]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/tile/tilegx.c
net: set name_assign_type in alloc_netdev()
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / tile / tilegx.c
1 /*
2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h> /* printk() */
20 #include <linux/slab.h> /* kmalloc() */
21 #include <linux/errno.h> /* error codes */
22 #include <linux/types.h> /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/irq.h>
26 #include <linux/netdevice.h> /* struct device, and other headers */
27 #include <linux/etherdevice.h> /* eth_type_trans */
28 #include <linux/skbuff.h>
29 #include <linux/ioctl.h>
30 #include <linux/cdev.h>
31 #include <linux/hugetlb.h>
32 #include <linux/in6.h>
33 #include <linux/timer.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <linux/io.h>
37 #include <linux/ctype.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/tcp.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/ptp_clock_kernel.h>
43
44 #include <asm/checksum.h>
45 #include <asm/homecache.h>
46 #include <gxio/mpipe.h>
47 #include <arch/sim.h>
48
49 /* Default transmit lockup timeout period, in jiffies. */
50 #define TILE_NET_TIMEOUT (5 * HZ)
51
52 /* The maximum number of distinct channels (idesc.channel is 5 bits). */
53 #define TILE_NET_CHANNELS 32
54
55 /* Maximum number of idescs to handle per "poll". */
56 #define TILE_NET_BATCH 128
57
58 /* Maximum number of packets to handle per "poll". */
59 #define TILE_NET_WEIGHT 64
60
61 /* Number of entries in each iqueue. */
62 #define IQUEUE_ENTRIES 512
63
64 /* Number of entries in each equeue. */
65 #define EQUEUE_ENTRIES 2048
66
67 /* Total header bytes per equeue slot. Must be big enough for 2 bytes
68 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
69 * 60 bytes of actual TCP header. We round up to align to cache lines.
70 */
71 #define HEADER_BYTES 128
72
73 /* Maximum completions per cpu per device (must be a power of two).
74 * ISSUE: What is the right number here? If this is too small, then
75 * egress might block waiting for free space in a completions array.
76 * ISSUE: At the least, allocate these only for initialized echannels.
77 */
78 #define TILE_NET_MAX_COMPS 64
79
80 #define MAX_FRAGS (MAX_SKB_FRAGS + 1)
81
82 /* The "kinds" of buffer stacks (small/large/jumbo). */
83 #define MAX_KINDS 3
84
85 /* Size of completions data to allocate.
86 * ISSUE: Probably more than needed since we don't use all the channels.
87 */
88 #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
89
90 /* Size of NotifRing data to allocate. */
91 #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
92
93 /* Timeout to wake the per-device TX timer after we stop the queue.
94 * We don't want the timeout too short (adds overhead, and might end
95 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
96 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
97 */
98 #define TX_TIMER_DELAY_USEC 30
99
100 /* Timeout to wake the per-cpu egress timer to free completions. */
101 #define EGRESS_TIMER_DELAY_USEC 1000
102
103 MODULE_AUTHOR("Tilera Corporation");
104 MODULE_LICENSE("GPL");
105
106 /* A "packet fragment" (a chunk of memory). */
107 struct frag {
108 void *buf;
109 size_t length;
110 };
111
112 /* A single completion. */
113 struct tile_net_comp {
114 /* The "complete_count" when the completion will be complete. */
115 s64 when;
116 /* The buffer to be freed when the completion is complete. */
117 struct sk_buff *skb;
118 };
119
120 /* The completions for a given cpu and echannel. */
121 struct tile_net_comps {
122 /* The completions. */
123 struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
124 /* The number of completions used. */
125 unsigned long comp_next;
126 /* The number of completions freed. */
127 unsigned long comp_last;
128 };
129
130 /* The transmit wake timer for a given cpu and echannel. */
131 struct tile_net_tx_wake {
132 int tx_queue_idx;
133 struct hrtimer timer;
134 struct net_device *dev;
135 };
136
137 /* Info for a specific cpu. */
138 struct tile_net_info {
139 /* Our cpu. */
140 int my_cpu;
141 /* A timer for handling egress completions. */
142 struct hrtimer egress_timer;
143 /* True if "egress_timer" is scheduled. */
144 bool egress_timer_scheduled;
145 struct info_mpipe {
146 /* Packet queue. */
147 gxio_mpipe_iqueue_t iqueue;
148 /* The NAPI struct. */
149 struct napi_struct napi;
150 /* Number of buffers (by kind) which must still be provided. */
151 unsigned int num_needed_buffers[MAX_KINDS];
152 /* instance id. */
153 int instance;
154 /* True if iqueue is valid. */
155 bool has_iqueue;
156 /* NAPI flags. */
157 bool napi_added;
158 bool napi_enabled;
159 /* Comps for each egress channel. */
160 struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
161 /* Transmit wake timer for each egress channel. */
162 struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
163 } mpipe[NR_MPIPE_MAX];
164 };
165
166 /* Info for egress on a particular egress channel. */
167 struct tile_net_egress {
168 /* The "equeue". */
169 gxio_mpipe_equeue_t *equeue;
170 /* The headers for TSO. */
171 unsigned char *headers;
172 };
173
174 /* Info for a specific device. */
175 struct tile_net_priv {
176 /* Our network device. */
177 struct net_device *dev;
178 /* The primary link. */
179 gxio_mpipe_link_t link;
180 /* The primary channel, if open, else -1. */
181 int channel;
182 /* The "loopify" egress link, if needed. */
183 gxio_mpipe_link_t loopify_link;
184 /* The "loopify" egress channel, if open, else -1. */
185 int loopify_channel;
186 /* The egress channel (channel or loopify_channel). */
187 int echannel;
188 /* mPIPE instance, 0 or 1. */
189 int instance;
190 /* The timestamp config. */
191 struct hwtstamp_config stamp_cfg;
192 };
193
194 static struct mpipe_data {
195 /* The ingress irq. */
196 int ingress_irq;
197
198 /* The "context" for all devices. */
199 gxio_mpipe_context_t context;
200
201 /* Egress info, indexed by "priv->echannel"
202 * (lazily created as needed).
203 */
204 struct tile_net_egress
205 egress_for_echannel[TILE_NET_CHANNELS];
206
207 /* Devices currently associated with each channel.
208 * NOTE: The array entry can become NULL after ifconfig down, but
209 * we do not free the underlying net_device structures, so it is
210 * safe to use a pointer after reading it from this array.
211 */
212 struct net_device
213 *tile_net_devs_for_channel[TILE_NET_CHANNELS];
214
215 /* The actual memory allocated for the buffer stacks. */
216 void *buffer_stack_vas[MAX_KINDS];
217
218 /* The amount of memory allocated for each buffer stack. */
219 size_t buffer_stack_bytes[MAX_KINDS];
220
221 /* The first buffer stack index
222 * (small = +0, large = +1, jumbo = +2).
223 */
224 int first_buffer_stack;
225
226 /* The buckets. */
227 int first_bucket;
228 int num_buckets;
229
230 /* PTP-specific data. */
231 struct ptp_clock *ptp_clock;
232 struct ptp_clock_info caps;
233
234 /* Lock for ptp accessors. */
235 struct mutex ptp_lock;
236
237 } mpipe_data[NR_MPIPE_MAX] = {
238 [0 ... (NR_MPIPE_MAX - 1)] {
239 .ingress_irq = -1,
240 .first_buffer_stack = -1,
241 .first_bucket = -1,
242 .num_buckets = 1
243 }
244 };
245
246 /* A mutex for "tile_net_devs_for_channel". */
247 static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
248
249 /* The per-cpu info. */
250 static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
251
252
253 /* The buffer size enums for each buffer stack.
254 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
255 * We avoid the "10384" size because it can induce "false chaining"
256 * on "cut-through" jumbo packets.
257 */
258 static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
259 GXIO_MPIPE_BUFFER_SIZE_128,
260 GXIO_MPIPE_BUFFER_SIZE_1664,
261 GXIO_MPIPE_BUFFER_SIZE_16384
262 };
263
264 /* Text value of tile_net.cpus if passed as a module parameter. */
265 static char *network_cpus_string;
266
267 /* The actual cpus in "network_cpus". */
268 static struct cpumask network_cpus_map;
269
270 /* If "tile_net.loopify=LINK" was specified, this is "LINK". */
271 static char *loopify_link_name;
272
273 /* If "tile_net.custom" was specified, this is true. */
274 static bool custom_flag;
275
276 /* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
277 static uint jumbo_num;
278
279 /* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
280 static inline int mpipe_instance(struct net_device *dev)
281 {
282 struct tile_net_priv *priv = netdev_priv(dev);
283 return priv->instance;
284 }
285
286 /* The "tile_net.cpus" argument specifies the cpus that are dedicated
287 * to handle ingress packets.
288 *
289 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
290 * m, n, x, y are integer numbers that represent the cpus that can be
291 * neither a dedicated cpu nor a dataplane cpu.
292 */
293 static bool network_cpus_init(void)
294 {
295 char buf[1024];
296 int rc;
297
298 if (network_cpus_string == NULL)
299 return false;
300
301 rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
302 if (rc != 0) {
303 pr_warn("tile_net.cpus=%s: malformed cpu list\n",
304 network_cpus_string);
305 return false;
306 }
307
308 /* Remove dedicated cpus. */
309 cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
310
311 if (cpumask_empty(&network_cpus_map)) {
312 pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
313 network_cpus_string);
314 return false;
315 }
316
317 cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
318 pr_info("Linux network CPUs: %s\n", buf);
319 return true;
320 }
321
322 module_param_named(cpus, network_cpus_string, charp, 0444);
323 MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
324
325 /* The "tile_net.loopify=LINK" argument causes the named device to
326 * actually use "loop0" for ingress, and "loop1" for egress. This
327 * allows an app to sit between the actual link and linux, passing
328 * (some) packets along to linux, and forwarding (some) packets sent
329 * out by linux.
330 */
331 module_param_named(loopify, loopify_link_name, charp, 0444);
332 MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
333
334 /* The "tile_net.custom" argument causes us to ignore the "conventional"
335 * classifier metadata, in particular, the "l2_offset".
336 */
337 module_param_named(custom, custom_flag, bool, 0444);
338 MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
339
340 /* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
341 * and to allocate the given number of "jumbo" buffers.
342 */
343 module_param_named(jumbo, jumbo_num, uint, 0444);
344 MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");
345
346 /* Atomically update a statistics field.
347 * Note that on TILE-Gx, this operation is fire-and-forget on the
348 * issuing core (single-cycle dispatch) and takes only a few cycles
349 * longer than a regular store when the request reaches the home cache.
350 * No expensive bus management overhead is required.
351 */
352 static void tile_net_stats_add(unsigned long value, unsigned long *field)
353 {
354 BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
355 atomic_long_add(value, (atomic_long_t *)field);
356 }
357
358 /* Allocate and push a buffer. */
359 static bool tile_net_provide_buffer(int instance, int kind)
360 {
361 struct mpipe_data *md = &mpipe_data[instance];
362 gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
363 size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
364 const unsigned long buffer_alignment = 128;
365 struct sk_buff *skb;
366 int len;
367
368 len = sizeof(struct sk_buff **) + buffer_alignment + bs;
369 skb = dev_alloc_skb(len);
370 if (skb == NULL)
371 return false;
372
373 /* Make room for a back-pointer to 'skb' and guarantee alignment. */
374 skb_reserve(skb, sizeof(struct sk_buff **));
375 skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
376
377 /* Save a back-pointer to 'skb'. */
378 *(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
379
380 /* Make sure "skb" and the back-pointer have been flushed. */
381 wmb();
382
383 gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
384 (void *)va_to_tile_io_addr(skb->data));
385
386 return true;
387 }
388
389 /* Convert a raw mpipe buffer to its matching skb pointer. */
390 static struct sk_buff *mpipe_buf_to_skb(void *va)
391 {
392 /* Acquire the associated "skb". */
393 struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
394 struct sk_buff *skb = *skb_ptr;
395
396 /* Paranoia. */
397 if (skb->data != va) {
398 /* Panic here since there's a reasonable chance
399 * that corrupt buffers means generic memory
400 * corruption, with unpredictable system effects.
401 */
402 panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
403 va, skb, skb->data);
404 }
405
406 return skb;
407 }
408
409 static void tile_net_pop_all_buffers(int instance, int stack)
410 {
411 struct mpipe_data *md = &mpipe_data[instance];
412
413 for (;;) {
414 tile_io_addr_t addr =
415 (tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
416 stack);
417 if (addr == 0)
418 break;
419 dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
420 }
421 }
422
423 /* Provide linux buffers to mPIPE. */
424 static void tile_net_provide_needed_buffers(void)
425 {
426 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
427 int instance, kind;
428 for (instance = 0; instance < NR_MPIPE_MAX &&
429 info->mpipe[instance].has_iqueue; instance++) {
430 for (kind = 0; kind < MAX_KINDS; kind++) {
431 while (info->mpipe[instance].num_needed_buffers[kind]
432 != 0) {
433 if (!tile_net_provide_buffer(instance, kind)) {
434 pr_notice("Tile %d still needs"
435 " some buffers\n",
436 info->my_cpu);
437 return;
438 }
439 info->mpipe[instance].
440 num_needed_buffers[kind]--;
441 }
442 }
443 }
444 }
445
446 /* Get RX timestamp, and store it in the skb. */
447 static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
448 gxio_mpipe_idesc_t *idesc)
449 {
450 if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
451 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
452 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
453 shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
454 idesc->time_stamp_ns);
455 }
456 }
457
458 /* Get TX timestamp, and store it in the skb. */
459 static void tile_tx_timestamp(struct sk_buff *skb, int instance)
460 {
461 struct skb_shared_info *shtx = skb_shinfo(skb);
462 if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
463 struct mpipe_data *md = &mpipe_data[instance];
464 struct skb_shared_hwtstamps shhwtstamps;
465 struct timespec ts;
466
467 shtx->tx_flags |= SKBTX_IN_PROGRESS;
468 gxio_mpipe_get_timestamp(&md->context, &ts);
469 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
470 shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
471 skb_tstamp_tx(skb, &shhwtstamps);
472 }
473 }
474
475 /* Use ioctl() to enable or disable TX or RX timestamping. */
476 static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
477 {
478 struct hwtstamp_config config;
479 struct tile_net_priv *priv = netdev_priv(dev);
480
481 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
482 return -EFAULT;
483
484 if (config.flags) /* reserved for future extensions */
485 return -EINVAL;
486
487 switch (config.tx_type) {
488 case HWTSTAMP_TX_OFF:
489 case HWTSTAMP_TX_ON:
490 break;
491 default:
492 return -ERANGE;
493 }
494
495 switch (config.rx_filter) {
496 case HWTSTAMP_FILTER_NONE:
497 break;
498 case HWTSTAMP_FILTER_ALL:
499 case HWTSTAMP_FILTER_SOME:
500 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
501 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
502 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
503 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
504 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
505 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
506 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
507 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
508 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
509 case HWTSTAMP_FILTER_PTP_V2_EVENT:
510 case HWTSTAMP_FILTER_PTP_V2_SYNC:
511 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
512 config.rx_filter = HWTSTAMP_FILTER_ALL;
513 break;
514 default:
515 return -ERANGE;
516 }
517
518 if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
519 return -EFAULT;
520
521 priv->stamp_cfg = config;
522 return 0;
523 }
524
525 static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
526 {
527 struct tile_net_priv *priv = netdev_priv(dev);
528
529 if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
530 sizeof(priv->stamp_cfg)))
531 return -EFAULT;
532
533 return 0;
534 }
535
536 static inline bool filter_packet(struct net_device *dev, void *buf)
537 {
538 /* Filter packets received before we're up. */
539 if (dev == NULL || !(dev->flags & IFF_UP))
540 return true;
541
542 /* Filter out packets that aren't for us. */
543 if (!(dev->flags & IFF_PROMISC) &&
544 !is_multicast_ether_addr(buf) &&
545 !ether_addr_equal(dev->dev_addr, buf))
546 return true;
547
548 return false;
549 }
550
551 static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
552 gxio_mpipe_idesc_t *idesc, unsigned long len)
553 {
554 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
555 struct tile_net_priv *priv = netdev_priv(dev);
556 int instance = priv->instance;
557
558 /* Encode the actual packet length. */
559 skb_put(skb, len);
560
561 skb->protocol = eth_type_trans(skb, dev);
562
563 /* Acknowledge "good" hardware checksums. */
564 if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
565 skb->ip_summed = CHECKSUM_UNNECESSARY;
566
567 /* Get RX timestamp from idesc. */
568 tile_rx_timestamp(priv, skb, idesc);
569
570 napi_gro_receive(&info->mpipe[instance].napi, skb);
571
572 /* Update stats. */
573 tile_net_stats_add(1, &dev->stats.rx_packets);
574 tile_net_stats_add(len, &dev->stats.rx_bytes);
575
576 /* Need a new buffer. */
577 if (idesc->size == buffer_size_enums[0])
578 info->mpipe[instance].num_needed_buffers[0]++;
579 else if (idesc->size == buffer_size_enums[1])
580 info->mpipe[instance].num_needed_buffers[1]++;
581 else
582 info->mpipe[instance].num_needed_buffers[2]++;
583 }
584
585 /* Handle a packet. Return true if "processed", false if "filtered". */
586 static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
587 {
588 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
589 struct mpipe_data *md = &mpipe_data[instance];
590 struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
591 uint8_t l2_offset;
592 void *va;
593 void *buf;
594 unsigned long len;
595 bool filter;
596
597 /* Drop packets for which no buffer was available (which can
598 * happen under heavy load), or for which the me/tr/ce flags
599 * are set (which can happen for jumbo cut-through packets,
600 * or with a customized classifier).
601 */
602 if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
603 if (dev)
604 tile_net_stats_add(1, &dev->stats.rx_errors);
605 goto drop;
606 }
607
608 /* Get the "l2_offset", if allowed. */
609 l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
610
611 /* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
612 va = tile_io_addr_to_va((unsigned long)idesc->va);
613
614 /* Get the actual packet start/length. */
615 buf = va + l2_offset;
616 len = idesc->l2_size - l2_offset;
617
618 /* Point "va" at the raw buffer. */
619 va -= NET_IP_ALIGN;
620
621 filter = filter_packet(dev, buf);
622 if (filter) {
623 if (dev)
624 tile_net_stats_add(1, &dev->stats.rx_dropped);
625 drop:
626 gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
627 } else {
628 struct sk_buff *skb = mpipe_buf_to_skb(va);
629
630 /* Skip headroom, and any custom header. */
631 skb_reserve(skb, NET_IP_ALIGN + l2_offset);
632
633 tile_net_receive_skb(dev, skb, idesc, len);
634 }
635
636 gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
637 return !filter;
638 }
639
640 /* Handle some packets for the current CPU.
641 *
642 * This function handles up to TILE_NET_BATCH idescs per call.
643 *
644 * ISSUE: Since we do not provide new buffers until this function is
645 * complete, we must initially provide enough buffers for each network
646 * cpu to fill its iqueue and also its batched idescs.
647 *
648 * ISSUE: The "rotting packet" race condition occurs if a packet
649 * arrives after the queue appears to be empty, and before the
650 * hypervisor interrupt is re-enabled.
651 */
652 static int tile_net_poll(struct napi_struct *napi, int budget)
653 {
654 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
655 unsigned int work = 0;
656 gxio_mpipe_idesc_t *idesc;
657 int instance, i, n;
658 struct mpipe_data *md;
659 struct info_mpipe *info_mpipe =
660 container_of(napi, struct info_mpipe, napi);
661
662 if (budget <= 0)
663 goto done;
664
665 instance = info_mpipe->instance;
666 while ((n = gxio_mpipe_iqueue_try_peek(
667 &info_mpipe->iqueue,
668 &idesc)) > 0) {
669 for (i = 0; i < n; i++) {
670 if (i == TILE_NET_BATCH)
671 goto done;
672 if (tile_net_handle_packet(instance,
673 idesc + i)) {
674 if (++work >= budget)
675 goto done;
676 }
677 }
678 }
679
680 /* There are no packets left. */
681 napi_complete(&info_mpipe->napi);
682
683 md = &mpipe_data[instance];
684 /* Re-enable hypervisor interrupts. */
685 gxio_mpipe_enable_notif_ring_interrupt(
686 &md->context, info->mpipe[instance].iqueue.ring);
687
688 /* HACK: Avoid the "rotting packet" problem. */
689 if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
690 napi_schedule(&info_mpipe->napi);
691
692 /* ISSUE: Handle completions? */
693
694 done:
695 tile_net_provide_needed_buffers();
696
697 return work;
698 }
699
700 /* Handle an ingress interrupt from an instance on the current cpu. */
701 static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
702 {
703 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
704 napi_schedule(&info->mpipe[(uint64_t)id].napi);
705 return IRQ_HANDLED;
706 }
707
708 /* Free some completions. This must be called with interrupts blocked. */
709 static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
710 struct tile_net_comps *comps,
711 int limit, bool force_update)
712 {
713 int n = 0;
714 while (comps->comp_last < comps->comp_next) {
715 unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
716 struct tile_net_comp *comp = &comps->comp_queue[cid];
717 if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
718 force_update || n == 0))
719 break;
720 dev_kfree_skb_irq(comp->skb);
721 comps->comp_last++;
722 if (++n == limit)
723 break;
724 }
725 return n;
726 }
727
728 /* Add a completion. This must be called with interrupts blocked.
729 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
730 */
731 static void add_comp(gxio_mpipe_equeue_t *equeue,
732 struct tile_net_comps *comps,
733 uint64_t when, struct sk_buff *skb)
734 {
735 int cid = comps->comp_next % TILE_NET_MAX_COMPS;
736 comps->comp_queue[cid].when = when;
737 comps->comp_queue[cid].skb = skb;
738 comps->comp_next++;
739 }
740
741 static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
742 int tx_queue_idx)
743 {
744 struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
745 struct tile_net_priv *priv = netdev_priv(dev);
746 int instance = priv->instance;
747 struct tile_net_tx_wake *tx_wake =
748 &info->mpipe[instance].tx_wake[priv->echannel];
749
750 hrtimer_start(&tx_wake->timer,
751 ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
752 HRTIMER_MODE_REL_PINNED);
753 }
754
755 static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
756 {
757 struct tile_net_tx_wake *tx_wake =
758 container_of(t, struct tile_net_tx_wake, timer);
759 netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
760 return HRTIMER_NORESTART;
761 }
762
763 /* Make sure the egress timer is scheduled. */
764 static void tile_net_schedule_egress_timer(void)
765 {
766 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
767
768 if (!info->egress_timer_scheduled) {
769 hrtimer_start(&info->egress_timer,
770 ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
771 HRTIMER_MODE_REL_PINNED);
772 info->egress_timer_scheduled = true;
773 }
774 }
775
776 /* The "function" for "info->egress_timer".
777 *
778 * This timer will reschedule itself as long as there are any pending
779 * completions expected for this tile.
780 */
781 static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
782 {
783 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
784 unsigned long irqflags;
785 bool pending = false;
786 int i, instance;
787
788 local_irq_save(irqflags);
789
790 /* The timer is no longer scheduled. */
791 info->egress_timer_scheduled = false;
792
793 /* Free all possible comps for this tile. */
794 for (instance = 0; instance < NR_MPIPE_MAX &&
795 info->mpipe[instance].has_iqueue; instance++) {
796 for (i = 0; i < TILE_NET_CHANNELS; i++) {
797 struct tile_net_egress *egress =
798 &mpipe_data[instance].egress_for_echannel[i];
799 struct tile_net_comps *comps =
800 info->mpipe[instance].comps_for_echannel[i];
801 if (!egress || comps->comp_last >= comps->comp_next)
802 continue;
803 tile_net_free_comps(egress->equeue, comps, -1, true);
804 pending = pending ||
805 (comps->comp_last < comps->comp_next);
806 }
807 }
808
809 /* Reschedule timer if needed. */
810 if (pending)
811 tile_net_schedule_egress_timer();
812
813 local_irq_restore(irqflags);
814
815 return HRTIMER_NORESTART;
816 }
817
818 /* PTP clock operations. */
819
820 static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
821 {
822 int ret = 0;
823 struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
824 mutex_lock(&md->ptp_lock);
825 if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
826 ret = -EINVAL;
827 mutex_unlock(&md->ptp_lock);
828 return ret;
829 }
830
831 static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
832 {
833 int ret = 0;
834 struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
835 mutex_lock(&md->ptp_lock);
836 if (gxio_mpipe_adjust_timestamp(&md->context, delta))
837 ret = -EBUSY;
838 mutex_unlock(&md->ptp_lock);
839 return ret;
840 }
841
842 static int ptp_mpipe_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
843 {
844 int ret = 0;
845 struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
846 mutex_lock(&md->ptp_lock);
847 if (gxio_mpipe_get_timestamp(&md->context, ts))
848 ret = -EBUSY;
849 mutex_unlock(&md->ptp_lock);
850 return ret;
851 }
852
853 static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
854 const struct timespec *ts)
855 {
856 int ret = 0;
857 struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
858 mutex_lock(&md->ptp_lock);
859 if (gxio_mpipe_set_timestamp(&md->context, ts))
860 ret = -EBUSY;
861 mutex_unlock(&md->ptp_lock);
862 return ret;
863 }
864
865 static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
866 struct ptp_clock_request *request, int on)
867 {
868 return -EOPNOTSUPP;
869 }
870
871 static struct ptp_clock_info ptp_mpipe_caps = {
872 .owner = THIS_MODULE,
873 .name = "mPIPE clock",
874 .max_adj = 999999999,
875 .n_ext_ts = 0,
876 .n_pins = 0,
877 .pps = 0,
878 .adjfreq = ptp_mpipe_adjfreq,
879 .adjtime = ptp_mpipe_adjtime,
880 .gettime = ptp_mpipe_gettime,
881 .settime = ptp_mpipe_settime,
882 .enable = ptp_mpipe_enable,
883 };
884
885 /* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
886 static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
887 {
888 struct timespec ts;
889
890 getnstimeofday(&ts);
891 gxio_mpipe_set_timestamp(&md->context, &ts);
892
893 mutex_init(&md->ptp_lock);
894 md->caps = ptp_mpipe_caps;
895 md->ptp_clock = ptp_clock_register(&md->caps, NULL);
896 if (IS_ERR(md->ptp_clock))
897 netdev_err(dev, "ptp_clock_register failed %ld\n",
898 PTR_ERR(md->ptp_clock));
899 }
900
901 /* Initialize PTP fields in a new device. */
902 static void init_ptp_dev(struct tile_net_priv *priv)
903 {
904 priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
905 priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
906 }
907
908 /* Helper functions for "tile_net_update()". */
909 static void enable_ingress_irq(void *irq)
910 {
911 enable_percpu_irq((long)irq, 0);
912 }
913
914 static void disable_ingress_irq(void *irq)
915 {
916 disable_percpu_irq((long)irq);
917 }
918
919 /* Helper function for tile_net_open() and tile_net_stop().
920 * Always called under tile_net_devs_for_channel_mutex.
921 */
922 static int tile_net_update(struct net_device *dev)
923 {
924 static gxio_mpipe_rules_t rules; /* too big to fit on the stack */
925 bool saw_channel = false;
926 int instance = mpipe_instance(dev);
927 struct mpipe_data *md = &mpipe_data[instance];
928 int channel;
929 int rc;
930 int cpu;
931
932 saw_channel = false;
933 gxio_mpipe_rules_init(&rules, &md->context);
934
935 for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
936 if (md->tile_net_devs_for_channel[channel] == NULL)
937 continue;
938 if (!saw_channel) {
939 saw_channel = true;
940 gxio_mpipe_rules_begin(&rules, md->first_bucket,
941 md->num_buckets, NULL);
942 gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
943 }
944 gxio_mpipe_rules_add_channel(&rules, channel);
945 }
946
947 /* NOTE: This can fail if there is no classifier.
948 * ISSUE: Can anything else cause it to fail?
949 */
950 rc = gxio_mpipe_rules_commit(&rules);
951 if (rc != 0) {
952 netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
953 instance, rc);
954 return -EIO;
955 }
956
957 /* Update all cpus, sequentially (to protect "netif_napi_add()").
958 * We use on_each_cpu to handle the IPI mask or unmask.
959 */
960 if (!saw_channel)
961 on_each_cpu(disable_ingress_irq,
962 (void *)(long)(md->ingress_irq), 1);
963 for_each_online_cpu(cpu) {
964 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
965
966 if (!info->mpipe[instance].has_iqueue)
967 continue;
968 if (saw_channel) {
969 if (!info->mpipe[instance].napi_added) {
970 netif_napi_add(dev, &info->mpipe[instance].napi,
971 tile_net_poll, TILE_NET_WEIGHT);
972 info->mpipe[instance].napi_added = true;
973 }
974 if (!info->mpipe[instance].napi_enabled) {
975 napi_enable(&info->mpipe[instance].napi);
976 info->mpipe[instance].napi_enabled = true;
977 }
978 } else {
979 if (info->mpipe[instance].napi_enabled) {
980 napi_disable(&info->mpipe[instance].napi);
981 info->mpipe[instance].napi_enabled = false;
982 }
983 /* FIXME: Drain the iqueue. */
984 }
985 }
986 if (saw_channel)
987 on_each_cpu(enable_ingress_irq,
988 (void *)(long)(md->ingress_irq), 1);
989
990 /* HACK: Allow packets to flow in the simulator. */
991 if (saw_channel)
992 sim_enable_mpipe_links(instance, -1);
993
994 return 0;
995 }
996
997 /* Initialize a buffer stack. */
998 static int create_buffer_stack(struct net_device *dev,
999 int kind, size_t num_buffers)
1000 {
1001 pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
1002 int instance = mpipe_instance(dev);
1003 struct mpipe_data *md = &mpipe_data[instance];
1004 size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
1005 int stack_idx = md->first_buffer_stack + kind;
1006 void *va;
1007 int i, rc;
1008
1009 /* Round up to 64KB and then use alloc_pages() so we get the
1010 * required 64KB alignment.
1011 */
1012 md->buffer_stack_bytes[kind] =
1013 ALIGN(needed, 64 * 1024);
1014
1015 va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
1016 if (va == NULL) {
1017 netdev_err(dev,
1018 "Could not alloc %zd bytes for buffer stack %d\n",
1019 md->buffer_stack_bytes[kind], kind);
1020 return -ENOMEM;
1021 }
1022
1023 /* Initialize the buffer stack. */
1024 rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
1025 buffer_size_enums[kind], va,
1026 md->buffer_stack_bytes[kind], 0);
1027 if (rc != 0) {
1028 netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
1029 instance, rc);
1030 free_pages_exact(va, md->buffer_stack_bytes[kind]);
1031 return rc;
1032 }
1033
1034 md->buffer_stack_vas[kind] = va;
1035
1036 rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
1037 hash_pte, 0);
1038 if (rc != 0) {
1039 netdev_err(dev,
1040 "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
1041 instance, rc);
1042 return rc;
1043 }
1044
1045 /* Provide initial buffers. */
1046 for (i = 0; i < num_buffers; i++) {
1047 if (!tile_net_provide_buffer(instance, kind)) {
1048 netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1049 return -ENOMEM;
1050 }
1051 }
1052
1053 return 0;
1054 }
1055
1056 /* Allocate and initialize mpipe buffer stacks, and register them in
1057 * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
1058 * This routine supports tile_net_init_mpipe(), below.
1059 */
1060 static int init_buffer_stacks(struct net_device *dev,
1061 int network_cpus_count)
1062 {
1063 int num_kinds = MAX_KINDS - (jumbo_num == 0);
1064 size_t num_buffers;
1065 int rc;
1066 int instance = mpipe_instance(dev);
1067 struct mpipe_data *md = &mpipe_data[instance];
1068
1069 /* Allocate the buffer stacks. */
1070 rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
1071 if (rc < 0) {
1072 netdev_err(dev,
1073 "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
1074 instance, rc);
1075 return rc;
1076 }
1077 md->first_buffer_stack = rc;
1078
1079 /* Enough small/large buffers to (normally) avoid buffer errors. */
1080 num_buffers =
1081 network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
1082
1083 /* Allocate the small memory stack. */
1084 if (rc >= 0)
1085 rc = create_buffer_stack(dev, 0, num_buffers);
1086
1087 /* Allocate the large buffer stack. */
1088 if (rc >= 0)
1089 rc = create_buffer_stack(dev, 1, num_buffers);
1090
1091 /* Allocate the jumbo buffer stack if needed. */
1092 if (rc >= 0 && jumbo_num != 0)
1093 rc = create_buffer_stack(dev, 2, jumbo_num);
1094
1095 return rc;
1096 }
1097
1098 /* Allocate per-cpu resources (memory for completions and idescs).
1099 * This routine supports tile_net_init_mpipe(), below.
1100 */
1101 static int alloc_percpu_mpipe_resources(struct net_device *dev,
1102 int cpu, int ring)
1103 {
1104 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1105 int order, i, rc;
1106 int instance = mpipe_instance(dev);
1107 struct mpipe_data *md = &mpipe_data[instance];
1108 struct page *page;
1109 void *addr;
1110
1111 /* Allocate the "comps". */
1112 order = get_order(COMPS_SIZE);
1113 page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1114 if (page == NULL) {
1115 netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
1116 COMPS_SIZE);
1117 return -ENOMEM;
1118 }
1119 addr = pfn_to_kaddr(page_to_pfn(page));
1120 memset(addr, 0, COMPS_SIZE);
1121 for (i = 0; i < TILE_NET_CHANNELS; i++)
1122 info->mpipe[instance].comps_for_echannel[i] =
1123 addr + i * sizeof(struct tile_net_comps);
1124
1125 /* If this is a network cpu, create an iqueue. */
1126 if (cpu_isset(cpu, network_cpus_map)) {
1127 order = get_order(NOTIF_RING_SIZE);
1128 page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1129 if (page == NULL) {
1130 netdev_err(dev,
1131 "Failed to alloc %zd bytes iqueue memory\n",
1132 NOTIF_RING_SIZE);
1133 return -ENOMEM;
1134 }
1135 addr = pfn_to_kaddr(page_to_pfn(page));
1136 rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
1137 &md->context, ring++, addr,
1138 NOTIF_RING_SIZE, 0);
1139 if (rc < 0) {
1140 netdev_err(dev,
1141 "gxio_mpipe_iqueue_init failed: %d\n", rc);
1142 return rc;
1143 }
1144 info->mpipe[instance].has_iqueue = true;
1145 }
1146
1147 return ring;
1148 }
1149
1150 /* Initialize NotifGroup and buckets.
1151 * This routine supports tile_net_init_mpipe(), below.
1152 */
1153 static int init_notif_group_and_buckets(struct net_device *dev,
1154 int ring, int network_cpus_count)
1155 {
1156 int group, rc;
1157 int instance = mpipe_instance(dev);
1158 struct mpipe_data *md = &mpipe_data[instance];
1159
1160 /* Allocate one NotifGroup. */
1161 rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
1162 if (rc < 0) {
1163 netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
1164 instance, rc);
1165 return rc;
1166 }
1167 group = rc;
1168
1169 /* Initialize global num_buckets value. */
1170 if (network_cpus_count > 4)
1171 md->num_buckets = 256;
1172 else if (network_cpus_count > 1)
1173 md->num_buckets = 16;
1174
1175 /* Allocate some buckets, and set global first_bucket value. */
1176 rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
1177 if (rc < 0) {
1178 netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
1179 instance, rc);
1180 return rc;
1181 }
1182 md->first_bucket = rc;
1183
1184 /* Init group and buckets. */
1185 rc = gxio_mpipe_init_notif_group_and_buckets(
1186 &md->context, group, ring, network_cpus_count,
1187 md->first_bucket, md->num_buckets,
1188 GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
1189 if (rc != 0) {
1190 netdev_err(dev, "gxio_mpipe_init_notif_group_and_buckets: "
1191 "mpipe[%d] %d\n", instance, rc);
1192 return rc;
1193 }
1194
1195 return 0;
1196 }
1197
1198 /* Create an irq and register it, then activate the irq and request
1199 * interrupts on all cores. Note that "ingress_irq" being initialized
1200 * is how we know not to call tile_net_init_mpipe() again.
1201 * This routine supports tile_net_init_mpipe(), below.
1202 */
1203 static int tile_net_setup_interrupts(struct net_device *dev)
1204 {
1205 int cpu, rc, irq;
1206 int instance = mpipe_instance(dev);
1207 struct mpipe_data *md = &mpipe_data[instance];
1208
1209 irq = md->ingress_irq;
1210 if (irq < 0) {
1211 irq = irq_alloc_hwirq(-1);
1212 if (!irq) {
1213 netdev_err(dev,
1214 "create_irq failed: mpipe[%d] %d\n",
1215 instance, irq);
1216 return irq;
1217 }
1218 tile_irq_activate(irq, TILE_IRQ_PERCPU);
1219
1220 rc = request_irq(irq, tile_net_handle_ingress_irq,
1221 0, "tile_net", (void *)((uint64_t)instance));
1222
1223 if (rc != 0) {
1224 netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
1225 instance, rc);
1226 irq_free_hwirq(irq);
1227 return rc;
1228 }
1229 md->ingress_irq = irq;
1230 }
1231
1232 for_each_online_cpu(cpu) {
1233 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1234 if (info->mpipe[instance].has_iqueue) {
1235 gxio_mpipe_request_notif_ring_interrupt(&md->context,
1236 cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
1237 info->mpipe[instance].iqueue.ring);
1238 }
1239 }
1240
1241 return 0;
1242 }
1243
1244 /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
1245 static void tile_net_init_mpipe_fail(int instance)
1246 {
1247 int kind, cpu;
1248 struct mpipe_data *md = &mpipe_data[instance];
1249
1250 /* Do cleanups that require the mpipe context first. */
1251 for (kind = 0; kind < MAX_KINDS; kind++) {
1252 if (md->buffer_stack_vas[kind] != NULL) {
1253 tile_net_pop_all_buffers(instance,
1254 md->first_buffer_stack +
1255 kind);
1256 }
1257 }
1258
1259 /* Destroy mpipe context so the hardware no longer owns any memory. */
1260 gxio_mpipe_destroy(&md->context);
1261
1262 for_each_online_cpu(cpu) {
1263 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1264 free_pages(
1265 (unsigned long)(
1266 info->mpipe[instance].comps_for_echannel[0]),
1267 get_order(COMPS_SIZE));
1268 info->mpipe[instance].comps_for_echannel[0] = NULL;
1269 free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
1270 get_order(NOTIF_RING_SIZE));
1271 info->mpipe[instance].iqueue.idescs = NULL;
1272 }
1273
1274 for (kind = 0; kind < MAX_KINDS; kind++) {
1275 if (md->buffer_stack_vas[kind] != NULL) {
1276 free_pages_exact(md->buffer_stack_vas[kind],
1277 md->buffer_stack_bytes[kind]);
1278 md->buffer_stack_vas[kind] = NULL;
1279 }
1280 }
1281
1282 md->first_buffer_stack = -1;
1283 md->first_bucket = -1;
1284 }
1285
1286 /* The first time any tilegx network device is opened, we initialize
1287 * the global mpipe state. If this step fails, we fail to open the
1288 * device, but if it succeeds, we never need to do it again, and since
1289 * tile_net can't be unloaded, we never undo it.
1290 *
1291 * Note that some resources in this path (buffer stack indices,
1292 * bindings from init_buffer_stack, etc.) are hypervisor resources
1293 * that are freed implicitly by gxio_mpipe_destroy().
1294 */
1295 static int tile_net_init_mpipe(struct net_device *dev)
1296 {
1297 int rc;
1298 int cpu;
1299 int first_ring, ring;
1300 int instance = mpipe_instance(dev);
1301 struct mpipe_data *md = &mpipe_data[instance];
1302 int network_cpus_count = cpus_weight(network_cpus_map);
1303
1304 if (!hash_default) {
1305 netdev_err(dev, "Networking requires hash_default!\n");
1306 return -EIO;
1307 }
1308
1309 rc = gxio_mpipe_init(&md->context, instance);
1310 if (rc != 0) {
1311 netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
1312 instance, rc);
1313 return -EIO;
1314 }
1315
1316 /* Set up the buffer stacks. */
1317 rc = init_buffer_stacks(dev, network_cpus_count);
1318 if (rc != 0)
1319 goto fail;
1320
1321 /* Allocate one NotifRing for each network cpu. */
1322 rc = gxio_mpipe_alloc_notif_rings(&md->context,
1323 network_cpus_count, 0, 0);
1324 if (rc < 0) {
1325 netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
1326 rc);
1327 goto fail;
1328 }
1329
1330 /* Init NotifRings per-cpu. */
1331 first_ring = rc;
1332 ring = first_ring;
1333 for_each_online_cpu(cpu) {
1334 rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
1335 if (rc < 0)
1336 goto fail;
1337 ring = rc;
1338 }
1339
1340 /* Initialize NotifGroup and buckets. */
1341 rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
1342 if (rc != 0)
1343 goto fail;
1344
1345 /* Create and enable interrupts. */
1346 rc = tile_net_setup_interrupts(dev);
1347 if (rc != 0)
1348 goto fail;
1349
1350 /* Register PTP clock and set mPIPE timestamp, if configured. */
1351 register_ptp_clock(dev, md);
1352
1353 return 0;
1354
1355 fail:
1356 tile_net_init_mpipe_fail(instance);
1357 return rc;
1358 }
1359
1360 /* Create persistent egress info for a given egress channel.
1361 * Note that this may be shared between, say, "gbe0" and "xgbe0".
1362 * ISSUE: Defer header allocation until TSO is actually needed?
1363 */
1364 static int tile_net_init_egress(struct net_device *dev, int echannel)
1365 {
1366 static int ering = -1;
1367 struct page *headers_page, *edescs_page, *equeue_page;
1368 gxio_mpipe_edesc_t *edescs;
1369 gxio_mpipe_equeue_t *equeue;
1370 unsigned char *headers;
1371 int headers_order, edescs_order, equeue_order;
1372 size_t edescs_size;
1373 int rc = -ENOMEM;
1374 int instance = mpipe_instance(dev);
1375 struct mpipe_data *md = &mpipe_data[instance];
1376
1377 /* Only initialize once. */
1378 if (md->egress_for_echannel[echannel].equeue != NULL)
1379 return 0;
1380
1381 /* Allocate memory for the "headers". */
1382 headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
1383 headers_page = alloc_pages(GFP_KERNEL, headers_order);
1384 if (headers_page == NULL) {
1385 netdev_warn(dev,
1386 "Could not alloc %zd bytes for TSO headers.\n",
1387 PAGE_SIZE << headers_order);
1388 goto fail;
1389 }
1390 headers = pfn_to_kaddr(page_to_pfn(headers_page));
1391
1392 /* Allocate memory for the "edescs". */
1393 edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
1394 edescs_order = get_order(edescs_size);
1395 edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
1396 if (edescs_page == NULL) {
1397 netdev_warn(dev,
1398 "Could not alloc %zd bytes for eDMA ring.\n",
1399 edescs_size);
1400 goto fail_headers;
1401 }
1402 edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
1403
1404 /* Allocate memory for the "equeue". */
1405 equeue_order = get_order(sizeof(*equeue));
1406 equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
1407 if (equeue_page == NULL) {
1408 netdev_warn(dev,
1409 "Could not alloc %zd bytes for equeue info.\n",
1410 PAGE_SIZE << equeue_order);
1411 goto fail_edescs;
1412 }
1413 equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
1414
1415 /* Allocate an edma ring (using a one entry "free list"). */
1416 if (ering < 0) {
1417 rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
1418 if (rc < 0) {
1419 netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
1420 "mpipe[%d] %d\n", instance, rc);
1421 goto fail_equeue;
1422 }
1423 ering = rc;
1424 }
1425
1426 /* Initialize the equeue. */
1427 rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
1428 edescs, edescs_size, 0);
1429 if (rc != 0) {
1430 netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
1431 instance, rc);
1432 goto fail_equeue;
1433 }
1434
1435 /* Don't reuse the ering later. */
1436 ering = -1;
1437
1438 if (jumbo_num != 0) {
1439 /* Make sure "jumbo" packets can be egressed safely. */
1440 if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
1441 /* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
1442 netdev_warn(dev, "Jumbo packets may not be egressed"
1443 " properly on channel %d\n", echannel);
1444 }
1445 }
1446
1447 /* Done. */
1448 md->egress_for_echannel[echannel].equeue = equeue;
1449 md->egress_for_echannel[echannel].headers = headers;
1450 return 0;
1451
1452 fail_equeue:
1453 __free_pages(equeue_page, equeue_order);
1454
1455 fail_edescs:
1456 __free_pages(edescs_page, edescs_order);
1457
1458 fail_headers:
1459 __free_pages(headers_page, headers_order);
1460
1461 fail:
1462 return rc;
1463 }
1464
1465 /* Return channel number for a newly-opened link. */
1466 static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
1467 const char *link_name)
1468 {
1469 int instance = mpipe_instance(dev);
1470 struct mpipe_data *md = &mpipe_data[instance];
1471 int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
1472 if (rc < 0) {
1473 netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
1474 link_name, instance, rc);
1475 return rc;
1476 }
1477 if (jumbo_num != 0) {
1478 u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
1479 rc = gxio_mpipe_link_set_attr(link, attr, 1);
1480 if (rc != 0) {
1481 netdev_err(dev,
1482 "Cannot receive jumbo packets on '%s'\n",
1483 link_name);
1484 gxio_mpipe_link_close(link);
1485 return rc;
1486 }
1487 }
1488 rc = gxio_mpipe_link_channel(link);
1489 if (rc < 0 || rc >= TILE_NET_CHANNELS) {
1490 netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
1491 gxio_mpipe_link_close(link);
1492 return -EINVAL;
1493 }
1494 return rc;
1495 }
1496
1497 /* Help the kernel activate the given network interface. */
1498 static int tile_net_open(struct net_device *dev)
1499 {
1500 struct tile_net_priv *priv = netdev_priv(dev);
1501 int cpu, rc, instance;
1502
1503 mutex_lock(&tile_net_devs_for_channel_mutex);
1504
1505 /* Get the instance info. */
1506 rc = gxio_mpipe_link_instance(dev->name);
1507 if (rc < 0 || rc >= NR_MPIPE_MAX) {
1508 mutex_unlock(&tile_net_devs_for_channel_mutex);
1509 return -EIO;
1510 }
1511
1512 priv->instance = rc;
1513 instance = rc;
1514 if (!mpipe_data[rc].context.mmio_fast_base) {
1515 /* Do one-time initialization per instance the first time
1516 * any device is opened.
1517 */
1518 rc = tile_net_init_mpipe(dev);
1519 if (rc != 0)
1520 goto fail;
1521 }
1522
1523 /* Determine if this is the "loopify" device. */
1524 if (unlikely((loopify_link_name != NULL) &&
1525 !strcmp(dev->name, loopify_link_name))) {
1526 rc = tile_net_link_open(dev, &priv->link, "loop0");
1527 if (rc < 0)
1528 goto fail;
1529 priv->channel = rc;
1530 rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
1531 if (rc < 0)
1532 goto fail;
1533 priv->loopify_channel = rc;
1534 priv->echannel = rc;
1535 } else {
1536 rc = tile_net_link_open(dev, &priv->link, dev->name);
1537 if (rc < 0)
1538 goto fail;
1539 priv->channel = rc;
1540 priv->echannel = rc;
1541 }
1542
1543 /* Initialize egress info (if needed). Once ever, per echannel. */
1544 rc = tile_net_init_egress(dev, priv->echannel);
1545 if (rc != 0)
1546 goto fail;
1547
1548 mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;
1549
1550 rc = tile_net_update(dev);
1551 if (rc != 0)
1552 goto fail;
1553
1554 mutex_unlock(&tile_net_devs_for_channel_mutex);
1555
1556 /* Initialize the transmit wake timer for this device for each cpu. */
1557 for_each_online_cpu(cpu) {
1558 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1559 struct tile_net_tx_wake *tx_wake =
1560 &info->mpipe[instance].tx_wake[priv->echannel];
1561
1562 hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
1563 HRTIMER_MODE_REL);
1564 tx_wake->tx_queue_idx = cpu;
1565 tx_wake->timer.function = tile_net_handle_tx_wake_timer;
1566 tx_wake->dev = dev;
1567 }
1568
1569 for_each_online_cpu(cpu)
1570 netif_start_subqueue(dev, cpu);
1571 netif_carrier_on(dev);
1572 return 0;
1573
1574 fail:
1575 if (priv->loopify_channel >= 0) {
1576 if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1577 netdev_warn(dev, "Failed to close loopify link!\n");
1578 priv->loopify_channel = -1;
1579 }
1580 if (priv->channel >= 0) {
1581 if (gxio_mpipe_link_close(&priv->link) != 0)
1582 netdev_warn(dev, "Failed to close link!\n");
1583 priv->channel = -1;
1584 }
1585 priv->echannel = -1;
1586 mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = NULL;
1587 mutex_unlock(&tile_net_devs_for_channel_mutex);
1588
1589 /* Don't return raw gxio error codes to generic Linux. */
1590 return (rc > -512) ? rc : -EIO;
1591 }
1592
1593 /* Help the kernel deactivate the given network interface. */
1594 static int tile_net_stop(struct net_device *dev)
1595 {
1596 struct tile_net_priv *priv = netdev_priv(dev);
1597 int cpu;
1598 int instance = priv->instance;
1599 struct mpipe_data *md = &mpipe_data[instance];
1600
1601 for_each_online_cpu(cpu) {
1602 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1603 struct tile_net_tx_wake *tx_wake =
1604 &info->mpipe[instance].tx_wake[priv->echannel];
1605
1606 hrtimer_cancel(&tx_wake->timer);
1607 netif_stop_subqueue(dev, cpu);
1608 }
1609
1610 mutex_lock(&tile_net_devs_for_channel_mutex);
1611 md->tile_net_devs_for_channel[priv->channel] = NULL;
1612 (void)tile_net_update(dev);
1613 if (priv->loopify_channel >= 0) {
1614 if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1615 netdev_warn(dev, "Failed to close loopify link!\n");
1616 priv->loopify_channel = -1;
1617 }
1618 if (priv->channel >= 0) {
1619 if (gxio_mpipe_link_close(&priv->link) != 0)
1620 netdev_warn(dev, "Failed to close link!\n");
1621 priv->channel = -1;
1622 }
1623 priv->echannel = -1;
1624 mutex_unlock(&tile_net_devs_for_channel_mutex);
1625
1626 return 0;
1627 }
1628
1629 /* Determine the VA for a fragment. */
1630 static inline void *tile_net_frag_buf(skb_frag_t *f)
1631 {
1632 unsigned long pfn = page_to_pfn(skb_frag_page(f));
1633 return pfn_to_kaddr(pfn) + f->page_offset;
1634 }
1635
1636 /* Acquire a completion entry and an egress slot, or if we can't,
1637 * stop the queue and schedule the tx_wake timer.
1638 */
1639 static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1640 int tx_queue_idx,
1641 struct tile_net_comps *comps,
1642 gxio_mpipe_equeue_t *equeue,
1643 int num_edescs)
1644 {
1645 /* Try to acquire a completion entry. */
1646 if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
1647 tile_net_free_comps(equeue, comps, 32, false) != 0) {
1648
1649 /* Try to acquire an egress slot. */
1650 s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1651 if (slot >= 0)
1652 return slot;
1653
1654 /* Freeing some completions gives the equeue time to drain. */
1655 tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
1656
1657 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1658 if (slot >= 0)
1659 return slot;
1660 }
1661
1662 /* Still nothing; give up and stop the queue for a short while. */
1663 netif_stop_subqueue(dev, tx_queue_idx);
1664 tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
1665 return -1;
1666 }
1667
1668 /* Determine how many edesc's are needed for TSO.
1669 *
1670 * Sometimes, if "sendfile()" requires copying, we will be called with
1671 * "data" containing the header and payload, with "frags" being empty.
1672 * Sometimes, for example when using NFS over TCP, a single segment can
1673 * span 3 fragments. This requires special care.
1674 */
1675 static int tso_count_edescs(struct sk_buff *skb)
1676 {
1677 struct skb_shared_info *sh = skb_shinfo(skb);
1678 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1679 unsigned int data_len = skb->len - sh_len;
1680 unsigned int p_len = sh->gso_size;
1681 long f_id = -1; /* id of the current fragment */
1682 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
1683 long f_used = 0; /* bytes used from the current fragment */
1684 long n; /* size of the current piece of payload */
1685 int num_edescs = 0;
1686 int segment;
1687
1688 for (segment = 0; segment < sh->gso_segs; segment++) {
1689
1690 unsigned int p_used = 0;
1691
1692 /* One edesc for header and for each piece of the payload. */
1693 for (num_edescs++; p_used < p_len; num_edescs++) {
1694
1695 /* Advance as needed. */
1696 while (f_used >= f_size) {
1697 f_id++;
1698 f_size = skb_frag_size(&sh->frags[f_id]);
1699 f_used = 0;
1700 }
1701
1702 /* Use bytes from the current fragment. */
1703 n = p_len - p_used;
1704 if (n > f_size - f_used)
1705 n = f_size - f_used;
1706 f_used += n;
1707 p_used += n;
1708 }
1709
1710 /* The last segment may be less than gso_size. */
1711 data_len -= p_len;
1712 if (data_len < p_len)
1713 p_len = data_len;
1714 }
1715
1716 return num_edescs;
1717 }
1718
1719 /* Prepare modified copies of the skbuff headers. */
1720 static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
1721 s64 slot)
1722 {
1723 struct skb_shared_info *sh = skb_shinfo(skb);
1724 struct iphdr *ih;
1725 struct ipv6hdr *ih6;
1726 struct tcphdr *th;
1727 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1728 unsigned int data_len = skb->len - sh_len;
1729 unsigned char *data = skb->data;
1730 unsigned int ih_off, th_off, p_len;
1731 unsigned int isum_seed, tsum_seed, seq;
1732 unsigned int uninitialized_var(id);
1733 int is_ipv6;
1734 long f_id = -1; /* id of the current fragment */
1735 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
1736 long f_used = 0; /* bytes used from the current fragment */
1737 long n; /* size of the current piece of payload */
1738 int segment;
1739
1740 /* Locate original headers and compute various lengths. */
1741 is_ipv6 = skb_is_gso_v6(skb);
1742 if (is_ipv6) {
1743 ih6 = ipv6_hdr(skb);
1744 ih_off = skb_network_offset(skb);
1745 } else {
1746 ih = ip_hdr(skb);
1747 ih_off = skb_network_offset(skb);
1748 isum_seed = ((0xFFFF - ih->check) +
1749 (0xFFFF - ih->tot_len) +
1750 (0xFFFF - ih->id));
1751 id = ntohs(ih->id);
1752 }
1753
1754 th = tcp_hdr(skb);
1755 th_off = skb_transport_offset(skb);
1756 p_len = sh->gso_size;
1757
1758 tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1759 seq = ntohl(th->seq);
1760
1761 /* Prepare all the headers. */
1762 for (segment = 0; segment < sh->gso_segs; segment++) {
1763 unsigned char *buf;
1764 unsigned int p_used = 0;
1765
1766 /* Copy to the header memory for this segment. */
1767 buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1768 NET_IP_ALIGN;
1769 memcpy(buf, data, sh_len);
1770
1771 /* Update copied ip header. */
1772 if (is_ipv6) {
1773 ih6 = (struct ipv6hdr *)(buf + ih_off);
1774 ih6->payload_len = htons(sh_len + p_len - ih_off -
1775 sizeof(*ih6));
1776 } else {
1777 ih = (struct iphdr *)(buf + ih_off);
1778 ih->tot_len = htons(sh_len + p_len - ih_off);
1779 ih->id = htons(id++);
1780 ih->check = csum_long(isum_seed + ih->tot_len +
1781 ih->id) ^ 0xffff;
1782 }
1783
1784 /* Update copied tcp header. */
1785 th = (struct tcphdr *)(buf + th_off);
1786 th->seq = htonl(seq);
1787 th->check = csum_long(tsum_seed + htons(sh_len + p_len));
1788 if (segment != sh->gso_segs - 1) {
1789 th->fin = 0;
1790 th->psh = 0;
1791 }
1792
1793 /* Skip past the header. */
1794 slot++;
1795
1796 /* Skip past the payload. */
1797 while (p_used < p_len) {
1798
1799 /* Advance as needed. */
1800 while (f_used >= f_size) {
1801 f_id++;
1802 f_size = skb_frag_size(&sh->frags[f_id]);
1803 f_used = 0;
1804 }
1805
1806 /* Use bytes from the current fragment. */
1807 n = p_len - p_used;
1808 if (n > f_size - f_used)
1809 n = f_size - f_used;
1810 f_used += n;
1811 p_used += n;
1812
1813 slot++;
1814 }
1815
1816 seq += p_len;
1817
1818 /* The last segment may be less than gso_size. */
1819 data_len -= p_len;
1820 if (data_len < p_len)
1821 p_len = data_len;
1822 }
1823
1824 /* Flush the headers so they are ready for hardware DMA. */
1825 wmb();
1826 }
1827
1828 /* Pass all the data to mpipe for egress. */
1829 static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
1830 struct sk_buff *skb, unsigned char *headers, s64 slot)
1831 {
1832 struct skb_shared_info *sh = skb_shinfo(skb);
1833 int instance = mpipe_instance(dev);
1834 struct mpipe_data *md = &mpipe_data[instance];
1835 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1836 unsigned int data_len = skb->len - sh_len;
1837 unsigned int p_len = sh->gso_size;
1838 gxio_mpipe_edesc_t edesc_head = { { 0 } };
1839 gxio_mpipe_edesc_t edesc_body = { { 0 } };
1840 long f_id = -1; /* id of the current fragment */
1841 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
1842 long f_used = 0; /* bytes used from the current fragment */
1843 void *f_data = skb->data + sh_len;
1844 long n; /* size of the current piece of payload */
1845 unsigned long tx_packets = 0, tx_bytes = 0;
1846 unsigned int csum_start;
1847 int segment;
1848
1849 /* Prepare to egress the headers: set up header edesc. */
1850 csum_start = skb_checksum_start_offset(skb);
1851 edesc_head.csum = 1;
1852 edesc_head.csum_start = csum_start;
1853 edesc_head.csum_dest = csum_start + skb->csum_offset;
1854 edesc_head.xfer_size = sh_len;
1855
1856 /* This is only used to specify the TLB. */
1857 edesc_head.stack_idx = md->first_buffer_stack;
1858 edesc_body.stack_idx = md->first_buffer_stack;
1859
1860 /* Egress all the edescs. */
1861 for (segment = 0; segment < sh->gso_segs; segment++) {
1862 unsigned char *buf;
1863 unsigned int p_used = 0;
1864
1865 /* Egress the header. */
1866 buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1867 NET_IP_ALIGN;
1868 edesc_head.va = va_to_tile_io_addr(buf);
1869 gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
1870 slot++;
1871
1872 /* Egress the payload. */
1873 while (p_used < p_len) {
1874 void *va;
1875
1876 /* Advance as needed. */
1877 while (f_used >= f_size) {
1878 f_id++;
1879 f_size = skb_frag_size(&sh->frags[f_id]);
1880 f_data = tile_net_frag_buf(&sh->frags[f_id]);
1881 f_used = 0;
1882 }
1883
1884 va = f_data + f_used;
1885
1886 /* Use bytes from the current fragment. */
1887 n = p_len - p_used;
1888 if (n > f_size - f_used)
1889 n = f_size - f_used;
1890 f_used += n;
1891 p_used += n;
1892
1893 /* Egress a piece of the payload. */
1894 edesc_body.va = va_to_tile_io_addr(va);
1895 edesc_body.xfer_size = n;
1896 edesc_body.bound = !(p_used < p_len);
1897 gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
1898 slot++;
1899 }
1900
1901 tx_packets++;
1902 tx_bytes += sh_len + p_len;
1903
1904 /* The last segment may be less than gso_size. */
1905 data_len -= p_len;
1906 if (data_len < p_len)
1907 p_len = data_len;
1908 }
1909
1910 /* Update stats. */
1911 tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
1912 tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
1913 }
1914
1915 /* Do "TSO" handling for egress.
1916 *
1917 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1918 * otherwise the stack uses scatter-gather to implement GSO in software.
1919 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1920 * performance down to around 7.5 Gbps on the 10G interfaces, although
1921 * also dropping cpu utilization way down, to under 8%. But
1922 * implementing "TSO" in the driver brings performance back up to line
1923 * rate, while dropping cpu usage even further, to less than 4%. In
1924 * practice, profiling of GSO shows that skb_segment() is what causes
1925 * the performance overheads; we benefit in the driver from using
1926 * preallocated memory to duplicate the TCP/IP headers.
1927 */
1928 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1929 {
1930 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
1931 struct tile_net_priv *priv = netdev_priv(dev);
1932 int channel = priv->echannel;
1933 int instance = priv->instance;
1934 struct mpipe_data *md = &mpipe_data[instance];
1935 struct tile_net_egress *egress = &md->egress_for_echannel[channel];
1936 struct tile_net_comps *comps =
1937 info->mpipe[instance].comps_for_echannel[channel];
1938 gxio_mpipe_equeue_t *equeue = egress->equeue;
1939 unsigned long irqflags;
1940 int num_edescs;
1941 s64 slot;
1942
1943 /* Determine how many mpipe edesc's are needed. */
1944 num_edescs = tso_count_edescs(skb);
1945
1946 local_irq_save(irqflags);
1947
1948 /* Try to acquire a completion entry and an egress slot. */
1949 slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
1950 equeue, num_edescs);
1951 if (slot < 0) {
1952 local_irq_restore(irqflags);
1953 return NETDEV_TX_BUSY;
1954 }
1955
1956 /* Set up copies of header data properly. */
1957 tso_headers_prepare(skb, egress->headers, slot);
1958
1959 /* Actually pass the data to the network hardware. */
1960 tso_egress(dev, equeue, skb, egress->headers, slot);
1961
1962 /* Add a completion record. */
1963 add_comp(equeue, comps, slot + num_edescs - 1, skb);
1964
1965 local_irq_restore(irqflags);
1966
1967 /* Make sure the egress timer is scheduled. */
1968 tile_net_schedule_egress_timer();
1969
1970 return NETDEV_TX_OK;
1971 }
1972
1973 /* Analyze the body and frags for a transmit request. */
1974 static unsigned int tile_net_tx_frags(struct frag *frags,
1975 struct sk_buff *skb,
1976 void *b_data, unsigned int b_len)
1977 {
1978 unsigned int i, n = 0;
1979
1980 struct skb_shared_info *sh = skb_shinfo(skb);
1981
1982 if (b_len != 0) {
1983 frags[n].buf = b_data;
1984 frags[n++].length = b_len;
1985 }
1986
1987 for (i = 0; i < sh->nr_frags; i++) {
1988 skb_frag_t *f = &sh->frags[i];
1989 frags[n].buf = tile_net_frag_buf(f);
1990 frags[n++].length = skb_frag_size(f);
1991 }
1992
1993 return n;
1994 }
1995
1996 /* Help the kernel transmit a packet. */
1997 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1998 {
1999 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
2000 struct tile_net_priv *priv = netdev_priv(dev);
2001 int instance = priv->instance;
2002 struct mpipe_data *md = &mpipe_data[instance];
2003 struct tile_net_egress *egress =
2004 &md->egress_for_echannel[priv->echannel];
2005 gxio_mpipe_equeue_t *equeue = egress->equeue;
2006 struct tile_net_comps *comps =
2007 info->mpipe[instance].comps_for_echannel[priv->echannel];
2008 unsigned int len = skb->len;
2009 unsigned char *data = skb->data;
2010 unsigned int num_edescs;
2011 struct frag frags[MAX_FRAGS];
2012 gxio_mpipe_edesc_t edescs[MAX_FRAGS];
2013 unsigned long irqflags;
2014 gxio_mpipe_edesc_t edesc = { { 0 } };
2015 unsigned int i;
2016 s64 slot;
2017
2018 if (skb_is_gso(skb))
2019 return tile_net_tx_tso(skb, dev);
2020
2021 num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
2022
2023 /* This is only used to specify the TLB. */
2024 edesc.stack_idx = md->first_buffer_stack;
2025
2026 /* Prepare the edescs. */
2027 for (i = 0; i < num_edescs; i++) {
2028 edesc.xfer_size = frags[i].length;
2029 edesc.va = va_to_tile_io_addr(frags[i].buf);
2030 edescs[i] = edesc;
2031 }
2032
2033 /* Mark the final edesc. */
2034 edescs[num_edescs - 1].bound = 1;
2035
2036 /* Add checksum info to the initial edesc, if needed. */
2037 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2038 unsigned int csum_start = skb_checksum_start_offset(skb);
2039 edescs[0].csum = 1;
2040 edescs[0].csum_start = csum_start;
2041 edescs[0].csum_dest = csum_start + skb->csum_offset;
2042 }
2043
2044 local_irq_save(irqflags);
2045
2046 /* Try to acquire a completion entry and an egress slot. */
2047 slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
2048 equeue, num_edescs);
2049 if (slot < 0) {
2050 local_irq_restore(irqflags);
2051 return NETDEV_TX_BUSY;
2052 }
2053
2054 for (i = 0; i < num_edescs; i++)
2055 gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
2056
2057 /* Store TX timestamp if needed. */
2058 tile_tx_timestamp(skb, instance);
2059
2060 /* Add a completion record. */
2061 add_comp(equeue, comps, slot - 1, skb);
2062
2063 /* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
2064 tile_net_stats_add(1, &dev->stats.tx_packets);
2065 tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
2066 &dev->stats.tx_bytes);
2067
2068 local_irq_restore(irqflags);
2069
2070 /* Make sure the egress timer is scheduled. */
2071 tile_net_schedule_egress_timer();
2072
2073 return NETDEV_TX_OK;
2074 }
2075
2076 /* Return subqueue id on this core (one per core). */
2077 static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
2078 void *accel_priv, select_queue_fallback_t fallback)
2079 {
2080 return smp_processor_id();
2081 }
2082
2083 /* Deal with a transmit timeout. */
2084 static void tile_net_tx_timeout(struct net_device *dev)
2085 {
2086 int cpu;
2087
2088 for_each_online_cpu(cpu)
2089 netif_wake_subqueue(dev, cpu);
2090 }
2091
2092 /* Ioctl commands. */
2093 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2094 {
2095 if (cmd == SIOCSHWTSTAMP)
2096 return tile_hwtstamp_set(dev, rq);
2097 if (cmd == SIOCGHWTSTAMP)
2098 return tile_hwtstamp_get(dev, rq);
2099
2100 return -EOPNOTSUPP;
2101 }
2102
2103 /* Change the MTU. */
2104 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2105 {
2106 if (new_mtu < 68)
2107 return -EINVAL;
2108 if (new_mtu > ((jumbo_num != 0) ? 9000 : 1500))
2109 return -EINVAL;
2110 dev->mtu = new_mtu;
2111 return 0;
2112 }
2113
2114 /* Change the Ethernet address of the NIC.
2115 *
2116 * The hypervisor driver does not support changing MAC address. However,
2117 * the hardware does not do anything with the MAC address, so the address
2118 * which gets used on outgoing packets, and which is accepted on incoming
2119 * packets, is completely up to us.
2120 *
2121 * Returns 0 on success, negative on failure.
2122 */
2123 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2124 {
2125 struct sockaddr *addr = p;
2126
2127 if (!is_valid_ether_addr(addr->sa_data))
2128 return -EINVAL;
2129 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2130 return 0;
2131 }
2132
2133 #ifdef CONFIG_NET_POLL_CONTROLLER
2134 /* Polling 'interrupt' - used by things like netconsole to send skbs
2135 * without having to re-enable interrupts. It's not called while
2136 * the interrupt routine is executing.
2137 */
2138 static void tile_net_netpoll(struct net_device *dev)
2139 {
2140 int instance = mpipe_instance(dev);
2141 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
2142 struct mpipe_data *md = &mpipe_data[instance];
2143
2144 disable_percpu_irq(md->ingress_irq);
2145 napi_schedule(&info->mpipe[instance].napi);
2146 enable_percpu_irq(md->ingress_irq, 0);
2147 }
2148 #endif
2149
2150 static const struct net_device_ops tile_net_ops = {
2151 .ndo_open = tile_net_open,
2152 .ndo_stop = tile_net_stop,
2153 .ndo_start_xmit = tile_net_tx,
2154 .ndo_select_queue = tile_net_select_queue,
2155 .ndo_do_ioctl = tile_net_ioctl,
2156 .ndo_change_mtu = tile_net_change_mtu,
2157 .ndo_tx_timeout = tile_net_tx_timeout,
2158 .ndo_set_mac_address = tile_net_set_mac_address,
2159 #ifdef CONFIG_NET_POLL_CONTROLLER
2160 .ndo_poll_controller = tile_net_netpoll,
2161 #endif
2162 };
2163
2164 /* The setup function.
2165 *
2166 * This uses ether_setup() to assign various fields in dev, including
2167 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2168 */
2169 static void tile_net_setup(struct net_device *dev)
2170 {
2171 netdev_features_t features = 0;
2172
2173 ether_setup(dev);
2174 dev->netdev_ops = &tile_net_ops;
2175 dev->watchdog_timeo = TILE_NET_TIMEOUT;
2176 dev->mtu = 1500;
2177
2178 features |= NETIF_F_HW_CSUM;
2179 features |= NETIF_F_SG;
2180 features |= NETIF_F_TSO;
2181 features |= NETIF_F_TSO6;
2182
2183 dev->hw_features |= features;
2184 dev->vlan_features |= features;
2185 dev->features |= features;
2186 }
2187
2188 /* Allocate the device structure, register the device, and obtain the
2189 * MAC address from the hypervisor.
2190 */
2191 static void tile_net_dev_init(const char *name, const uint8_t *mac)
2192 {
2193 int ret;
2194 struct net_device *dev;
2195 struct tile_net_priv *priv;
2196
2197 /* HACK: Ignore "loop" links. */
2198 if (strncmp(name, "loop", 4) == 0)
2199 return;
2200
2201 /* Allocate the device structure. Normally, "name" is a
2202 * template, instantiated by register_netdev(), but not for us.
2203 */
2204 dev = alloc_netdev_mqs(sizeof(*priv), name, NET_NAME_UNKNOWN,
2205 tile_net_setup, NR_CPUS, 1);
2206 if (!dev) {
2207 pr_err("alloc_netdev_mqs(%s) failed\n", name);
2208 return;
2209 }
2210
2211 /* Initialize "priv". */
2212 priv = netdev_priv(dev);
2213 priv->dev = dev;
2214 priv->channel = -1;
2215 priv->loopify_channel = -1;
2216 priv->echannel = -1;
2217 init_ptp_dev(priv);
2218
2219 /* Get the MAC address and set it in the device struct; this must
2220 * be done before the device is opened. If the MAC is all zeroes,
2221 * we use a random address, since we're probably on the simulator.
2222 */
2223 if (!is_zero_ether_addr(mac))
2224 ether_addr_copy(dev->dev_addr, mac);
2225 else
2226 eth_hw_addr_random(dev);
2227
2228 /* Register the network device. */
2229 ret = register_netdev(dev);
2230 if (ret) {
2231 netdev_err(dev, "register_netdev failed %d\n", ret);
2232 free_netdev(dev);
2233 return;
2234 }
2235 }
2236
2237 /* Per-cpu module initialization. */
2238 static void tile_net_init_module_percpu(void *unused)
2239 {
2240 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
2241 int my_cpu = smp_processor_id();
2242 int instance;
2243
2244 for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
2245 info->mpipe[instance].has_iqueue = false;
2246 info->mpipe[instance].instance = instance;
2247 }
2248 info->my_cpu = my_cpu;
2249
2250 /* Initialize the egress timer. */
2251 hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2252 info->egress_timer.function = tile_net_handle_egress_timer;
2253 }
2254
2255 /* Module initialization. */
2256 static int __init tile_net_init_module(void)
2257 {
2258 int i;
2259 char name[GXIO_MPIPE_LINK_NAME_LEN];
2260 uint8_t mac[6];
2261
2262 pr_info("Tilera Network Driver\n");
2263
2264 BUILD_BUG_ON(NR_MPIPE_MAX != 2);
2265
2266 mutex_init(&tile_net_devs_for_channel_mutex);
2267
2268 /* Initialize each CPU. */
2269 on_each_cpu(tile_net_init_module_percpu, NULL, 1);
2270
2271 /* Find out what devices we have, and initialize them. */
2272 for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
2273 tile_net_dev_init(name, mac);
2274
2275 if (!network_cpus_init())
2276 network_cpus_map = *cpu_online_mask;
2277
2278 return 0;
2279 }
2280
2281 module_init(tile_net_init_module);