]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/ti/cpts.c
Merge tag 'upstream-3.15-rc1' of git://git.infradead.org/linux-ubifs
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / ti / cpts.c
1 /*
2 * TI Common Platform Time Sync
3 *
4 * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29
30 #include "cpts.h"
31
32 #ifdef CONFIG_TI_CPTS
33
34 #define cpts_read32(c, r) __raw_readl(&c->reg->r)
35 #define cpts_write32(c, v, r) __raw_writel(v, &c->reg->r)
36
37 static int event_expired(struct cpts_event *event)
38 {
39 return time_after(jiffies, event->tmo);
40 }
41
42 static int event_type(struct cpts_event *event)
43 {
44 return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
45 }
46
47 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
48 {
49 u32 r = cpts_read32(cpts, intstat_raw);
50
51 if (r & TS_PEND_RAW) {
52 *high = cpts_read32(cpts, event_high);
53 *low = cpts_read32(cpts, event_low);
54 cpts_write32(cpts, EVENT_POP, event_pop);
55 return 0;
56 }
57 return -1;
58 }
59
60 /*
61 * Returns zero if matching event type was found.
62 */
63 static int cpts_fifo_read(struct cpts *cpts, int match)
64 {
65 int i, type = -1;
66 u32 hi, lo;
67 struct cpts_event *event;
68
69 for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
70 if (cpts_fifo_pop(cpts, &hi, &lo))
71 break;
72 if (list_empty(&cpts->pool)) {
73 pr_err("cpts: event pool is empty\n");
74 return -1;
75 }
76 event = list_first_entry(&cpts->pool, struct cpts_event, list);
77 event->tmo = jiffies + 2;
78 event->high = hi;
79 event->low = lo;
80 type = event_type(event);
81 switch (type) {
82 case CPTS_EV_PUSH:
83 case CPTS_EV_RX:
84 case CPTS_EV_TX:
85 list_del_init(&event->list);
86 list_add_tail(&event->list, &cpts->events);
87 break;
88 case CPTS_EV_ROLL:
89 case CPTS_EV_HALF:
90 case CPTS_EV_HW:
91 break;
92 default:
93 pr_err("cpts: unknown event type\n");
94 break;
95 }
96 if (type == match)
97 break;
98 }
99 return type == match ? 0 : -1;
100 }
101
102 static cycle_t cpts_systim_read(const struct cyclecounter *cc)
103 {
104 u64 val = 0;
105 struct cpts_event *event;
106 struct list_head *this, *next;
107 struct cpts *cpts = container_of(cc, struct cpts, cc);
108
109 cpts_write32(cpts, TS_PUSH, ts_push);
110 if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
111 pr_err("cpts: unable to obtain a time stamp\n");
112
113 list_for_each_safe(this, next, &cpts->events) {
114 event = list_entry(this, struct cpts_event, list);
115 if (event_type(event) == CPTS_EV_PUSH) {
116 list_del_init(&event->list);
117 list_add(&event->list, &cpts->pool);
118 val = event->low;
119 break;
120 }
121 }
122
123 return val;
124 }
125
126 /* PTP clock operations */
127
128 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
129 {
130 u64 adj;
131 u32 diff, mult;
132 int neg_adj = 0;
133 unsigned long flags;
134 struct cpts *cpts = container_of(ptp, struct cpts, info);
135
136 if (ppb < 0) {
137 neg_adj = 1;
138 ppb = -ppb;
139 }
140 mult = cpts->cc_mult;
141 adj = mult;
142 adj *= ppb;
143 diff = div_u64(adj, 1000000000ULL);
144
145 spin_lock_irqsave(&cpts->lock, flags);
146
147 timecounter_read(&cpts->tc);
148
149 cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
150
151 spin_unlock_irqrestore(&cpts->lock, flags);
152
153 return 0;
154 }
155
156 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
157 {
158 s64 now;
159 unsigned long flags;
160 struct cpts *cpts = container_of(ptp, struct cpts, info);
161
162 spin_lock_irqsave(&cpts->lock, flags);
163 now = timecounter_read(&cpts->tc);
164 now += delta;
165 timecounter_init(&cpts->tc, &cpts->cc, now);
166 spin_unlock_irqrestore(&cpts->lock, flags);
167
168 return 0;
169 }
170
171 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
172 {
173 u64 ns;
174 u32 remainder;
175 unsigned long flags;
176 struct cpts *cpts = container_of(ptp, struct cpts, info);
177
178 spin_lock_irqsave(&cpts->lock, flags);
179 ns = timecounter_read(&cpts->tc);
180 spin_unlock_irqrestore(&cpts->lock, flags);
181
182 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
183 ts->tv_nsec = remainder;
184
185 return 0;
186 }
187
188 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
189 const struct timespec *ts)
190 {
191 u64 ns;
192 unsigned long flags;
193 struct cpts *cpts = container_of(ptp, struct cpts, info);
194
195 ns = ts->tv_sec * 1000000000ULL;
196 ns += ts->tv_nsec;
197
198 spin_lock_irqsave(&cpts->lock, flags);
199 timecounter_init(&cpts->tc, &cpts->cc, ns);
200 spin_unlock_irqrestore(&cpts->lock, flags);
201
202 return 0;
203 }
204
205 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
206 struct ptp_clock_request *rq, int on)
207 {
208 return -EOPNOTSUPP;
209 }
210
211 static struct ptp_clock_info cpts_info = {
212 .owner = THIS_MODULE,
213 .name = "CTPS timer",
214 .max_adj = 1000000,
215 .n_ext_ts = 0,
216 .n_pins = 0,
217 .pps = 0,
218 .adjfreq = cpts_ptp_adjfreq,
219 .adjtime = cpts_ptp_adjtime,
220 .gettime = cpts_ptp_gettime,
221 .settime = cpts_ptp_settime,
222 .enable = cpts_ptp_enable,
223 };
224
225 static void cpts_overflow_check(struct work_struct *work)
226 {
227 struct timespec ts;
228 struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
229
230 cpts_write32(cpts, CPTS_EN, control);
231 cpts_write32(cpts, TS_PEND_EN, int_enable);
232 cpts_ptp_gettime(&cpts->info, &ts);
233 pr_debug("cpts overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
234 schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
235 }
236
237 #define CPTS_REF_CLOCK_NAME "cpsw_cpts_rft_clk"
238
239 static void cpts_clk_init(struct cpts *cpts)
240 {
241 cpts->refclk = clk_get(NULL, CPTS_REF_CLOCK_NAME);
242 if (IS_ERR(cpts->refclk)) {
243 pr_err("Failed to clk_get %s\n", CPTS_REF_CLOCK_NAME);
244 cpts->refclk = NULL;
245 return;
246 }
247 clk_prepare_enable(cpts->refclk);
248 }
249
250 static void cpts_clk_release(struct cpts *cpts)
251 {
252 clk_disable(cpts->refclk);
253 clk_put(cpts->refclk);
254 }
255
256 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
257 u16 ts_seqid, u8 ts_msgtype)
258 {
259 u16 *seqid;
260 unsigned int offset;
261 u8 *msgtype, *data = skb->data;
262
263 switch (ptp_class) {
264 case PTP_CLASS_V1_IPV4:
265 case PTP_CLASS_V2_IPV4:
266 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
267 break;
268 case PTP_CLASS_V1_IPV6:
269 case PTP_CLASS_V2_IPV6:
270 offset = OFF_PTP6;
271 break;
272 case PTP_CLASS_V2_L2:
273 offset = ETH_HLEN;
274 break;
275 case PTP_CLASS_V2_VLAN:
276 offset = ETH_HLEN + VLAN_HLEN;
277 break;
278 default:
279 return 0;
280 }
281
282 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
283 return 0;
284
285 if (unlikely(ptp_class & PTP_CLASS_V1))
286 msgtype = data + offset + OFF_PTP_CONTROL;
287 else
288 msgtype = data + offset;
289
290 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
291
292 return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
293 }
294
295 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
296 {
297 u64 ns = 0;
298 struct cpts_event *event;
299 struct list_head *this, *next;
300 unsigned int class = ptp_classify_raw(skb);
301 unsigned long flags;
302 u16 seqid;
303 u8 mtype;
304
305 if (class == PTP_CLASS_NONE)
306 return 0;
307
308 spin_lock_irqsave(&cpts->lock, flags);
309 cpts_fifo_read(cpts, CPTS_EV_PUSH);
310 list_for_each_safe(this, next, &cpts->events) {
311 event = list_entry(this, struct cpts_event, list);
312 if (event_expired(event)) {
313 list_del_init(&event->list);
314 list_add(&event->list, &cpts->pool);
315 continue;
316 }
317 mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
318 seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
319 if (ev_type == event_type(event) &&
320 cpts_match(skb, class, seqid, mtype)) {
321 ns = timecounter_cyc2time(&cpts->tc, event->low);
322 list_del_init(&event->list);
323 list_add(&event->list, &cpts->pool);
324 break;
325 }
326 }
327 spin_unlock_irqrestore(&cpts->lock, flags);
328
329 return ns;
330 }
331
332 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
333 {
334 u64 ns;
335 struct skb_shared_hwtstamps *ssh;
336
337 if (!cpts->rx_enable)
338 return;
339 ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
340 if (!ns)
341 return;
342 ssh = skb_hwtstamps(skb);
343 memset(ssh, 0, sizeof(*ssh));
344 ssh->hwtstamp = ns_to_ktime(ns);
345 }
346
347 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
348 {
349 u64 ns;
350 struct skb_shared_hwtstamps ssh;
351
352 if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
353 return;
354 ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
355 if (!ns)
356 return;
357 memset(&ssh, 0, sizeof(ssh));
358 ssh.hwtstamp = ns_to_ktime(ns);
359 skb_tstamp_tx(skb, &ssh);
360 }
361
362 #endif /*CONFIG_TI_CPTS*/
363
364 int cpts_register(struct device *dev, struct cpts *cpts,
365 u32 mult, u32 shift)
366 {
367 #ifdef CONFIG_TI_CPTS
368 int err, i;
369 unsigned long flags;
370
371 cpts->info = cpts_info;
372 cpts->clock = ptp_clock_register(&cpts->info, dev);
373 if (IS_ERR(cpts->clock)) {
374 err = PTR_ERR(cpts->clock);
375 cpts->clock = NULL;
376 return err;
377 }
378 spin_lock_init(&cpts->lock);
379
380 cpts->cc.read = cpts_systim_read;
381 cpts->cc.mask = CLOCKSOURCE_MASK(32);
382 cpts->cc_mult = mult;
383 cpts->cc.mult = mult;
384 cpts->cc.shift = shift;
385
386 INIT_LIST_HEAD(&cpts->events);
387 INIT_LIST_HEAD(&cpts->pool);
388 for (i = 0; i < CPTS_MAX_EVENTS; i++)
389 list_add(&cpts->pool_data[i].list, &cpts->pool);
390
391 cpts_clk_init(cpts);
392 cpts_write32(cpts, CPTS_EN, control);
393 cpts_write32(cpts, TS_PEND_EN, int_enable);
394
395 spin_lock_irqsave(&cpts->lock, flags);
396 timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
397 spin_unlock_irqrestore(&cpts->lock, flags);
398
399 INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);
400 schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
401
402 cpts->phc_index = ptp_clock_index(cpts->clock);
403 #endif
404 return 0;
405 }
406
407 void cpts_unregister(struct cpts *cpts)
408 {
409 #ifdef CONFIG_TI_CPTS
410 if (cpts->clock) {
411 ptp_clock_unregister(cpts->clock);
412 cancel_delayed_work_sync(&cpts->overflow_work);
413 }
414 if (cpts->refclk)
415 cpts_clk_release(cpts);
416 #endif
417 }