]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/ti/cpsw.c
spi: Drop owner assignment from spi_drivers
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/of.h>
33 #include <linux/of_net.h>
34 #include <linux/of_device.h>
35 #include <linux/if_vlan.h>
36
37 #include <linux/pinctrl/consumer.h>
38
39 #include "cpsw.h"
40 #include "cpsw_ale.h"
41 #include "cpts.h"
42 #include "davinci_cpdma.h"
43
44 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
45 NETIF_MSG_DRV | NETIF_MSG_LINK | \
46 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
47 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
48 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
49 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
50 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
51 NETIF_MSG_RX_STATUS)
52
53 #define cpsw_info(priv, type, format, ...) \
54 do { \
55 if (netif_msg_##type(priv) && net_ratelimit()) \
56 dev_info(priv->dev, format, ## __VA_ARGS__); \
57 } while (0)
58
59 #define cpsw_err(priv, type, format, ...) \
60 do { \
61 if (netif_msg_##type(priv) && net_ratelimit()) \
62 dev_err(priv->dev, format, ## __VA_ARGS__); \
63 } while (0)
64
65 #define cpsw_dbg(priv, type, format, ...) \
66 do { \
67 if (netif_msg_##type(priv) && net_ratelimit()) \
68 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
69 } while (0)
70
71 #define cpsw_notice(priv, type, format, ...) \
72 do { \
73 if (netif_msg_##type(priv) && net_ratelimit()) \
74 dev_notice(priv->dev, format, ## __VA_ARGS__); \
75 } while (0)
76
77 #define ALE_ALL_PORTS 0x7
78
79 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
80 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
81 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
82
83 #define CPSW_VERSION_1 0x19010a
84 #define CPSW_VERSION_2 0x19010c
85 #define CPSW_VERSION_3 0x19010f
86 #define CPSW_VERSION_4 0x190112
87
88 #define HOST_PORT_NUM 0
89 #define SLIVER_SIZE 0x40
90
91 #define CPSW1_HOST_PORT_OFFSET 0x028
92 #define CPSW1_SLAVE_OFFSET 0x050
93 #define CPSW1_SLAVE_SIZE 0x040
94 #define CPSW1_CPDMA_OFFSET 0x100
95 #define CPSW1_STATERAM_OFFSET 0x200
96 #define CPSW1_HW_STATS 0x400
97 #define CPSW1_CPTS_OFFSET 0x500
98 #define CPSW1_ALE_OFFSET 0x600
99 #define CPSW1_SLIVER_OFFSET 0x700
100
101 #define CPSW2_HOST_PORT_OFFSET 0x108
102 #define CPSW2_SLAVE_OFFSET 0x200
103 #define CPSW2_SLAVE_SIZE 0x100
104 #define CPSW2_CPDMA_OFFSET 0x800
105 #define CPSW2_HW_STATS 0x900
106 #define CPSW2_STATERAM_OFFSET 0xa00
107 #define CPSW2_CPTS_OFFSET 0xc00
108 #define CPSW2_ALE_OFFSET 0xd00
109 #define CPSW2_SLIVER_OFFSET 0xd80
110 #define CPSW2_BD_OFFSET 0x2000
111
112 #define CPDMA_RXTHRESH 0x0c0
113 #define CPDMA_RXFREE 0x0e0
114 #define CPDMA_TXHDP 0x00
115 #define CPDMA_RXHDP 0x20
116 #define CPDMA_TXCP 0x40
117 #define CPDMA_RXCP 0x60
118
119 #define CPSW_POLL_WEIGHT 64
120 #define CPSW_MIN_PACKET_SIZE 60
121 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4)
122
123 #define RX_PRIORITY_MAPPING 0x76543210
124 #define TX_PRIORITY_MAPPING 0x33221100
125 #define CPDMA_TX_PRIORITY_MAP 0x76543210
126
127 #define CPSW_VLAN_AWARE BIT(1)
128 #define CPSW_ALE_VLAN_AWARE 1
129
130 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
131 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
132 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
133
134 #define CPSW_INTPACEEN (0x3f << 16)
135 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
136 #define CPSW_CMINTMAX_CNT 63
137 #define CPSW_CMINTMIN_CNT 2
138 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
139 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
140
141 #define cpsw_slave_index(priv) \
142 ((priv->data.dual_emac) ? priv->emac_port : \
143 priv->data.active_slave)
144
145 static int debug_level;
146 module_param(debug_level, int, 0);
147 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
148
149 static int ale_ageout = 10;
150 module_param(ale_ageout, int, 0);
151 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
152
153 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
154 module_param(rx_packet_max, int, 0);
155 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
156
157 struct cpsw_wr_regs {
158 u32 id_ver;
159 u32 soft_reset;
160 u32 control;
161 u32 int_control;
162 u32 rx_thresh_en;
163 u32 rx_en;
164 u32 tx_en;
165 u32 misc_en;
166 u32 mem_allign1[8];
167 u32 rx_thresh_stat;
168 u32 rx_stat;
169 u32 tx_stat;
170 u32 misc_stat;
171 u32 mem_allign2[8];
172 u32 rx_imax;
173 u32 tx_imax;
174
175 };
176
177 struct cpsw_ss_regs {
178 u32 id_ver;
179 u32 control;
180 u32 soft_reset;
181 u32 stat_port_en;
182 u32 ptype;
183 u32 soft_idle;
184 u32 thru_rate;
185 u32 gap_thresh;
186 u32 tx_start_wds;
187 u32 flow_control;
188 u32 vlan_ltype;
189 u32 ts_ltype;
190 u32 dlr_ltype;
191 };
192
193 /* CPSW_PORT_V1 */
194 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
195 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
196 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
197 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
198 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
199 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
200 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
201 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
202
203 /* CPSW_PORT_V2 */
204 #define CPSW2_CONTROL 0x00 /* Control Register */
205 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
206 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
207 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
208 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
209 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
210 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
211
212 /* CPSW_PORT_V1 and V2 */
213 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
214 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
215 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
216
217 /* CPSW_PORT_V2 only */
218 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
219 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
220 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
221 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
222 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
226
227 /* Bit definitions for the CPSW2_CONTROL register */
228 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
229 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
230 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
231 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
232 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
233 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
234 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
235 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
236 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
237 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
238 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
239 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
240 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
241 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
242 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
243 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
244 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
245
246 #define CTRL_V2_TS_BITS \
247 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
248 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
249
250 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
251 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
252 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
253
254
255 #define CTRL_V3_TS_BITS \
256 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
257 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
258 TS_LTYPE1_EN)
259
260 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
261 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
262 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
263
264 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
265 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
266 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
267 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
268 #define TS_MSG_TYPE_EN_MASK (0xffff)
269
270 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
271 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
272
273 /* Bit definitions for the CPSW1_TS_CTL register */
274 #define CPSW_V1_TS_RX_EN BIT(0)
275 #define CPSW_V1_TS_TX_EN BIT(4)
276 #define CPSW_V1_MSG_TYPE_OFS 16
277
278 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
279 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
280
281 struct cpsw_host_regs {
282 u32 max_blks;
283 u32 blk_cnt;
284 u32 tx_in_ctl;
285 u32 port_vlan;
286 u32 tx_pri_map;
287 u32 cpdma_tx_pri_map;
288 u32 cpdma_rx_chan_map;
289 };
290
291 struct cpsw_sliver_regs {
292 u32 id_ver;
293 u32 mac_control;
294 u32 mac_status;
295 u32 soft_reset;
296 u32 rx_maxlen;
297 u32 __reserved_0;
298 u32 rx_pause;
299 u32 tx_pause;
300 u32 __reserved_1;
301 u32 rx_pri_map;
302 };
303
304 struct cpsw_hw_stats {
305 u32 rxgoodframes;
306 u32 rxbroadcastframes;
307 u32 rxmulticastframes;
308 u32 rxpauseframes;
309 u32 rxcrcerrors;
310 u32 rxaligncodeerrors;
311 u32 rxoversizedframes;
312 u32 rxjabberframes;
313 u32 rxundersizedframes;
314 u32 rxfragments;
315 u32 __pad_0[2];
316 u32 rxoctets;
317 u32 txgoodframes;
318 u32 txbroadcastframes;
319 u32 txmulticastframes;
320 u32 txpauseframes;
321 u32 txdeferredframes;
322 u32 txcollisionframes;
323 u32 txsinglecollframes;
324 u32 txmultcollframes;
325 u32 txexcessivecollisions;
326 u32 txlatecollisions;
327 u32 txunderrun;
328 u32 txcarriersenseerrors;
329 u32 txoctets;
330 u32 octetframes64;
331 u32 octetframes65t127;
332 u32 octetframes128t255;
333 u32 octetframes256t511;
334 u32 octetframes512t1023;
335 u32 octetframes1024tup;
336 u32 netoctets;
337 u32 rxsofoverruns;
338 u32 rxmofoverruns;
339 u32 rxdmaoverruns;
340 };
341
342 struct cpsw_slave {
343 void __iomem *regs;
344 struct cpsw_sliver_regs __iomem *sliver;
345 int slave_num;
346 u32 mac_control;
347 struct cpsw_slave_data *data;
348 struct phy_device *phy;
349 struct net_device *ndev;
350 u32 port_vlan;
351 u32 open_stat;
352 };
353
354 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
355 {
356 return __raw_readl(slave->regs + offset);
357 }
358
359 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
360 {
361 __raw_writel(val, slave->regs + offset);
362 }
363
364 struct cpsw_priv {
365 spinlock_t lock;
366 struct platform_device *pdev;
367 struct net_device *ndev;
368 struct napi_struct napi_rx;
369 struct napi_struct napi_tx;
370 struct device *dev;
371 struct cpsw_platform_data data;
372 struct cpsw_ss_regs __iomem *regs;
373 struct cpsw_wr_regs __iomem *wr_regs;
374 u8 __iomem *hw_stats;
375 struct cpsw_host_regs __iomem *host_port_regs;
376 u32 msg_enable;
377 u32 version;
378 u32 coal_intvl;
379 u32 bus_freq_mhz;
380 int rx_packet_max;
381 int host_port;
382 struct clk *clk;
383 u8 mac_addr[ETH_ALEN];
384 struct cpsw_slave *slaves;
385 struct cpdma_ctlr *dma;
386 struct cpdma_chan *txch, *rxch;
387 struct cpsw_ale *ale;
388 bool rx_pause;
389 bool tx_pause;
390 bool quirk_irq;
391 bool rx_irq_disabled;
392 bool tx_irq_disabled;
393 /* snapshot of IRQ numbers */
394 u32 irqs_table[4];
395 u32 num_irqs;
396 struct cpts *cpts;
397 u32 emac_port;
398 };
399
400 struct cpsw_stats {
401 char stat_string[ETH_GSTRING_LEN];
402 int type;
403 int sizeof_stat;
404 int stat_offset;
405 };
406
407 enum {
408 CPSW_STATS,
409 CPDMA_RX_STATS,
410 CPDMA_TX_STATS,
411 };
412
413 #define CPSW_STAT(m) CPSW_STATS, \
414 sizeof(((struct cpsw_hw_stats *)0)->m), \
415 offsetof(struct cpsw_hw_stats, m)
416 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
417 sizeof(((struct cpdma_chan_stats *)0)->m), \
418 offsetof(struct cpdma_chan_stats, m)
419 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
420 sizeof(((struct cpdma_chan_stats *)0)->m), \
421 offsetof(struct cpdma_chan_stats, m)
422
423 static const struct cpsw_stats cpsw_gstrings_stats[] = {
424 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
425 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
426 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
427 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
428 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
429 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
430 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
431 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
432 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
433 { "Rx Fragments", CPSW_STAT(rxfragments) },
434 { "Rx Octets", CPSW_STAT(rxoctets) },
435 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
436 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
437 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
438 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
439 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
440 { "Collisions", CPSW_STAT(txcollisionframes) },
441 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
442 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
443 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
444 { "Late Collisions", CPSW_STAT(txlatecollisions) },
445 { "Tx Underrun", CPSW_STAT(txunderrun) },
446 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
447 { "Tx Octets", CPSW_STAT(txoctets) },
448 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
449 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
450 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
451 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
452 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
453 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
454 { "Net Octets", CPSW_STAT(netoctets) },
455 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
456 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
457 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
458 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
459 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
460 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
461 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
462 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
463 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
464 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
465 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
466 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
467 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
468 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
469 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
470 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
471 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
472 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
473 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
474 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
475 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
476 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
477 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
478 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
479 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
480 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
481 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
482 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
483 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
484 };
485
486 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats)
487
488 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi)
489 #define for_each_slave(priv, func, arg...) \
490 do { \
491 struct cpsw_slave *slave; \
492 int n; \
493 if (priv->data.dual_emac) \
494 (func)((priv)->slaves + priv->emac_port, ##arg);\
495 else \
496 for (n = (priv)->data.slaves, \
497 slave = (priv)->slaves; \
498 n; n--) \
499 (func)(slave++, ##arg); \
500 } while (0)
501 #define cpsw_get_slave_ndev(priv, __slave_no__) \
502 ((__slave_no__ < priv->data.slaves) ? \
503 priv->slaves[__slave_no__].ndev : NULL)
504 #define cpsw_get_slave_priv(priv, __slave_no__) \
505 (((__slave_no__ < priv->data.slaves) && \
506 (priv->slaves[__slave_no__].ndev)) ? \
507 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \
508
509 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \
510 do { \
511 if (!priv->data.dual_emac) \
512 break; \
513 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
514 ndev = cpsw_get_slave_ndev(priv, 0); \
515 priv = netdev_priv(ndev); \
516 skb->dev = ndev; \
517 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
518 ndev = cpsw_get_slave_ndev(priv, 1); \
519 priv = netdev_priv(ndev); \
520 skb->dev = ndev; \
521 } \
522 } while (0)
523 #define cpsw_add_mcast(priv, addr) \
524 do { \
525 if (priv->data.dual_emac) { \
526 struct cpsw_slave *slave = priv->slaves + \
527 priv->emac_port; \
528 int slave_port = cpsw_get_slave_port(priv, \
529 slave->slave_num); \
530 cpsw_ale_add_mcast(priv->ale, addr, \
531 1 << slave_port | 1 << priv->host_port, \
532 ALE_VLAN, slave->port_vlan, 0); \
533 } else { \
534 cpsw_ale_add_mcast(priv->ale, addr, \
535 ALE_ALL_PORTS << priv->host_port, \
536 0, 0, 0); \
537 } \
538 } while (0)
539
540 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
541 {
542 if (priv->host_port == 0)
543 return slave_num + 1;
544 else
545 return slave_num;
546 }
547
548 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
549 {
550 struct cpsw_priv *priv = netdev_priv(ndev);
551 struct cpsw_ale *ale = priv->ale;
552 int i;
553
554 if (priv->data.dual_emac) {
555 bool flag = false;
556
557 /* Enabling promiscuous mode for one interface will be
558 * common for both the interface as the interface shares
559 * the same hardware resource.
560 */
561 for (i = 0; i < priv->data.slaves; i++)
562 if (priv->slaves[i].ndev->flags & IFF_PROMISC)
563 flag = true;
564
565 if (!enable && flag) {
566 enable = true;
567 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
568 }
569
570 if (enable) {
571 /* Enable Bypass */
572 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
573
574 dev_dbg(&ndev->dev, "promiscuity enabled\n");
575 } else {
576 /* Disable Bypass */
577 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
578 dev_dbg(&ndev->dev, "promiscuity disabled\n");
579 }
580 } else {
581 if (enable) {
582 unsigned long timeout = jiffies + HZ;
583
584 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
585 for (i = 0; i <= priv->data.slaves; i++) {
586 cpsw_ale_control_set(ale, i,
587 ALE_PORT_NOLEARN, 1);
588 cpsw_ale_control_set(ale, i,
589 ALE_PORT_NO_SA_UPDATE, 1);
590 }
591
592 /* Clear All Untouched entries */
593 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
594 do {
595 cpu_relax();
596 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
597 break;
598 } while (time_after(timeout, jiffies));
599 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
600
601 /* Clear all mcast from ALE */
602 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS <<
603 priv->host_port, -1);
604
605 /* Flood All Unicast Packets to Host port */
606 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
607 dev_dbg(&ndev->dev, "promiscuity enabled\n");
608 } else {
609 /* Don't Flood All Unicast Packets to Host port */
610 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
611
612 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
613 for (i = 0; i <= priv->data.slaves; i++) {
614 cpsw_ale_control_set(ale, i,
615 ALE_PORT_NOLEARN, 0);
616 cpsw_ale_control_set(ale, i,
617 ALE_PORT_NO_SA_UPDATE, 0);
618 }
619 dev_dbg(&ndev->dev, "promiscuity disabled\n");
620 }
621 }
622 }
623
624 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
625 {
626 struct cpsw_priv *priv = netdev_priv(ndev);
627 int vid;
628
629 if (priv->data.dual_emac)
630 vid = priv->slaves[priv->emac_port].port_vlan;
631 else
632 vid = priv->data.default_vlan;
633
634 if (ndev->flags & IFF_PROMISC) {
635 /* Enable promiscuous mode */
636 cpsw_set_promiscious(ndev, true);
637 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI);
638 return;
639 } else {
640 /* Disable promiscuous mode */
641 cpsw_set_promiscious(ndev, false);
642 }
643
644 /* Restore allmulti on vlans if necessary */
645 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI);
646
647 /* Clear all mcast from ALE */
648 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port,
649 vid);
650
651 if (!netdev_mc_empty(ndev)) {
652 struct netdev_hw_addr *ha;
653
654 /* program multicast address list into ALE register */
655 netdev_for_each_mc_addr(ha, ndev) {
656 cpsw_add_mcast(priv, (u8 *)ha->addr);
657 }
658 }
659 }
660
661 static void cpsw_intr_enable(struct cpsw_priv *priv)
662 {
663 __raw_writel(0xFF, &priv->wr_regs->tx_en);
664 __raw_writel(0xFF, &priv->wr_regs->rx_en);
665
666 cpdma_ctlr_int_ctrl(priv->dma, true);
667 return;
668 }
669
670 static void cpsw_intr_disable(struct cpsw_priv *priv)
671 {
672 __raw_writel(0, &priv->wr_regs->tx_en);
673 __raw_writel(0, &priv->wr_regs->rx_en);
674
675 cpdma_ctlr_int_ctrl(priv->dma, false);
676 return;
677 }
678
679 static void cpsw_tx_handler(void *token, int len, int status)
680 {
681 struct sk_buff *skb = token;
682 struct net_device *ndev = skb->dev;
683 struct cpsw_priv *priv = netdev_priv(ndev);
684
685 /* Check whether the queue is stopped due to stalled tx dma, if the
686 * queue is stopped then start the queue as we have free desc for tx
687 */
688 if (unlikely(netif_queue_stopped(ndev)))
689 netif_wake_queue(ndev);
690 cpts_tx_timestamp(priv->cpts, skb);
691 ndev->stats.tx_packets++;
692 ndev->stats.tx_bytes += len;
693 dev_kfree_skb_any(skb);
694 }
695
696 static void cpsw_rx_handler(void *token, int len, int status)
697 {
698 struct sk_buff *skb = token;
699 struct sk_buff *new_skb;
700 struct net_device *ndev = skb->dev;
701 struct cpsw_priv *priv = netdev_priv(ndev);
702 int ret = 0;
703
704 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
705
706 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
707 bool ndev_status = false;
708 struct cpsw_slave *slave = priv->slaves;
709 int n;
710
711 if (priv->data.dual_emac) {
712 /* In dual emac mode check for all interfaces */
713 for (n = priv->data.slaves; n; n--, slave++)
714 if (netif_running(slave->ndev))
715 ndev_status = true;
716 }
717
718 if (ndev_status && (status >= 0)) {
719 /* The packet received is for the interface which
720 * is already down and the other interface is up
721 * and running, instead of freeing which results
722 * in reducing of the number of rx descriptor in
723 * DMA engine, requeue skb back to cpdma.
724 */
725 new_skb = skb;
726 goto requeue;
727 }
728
729 /* the interface is going down, skbs are purged */
730 dev_kfree_skb_any(skb);
731 return;
732 }
733
734 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
735 if (new_skb) {
736 skb_put(skb, len);
737 cpts_rx_timestamp(priv->cpts, skb);
738 skb->protocol = eth_type_trans(skb, ndev);
739 netif_receive_skb(skb);
740 ndev->stats.rx_bytes += len;
741 ndev->stats.rx_packets++;
742 } else {
743 ndev->stats.rx_dropped++;
744 new_skb = skb;
745 }
746
747 requeue:
748 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
749 skb_tailroom(new_skb), 0);
750 if (WARN_ON(ret < 0))
751 dev_kfree_skb_any(new_skb);
752 }
753
754 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
755 {
756 struct cpsw_priv *priv = dev_id;
757
758 writel(0, &priv->wr_regs->tx_en);
759 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
760
761 if (priv->quirk_irq) {
762 disable_irq_nosync(priv->irqs_table[1]);
763 priv->tx_irq_disabled = true;
764 }
765
766 napi_schedule(&priv->napi_tx);
767 return IRQ_HANDLED;
768 }
769
770 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
771 {
772 struct cpsw_priv *priv = dev_id;
773
774 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
775 writel(0, &priv->wr_regs->rx_en);
776
777 if (priv->quirk_irq) {
778 disable_irq_nosync(priv->irqs_table[0]);
779 priv->rx_irq_disabled = true;
780 }
781
782 napi_schedule(&priv->napi_rx);
783 return IRQ_HANDLED;
784 }
785
786 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
787 {
788 struct cpsw_priv *priv = napi_to_priv(napi_tx);
789 int num_tx;
790
791 num_tx = cpdma_chan_process(priv->txch, budget);
792 if (num_tx < budget) {
793 napi_complete(napi_tx);
794 writel(0xff, &priv->wr_regs->tx_en);
795 if (priv->quirk_irq && priv->tx_irq_disabled) {
796 priv->tx_irq_disabled = false;
797 enable_irq(priv->irqs_table[1]);
798 }
799 }
800
801 if (num_tx)
802 cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx);
803
804 return num_tx;
805 }
806
807 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
808 {
809 struct cpsw_priv *priv = napi_to_priv(napi_rx);
810 int num_rx;
811
812 num_rx = cpdma_chan_process(priv->rxch, budget);
813 if (num_rx < budget) {
814 napi_complete(napi_rx);
815 writel(0xff, &priv->wr_regs->rx_en);
816 if (priv->quirk_irq && priv->rx_irq_disabled) {
817 priv->rx_irq_disabled = false;
818 enable_irq(priv->irqs_table[0]);
819 }
820 }
821
822 if (num_rx)
823 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx);
824
825 return num_rx;
826 }
827
828 static inline void soft_reset(const char *module, void __iomem *reg)
829 {
830 unsigned long timeout = jiffies + HZ;
831
832 __raw_writel(1, reg);
833 do {
834 cpu_relax();
835 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
836
837 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
838 }
839
840 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
841 ((mac)[2] << 16) | ((mac)[3] << 24))
842 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
843
844 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
845 struct cpsw_priv *priv)
846 {
847 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
848 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
849 }
850
851 static void _cpsw_adjust_link(struct cpsw_slave *slave,
852 struct cpsw_priv *priv, bool *link)
853 {
854 struct phy_device *phy = slave->phy;
855 u32 mac_control = 0;
856 u32 slave_port;
857
858 if (!phy)
859 return;
860
861 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
862
863 if (phy->link) {
864 mac_control = priv->data.mac_control;
865
866 /* enable forwarding */
867 cpsw_ale_control_set(priv->ale, slave_port,
868 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
869
870 if (phy->speed == 1000)
871 mac_control |= BIT(7); /* GIGABITEN */
872 if (phy->duplex)
873 mac_control |= BIT(0); /* FULLDUPLEXEN */
874
875 /* set speed_in input in case RMII mode is used in 100Mbps */
876 if (phy->speed == 100)
877 mac_control |= BIT(15);
878 else if (phy->speed == 10)
879 mac_control |= BIT(18); /* In Band mode */
880
881 if (priv->rx_pause)
882 mac_control |= BIT(3);
883
884 if (priv->tx_pause)
885 mac_control |= BIT(4);
886
887 *link = true;
888 } else {
889 mac_control = 0;
890 /* disable forwarding */
891 cpsw_ale_control_set(priv->ale, slave_port,
892 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
893 }
894
895 if (mac_control != slave->mac_control) {
896 phy_print_status(phy);
897 __raw_writel(mac_control, &slave->sliver->mac_control);
898 }
899
900 slave->mac_control = mac_control;
901 }
902
903 static void cpsw_adjust_link(struct net_device *ndev)
904 {
905 struct cpsw_priv *priv = netdev_priv(ndev);
906 bool link = false;
907
908 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
909
910 if (link) {
911 netif_carrier_on(ndev);
912 if (netif_running(ndev))
913 netif_wake_queue(ndev);
914 } else {
915 netif_carrier_off(ndev);
916 netif_stop_queue(ndev);
917 }
918 }
919
920 static int cpsw_get_coalesce(struct net_device *ndev,
921 struct ethtool_coalesce *coal)
922 {
923 struct cpsw_priv *priv = netdev_priv(ndev);
924
925 coal->rx_coalesce_usecs = priv->coal_intvl;
926 return 0;
927 }
928
929 static int cpsw_set_coalesce(struct net_device *ndev,
930 struct ethtool_coalesce *coal)
931 {
932 struct cpsw_priv *priv = netdev_priv(ndev);
933 u32 int_ctrl;
934 u32 num_interrupts = 0;
935 u32 prescale = 0;
936 u32 addnl_dvdr = 1;
937 u32 coal_intvl = 0;
938
939 coal_intvl = coal->rx_coalesce_usecs;
940
941 int_ctrl = readl(&priv->wr_regs->int_control);
942 prescale = priv->bus_freq_mhz * 4;
943
944 if (!coal->rx_coalesce_usecs) {
945 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
946 goto update_return;
947 }
948
949 if (coal_intvl < CPSW_CMINTMIN_INTVL)
950 coal_intvl = CPSW_CMINTMIN_INTVL;
951
952 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
953 /* Interrupt pacer works with 4us Pulse, we can
954 * throttle further by dilating the 4us pulse.
955 */
956 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
957
958 if (addnl_dvdr > 1) {
959 prescale *= addnl_dvdr;
960 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
961 coal_intvl = (CPSW_CMINTMAX_INTVL
962 * addnl_dvdr);
963 } else {
964 addnl_dvdr = 1;
965 coal_intvl = CPSW_CMINTMAX_INTVL;
966 }
967 }
968
969 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
970 writel(num_interrupts, &priv->wr_regs->rx_imax);
971 writel(num_interrupts, &priv->wr_regs->tx_imax);
972
973 int_ctrl |= CPSW_INTPACEEN;
974 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
975 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
976
977 update_return:
978 writel(int_ctrl, &priv->wr_regs->int_control);
979
980 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
981 if (priv->data.dual_emac) {
982 int i;
983
984 for (i = 0; i < priv->data.slaves; i++) {
985 priv = netdev_priv(priv->slaves[i].ndev);
986 priv->coal_intvl = coal_intvl;
987 }
988 } else {
989 priv->coal_intvl = coal_intvl;
990 }
991
992 return 0;
993 }
994
995 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
996 {
997 switch (sset) {
998 case ETH_SS_STATS:
999 return CPSW_STATS_LEN;
1000 default:
1001 return -EOPNOTSUPP;
1002 }
1003 }
1004
1005 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1006 {
1007 u8 *p = data;
1008 int i;
1009
1010 switch (stringset) {
1011 case ETH_SS_STATS:
1012 for (i = 0; i < CPSW_STATS_LEN; i++) {
1013 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1014 ETH_GSTRING_LEN);
1015 p += ETH_GSTRING_LEN;
1016 }
1017 break;
1018 }
1019 }
1020
1021 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1022 struct ethtool_stats *stats, u64 *data)
1023 {
1024 struct cpsw_priv *priv = netdev_priv(ndev);
1025 struct cpdma_chan_stats rx_stats;
1026 struct cpdma_chan_stats tx_stats;
1027 u32 val;
1028 u8 *p;
1029 int i;
1030
1031 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1032 cpdma_chan_get_stats(priv->rxch, &rx_stats);
1033 cpdma_chan_get_stats(priv->txch, &tx_stats);
1034
1035 for (i = 0; i < CPSW_STATS_LEN; i++) {
1036 switch (cpsw_gstrings_stats[i].type) {
1037 case CPSW_STATS:
1038 val = readl(priv->hw_stats +
1039 cpsw_gstrings_stats[i].stat_offset);
1040 data[i] = val;
1041 break;
1042
1043 case CPDMA_RX_STATS:
1044 p = (u8 *)&rx_stats +
1045 cpsw_gstrings_stats[i].stat_offset;
1046 data[i] = *(u32 *)p;
1047 break;
1048
1049 case CPDMA_TX_STATS:
1050 p = (u8 *)&tx_stats +
1051 cpsw_gstrings_stats[i].stat_offset;
1052 data[i] = *(u32 *)p;
1053 break;
1054 }
1055 }
1056 }
1057
1058 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1059 {
1060 u32 i;
1061 u32 usage_count = 0;
1062
1063 if (!priv->data.dual_emac)
1064 return 0;
1065
1066 for (i = 0; i < priv->data.slaves; i++)
1067 if (priv->slaves[i].open_stat)
1068 usage_count++;
1069
1070 return usage_count;
1071 }
1072
1073 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1074 struct cpsw_priv *priv, struct sk_buff *skb)
1075 {
1076 if (!priv->data.dual_emac)
1077 return cpdma_chan_submit(priv->txch, skb, skb->data,
1078 skb->len, 0);
1079
1080 if (ndev == cpsw_get_slave_ndev(priv, 0))
1081 return cpdma_chan_submit(priv->txch, skb, skb->data,
1082 skb->len, 1);
1083 else
1084 return cpdma_chan_submit(priv->txch, skb, skb->data,
1085 skb->len, 2);
1086 }
1087
1088 static inline void cpsw_add_dual_emac_def_ale_entries(
1089 struct cpsw_priv *priv, struct cpsw_slave *slave,
1090 u32 slave_port)
1091 {
1092 u32 port_mask = 1 << slave_port | 1 << priv->host_port;
1093
1094 if (priv->version == CPSW_VERSION_1)
1095 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1096 else
1097 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1098 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1099 port_mask, port_mask, 0);
1100 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1101 port_mask, ALE_VLAN, slave->port_vlan, 0);
1102 cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1103 priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan);
1104 }
1105
1106 static void soft_reset_slave(struct cpsw_slave *slave)
1107 {
1108 char name[32];
1109
1110 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1111 soft_reset(name, &slave->sliver->soft_reset);
1112 }
1113
1114 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1115 {
1116 u32 slave_port;
1117
1118 soft_reset_slave(slave);
1119
1120 /* setup priority mapping */
1121 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1122
1123 switch (priv->version) {
1124 case CPSW_VERSION_1:
1125 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1126 break;
1127 case CPSW_VERSION_2:
1128 case CPSW_VERSION_3:
1129 case CPSW_VERSION_4:
1130 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1131 break;
1132 }
1133
1134 /* setup max packet size, and mac address */
1135 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1136 cpsw_set_slave_mac(slave, priv);
1137
1138 slave->mac_control = 0; /* no link yet */
1139
1140 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1141
1142 if (priv->data.dual_emac)
1143 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1144 else
1145 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1146 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1147
1148 slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1149 &cpsw_adjust_link, slave->data->phy_if);
1150 if (IS_ERR(slave->phy)) {
1151 dev_err(priv->dev, "phy %s not found on slave %d\n",
1152 slave->data->phy_id, slave->slave_num);
1153 slave->phy = NULL;
1154 } else {
1155 dev_info(priv->dev, "phy found : id is : 0x%x\n",
1156 slave->phy->phy_id);
1157 phy_start(slave->phy);
1158
1159 /* Configure GMII_SEL register */
1160 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface,
1161 slave->slave_num);
1162 }
1163 }
1164
1165 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1166 {
1167 const int vlan = priv->data.default_vlan;
1168 const int port = priv->host_port;
1169 u32 reg;
1170 int i;
1171 int unreg_mcast_mask;
1172
1173 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1174 CPSW2_PORT_VLAN;
1175
1176 writel(vlan, &priv->host_port_regs->port_vlan);
1177
1178 for (i = 0; i < priv->data.slaves; i++)
1179 slave_write(priv->slaves + i, vlan, reg);
1180
1181 if (priv->ndev->flags & IFF_ALLMULTI)
1182 unreg_mcast_mask = ALE_ALL_PORTS;
1183 else
1184 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1185
1186 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port,
1187 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port,
1188 unreg_mcast_mask << port);
1189 }
1190
1191 static void cpsw_init_host_port(struct cpsw_priv *priv)
1192 {
1193 u32 control_reg;
1194 u32 fifo_mode;
1195
1196 /* soft reset the controller and initialize ale */
1197 soft_reset("cpsw", &priv->regs->soft_reset);
1198 cpsw_ale_start(priv->ale);
1199
1200 /* switch to vlan unaware mode */
1201 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE,
1202 CPSW_ALE_VLAN_AWARE);
1203 control_reg = readl(&priv->regs->control);
1204 control_reg |= CPSW_VLAN_AWARE;
1205 writel(control_reg, &priv->regs->control);
1206 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1207 CPSW_FIFO_NORMAL_MODE;
1208 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1209
1210 /* setup host port priority mapping */
1211 __raw_writel(CPDMA_TX_PRIORITY_MAP,
1212 &priv->host_port_regs->cpdma_tx_pri_map);
1213 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1214
1215 cpsw_ale_control_set(priv->ale, priv->host_port,
1216 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1217
1218 if (!priv->data.dual_emac) {
1219 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port,
1220 0, 0);
1221 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1222 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2);
1223 }
1224 }
1225
1226 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1227 {
1228 u32 slave_port;
1229
1230 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1231
1232 if (!slave->phy)
1233 return;
1234 phy_stop(slave->phy);
1235 phy_disconnect(slave->phy);
1236 slave->phy = NULL;
1237 cpsw_ale_control_set(priv->ale, slave_port,
1238 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1239 }
1240
1241 static int cpsw_ndo_open(struct net_device *ndev)
1242 {
1243 struct cpsw_priv *priv = netdev_priv(ndev);
1244 int i, ret;
1245 u32 reg;
1246
1247 if (!cpsw_common_res_usage_state(priv))
1248 cpsw_intr_disable(priv);
1249 netif_carrier_off(ndev);
1250
1251 pm_runtime_get_sync(&priv->pdev->dev);
1252
1253 reg = priv->version;
1254
1255 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1256 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1257 CPSW_RTL_VERSION(reg));
1258
1259 /* initialize host and slave ports */
1260 if (!cpsw_common_res_usage_state(priv))
1261 cpsw_init_host_port(priv);
1262 for_each_slave(priv, cpsw_slave_open, priv);
1263
1264 /* Add default VLAN */
1265 if (!priv->data.dual_emac)
1266 cpsw_add_default_vlan(priv);
1267 else
1268 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1269 ALE_ALL_PORTS << priv->host_port,
1270 ALE_ALL_PORTS << priv->host_port, 0, 0);
1271
1272 if (!cpsw_common_res_usage_state(priv)) {
1273 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1274
1275 /* setup tx dma to fixed prio and zero offset */
1276 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1277 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1278
1279 /* disable priority elevation */
1280 __raw_writel(0, &priv->regs->ptype);
1281
1282 /* enable statistics collection only on all ports */
1283 __raw_writel(0x7, &priv->regs->stat_port_en);
1284
1285 /* Enable internal fifo flow control */
1286 writel(0x7, &priv->regs->flow_control);
1287
1288 napi_enable(&priv_sl0->napi_rx);
1289 napi_enable(&priv_sl0->napi_tx);
1290
1291 if (priv_sl0->tx_irq_disabled) {
1292 priv_sl0->tx_irq_disabled = false;
1293 enable_irq(priv->irqs_table[1]);
1294 }
1295
1296 if (priv_sl0->rx_irq_disabled) {
1297 priv_sl0->rx_irq_disabled = false;
1298 enable_irq(priv->irqs_table[0]);
1299 }
1300
1301 if (WARN_ON(!priv->data.rx_descs))
1302 priv->data.rx_descs = 128;
1303
1304 for (i = 0; i < priv->data.rx_descs; i++) {
1305 struct sk_buff *skb;
1306
1307 ret = -ENOMEM;
1308 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1309 priv->rx_packet_max, GFP_KERNEL);
1310 if (!skb)
1311 goto err_cleanup;
1312 ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1313 skb_tailroom(skb), 0);
1314 if (ret < 0) {
1315 kfree_skb(skb);
1316 goto err_cleanup;
1317 }
1318 }
1319 /* continue even if we didn't manage to submit all
1320 * receive descs
1321 */
1322 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1323
1324 if (cpts_register(&priv->pdev->dev, priv->cpts,
1325 priv->data.cpts_clock_mult,
1326 priv->data.cpts_clock_shift))
1327 dev_err(priv->dev, "error registering cpts device\n");
1328
1329 }
1330
1331 /* Enable Interrupt pacing if configured */
1332 if (priv->coal_intvl != 0) {
1333 struct ethtool_coalesce coal;
1334
1335 coal.rx_coalesce_usecs = (priv->coal_intvl << 4);
1336 cpsw_set_coalesce(ndev, &coal);
1337 }
1338
1339 cpdma_ctlr_start(priv->dma);
1340 cpsw_intr_enable(priv);
1341
1342 if (priv->data.dual_emac)
1343 priv->slaves[priv->emac_port].open_stat = true;
1344 return 0;
1345
1346 err_cleanup:
1347 cpdma_ctlr_stop(priv->dma);
1348 for_each_slave(priv, cpsw_slave_stop, priv);
1349 pm_runtime_put_sync(&priv->pdev->dev);
1350 netif_carrier_off(priv->ndev);
1351 return ret;
1352 }
1353
1354 static int cpsw_ndo_stop(struct net_device *ndev)
1355 {
1356 struct cpsw_priv *priv = netdev_priv(ndev);
1357
1358 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1359 netif_stop_queue(priv->ndev);
1360 netif_carrier_off(priv->ndev);
1361
1362 if (cpsw_common_res_usage_state(priv) <= 1) {
1363 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1364
1365 napi_disable(&priv_sl0->napi_rx);
1366 napi_disable(&priv_sl0->napi_tx);
1367 cpts_unregister(priv->cpts);
1368 cpsw_intr_disable(priv);
1369 cpdma_ctlr_stop(priv->dma);
1370 cpsw_ale_stop(priv->ale);
1371 }
1372 for_each_slave(priv, cpsw_slave_stop, priv);
1373 pm_runtime_put_sync(&priv->pdev->dev);
1374 if (priv->data.dual_emac)
1375 priv->slaves[priv->emac_port].open_stat = false;
1376 return 0;
1377 }
1378
1379 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1380 struct net_device *ndev)
1381 {
1382 struct cpsw_priv *priv = netdev_priv(ndev);
1383 int ret;
1384
1385 ndev->trans_start = jiffies;
1386
1387 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1388 cpsw_err(priv, tx_err, "packet pad failed\n");
1389 ndev->stats.tx_dropped++;
1390 return NETDEV_TX_OK;
1391 }
1392
1393 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1394 priv->cpts->tx_enable)
1395 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1396
1397 skb_tx_timestamp(skb);
1398
1399 ret = cpsw_tx_packet_submit(ndev, priv, skb);
1400 if (unlikely(ret != 0)) {
1401 cpsw_err(priv, tx_err, "desc submit failed\n");
1402 goto fail;
1403 }
1404
1405 /* If there is no more tx desc left free then we need to
1406 * tell the kernel to stop sending us tx frames.
1407 */
1408 if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1409 netif_stop_queue(ndev);
1410
1411 return NETDEV_TX_OK;
1412 fail:
1413 ndev->stats.tx_dropped++;
1414 netif_stop_queue(ndev);
1415 return NETDEV_TX_BUSY;
1416 }
1417
1418 #ifdef CONFIG_TI_CPTS
1419
1420 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1421 {
1422 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1423 u32 ts_en, seq_id;
1424
1425 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1426 slave_write(slave, 0, CPSW1_TS_CTL);
1427 return;
1428 }
1429
1430 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1431 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1432
1433 if (priv->cpts->tx_enable)
1434 ts_en |= CPSW_V1_TS_TX_EN;
1435
1436 if (priv->cpts->rx_enable)
1437 ts_en |= CPSW_V1_TS_RX_EN;
1438
1439 slave_write(slave, ts_en, CPSW1_TS_CTL);
1440 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1441 }
1442
1443 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1444 {
1445 struct cpsw_slave *slave;
1446 u32 ctrl, mtype;
1447
1448 if (priv->data.dual_emac)
1449 slave = &priv->slaves[priv->emac_port];
1450 else
1451 slave = &priv->slaves[priv->data.active_slave];
1452
1453 ctrl = slave_read(slave, CPSW2_CONTROL);
1454 switch (priv->version) {
1455 case CPSW_VERSION_2:
1456 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1457
1458 if (priv->cpts->tx_enable)
1459 ctrl |= CTRL_V2_TX_TS_BITS;
1460
1461 if (priv->cpts->rx_enable)
1462 ctrl |= CTRL_V2_RX_TS_BITS;
1463 break;
1464 case CPSW_VERSION_3:
1465 default:
1466 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1467
1468 if (priv->cpts->tx_enable)
1469 ctrl |= CTRL_V3_TX_TS_BITS;
1470
1471 if (priv->cpts->rx_enable)
1472 ctrl |= CTRL_V3_RX_TS_BITS;
1473 break;
1474 }
1475
1476 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1477
1478 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1479 slave_write(slave, ctrl, CPSW2_CONTROL);
1480 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1481 }
1482
1483 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1484 {
1485 struct cpsw_priv *priv = netdev_priv(dev);
1486 struct cpts *cpts = priv->cpts;
1487 struct hwtstamp_config cfg;
1488
1489 if (priv->version != CPSW_VERSION_1 &&
1490 priv->version != CPSW_VERSION_2 &&
1491 priv->version != CPSW_VERSION_3)
1492 return -EOPNOTSUPP;
1493
1494 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1495 return -EFAULT;
1496
1497 /* reserved for future extensions */
1498 if (cfg.flags)
1499 return -EINVAL;
1500
1501 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1502 return -ERANGE;
1503
1504 switch (cfg.rx_filter) {
1505 case HWTSTAMP_FILTER_NONE:
1506 cpts->rx_enable = 0;
1507 break;
1508 case HWTSTAMP_FILTER_ALL:
1509 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1510 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1511 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1512 return -ERANGE;
1513 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1514 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1515 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1516 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1517 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1518 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1519 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1520 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1521 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1522 cpts->rx_enable = 1;
1523 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1524 break;
1525 default:
1526 return -ERANGE;
1527 }
1528
1529 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1530
1531 switch (priv->version) {
1532 case CPSW_VERSION_1:
1533 cpsw_hwtstamp_v1(priv);
1534 break;
1535 case CPSW_VERSION_2:
1536 case CPSW_VERSION_3:
1537 cpsw_hwtstamp_v2(priv);
1538 break;
1539 default:
1540 WARN_ON(1);
1541 }
1542
1543 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1544 }
1545
1546 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1547 {
1548 struct cpsw_priv *priv = netdev_priv(dev);
1549 struct cpts *cpts = priv->cpts;
1550 struct hwtstamp_config cfg;
1551
1552 if (priv->version != CPSW_VERSION_1 &&
1553 priv->version != CPSW_VERSION_2 &&
1554 priv->version != CPSW_VERSION_3)
1555 return -EOPNOTSUPP;
1556
1557 cfg.flags = 0;
1558 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1559 cfg.rx_filter = (cpts->rx_enable ?
1560 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1561
1562 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1563 }
1564
1565 #endif /*CONFIG_TI_CPTS*/
1566
1567 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1568 {
1569 struct cpsw_priv *priv = netdev_priv(dev);
1570 int slave_no = cpsw_slave_index(priv);
1571
1572 if (!netif_running(dev))
1573 return -EINVAL;
1574
1575 switch (cmd) {
1576 #ifdef CONFIG_TI_CPTS
1577 case SIOCSHWTSTAMP:
1578 return cpsw_hwtstamp_set(dev, req);
1579 case SIOCGHWTSTAMP:
1580 return cpsw_hwtstamp_get(dev, req);
1581 #endif
1582 }
1583
1584 if (!priv->slaves[slave_no].phy)
1585 return -EOPNOTSUPP;
1586 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1587 }
1588
1589 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1590 {
1591 struct cpsw_priv *priv = netdev_priv(ndev);
1592
1593 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1594 ndev->stats.tx_errors++;
1595 cpsw_intr_disable(priv);
1596 cpdma_chan_stop(priv->txch);
1597 cpdma_chan_start(priv->txch);
1598 cpsw_intr_enable(priv);
1599 }
1600
1601 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1602 {
1603 struct cpsw_priv *priv = netdev_priv(ndev);
1604 struct sockaddr *addr = (struct sockaddr *)p;
1605 int flags = 0;
1606 u16 vid = 0;
1607
1608 if (!is_valid_ether_addr(addr->sa_data))
1609 return -EADDRNOTAVAIL;
1610
1611 if (priv->data.dual_emac) {
1612 vid = priv->slaves[priv->emac_port].port_vlan;
1613 flags = ALE_VLAN;
1614 }
1615
1616 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port,
1617 flags, vid);
1618 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port,
1619 flags, vid);
1620
1621 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1622 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1623 for_each_slave(priv, cpsw_set_slave_mac, priv);
1624
1625 return 0;
1626 }
1627
1628 #ifdef CONFIG_NET_POLL_CONTROLLER
1629 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1630 {
1631 struct cpsw_priv *priv = netdev_priv(ndev);
1632
1633 cpsw_intr_disable(priv);
1634 cpsw_rx_interrupt(priv->irqs_table[0], priv);
1635 cpsw_tx_interrupt(priv->irqs_table[1], priv);
1636 cpsw_intr_enable(priv);
1637 }
1638 #endif
1639
1640 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1641 unsigned short vid)
1642 {
1643 int ret;
1644 int unreg_mcast_mask = 0;
1645 u32 port_mask;
1646
1647 if (priv->data.dual_emac) {
1648 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1649
1650 if (priv->ndev->flags & IFF_ALLMULTI)
1651 unreg_mcast_mask = port_mask;
1652 } else {
1653 port_mask = ALE_ALL_PORTS;
1654
1655 if (priv->ndev->flags & IFF_ALLMULTI)
1656 unreg_mcast_mask = ALE_ALL_PORTS;
1657 else
1658 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1659 }
1660
1661 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask,
1662 unreg_mcast_mask << priv->host_port);
1663 if (ret != 0)
1664 return ret;
1665
1666 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1667 priv->host_port, ALE_VLAN, vid);
1668 if (ret != 0)
1669 goto clean_vid;
1670
1671 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1672 port_mask, ALE_VLAN, vid, 0);
1673 if (ret != 0)
1674 goto clean_vlan_ucast;
1675 return 0;
1676
1677 clean_vlan_ucast:
1678 cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1679 priv->host_port, ALE_VLAN, vid);
1680 clean_vid:
1681 cpsw_ale_del_vlan(priv->ale, vid, 0);
1682 return ret;
1683 }
1684
1685 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1686 __be16 proto, u16 vid)
1687 {
1688 struct cpsw_priv *priv = netdev_priv(ndev);
1689
1690 if (vid == priv->data.default_vlan)
1691 return 0;
1692
1693 if (priv->data.dual_emac) {
1694 /* In dual EMAC, reserved VLAN id should not be used for
1695 * creating VLAN interfaces as this can break the dual
1696 * EMAC port separation
1697 */
1698 int i;
1699
1700 for (i = 0; i < priv->data.slaves; i++) {
1701 if (vid == priv->slaves[i].port_vlan)
1702 return -EINVAL;
1703 }
1704 }
1705
1706 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1707 return cpsw_add_vlan_ale_entry(priv, vid);
1708 }
1709
1710 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1711 __be16 proto, u16 vid)
1712 {
1713 struct cpsw_priv *priv = netdev_priv(ndev);
1714 int ret;
1715
1716 if (vid == priv->data.default_vlan)
1717 return 0;
1718
1719 if (priv->data.dual_emac) {
1720 int i;
1721
1722 for (i = 0; i < priv->data.slaves; i++) {
1723 if (vid == priv->slaves[i].port_vlan)
1724 return -EINVAL;
1725 }
1726 }
1727
1728 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1729 ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1730 if (ret != 0)
1731 return ret;
1732
1733 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1734 priv->host_port, ALE_VLAN, vid);
1735 if (ret != 0)
1736 return ret;
1737
1738 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1739 0, ALE_VLAN, vid);
1740 }
1741
1742 static const struct net_device_ops cpsw_netdev_ops = {
1743 .ndo_open = cpsw_ndo_open,
1744 .ndo_stop = cpsw_ndo_stop,
1745 .ndo_start_xmit = cpsw_ndo_start_xmit,
1746 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
1747 .ndo_do_ioctl = cpsw_ndo_ioctl,
1748 .ndo_validate_addr = eth_validate_addr,
1749 .ndo_change_mtu = eth_change_mtu,
1750 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
1751 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
1752 #ifdef CONFIG_NET_POLL_CONTROLLER
1753 .ndo_poll_controller = cpsw_ndo_poll_controller,
1754 #endif
1755 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
1756 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
1757 };
1758
1759 static int cpsw_get_regs_len(struct net_device *ndev)
1760 {
1761 struct cpsw_priv *priv = netdev_priv(ndev);
1762
1763 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1764 }
1765
1766 static void cpsw_get_regs(struct net_device *ndev,
1767 struct ethtool_regs *regs, void *p)
1768 {
1769 struct cpsw_priv *priv = netdev_priv(ndev);
1770 u32 *reg = p;
1771
1772 /* update CPSW IP version */
1773 regs->version = priv->version;
1774
1775 cpsw_ale_dump(priv->ale, reg);
1776 }
1777
1778 static void cpsw_get_drvinfo(struct net_device *ndev,
1779 struct ethtool_drvinfo *info)
1780 {
1781 struct cpsw_priv *priv = netdev_priv(ndev);
1782
1783 strlcpy(info->driver, "cpsw", sizeof(info->driver));
1784 strlcpy(info->version, "1.0", sizeof(info->version));
1785 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1786 info->regdump_len = cpsw_get_regs_len(ndev);
1787 }
1788
1789 static u32 cpsw_get_msglevel(struct net_device *ndev)
1790 {
1791 struct cpsw_priv *priv = netdev_priv(ndev);
1792 return priv->msg_enable;
1793 }
1794
1795 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1796 {
1797 struct cpsw_priv *priv = netdev_priv(ndev);
1798 priv->msg_enable = value;
1799 }
1800
1801 static int cpsw_get_ts_info(struct net_device *ndev,
1802 struct ethtool_ts_info *info)
1803 {
1804 #ifdef CONFIG_TI_CPTS
1805 struct cpsw_priv *priv = netdev_priv(ndev);
1806
1807 info->so_timestamping =
1808 SOF_TIMESTAMPING_TX_HARDWARE |
1809 SOF_TIMESTAMPING_TX_SOFTWARE |
1810 SOF_TIMESTAMPING_RX_HARDWARE |
1811 SOF_TIMESTAMPING_RX_SOFTWARE |
1812 SOF_TIMESTAMPING_SOFTWARE |
1813 SOF_TIMESTAMPING_RAW_HARDWARE;
1814 info->phc_index = priv->cpts->phc_index;
1815 info->tx_types =
1816 (1 << HWTSTAMP_TX_OFF) |
1817 (1 << HWTSTAMP_TX_ON);
1818 info->rx_filters =
1819 (1 << HWTSTAMP_FILTER_NONE) |
1820 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1821 #else
1822 info->so_timestamping =
1823 SOF_TIMESTAMPING_TX_SOFTWARE |
1824 SOF_TIMESTAMPING_RX_SOFTWARE |
1825 SOF_TIMESTAMPING_SOFTWARE;
1826 info->phc_index = -1;
1827 info->tx_types = 0;
1828 info->rx_filters = 0;
1829 #endif
1830 return 0;
1831 }
1832
1833 static int cpsw_get_settings(struct net_device *ndev,
1834 struct ethtool_cmd *ecmd)
1835 {
1836 struct cpsw_priv *priv = netdev_priv(ndev);
1837 int slave_no = cpsw_slave_index(priv);
1838
1839 if (priv->slaves[slave_no].phy)
1840 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1841 else
1842 return -EOPNOTSUPP;
1843 }
1844
1845 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1846 {
1847 struct cpsw_priv *priv = netdev_priv(ndev);
1848 int slave_no = cpsw_slave_index(priv);
1849
1850 if (priv->slaves[slave_no].phy)
1851 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1852 else
1853 return -EOPNOTSUPP;
1854 }
1855
1856 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1857 {
1858 struct cpsw_priv *priv = netdev_priv(ndev);
1859 int slave_no = cpsw_slave_index(priv);
1860
1861 wol->supported = 0;
1862 wol->wolopts = 0;
1863
1864 if (priv->slaves[slave_no].phy)
1865 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1866 }
1867
1868 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1869 {
1870 struct cpsw_priv *priv = netdev_priv(ndev);
1871 int slave_no = cpsw_slave_index(priv);
1872
1873 if (priv->slaves[slave_no].phy)
1874 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1875 else
1876 return -EOPNOTSUPP;
1877 }
1878
1879 static void cpsw_get_pauseparam(struct net_device *ndev,
1880 struct ethtool_pauseparam *pause)
1881 {
1882 struct cpsw_priv *priv = netdev_priv(ndev);
1883
1884 pause->autoneg = AUTONEG_DISABLE;
1885 pause->rx_pause = priv->rx_pause ? true : false;
1886 pause->tx_pause = priv->tx_pause ? true : false;
1887 }
1888
1889 static int cpsw_set_pauseparam(struct net_device *ndev,
1890 struct ethtool_pauseparam *pause)
1891 {
1892 struct cpsw_priv *priv = netdev_priv(ndev);
1893 bool link;
1894
1895 priv->rx_pause = pause->rx_pause ? true : false;
1896 priv->tx_pause = pause->tx_pause ? true : false;
1897
1898 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1899
1900 return 0;
1901 }
1902
1903 static const struct ethtool_ops cpsw_ethtool_ops = {
1904 .get_drvinfo = cpsw_get_drvinfo,
1905 .get_msglevel = cpsw_get_msglevel,
1906 .set_msglevel = cpsw_set_msglevel,
1907 .get_link = ethtool_op_get_link,
1908 .get_ts_info = cpsw_get_ts_info,
1909 .get_settings = cpsw_get_settings,
1910 .set_settings = cpsw_set_settings,
1911 .get_coalesce = cpsw_get_coalesce,
1912 .set_coalesce = cpsw_set_coalesce,
1913 .get_sset_count = cpsw_get_sset_count,
1914 .get_strings = cpsw_get_strings,
1915 .get_ethtool_stats = cpsw_get_ethtool_stats,
1916 .get_pauseparam = cpsw_get_pauseparam,
1917 .set_pauseparam = cpsw_set_pauseparam,
1918 .get_wol = cpsw_get_wol,
1919 .set_wol = cpsw_set_wol,
1920 .get_regs_len = cpsw_get_regs_len,
1921 .get_regs = cpsw_get_regs,
1922 };
1923
1924 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1925 u32 slave_reg_ofs, u32 sliver_reg_ofs)
1926 {
1927 void __iomem *regs = priv->regs;
1928 int slave_num = slave->slave_num;
1929 struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
1930
1931 slave->data = data;
1932 slave->regs = regs + slave_reg_ofs;
1933 slave->sliver = regs + sliver_reg_ofs;
1934 slave->port_vlan = data->dual_emac_res_vlan;
1935 }
1936
1937 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1938 struct platform_device *pdev)
1939 {
1940 struct device_node *node = pdev->dev.of_node;
1941 struct device_node *slave_node;
1942 int i = 0, ret;
1943 u32 prop;
1944
1945 if (!node)
1946 return -EINVAL;
1947
1948 if (of_property_read_u32(node, "slaves", &prop)) {
1949 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1950 return -EINVAL;
1951 }
1952 data->slaves = prop;
1953
1954 if (of_property_read_u32(node, "active_slave", &prop)) {
1955 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1956 return -EINVAL;
1957 }
1958 data->active_slave = prop;
1959
1960 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
1961 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
1962 return -EINVAL;
1963 }
1964 data->cpts_clock_mult = prop;
1965
1966 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
1967 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
1968 return -EINVAL;
1969 }
1970 data->cpts_clock_shift = prop;
1971
1972 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
1973 * sizeof(struct cpsw_slave_data),
1974 GFP_KERNEL);
1975 if (!data->slave_data)
1976 return -ENOMEM;
1977
1978 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1979 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1980 return -EINVAL;
1981 }
1982 data->channels = prop;
1983
1984 if (of_property_read_u32(node, "ale_entries", &prop)) {
1985 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
1986 return -EINVAL;
1987 }
1988 data->ale_entries = prop;
1989
1990 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1991 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1992 return -EINVAL;
1993 }
1994 data->bd_ram_size = prop;
1995
1996 if (of_property_read_u32(node, "rx_descs", &prop)) {
1997 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n");
1998 return -EINVAL;
1999 }
2000 data->rx_descs = prop;
2001
2002 if (of_property_read_u32(node, "mac_control", &prop)) {
2003 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2004 return -EINVAL;
2005 }
2006 data->mac_control = prop;
2007
2008 if (of_property_read_bool(node, "dual_emac"))
2009 data->dual_emac = 1;
2010
2011 /*
2012 * Populate all the child nodes here...
2013 */
2014 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2015 /* We do not want to force this, as in some cases may not have child */
2016 if (ret)
2017 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2018
2019 for_each_child_of_node(node, slave_node) {
2020 struct cpsw_slave_data *slave_data = data->slave_data + i;
2021 const void *mac_addr = NULL;
2022 u32 phyid;
2023 int lenp;
2024 const __be32 *parp;
2025 struct device_node *mdio_node;
2026 struct platform_device *mdio;
2027
2028 /* This is no slave child node, continue */
2029 if (strcmp(slave_node->name, "slave"))
2030 continue;
2031
2032 parp = of_get_property(slave_node, "phy_id", &lenp);
2033 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) {
2034 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i);
2035 goto no_phy_slave;
2036 }
2037 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2038 phyid = be32_to_cpup(parp+1);
2039 mdio = of_find_device_by_node(mdio_node);
2040 of_node_put(mdio_node);
2041 if (!mdio) {
2042 dev_err(&pdev->dev, "Missing mdio platform device\n");
2043 return -EINVAL;
2044 }
2045 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2046 PHY_ID_FMT, mdio->name, phyid);
2047
2048 slave_data->phy_if = of_get_phy_mode(slave_node);
2049 if (slave_data->phy_if < 0) {
2050 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2051 i);
2052 return slave_data->phy_if;
2053 }
2054
2055 no_phy_slave:
2056 mac_addr = of_get_mac_address(slave_node);
2057 if (mac_addr) {
2058 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2059 } else {
2060 if (of_machine_is_compatible("ti,am33xx")) {
2061 ret = cpsw_am33xx_cm_get_macid(&pdev->dev,
2062 0x630, i,
2063 slave_data->mac_addr);
2064 if (ret)
2065 return ret;
2066 }
2067 }
2068 if (data->dual_emac) {
2069 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2070 &prop)) {
2071 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2072 slave_data->dual_emac_res_vlan = i+1;
2073 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2074 slave_data->dual_emac_res_vlan, i);
2075 } else {
2076 slave_data->dual_emac_res_vlan = prop;
2077 }
2078 }
2079
2080 i++;
2081 if (i == data->slaves)
2082 break;
2083 }
2084
2085 return 0;
2086 }
2087
2088 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2089 struct cpsw_priv *priv)
2090 {
2091 struct cpsw_platform_data *data = &priv->data;
2092 struct net_device *ndev;
2093 struct cpsw_priv *priv_sl2;
2094 int ret = 0, i;
2095
2096 ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2097 if (!ndev) {
2098 dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2099 return -ENOMEM;
2100 }
2101
2102 priv_sl2 = netdev_priv(ndev);
2103 spin_lock_init(&priv_sl2->lock);
2104 priv_sl2->data = *data;
2105 priv_sl2->pdev = pdev;
2106 priv_sl2->ndev = ndev;
2107 priv_sl2->dev = &ndev->dev;
2108 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2109 priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2110
2111 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2112 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2113 ETH_ALEN);
2114 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2115 } else {
2116 random_ether_addr(priv_sl2->mac_addr);
2117 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2118 }
2119 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2120
2121 priv_sl2->slaves = priv->slaves;
2122 priv_sl2->clk = priv->clk;
2123
2124 priv_sl2->coal_intvl = 0;
2125 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2126
2127 priv_sl2->regs = priv->regs;
2128 priv_sl2->host_port = priv->host_port;
2129 priv_sl2->host_port_regs = priv->host_port_regs;
2130 priv_sl2->wr_regs = priv->wr_regs;
2131 priv_sl2->hw_stats = priv->hw_stats;
2132 priv_sl2->dma = priv->dma;
2133 priv_sl2->txch = priv->txch;
2134 priv_sl2->rxch = priv->rxch;
2135 priv_sl2->ale = priv->ale;
2136 priv_sl2->emac_port = 1;
2137 priv->slaves[1].ndev = ndev;
2138 priv_sl2->cpts = priv->cpts;
2139 priv_sl2->version = priv->version;
2140
2141 for (i = 0; i < priv->num_irqs; i++) {
2142 priv_sl2->irqs_table[i] = priv->irqs_table[i];
2143 priv_sl2->num_irqs = priv->num_irqs;
2144 }
2145 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2146
2147 ndev->netdev_ops = &cpsw_netdev_ops;
2148 ndev->ethtool_ops = &cpsw_ethtool_ops;
2149
2150 /* register the network device */
2151 SET_NETDEV_DEV(ndev, &pdev->dev);
2152 ret = register_netdev(ndev);
2153 if (ret) {
2154 dev_err(&pdev->dev, "cpsw: error registering net device\n");
2155 free_netdev(ndev);
2156 ret = -ENODEV;
2157 }
2158
2159 return ret;
2160 }
2161
2162 #define CPSW_QUIRK_IRQ BIT(0)
2163
2164 static struct platform_device_id cpsw_devtype[] = {
2165 {
2166 /* keep it for existing comaptibles */
2167 .name = "cpsw",
2168 .driver_data = CPSW_QUIRK_IRQ,
2169 }, {
2170 .name = "am335x-cpsw",
2171 .driver_data = CPSW_QUIRK_IRQ,
2172 }, {
2173 .name = "am4372-cpsw",
2174 .driver_data = 0,
2175 }, {
2176 .name = "dra7-cpsw",
2177 .driver_data = 0,
2178 }, {
2179 /* sentinel */
2180 }
2181 };
2182 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2183
2184 enum ti_cpsw_type {
2185 CPSW = 0,
2186 AM335X_CPSW,
2187 AM4372_CPSW,
2188 DRA7_CPSW,
2189 };
2190
2191 static const struct of_device_id cpsw_of_mtable[] = {
2192 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2193 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2194 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2195 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2196 { /* sentinel */ },
2197 };
2198 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2199
2200 static int cpsw_probe(struct platform_device *pdev)
2201 {
2202 struct cpsw_platform_data *data;
2203 struct net_device *ndev;
2204 struct cpsw_priv *priv;
2205 struct cpdma_params dma_params;
2206 struct cpsw_ale_params ale_params;
2207 void __iomem *ss_regs;
2208 struct resource *res, *ss_res;
2209 const struct of_device_id *of_id;
2210 u32 slave_offset, sliver_offset, slave_size;
2211 int ret = 0, i;
2212 int irq;
2213
2214 ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2215 if (!ndev) {
2216 dev_err(&pdev->dev, "error allocating net_device\n");
2217 return -ENOMEM;
2218 }
2219
2220 platform_set_drvdata(pdev, ndev);
2221 priv = netdev_priv(ndev);
2222 spin_lock_init(&priv->lock);
2223 priv->pdev = pdev;
2224 priv->ndev = ndev;
2225 priv->dev = &ndev->dev;
2226 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2227 priv->rx_packet_max = max(rx_packet_max, 128);
2228 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2229 if (!priv->cpts) {
2230 dev_err(&pdev->dev, "error allocating cpts\n");
2231 ret = -ENOMEM;
2232 goto clean_ndev_ret;
2233 }
2234
2235 /*
2236 * This may be required here for child devices.
2237 */
2238 pm_runtime_enable(&pdev->dev);
2239
2240 /* Select default pin state */
2241 pinctrl_pm_select_default_state(&pdev->dev);
2242
2243 if (cpsw_probe_dt(&priv->data, pdev)) {
2244 dev_err(&pdev->dev, "cpsw: platform data missing\n");
2245 ret = -ENODEV;
2246 goto clean_runtime_disable_ret;
2247 }
2248 data = &priv->data;
2249
2250 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2251 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2252 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2253 } else {
2254 eth_random_addr(priv->mac_addr);
2255 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2256 }
2257
2258 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2259
2260 priv->slaves = devm_kzalloc(&pdev->dev,
2261 sizeof(struct cpsw_slave) * data->slaves,
2262 GFP_KERNEL);
2263 if (!priv->slaves) {
2264 ret = -ENOMEM;
2265 goto clean_runtime_disable_ret;
2266 }
2267 for (i = 0; i < data->slaves; i++)
2268 priv->slaves[i].slave_num = i;
2269
2270 priv->slaves[0].ndev = ndev;
2271 priv->emac_port = 0;
2272
2273 priv->clk = devm_clk_get(&pdev->dev, "fck");
2274 if (IS_ERR(priv->clk)) {
2275 dev_err(priv->dev, "fck is not found\n");
2276 ret = -ENODEV;
2277 goto clean_runtime_disable_ret;
2278 }
2279 priv->coal_intvl = 0;
2280 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2281
2282 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2283 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2284 if (IS_ERR(ss_regs)) {
2285 ret = PTR_ERR(ss_regs);
2286 goto clean_runtime_disable_ret;
2287 }
2288 priv->regs = ss_regs;
2289 priv->host_port = HOST_PORT_NUM;
2290
2291 /* Need to enable clocks with runtime PM api to access module
2292 * registers
2293 */
2294 pm_runtime_get_sync(&pdev->dev);
2295 priv->version = readl(&priv->regs->id_ver);
2296 pm_runtime_put_sync(&pdev->dev);
2297
2298 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2299 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2300 if (IS_ERR(priv->wr_regs)) {
2301 ret = PTR_ERR(priv->wr_regs);
2302 goto clean_runtime_disable_ret;
2303 }
2304
2305 memset(&dma_params, 0, sizeof(dma_params));
2306 memset(&ale_params, 0, sizeof(ale_params));
2307
2308 switch (priv->version) {
2309 case CPSW_VERSION_1:
2310 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2311 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET;
2312 priv->hw_stats = ss_regs + CPSW1_HW_STATS;
2313 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
2314 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
2315 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
2316 slave_offset = CPSW1_SLAVE_OFFSET;
2317 slave_size = CPSW1_SLAVE_SIZE;
2318 sliver_offset = CPSW1_SLIVER_OFFSET;
2319 dma_params.desc_mem_phys = 0;
2320 break;
2321 case CPSW_VERSION_2:
2322 case CPSW_VERSION_3:
2323 case CPSW_VERSION_4:
2324 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2325 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET;
2326 priv->hw_stats = ss_regs + CPSW2_HW_STATS;
2327 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
2328 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
2329 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
2330 slave_offset = CPSW2_SLAVE_OFFSET;
2331 slave_size = CPSW2_SLAVE_SIZE;
2332 sliver_offset = CPSW2_SLIVER_OFFSET;
2333 dma_params.desc_mem_phys =
2334 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2335 break;
2336 default:
2337 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2338 ret = -ENODEV;
2339 goto clean_runtime_disable_ret;
2340 }
2341 for (i = 0; i < priv->data.slaves; i++) {
2342 struct cpsw_slave *slave = &priv->slaves[i];
2343 cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2344 slave_offset += slave_size;
2345 sliver_offset += SLIVER_SIZE;
2346 }
2347
2348 dma_params.dev = &pdev->dev;
2349 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
2350 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
2351 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
2352 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
2353 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
2354
2355 dma_params.num_chan = data->channels;
2356 dma_params.has_soft_reset = true;
2357 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
2358 dma_params.desc_mem_size = data->bd_ram_size;
2359 dma_params.desc_align = 16;
2360 dma_params.has_ext_regs = true;
2361 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
2362
2363 priv->dma = cpdma_ctlr_create(&dma_params);
2364 if (!priv->dma) {
2365 dev_err(priv->dev, "error initializing dma\n");
2366 ret = -ENOMEM;
2367 goto clean_runtime_disable_ret;
2368 }
2369
2370 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2371 cpsw_tx_handler);
2372 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2373 cpsw_rx_handler);
2374
2375 if (WARN_ON(!priv->txch || !priv->rxch)) {
2376 dev_err(priv->dev, "error initializing dma channels\n");
2377 ret = -ENOMEM;
2378 goto clean_dma_ret;
2379 }
2380
2381 ale_params.dev = &ndev->dev;
2382 ale_params.ale_ageout = ale_ageout;
2383 ale_params.ale_entries = data->ale_entries;
2384 ale_params.ale_ports = data->slaves;
2385
2386 priv->ale = cpsw_ale_create(&ale_params);
2387 if (!priv->ale) {
2388 dev_err(priv->dev, "error initializing ale engine\n");
2389 ret = -ENODEV;
2390 goto clean_dma_ret;
2391 }
2392
2393 ndev->irq = platform_get_irq(pdev, 1);
2394 if (ndev->irq < 0) {
2395 dev_err(priv->dev, "error getting irq resource\n");
2396 ret = -ENOENT;
2397 goto clean_ale_ret;
2398 }
2399
2400 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
2401 if (of_id) {
2402 pdev->id_entry = of_id->data;
2403 if (pdev->id_entry->driver_data)
2404 priv->quirk_irq = true;
2405 }
2406
2407 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2408 * MISC IRQs which are always kept disabled with this driver so
2409 * we will not request them.
2410 *
2411 * If anyone wants to implement support for those, make sure to
2412 * first request and append them to irqs_table array.
2413 */
2414
2415 /* RX IRQ */
2416 irq = platform_get_irq(pdev, 1);
2417 if (irq < 0)
2418 goto clean_ale_ret;
2419
2420 priv->irqs_table[0] = irq;
2421 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2422 0, dev_name(&pdev->dev), priv);
2423 if (ret < 0) {
2424 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2425 goto clean_ale_ret;
2426 }
2427
2428 /* TX IRQ */
2429 irq = platform_get_irq(pdev, 2);
2430 if (irq < 0)
2431 goto clean_ale_ret;
2432
2433 priv->irqs_table[1] = irq;
2434 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2435 0, dev_name(&pdev->dev), priv);
2436 if (ret < 0) {
2437 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2438 goto clean_ale_ret;
2439 }
2440 priv->num_irqs = 2;
2441
2442 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2443
2444 ndev->netdev_ops = &cpsw_netdev_ops;
2445 ndev->ethtool_ops = &cpsw_ethtool_ops;
2446 netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
2447 netif_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2448
2449 /* register the network device */
2450 SET_NETDEV_DEV(ndev, &pdev->dev);
2451 ret = register_netdev(ndev);
2452 if (ret) {
2453 dev_err(priv->dev, "error registering net device\n");
2454 ret = -ENODEV;
2455 goto clean_ale_ret;
2456 }
2457
2458 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2459 &ss_res->start, ndev->irq);
2460
2461 if (priv->data.dual_emac) {
2462 ret = cpsw_probe_dual_emac(pdev, priv);
2463 if (ret) {
2464 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2465 goto clean_ale_ret;
2466 }
2467 }
2468
2469 return 0;
2470
2471 clean_ale_ret:
2472 cpsw_ale_destroy(priv->ale);
2473 clean_dma_ret:
2474 cpdma_chan_destroy(priv->txch);
2475 cpdma_chan_destroy(priv->rxch);
2476 cpdma_ctlr_destroy(priv->dma);
2477 clean_runtime_disable_ret:
2478 pm_runtime_disable(&pdev->dev);
2479 clean_ndev_ret:
2480 free_netdev(priv->ndev);
2481 return ret;
2482 }
2483
2484 static int cpsw_remove_child_device(struct device *dev, void *c)
2485 {
2486 struct platform_device *pdev = to_platform_device(dev);
2487
2488 of_device_unregister(pdev);
2489
2490 return 0;
2491 }
2492
2493 static int cpsw_remove(struct platform_device *pdev)
2494 {
2495 struct net_device *ndev = platform_get_drvdata(pdev);
2496 struct cpsw_priv *priv = netdev_priv(ndev);
2497
2498 if (priv->data.dual_emac)
2499 unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2500 unregister_netdev(ndev);
2501
2502 cpsw_ale_destroy(priv->ale);
2503 cpdma_chan_destroy(priv->txch);
2504 cpdma_chan_destroy(priv->rxch);
2505 cpdma_ctlr_destroy(priv->dma);
2506 pm_runtime_disable(&pdev->dev);
2507 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device);
2508 if (priv->data.dual_emac)
2509 free_netdev(cpsw_get_slave_ndev(priv, 1));
2510 free_netdev(ndev);
2511 return 0;
2512 }
2513
2514 #ifdef CONFIG_PM_SLEEP
2515 static int cpsw_suspend(struct device *dev)
2516 {
2517 struct platform_device *pdev = to_platform_device(dev);
2518 struct net_device *ndev = platform_get_drvdata(pdev);
2519 struct cpsw_priv *priv = netdev_priv(ndev);
2520
2521 if (priv->data.dual_emac) {
2522 int i;
2523
2524 for (i = 0; i < priv->data.slaves; i++) {
2525 if (netif_running(priv->slaves[i].ndev))
2526 cpsw_ndo_stop(priv->slaves[i].ndev);
2527 soft_reset_slave(priv->slaves + i);
2528 }
2529 } else {
2530 if (netif_running(ndev))
2531 cpsw_ndo_stop(ndev);
2532 for_each_slave(priv, soft_reset_slave);
2533 }
2534
2535 pm_runtime_put_sync(&pdev->dev);
2536
2537 /* Select sleep pin state */
2538 pinctrl_pm_select_sleep_state(&pdev->dev);
2539
2540 return 0;
2541 }
2542
2543 static int cpsw_resume(struct device *dev)
2544 {
2545 struct platform_device *pdev = to_platform_device(dev);
2546 struct net_device *ndev = platform_get_drvdata(pdev);
2547 struct cpsw_priv *priv = netdev_priv(ndev);
2548
2549 pm_runtime_get_sync(&pdev->dev);
2550
2551 /* Select default pin state */
2552 pinctrl_pm_select_default_state(&pdev->dev);
2553
2554 if (priv->data.dual_emac) {
2555 int i;
2556
2557 for (i = 0; i < priv->data.slaves; i++) {
2558 if (netif_running(priv->slaves[i].ndev))
2559 cpsw_ndo_open(priv->slaves[i].ndev);
2560 }
2561 } else {
2562 if (netif_running(ndev))
2563 cpsw_ndo_open(ndev);
2564 }
2565 return 0;
2566 }
2567 #endif
2568
2569 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2570
2571 static struct platform_driver cpsw_driver = {
2572 .driver = {
2573 .name = "cpsw",
2574 .pm = &cpsw_pm_ops,
2575 .of_match_table = cpsw_of_mtable,
2576 },
2577 .probe = cpsw_probe,
2578 .remove = cpsw_remove,
2579 };
2580
2581 static int __init cpsw_init(void)
2582 {
2583 return platform_driver_register(&cpsw_driver);
2584 }
2585 late_initcall(cpsw_init);
2586
2587 static void __exit cpsw_exit(void)
2588 {
2589 platform_driver_unregister(&cpsw_driver);
2590 }
2591 module_exit(cpsw_exit);
2592
2593 MODULE_LICENSE("GPL");
2594 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2595 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2596 MODULE_DESCRIPTION("TI CPSW Ethernet driver");