (cpsw->version) {
1686 case CPSW_VERSION_2:
1687 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1688
1689 if (cpts_is_tx_enabled(cpsw->cpts))
1690 ctrl |= CTRL_V2_TX_TS_BITS;
1691
1692 if (cpts_is_rx_enabled(cpsw->cpts))
1693 ctrl |= CTRL_V2_RX_TS_BITS;
1694 break;
1695 case CPSW_VERSION_3:
1696 default:
1697 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1698
1699 if (cpts_is_tx_enabled(cpsw->cpts))
1700 ctrl |= CTRL_V3_TX_TS_BITS;
1701
1702 if (cpts_is_rx_enabled(cpsw->cpts))
1703 ctrl |= CTRL_V3_RX_TS_BITS;
1704 break;
1705 }
1706
1707 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1708
1709 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1710 slave_write(slave, ctrl, CPSW2_CONTROL);
1711 __raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1712 }
1713
1714 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1715 {
1716 struct cpsw_priv *priv = netdev_priv(dev);
1717 struct hwtstamp_config cfg;
1718 struct cpsw_common *cpsw = priv->cpsw;
1719 struct cpts *cpts = cpsw->cpts;
1720
1721 if (cpsw->version != CPSW_VERSION_1 &&
1722 cpsw->version != CPSW_VERSION_2 &&
1723 cpsw->version != CPSW_VERSION_3)
1724 return -EOPNOTSUPP;
1725
1726 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1727 return -EFAULT;
1728
1729 /* reserved for future extensions */
1730 if (cfg.flags)
1731 return -EINVAL;
1732
1733 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1734 return -ERANGE;
1735
1736 switch (cfg.rx_filter) {
1737 case HWTSTAMP_FILTER_NONE:
1738 cpts_rx_enable(cpts, 0);
1739 break;
1740 case HWTSTAMP_FILTER_ALL:
1741 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1742 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1743 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1744 return -ERANGE;
1745 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1746 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1747 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1748 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1749 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1750 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1751 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1752 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1753 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1754 cpts_rx_enable(cpts, 1);
1755 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1756 break;
1757 default:
1758 return -ERANGE;
1759 }
1760
1761 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1762
1763 switch (cpsw->version) {
1764 case CPSW_VERSION_1:
1765 cpsw_hwtstamp_v1(cpsw);
1766 break;
1767 case CPSW_VERSION_2:
1768 case CPSW_VERSION_3:
1769 cpsw_hwtstamp_v2(priv);
1770 break;
1771 default:
1772 WARN_ON(1);
1773 }
1774
1775 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1776 }
1777
1778 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1779 {
1780 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1781 struct cpts *cpts = cpsw->cpts;
1782 struct hwtstamp_config cfg;
1783
1784 if (cpsw->version != CPSW_VERSION_1 &&
1785 cpsw->version != CPSW_VERSION_2 &&
1786 cpsw->version != CPSW_VERSION_3)
1787 return -EOPNOTSUPP;
1788
1789 cfg.flags = 0;
1790 cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1791 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1792 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1793 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1794
1795 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1796 }
1797 #else
1798 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1799 {
1800 return -EOPNOTSUPP;
1801 }
1802
1803 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1804 {
1805 return -EOPNOTSUPP;
1806 }
1807 #endif /*CONFIG_TI_CPTS*/
1808
1809 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1810 {
1811 struct cpsw_priv *priv = netdev_priv(dev);
1812 struct cpsw_common *cpsw = priv->cpsw;
1813 int slave_no = cpsw_slave_index(cpsw, priv);
1814
1815 if (!netif_running(dev))
1816 return -EINVAL;
1817
1818 switch (cmd) {
1819 case SIOCSHWTSTAMP:
1820 return cpsw_hwtstamp_set(dev, req);
1821 case SIOCGHWTSTAMP:
1822 return cpsw_hwtstamp_get(dev, req);
1823 }
1824
1825 if (!cpsw->slaves[slave_no].phy)
1826 return -EOPNOTSUPP;
1827 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1828 }
1829
1830 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1831 {
1832 struct cpsw_priv *priv = netdev_priv(ndev);
1833 struct cpsw_common *cpsw = priv->cpsw;
1834 int ch;
1835
1836 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1837 ndev->stats.tx_errors++;
1838 cpsw_intr_disable(cpsw);
1839 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1840 cpdma_chan_stop(cpsw->txv[ch].ch);
1841 cpdma_chan_start(cpsw->txv[ch].ch);
1842 }
1843
1844 cpsw_intr_enable(cpsw);
1845 }
1846
1847 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1848 {
1849 struct cpsw_priv *priv = netdev_priv(ndev);
1850 struct sockaddr *addr = (struct sockaddr *)p;
1851 struct cpsw_common *cpsw = priv->cpsw;
1852 int flags = 0;
1853 u16 vid = 0;
1854 int ret;
1855
1856 if (!is_valid_ether_addr(addr->sa_data))
1857 return -EADDRNOTAVAIL;
1858
1859 ret = pm_runtime_get_sync(cpsw->dev);
1860 if (ret < 0) {
1861 pm_runtime_put_noidle(cpsw->dev);
1862 return ret;
1863 }
1864
1865 if (cpsw->data.dual_emac) {
1866 vid = cpsw->slaves[priv->emac_port].port_vlan;
1867 flags = ALE_VLAN;
1868 }
1869
1870 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1871 flags, vid);
1872 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1873 flags, vid);
1874
1875 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1876 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1877 for_each_slave(priv, cpsw_set_slave_mac, priv);
1878
1879 pm_runtime_put(cpsw->dev);
1880
1881 return 0;
1882 }
1883
1884 #ifdef CONFIG_NET_POLL_CONTROLLER
1885 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1886 {
1887 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1888
1889 cpsw_intr_disable(cpsw);
1890 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1891 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1892 cpsw_intr_enable(cpsw);
1893 }
1894 #endif
1895
1896 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1897 unsigned short vid)
1898 {
1899 int ret;
1900 int unreg_mcast_mask = 0;
1901 u32 port_mask;
1902 struct cpsw_common *cpsw = priv->cpsw;
1903
1904 if (cpsw->data.dual_emac) {
1905 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1906
1907 if (priv->ndev->flags & IFF_ALLMULTI)
1908 unreg_mcast_mask = port_mask;
1909 } else {
1910 port_mask = ALE_ALL_PORTS;
1911
1912 if (priv->ndev->flags & IFF_ALLMULTI)
1913 unreg_mcast_mask = ALE_ALL_PORTS;
1914 else
1915 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1916 }
1917
1918 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1919 unreg_mcast_mask);
1920 if (ret != 0)
1921 return ret;
1922
1923 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1924 HOST_PORT_NUM, ALE_VLAN, vid);
1925 if (ret != 0)
1926 goto clean_vid;
1927
1928 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1929 port_mask, ALE_VLAN, vid, 0);
1930 if (ret != 0)
1931 goto clean_vlan_ucast;
1932 return 0;
1933
1934 clean_vlan_ucast:
1935 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1936 HOST_PORT_NUM, ALE_VLAN, vid);
1937 clean_vid:
1938 cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1939 return ret;
1940 }
1941
1942 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1943 __be16 proto, u16 vid)
1944 {
1945 struct cpsw_priv *priv = netdev_priv(ndev);
1946 struct cpsw_common *cpsw = priv->cpsw;
1947 int ret;
1948
1949 if (vid == cpsw->data.default_vlan)
1950 return 0;
1951
1952 ret = pm_runtime_get_sync(cpsw->dev);
1953 if (ret < 0) {
1954 pm_runtime_put_noidle(cpsw->dev);
1955 return ret;
1956 }
1957
1958 if (cpsw->data.dual_emac) {
1959 /* In dual EMAC, reserved VLAN id should not be used for
1960 * creating VLAN interfaces as this can break the dual
1961 * EMAC port separation
1962 */
1963 int i;
1964
1965 for (i = 0; i < cpsw->data.slaves; i++) {
1966 if (vid == cpsw->slaves[i].port_vlan)
1967 return -EINVAL;
1968 }
1969 }
1970
1971 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1972 ret = cpsw_add_vlan_ale_entry(priv, vid);
1973
1974 pm_runtime_put(cpsw->dev);
1975 return ret;
1976 }
1977
1978 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1979 __be16 proto, u16 vid)
1980 {
1981 struct cpsw_priv *priv = netdev_priv(ndev);
1982 struct cpsw_common *cpsw = priv->cpsw;
1983 int ret;
1984
1985 if (vid == cpsw->data.default_vlan)
1986 return 0;
1987
1988 ret = pm_runtime_get_sync(cpsw->dev);
1989 if (ret < 0) {
1990 pm_runtime_put_noidle(cpsw->dev);
1991 return ret;
1992 }
1993
1994 if (cpsw->data.dual_emac) {
1995 int i;
1996
1997 for (i = 0; i < cpsw->data.slaves; i++) {
1998 if (vid == cpsw->slaves[i].port_vlan)
1999 return -EINVAL;
2000 }
2001 }
2002
2003 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2004 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2005 if (ret != 0)
2006 return ret;
2007
2008 ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2009 HOST_PORT_NUM, ALE_VLAN, vid);
2010 if (ret != 0)
2011 return ret;
2012
2013 ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2014 0, ALE_VLAN, vid);
2015 pm_runtime_put(cpsw->dev);
2016 return ret;
2017 }
2018
2019 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2020 {
2021 struct cpsw_priv *priv = netdev_priv(ndev);
2022 struct cpsw_common *cpsw = priv->cpsw;
2023 u32 min_rate;
2024 u32 ch_rate;
2025 int ret;
2026
2027 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2028 if (ch_rate == rate)
2029 return 0;
2030
2031 ch_rate = rate * 1000;
2032 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2033 if ((ch_rate < min_rate && ch_rate)) {
2034 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2035 min_rate);
2036 return -EINVAL;
2037 }
2038
2039 if (rate > cpsw->speed) {
2040 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2041 return -EINVAL;
2042 }
2043
2044 ret = pm_runtime_get_sync(cpsw->dev);
2045 if (ret < 0) {
2046 pm_runtime_put_noidle(cpsw->dev);
2047 return ret;
2048 }
2049
2050 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2051 pm_runtime_put(cpsw->dev);
2052
2053 if (ret)
2054 return ret;
2055
2056 cpsw_split_res(ndev);
2057 return ret;
2058 }
2059
2060 static const struct net_device_ops cpsw_netdev_ops = {
2061 .ndo_open = cpsw_ndo_open,
2062 .ndo_stop = cpsw_ndo_stop,
2063 .ndo_start_xmit = cpsw_ndo_start_xmit,
2064 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
2065 .ndo_do_ioctl = cpsw_ndo_ioctl,
2066 .ndo_validate_addr = eth_validate_addr,
2067 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
2068 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
2069 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
2070 #ifdef CONFIG_NET_POLL_CONTROLLER
2071 .ndo_poll_controller = cpsw_ndo_poll_controller,
2072 #endif
2073 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
2074 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
2075 };
2076
2077 static int cpsw_get_regs_len(struct net_device *ndev)
2078 {
2079 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2080
2081 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2082 }
2083
2084 static void cpsw_get_regs(struct net_device *ndev,
2085 struct ethtool_regs *regs, void *p)
2086 {
2087 u32 *reg = p;
2088 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2089
2090 /* update CPSW IP version */
2091 regs->version = cpsw->version;
2092
2093 cpsw_ale_dump(cpsw->ale, reg);
2094 }
2095
2096 static void cpsw_get_drvinfo(struct net_device *ndev,
2097 struct ethtool_drvinfo *info)
2098 {
2099 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2100 struct platform_device *pdev = to_platform_device(cpsw->dev);
2101
2102 strlcpy(info->driver, "cpsw", sizeof(info->driver));
2103 strlcpy(info->version, "1.0", sizeof(info->version));
2104 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2105 }
2106
2107 static u32 cpsw_get_msglevel(struct net_device *ndev)
2108 {
2109 struct cpsw_priv *priv = netdev_priv(ndev);
2110 return priv->msg_enable;
2111 }
2112
2113 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2114 {
2115 struct cpsw_priv *priv = netdev_priv(ndev);
2116 priv->msg_enable = value;
2117 }
2118
2119 #if IS_ENABLED(CONFIG_TI_CPTS)
2120 static int cpsw_get_ts_info(struct net_device *ndev,
2121 struct ethtool_ts_info *info)
2122 {
2123 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2124
2125 info->so_timestamping =
2126 SOF_TIMESTAMPING_TX_HARDWARE |
2127 SOF_TIMESTAMPING_TX_SOFTWARE |
2128 SOF_TIMESTAMPING_RX_HARDWARE |
2129 SOF_TIMESTAMPING_RX_SOFTWARE |
2130 SOF_TIMESTAMPING_SOFTWARE |
2131 SOF_TIMESTAMPING_RAW_HARDWARE;
2132 info->phc_index = cpsw->cpts->phc_index;
2133 info->tx_types =
2134 (1 << HWTSTAMP_TX_OFF) |
2135 (1 << HWTSTAMP_TX_ON);
2136 info->rx_filters =
2137 (1 << HWTSTAMP_FILTER_NONE) |
2138 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2139 return 0;
2140 }
2141 #else
2142 static int cpsw_get_ts_info(struct net_device *ndev,
2143 struct ethtool_ts_info *info)
2144 {
2145 info->so_timestamping =
2146 SOF_TIMESTAMPING_TX_SOFTWARE |
2147 SOF_TIMESTAMPING_RX_SOFTWARE |
2148 SOF_TIMESTAMPING_SOFTWARE;
2149 info->phc_index = -1;
2150 info->tx_types = 0;
2151 info->rx_filters = 0;
2152 return 0;
2153 }
2154 #endif
2155
2156 static int cpsw_get_link_ksettings(struct net_device *ndev,
2157 struct ethtool_link_ksettings *ecmd)
2158 {
2159 struct cpsw_priv *priv = netdev_priv(ndev);
2160 struct cpsw_common *cpsw = priv->cpsw;
2161 int slave_no = cpsw_slave_index(cpsw, priv);
2162
2163 if (cpsw->slaves[slave_no].phy)
2164 return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
2165 ecmd);
2166 else
2167 return -EOPNOTSUPP;
2168 }
2169
2170 static int cpsw_set_link_ksettings(struct net_device *ndev,
2171 const struct ethtool_link_ksettings *ecmd)
2172 {
2173 struct cpsw_priv *priv = netdev_priv(ndev);
2174 struct cpsw_common *cpsw = priv->cpsw;
2175 int slave_no = cpsw_slave_index(cpsw, priv);
2176
2177 if (cpsw->slaves[slave_no].phy)
2178 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2179 ecmd);
2180 else
2181 return -EOPNOTSUPP;
2182 }
2183
2184 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2185 {
2186 struct cpsw_priv *priv = netdev_priv(ndev);
2187 struct cpsw_common *cpsw = priv->cpsw;
2188 int slave_no = cpsw_slave_index(cpsw, priv);
2189
2190 wol->supported = 0;
2191 wol->wolopts = 0;
2192
2193 if (cpsw->slaves[slave_no].phy)
2194 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2195 }
2196
2197 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2198 {
2199 struct cpsw_priv *priv = netdev_priv(ndev);
2200 struct cpsw_common *cpsw = priv->cpsw;
2201 int slave_no = cpsw_slave_index(cpsw, priv);
2202
2203 if (cpsw->slaves[slave_no].phy)
2204 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2205 else
2206 return -EOPNOTSUPP;
2207 }
2208
2209 static void cpsw_get_pauseparam(struct net_device *ndev,
2210 struct ethtool_pauseparam *pause)
2211 {
2212 struct cpsw_priv *priv = netdev_priv(ndev);
2213
2214 pause->autoneg = AUTONEG_DISABLE;
2215 pause->rx_pause = priv->rx_pause ? true : false;
2216 pause->tx_pause = priv->tx_pause ? true : false;
2217 }
2218
2219 static int cpsw_set_pauseparam(struct net_device *ndev,
2220 struct ethtool_pauseparam *pause)
2221 {
2222 struct cpsw_priv *priv = netdev_priv(ndev);
2223 bool link;
2224
2225 priv->rx_pause = pause->rx_pause ? true : false;
2226 priv->tx_pause = pause->tx_pause ? true : false;
2227
2228 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2229 return 0;
2230 }
2231
2232 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2233 {
2234 struct cpsw_priv *priv = netdev_priv(ndev);
2235 struct cpsw_common *cpsw = priv->cpsw;
2236 int ret;
2237
2238 ret = pm_runtime_get_sync(cpsw->dev);
2239 if (ret < 0) {
2240 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2241 pm_runtime_put_noidle(cpsw->dev);
2242 }
2243
2244 return ret;
2245 }
2246
2247 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2248 {
2249 struct cpsw_priv *priv = netdev_priv(ndev);
2250 int ret;
2251
2252 ret = pm_runtime_put(priv->cpsw->dev);
2253 if (ret < 0)
2254 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2255 }
2256
2257 static void cpsw_get_channels(struct net_device *ndev,
2258 struct ethtool_channels *ch)
2259 {
2260 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2261
2262 ch->max_combined = 0;
2263 ch->max_rx = CPSW_MAX_QUEUES;
2264 ch->max_tx = CPSW_MAX_QUEUES;
2265 ch->max_other = 0;
2266 ch->other_count = 0;
2267 ch->rx_count = cpsw->rx_ch_num;
2268 ch->tx_count = cpsw->tx_ch_num;
2269 ch->combined_count = 0;
2270 }
2271
2272 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2273 struct ethtool_channels *ch)
2274 {
2275 if (ch->combined_count)
2276 return -EINVAL;
2277
2278 /* verify we have at least one channel in each direction */
2279 if (!ch->rx_count || !ch->tx_count)
2280 return -EINVAL;
2281
2282 if (ch->rx_count > cpsw->data.channels ||
2283 ch->tx_count > cpsw->data.channels)
2284 return -EINVAL;
2285
2286 return 0;
2287 }
2288
2289 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2290 {
2291 int (*poll)(struct napi_struct *, int);
2292 struct cpsw_common *cpsw = priv->cpsw;
2293 void (*handler)(void *, int, int);
2294 struct netdev_queue *queue;
2295 struct cpsw_vector *vec;
2296 int ret, *ch;
2297
2298 if (rx) {
2299 ch = &cpsw->rx_ch_num;
2300 vec = cpsw->rxv;
2301 handler = cpsw_rx_handler;
2302 poll = cpsw_rx_poll;
2303 } else {
2304 ch = &cpsw->tx_ch_num;
2305 vec = cpsw->txv;
2306 handler = cpsw_tx_handler;
2307 poll = cpsw_tx_poll;
2308 }
2309
2310 while (*ch < ch_num) {
2311 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2312 queue = netdev_get_tx_queue(priv->ndev, *ch);
2313 queue->tx_maxrate = 0;
2314
2315 if (IS_ERR(vec[*ch].ch))
2316 return PTR_ERR(vec[*ch].ch);
2317
2318 if (!vec[*ch].ch)
2319 return -EINVAL;
2320
2321 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2322 (rx ? "rx" : "tx"));
2323 (*ch)++;
2324 }
2325
2326 while (*ch > ch_num) {
2327 (*ch)--;
2328
2329 ret = cpdma_chan_destroy(vec[*ch].ch);
2330 if (ret)
2331 return ret;
2332
2333 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2334 (rx ? "rx" : "tx"));
2335 }
2336
2337 return 0;
2338 }
2339
2340 static int cpsw_update_channels(struct cpsw_priv *priv,
2341 struct ethtool_channels *ch)
2342 {
2343 int ret;
2344
2345 ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2346 if (ret)
2347 return ret;
2348
2349 ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2350 if (ret)
2351 return ret;
2352
2353 return 0;
2354 }
2355
2356 static int cpsw_set_channels(struct net_device *ndev,
2357 struct ethtool_channels *chs)
2358 {
2359 struct cpsw_priv *priv = netdev_priv(ndev);
2360 struct cpsw_common *cpsw = priv->cpsw;
2361 struct cpsw_slave *slave;
2362 int i, ret;
2363
2364 ret = cpsw_check_ch_settings(cpsw, chs);
2365 if (ret < 0)
2366 return ret;
2367
2368 /* Disable NAPI scheduling */
2369 cpsw_intr_disable(cpsw);
2370
2371 /* Stop all transmit queues for every network device.
2372 * Disable re-using rx descriptors with dormant_on.
2373 */
2374 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2375 if (!(slave->ndev && netif_running(slave->ndev)))
2376 continue;
2377
2378 netif_tx_stop_all_queues(slave->ndev);
2379 netif_dormant_on(slave->ndev);
2380 }
2381
2382 /* Handle rest of tx packets and stop cpdma channels */
2383 cpdma_ctlr_stop(cpsw->dma);
2384 ret = cpsw_update_channels(priv, chs);
2385 if (ret)
2386 goto err;
2387
2388 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2389 if (!(slave->ndev && netif_running(slave->ndev)))
2390 continue;
2391
2392 /* Inform stack about new count of queues */
2393 ret = netif_set_real_num_tx_queues(slave->ndev,
2394 cpsw->tx_ch_num);
2395 if (ret) {
2396 dev_err(priv->dev, "cannot set real number of tx queues\n");
2397 goto err;
2398 }
2399
2400 ret = netif_set_real_num_rx_queues(slave->ndev,
2401 cpsw->rx_ch_num);
2402 if (ret) {
2403 dev_err(priv->dev, "cannot set real number of rx queues\n");
2404 goto err;
2405 }
2406
2407 /* Enable rx packets handling */
2408 netif_dormant_off(slave->ndev);
2409 }
2410
2411 if (cpsw_common_res_usage_state(cpsw)) {
2412 ret = cpsw_fill_rx_channels(priv);
2413 if (ret)
2414 goto err;
2415
2416 cpsw_split_res(ndev);
2417
2418 /* After this receive is started */
2419 cpdma_ctlr_start(cpsw->dma);
2420 cpsw_intr_enable(cpsw);
2421 }
2422
2423 /* Resume transmit for every affected interface */
2424 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2425 if (!(slave->ndev && netif_running(slave->ndev)))
2426 continue;
2427 netif_tx_start_all_queues(slave->ndev);
2428 }
2429 return 0;
2430 err:
2431 dev_err(priv->dev, "cannot update channels number, closing device\n");
2432 dev_close(ndev);
2433 return ret;
2434 }
2435
2436 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2437 {
2438 struct cpsw_priv *priv = netdev_priv(ndev);
2439 struct cpsw_common *cpsw = priv->cpsw;
2440 int slave_no = cpsw_slave_index(cpsw, priv);
2441
2442 if (cpsw->slaves[slave_no].phy)
2443 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2444 else
2445 return -EOPNOTSUPP;
2446 }
2447
2448 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2449 {
2450 struct cpsw_priv *priv = netdev_priv(ndev);
2451 struct cpsw_common *cpsw = priv->cpsw;
2452 int slave_no = cpsw_slave_index(cpsw, priv);
2453
2454 if (cpsw->slaves[slave_no].phy)
2455 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2456 else
2457 return -EOPNOTSUPP;
2458 }
2459
2460 static int cpsw_nway_reset(struct net_device *ndev)
2461 {
2462 struct cpsw_priv *priv = netdev_priv(ndev);
2463 struct cpsw_common *cpsw = priv->cpsw;
2464 int slave_no = cpsw_slave_index(cpsw, priv);
2465
2466 if (cpsw->slaves[slave_no].phy)
2467 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2468 else
2469 return -EOPNOTSUPP;
2470 }
2471
2472 static const struct ethtool_ops cpsw_ethtool_ops = {
2473 .get_drvinfo = cpsw_get_drvinfo,
2474 .get_msglevel = cpsw_get_msglevel,
2475 .set_msglevel = cpsw_set_msglevel,
2476 .get_link = ethtool_op_get_link,
2477 .get_ts_info = cpsw_get_ts_info,
2478 .get_coalesce = cpsw_get_coalesce,
2479 .set_coalesce = cpsw_set_coalesce,
2480 .get_sset_count = cpsw_get_sset_count,
2481 .get_strings = cpsw_get_strings,
2482 .get_ethtool_stats = cpsw_get_ethtool_stats,
2483 .get_pauseparam = cpsw_get_pauseparam,
2484 .set_pauseparam = cpsw_set_pauseparam,
2485 .get_wol = cpsw_get_wol,
2486 .set_wol = cpsw_set_wol,
2487 .get_regs_len = cpsw_get_regs_len,
2488 .get_regs = cpsw_get_regs,
2489 .begin = cpsw_ethtool_op_begin,
2490 .complete = cpsw_ethtool_op_complete,
2491 .get_channels = cpsw_get_channels,
2492 .set_channels = cpsw_set_channels,
2493 .get_link_ksettings = cpsw_get_link_ksettings,
2494 .set_link_ksettings = cpsw_set_link_ksettings,
2495 .get_eee = cpsw_get_eee,
2496 .set_eee = cpsw_set_eee,
2497 .nway_reset = cpsw_nway_reset,
2498 };
2499
2500 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2501 u32 slave_reg_ofs, u32 sliver_reg_ofs)
2502 {
2503 void __iomem *regs = cpsw->regs;
2504 int slave_num = slave->slave_num;
2505 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num;
2506
2507 slave->data = data;
2508 slave->regs = regs + slave_reg_ofs;
2509 slave->sliver = regs + sliver_reg_ofs;
2510 slave->port_vlan = data->dual_emac_res_vlan;
2511 }
2512
2513 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2514 struct platform_device *pdev)
2515 {
2516 struct device_node *node = pdev->dev.of_node;
2517 struct device_node *slave_node;
2518 int i = 0, ret;
2519 u32 prop;
2520
2521 if (!node)
2522 return -EINVAL;
2523
2524 if (of_property_read_u32(node, "slaves", &prop)) {
2525 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2526 return -EINVAL;
2527 }
2528 data->slaves = prop;
2529
2530 if (of_property_read_u32(node, "active_slave", &prop)) {
2531 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2532 return -EINVAL;
2533 }
2534 data->active_slave = prop;
2535
2536 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2537 * sizeof(struct cpsw_slave_data),
2538 GFP_KERNEL);
2539 if (!data->slave_data)
2540 return -ENOMEM;
2541
2542 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2543 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2544 return -EINVAL;
2545 }
2546 data->channels = prop;
2547
2548 if (of_property_read_u32(node, "ale_entries", &prop)) {
2549 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2550 return -EINVAL;
2551 }
2552 data->ale_entries = prop;
2553
2554 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2555 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2556 return -EINVAL;
2557 }
2558 data->bd_ram_size = prop;
2559
2560 if (of_property_read_u32(node, "mac_control", &prop)) {
2561 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2562 return -EINVAL;
2563 }
2564 data->mac_control = prop;
2565
2566 if (of_property_read_bool(node, "dual_emac"))
2567 data->dual_emac = 1;
2568
2569 /*
2570 * Populate all the child nodes here...
2571 */
2572 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2573 /* We do not want to force this, as in some cases may not have child */
2574 if (ret)
2575 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2576
2577 for_each_available_child_of_node(node, slave_node) {
2578 struct cpsw_slave_data *slave_data = data->slave_data + i;
2579 const void *mac_addr = NULL;
2580 int lenp;
2581 const __be32 *parp;
2582
2583 /* This is no slave child node, continue */
2584 if (strcmp(slave_node->name, "slave"))
2585 continue;
2586
2587 slave_data->phy_node = of_parse_phandle(slave_node,
2588 "phy-handle", 0);
2589 parp = of_get_property(slave_node, "phy_id", &lenp);
2590 if (slave_data->phy_node) {
2591 dev_dbg(&pdev->dev,
2592 "slave[%d] using phy-handle=\"%s\"\n",
2593 i, slave_data->phy_node->full_name);
2594 } else if (of_phy_is_fixed_link(slave_node)) {
2595 /* In the case of a fixed PHY, the DT node associated
2596 * to the PHY is the Ethernet MAC DT node.
2597 */
2598 ret = of_phy_register_fixed_link(slave_node);
2599 if (ret) {
2600 if (ret != -EPROBE_DEFER)
2601 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2602 return ret;
2603 }
2604 slave_data->phy_node = of_node_get(slave_node);
2605 } else if (parp) {
2606 u32 phyid;
2607 struct device_node *mdio_node;
2608 struct platform_device *mdio;
2609
2610 if (lenp != (sizeof(__be32) * 2)) {
2611 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2612 goto no_phy_slave;
2613 }
2614 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2615 phyid = be32_to_cpup(parp+1);
2616 mdio = of_find_device_by_node(mdio_node);
2617 of_node_put(mdio_node);
2618 if (!mdio) {
2619 dev_err(&pdev->dev, "Missing mdio platform device\n");
2620 return -EINVAL;
2621 }
2622 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2623 PHY_ID_FMT, mdio->name, phyid);
2624 put_device(&mdio->dev);
2625 } else {
2626 dev_err(&pdev->dev,
2627 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2628 i);
2629 goto no_phy_slave;
2630 }
2631 slave_data->phy_if = of_get_phy_mode(slave_node);
2632 if (slave_data->phy_if < 0) {
2633 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2634 i);
2635 return slave_data->phy_if;
2636 }
2637
2638 no_phy_slave:
2639 mac_addr = of_get_mac_address(slave_node);
2640 if (mac_addr) {
2641 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2642 } else {
2643 ret = ti_cm_get_macid(&pdev->dev, i,
2644 slave_data->mac_addr);
2645 if (ret)
2646 return ret;
2647 }
2648 if (data->dual_emac) {
2649 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2650 &prop)) {
2651 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2652 slave_data->dual_emac_res_vlan = i+1;
2653 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2654 slave_data->dual_emac_res_vlan, i);
2655 } else {
2656 slave_data->dual_emac_res_vlan = prop;
2657 }
2658 }
2659
2660 i++;
2661 if (i == data->slaves)
2662 break;
2663 }
2664
2665 return 0;
2666 }
2667
2668 static void cpsw_remove_dt(struct platform_device *pdev)
2669 {
2670 struct net_device *ndev = platform_get_drvdata(pdev);
2671 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2672 struct cpsw_platform_data *data = &cpsw->data;
2673 struct device_node *node = pdev->dev.of_node;
2674 struct device_node *slave_node;
2675 int i = 0;
2676
2677 for_each_available_child_of_node(node, slave_node) {
2678 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2679
2680 if (strcmp(slave_node->name, "slave"))
2681 continue;
2682
2683 if (of_phy_is_fixed_link(slave_node))
2684 of_phy_deregister_fixed_link(slave_node);
2685
2686 of_node_put(slave_data->phy_node);
2687
2688 i++;
2689 if (i == data->slaves)
2690 break;
2691 }
2692
2693 of_platform_depopulate(&pdev->dev);
2694 }
2695
2696 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2697 {
2698 struct cpsw_common *cpsw = priv->cpsw;
2699 struct cpsw_platform_data *data = &cpsw->data;
2700 struct net_device *ndev;
2701 struct cpsw_priv *priv_sl2;
2702 int ret = 0;
2703
2704 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2705 if (!ndev) {
2706 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2707 return -ENOMEM;
2708 }
2709
2710 priv_sl2 = netdev_priv(ndev);
2711 priv_sl2->cpsw = cpsw;
2712 priv_sl2->ndev = ndev;
2713 priv_sl2->dev = &ndev->dev;
2714 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2715
2716 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2717 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2718 ETH_ALEN);
2719 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2720 priv_sl2->mac_addr);
2721 } else {
2722 random_ether_addr(priv_sl2->mac_addr);
2723 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2724 priv_sl2->mac_addr);
2725 }
2726 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2727
2728 priv_sl2->emac_port = 1;
2729 cpsw->slaves[1].ndev = ndev;
2730 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2731
2732 ndev->netdev_ops = &cpsw_netdev_ops;
2733 ndev->ethtool_ops = &cpsw_ethtool_ops;
2734
2735 /* register the network device */
2736 SET_NETDEV_DEV(ndev, cpsw->dev);
2737 ret = register_netdev(ndev);
2738 if (ret) {
2739 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2740 free_netdev(ndev);
2741 ret = -ENODEV;
2742 }
2743
2744 return ret;
2745 }
2746
2747 #define CPSW_QUIRK_IRQ BIT(0)
2748
2749 static struct platform_device_id cpsw_devtype[] = {
2750 {
2751 /* keep it for existing comaptibles */
2752 .name = "cpsw",
2753 .driver_data = CPSW_QUIRK_IRQ,
2754 }, {
2755 .name = "am335x-cpsw",
2756 .driver_data = CPSW_QUIRK_IRQ,
2757 }, {
2758 .name = "am4372-cpsw",
2759 .driver_data = 0,
2760 }, {
2761 .name = "dra7-cpsw",
2762 .driver_data = 0,
2763 }, {
2764 /* sentinel */
2765 }
2766 };
2767 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2768
2769 enum ti_cpsw_type {
2770 CPSW = 0,
2771 AM335X_CPSW,
2772 AM4372_CPSW,
2773 DRA7_CPSW,
2774 };
2775
2776 static const struct of_device_id cpsw_of_mtable[] = {
2777 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2778 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2779 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2780 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2781 { /* sentinel */ },
2782 };
2783 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2784
2785 static int cpsw_probe(struct platform_device *pdev)
2786 {
2787 struct clk *clk;
2788 struct cpsw_platform_data *data;
2789 struct net_device *ndev;
2790 struct cpsw_priv *priv;
2791 struct cpdma_params dma_params;
2792 struct cpsw_ale_params ale_params;
2793 void __iomem *ss_regs;
2794 void __iomem *cpts_regs;
2795 struct resource *res, *ss_res;
2796 const struct of_device_id *of_id;
2797 struct gpio_descs *mode;
2798 u32 slave_offset, sliver_offset, slave_size;
2799 struct cpsw_common *cpsw;
2800 int ret = 0, i;
2801 int irq;
2802
2803 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2804 if (!cpsw)
2805 return -ENOMEM;
2806
2807 cpsw->dev = &pdev->dev;
2808
2809 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2810 if (!ndev) {
2811 dev_err(&pdev->dev, "error allocating net_device\n");
2812 return -ENOMEM;
2813 }
2814
2815 platform_set_drvdata(pdev, ndev);
2816 priv = netdev_priv(ndev);
2817 priv->cpsw = cpsw;
2818 priv->ndev = ndev;
2819 priv->dev = &ndev->dev;
2820 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2821 cpsw->rx_packet_max = max(rx_packet_max, 128);
2822
2823 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2824 if (IS_ERR(mode)) {
2825 ret = PTR_ERR(mode);
2826 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2827 goto clean_ndev_ret;
2828 }
2829
2830 /*
2831 * This may be required here for child devices.
2832 */
2833 pm_runtime_enable(&pdev->dev);
2834
2835 /* Select default pin state */
2836 pinctrl_pm_select_default_state(&pdev->dev);
2837
2838 /* Need to enable clocks with runtime PM api to access module
2839 * registers
2840 */
2841 ret = pm_runtime_get_sync(&pdev->dev);
2842 if (ret < 0) {
2843 pm_runtime_put_noidle(&pdev->dev);
2844 goto clean_runtime_disable_ret;
2845 }
2846
2847 ret = cpsw_probe_dt(&cpsw->data, pdev);
2848 if (ret)
2849 goto clean_dt_ret;
2850
2851 data = &cpsw->data;
2852 cpsw->rx_ch_num = 1;
2853 cpsw->tx_ch_num = 1;
2854
2855 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2856 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2857 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2858 } else {
2859 eth_random_addr(priv->mac_addr);
2860 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2861 }
2862
2863 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2864
2865 cpsw->slaves = devm_kzalloc(&pdev->dev,
2866 sizeof(struct cpsw_slave) * data->slaves,
2867 GFP_KERNEL);
2868 if (!cpsw->slaves) {
2869 ret = -ENOMEM;
2870 goto clean_dt_ret;
2871 }
2872 for (i = 0; i < data->slaves; i++)
2873 cpsw->slaves[i].slave_num = i;
2874
2875 cpsw->slaves[0].ndev = ndev;
2876 priv->emac_port = 0;
2877
2878 clk = devm_clk_get(&pdev->dev, "fck");
2879 if (IS_ERR(clk)) {
2880 dev_err(priv->dev, "fck is not found\n");
2881 ret = -ENODEV;
2882 goto clean_dt_ret;
2883 }
2884 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2885
2886 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2887 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2888 if (IS_ERR(ss_regs)) {
2889 ret = PTR_ERR(ss_regs);
2890 goto clean_dt_ret;
2891 }
2892 cpsw->regs = ss_regs;
2893
2894 cpsw->version = readl(&cpsw->regs->id_ver);
2895
2896 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2897 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2898 if (IS_ERR(cpsw->wr_regs)) {
2899 ret = PTR_ERR(cpsw->wr_regs);
2900 goto clean_dt_ret;
2901 }
2902
2903 memset(&dma_params, 0, sizeof(dma_params));
2904 memset(&ale_params, 0, sizeof(ale_params));
2905
2906 switch (cpsw->version) {
2907 case CPSW_VERSION_1:
2908 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2909 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
2910 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
2911 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
2912 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
2913 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
2914 slave_offset = CPSW1_SLAVE_OFFSET;
2915 slave_size = CPSW1_SLAVE_SIZE;
2916 sliver_offset = CPSW1_SLIVER_OFFSET;
2917 dma_params.desc_mem_phys = 0;
2918 break;
2919 case CPSW_VERSION_2:
2920 case CPSW_VERSION_3:
2921 case CPSW_VERSION_4:
2922 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2923 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
2924 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
2925 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
2926 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
2927 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
2928 slave_offset = CPSW2_SLAVE_OFFSET;
2929 slave_size = CPSW2_SLAVE_SIZE;
2930 sliver_offset = CPSW2_SLIVER_OFFSET;
2931 dma_params.desc_mem_phys =
2932 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2933 break;
2934 default:
2935 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2936 ret = -ENODEV;
2937 goto clean_dt_ret;
2938 }
2939 for (i = 0; i < cpsw->data.slaves; i++) {
2940 struct cpsw_slave *slave = &cpsw->slaves[i];
2941
2942 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
2943 slave_offset += slave_size;
2944 sliver_offset += SLIVER_SIZE;
2945 }
2946
2947 dma_params.dev = &pdev->dev;
2948 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
2949 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
2950 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
2951 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
2952 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
2953
2954 dma_params.num_chan = data->channels;
2955 dma_params.has_soft_reset = true;
2956 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
2957 dma_params.desc_mem_size = data->bd_ram_size;
2958 dma_params.desc_align = 16;
2959 dma_params.has_ext_regs = true;
2960 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
2961 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
2962
2963 cpsw->dma = cpdma_ctlr_create(&dma_params);
2964 if (!cpsw->dma) {
2965 dev_err(priv->dev, "error initializing dma\n");
2966 ret = -ENOMEM;
2967 goto clean_dt_ret;
2968 }
2969
2970 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
2971 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
2972 if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
2973 dev_err(priv->dev, "error initializing dma channels\n");
2974 ret = -ENOMEM;
2975 goto clean_dma_ret;
2976 }
2977
2978 ale_params.dev = &ndev->dev;
2979 ale_params.ale_ageout = ale_ageout;
2980 ale_params.ale_entries = data->ale_entries;
2981 ale_params.ale_ports = data->slaves;
2982
2983 cpsw->ale = cpsw_ale_create(&ale_params);
2984 if (!cpsw->ale) {
2985 dev_err(priv->dev, "error initializing ale engine\n");
2986 ret = -ENODEV;
2987 goto clean_dma_ret;
2988 }
2989
2990 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
2991 if (IS_ERR(cpsw->cpts)) {
2992 ret = PTR_ERR(cpsw->cpts);
2993 goto clean_ale_ret;
2994 }
2995
2996 ndev->irq = platform_get_irq(pdev, 1);
2997 if (ndev->irq < 0) {
2998 dev_err(priv->dev, "error getting irq resource\n");
2999 ret = ndev->irq;
3000 goto clean_ale_ret;
3001 }
3002
3003 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3004 if (of_id) {
3005 pdev->id_entry = of_id->data;
3006 if (pdev->id_entry->driver_data)
3007 cpsw->quirk_irq = true;
3008 }
3009
3010 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3011 * MISC IRQs which are always kept disabled with this driver so
3012 * we will not request them.
3013 *
3014 * If anyone wants to implement support for those, make sure to
3015 * first request and append them to irqs_table array.
3016 */
3017
3018 /* RX IRQ */
3019 irq = platform_get_irq(pdev, 1);
3020 if (irq < 0) {
3021 ret = irq;
3022 goto clean_ale_ret;
3023 }
3024
3025 cpsw->irqs_table[0] = irq;
3026 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3027 0, dev_name(&pdev->dev), cpsw);
3028 if (ret < 0) {
3029 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3030 goto clean_ale_ret;
3031 }
3032
3033 /* TX IRQ */
3034 irq = platform_get_irq(pdev, 2);
3035 if (irq < 0) {
3036 ret = irq;
3037 goto clean_ale_ret;
3038 }
3039
3040 cpsw->irqs_table[1] = irq;
3041 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3042 0, dev_name(&pdev->dev), cpsw);
3043 if (ret < 0) {
3044 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3045 goto clean_ale_ret;
3046 }
3047
3048 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3049
3050 ndev->netdev_ops = &cpsw_netdev_ops;
3051 ndev->ethtool_ops = &cpsw_ethtool_ops;
3052 netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3053 netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3054 cpsw_split_res(ndev);
3055
3056 /* register the network device */
3057 SET_NETDEV_DEV(ndev, &pdev->dev);
3058 ret = register_netdev(ndev);
3059 if (ret) {
3060 dev_err(priv->dev, "error registering net device\n");
3061 ret = -ENODEV;
3062 goto clean_ale_ret;
3063 }
3064
3065 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
3066 &ss_res->start, ndev->irq);
3067
3068 if (cpsw->data.dual_emac) {
3069 ret = cpsw_probe_dual_emac(priv);
3070 if (ret) {
3071 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3072 goto clean_unregister_netdev_ret;
3073 }
3074 }
3075
3076 pm_runtime_put(&pdev->dev);
3077
3078 return 0;
3079
3080 clean_unregister_netdev_ret:
3081 unregister_netdev(ndev);
3082 clean_ale_ret:
3083 cpsw_ale_destroy(cpsw->ale);
3084 clean_dma_ret:
3085 cpdma_ctlr_destroy(cpsw->dma);
3086 clean_dt_ret:
3087 cpsw_remove_dt(pdev);
3088 pm_runtime_put_sync(&pdev->dev);
3089 clean_runtime_disable_ret:
3090 pm_runtime_disable(&pdev->dev);
3091 clean_ndev_ret:
3092 free_netdev(priv->ndev);
3093 return ret;
3094 }
3095
3096 static int cpsw_remove(struct platform_device *pdev)
3097 {
3098 struct net_device *ndev = platform_get_drvdata(pdev);
3099 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3100 int ret;
3101
3102 ret = pm_runtime_get_sync(&pdev->dev);
3103 if (ret < 0) {
3104 pm_runtime_put_noidle(&pdev->dev);
3105 return ret;
3106 }
3107
3108 if (cpsw->data.dual_emac)
3109 unregister_netdev(cpsw->slaves[1].ndev);
3110 unregister_netdev(ndev);
3111
3112 cpts_release(cpsw->cpts);
3113 cpsw_ale_destroy(cpsw->ale);
3114 cpdma_ctlr_destroy(cpsw->dma);
3115 cpsw_remove_dt(pdev);
3116 pm_runtime_put_sync(&pdev->dev);
3117 pm_runtime_disable(&pdev->dev);
3118 if (cpsw->data.dual_emac)
3119 free_netdev(cpsw->slaves[1].ndev);
3120 free_netdev(ndev);
3121 return 0;
3122 }
3123
3124 #ifdef CONFIG_PM_SLEEP
3125 static int cpsw_suspend(struct device *dev)
3126 {
3127 struct platform_device *pdev = to_platform_device(dev);
3128 struct net_device *ndev = platform_get_drvdata(pdev);
3129 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3130
3131 if (cpsw->data.dual_emac) {
3132 int i;
3133
3134 for (i = 0; i < cpsw->data.slaves; i++) {
3135 if (netif_running(cpsw->slaves[i].ndev))
3136 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3137 }
3138 } else {
3139 if (netif_running(ndev))
3140 cpsw_ndo_stop(ndev);
3141 }
3142
3143 /* Select sleep pin state */
3144 pinctrl_pm_select_sleep_state(dev);
3145
3146 return 0;
3147 }
3148
3149 static int cpsw_resume(struct device *dev)
3150 {
3151 struct platform_device *pdev = to_platform_device(dev);
3152 struct net_device *ndev = platform_get_drvdata(pdev);
3153 struct cpsw_common *cpsw = netdev_priv(ndev);
3154
3155 /* Select default pin state */
3156 pinctrl_pm_select_default_state(dev);
3157
3158 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3159 rtnl_lock();
3160 if (cpsw->data.dual_emac) {
3161 int i;
3162
3163 for (i = 0; i < cpsw->data.slaves; i++) {
3164 if (netif_running(cpsw->slaves[i].ndev))
3165 cpsw_ndo_open(cpsw->slaves[i].ndev);
3166 }
3167 } else {
3168 if (netif_running(ndev))
3169 cpsw_ndo_open(ndev);
3170 }
3171 rtnl_unlock();
3172
3173 return 0;
3174 }
3175 #endif
3176
3177 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3178
3179 static struct platform_driver cpsw_driver = {
3180 .driver = {
3181 .name = "cpsw",
3182 .pm = &cpsw_pm_ops,
3183 .of_match_table = cpsw_of_mtable,
3184 },
3185 .probe = cpsw_probe,
3186 .remove = cpsw_remove,
3187 };
3188
3189 module_platform_driver(cpsw_driver);
3190
3191 MODULE_LICENSE("GPL");
3192 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3193 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3194 MODULE_DESCRIPTION("TI CPSW Ethernet driver");