]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/toshiba/tc35815.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / toshiba / tc35815.c
1 /*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 * -----<snip>-----
9 * Copyright 2001 MontaVista Software Inc.
10 * Author: MontaVista Software, Inc.
11 * ahennessy@mvista.com
12 * Copyright (C) 2000-2001 Toshiba Corporation
13 * static const char *version =
14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 * -----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25 #define DRV_VERSION "1.39"
26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME "tc35815"
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52
53 enum tc35815_chiptype {
54 TC35815CF = 0,
55 TC35815_NWU,
56 TC35815_TX4939,
57 };
58
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 const char *name;
62 } chip_info[] = {
63 { "TOSHIBA TC35815CF 10/100BaseTX" },
64 { "TOSHIBA TC35815 with Wake on LAN" },
65 { "TOSHIBA TC35815/TX4939" },
66 };
67
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 {0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 int speed;
79 int duplex;
80 } options;
81
82 /*
83 * Registers
84 */
85 struct tc35815_regs {
86 __u32 DMA_Ctl; /* 0x00 */
87 __u32 TxFrmPtr;
88 __u32 TxThrsh;
89 __u32 TxPollCtr;
90 __u32 BLFrmPtr;
91 __u32 RxFragSize;
92 __u32 Int_En;
93 __u32 FDA_Bas;
94 __u32 FDA_Lim; /* 0x20 */
95 __u32 Int_Src;
96 __u32 unused0[2];
97 __u32 PauseCnt;
98 __u32 RemPauCnt;
99 __u32 TxCtlFrmStat;
100 __u32 unused1;
101 __u32 MAC_Ctl; /* 0x40 */
102 __u32 CAM_Ctl;
103 __u32 Tx_Ctl;
104 __u32 Tx_Stat;
105 __u32 Rx_Ctl;
106 __u32 Rx_Stat;
107 __u32 MD_Data;
108 __u32 MD_CA;
109 __u32 CAM_Adr; /* 0x60 */
110 __u32 CAM_Data;
111 __u32 CAM_Ena;
112 __u32 PROM_Ctl;
113 __u32 PROM_Data;
114 __u32 Algn_Cnt;
115 __u32 CRC_Cnt;
116 __u32 Miss_Cnt;
117 };
118
119 /*
120 * Bit assignments
121 */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
124 #define DMA_RxAlign_1 0x00400000
125 #define DMA_RxAlign_2 0x00800000
126 #define DMA_RxAlign_3 0x00c00000
127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */
134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
136
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
140
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
151 #define MAC_Reset 0x00000004 /* 1:Software Reset */
152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */
154
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
157 #define PROM_Read 0x00004000 /*10:Read operation */
158 #define PROM_Write 0x00002000 /*01:Write operation */
159 #define PROM_Erase 0x00006000 /*11:Erase operation */
160 /*00:Enable or Disable Writting, */
161 /* as specified in PROM_Addr. */
162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
163 /*00xxxx: disable */
164
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
168 /* accept other */
169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
172
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
176 #define CAM_Ena_Bit(index) (1 << (index))
177 #define CAM_ENTRY_DESTINATION 0
178 #define CAM_ENTRY_SOURCE 1
179 #define CAM_ENTRY_MACCTL 20
180
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En 0x00000001 /* 1:Transmit enable */
183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
194
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
197 #define Tx_ExColl 0x00000010 /* Excessive Collision */
198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */
199 #define Tx_Paused 0x00000040 /* Transmit Paused */
200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
201 #define Tx_Under 0x00000100 /* Underrun */
202 #define Tx_Defer 0x00000200 /* Deferral */
203 #define Tx_NCarr 0x00000400 /* No Carrier */
204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */
205 #define Tx_LateColl 0x00001000 /* Late Collision */
206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */
207 #define Tx_Comp 0x00004000 /* Completion */
208 #define Tx_Halted 0x00008000 /* Tx Halted */
209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
210
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */
213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */
222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
224
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted 0x00008000 /* Rx Halted */
227 #define Rx_Good 0x00004000 /* Rx Good */
228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */
229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
230 #define Rx_LongErr 0x00000800 /* Rx Long Error */
231 #define Rx_Over 0x00000400 /* Rx Overflow */
232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
233 #define Rx_Align 0x00000100 /* Rx Alignment Error */
234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */
236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
238
239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
240
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
254 /* Exhausted Enable */
255
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
272
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
277
278
279 /*
280 * Descriptors
281 */
282
283 /* Frame descriptor */
284 struct FDesc {
285 volatile __u32 FDNext;
286 volatile __u32 FDSystem;
287 volatile __u32 FDStat;
288 volatile __u32 FDCtl;
289 };
290
291 /* Buffer descriptor */
292 struct BDesc {
293 volatile __u32 BuffData;
294 volatile __u32 BDCtl;
295 };
296
297 #define FD_ALIGN 16
298
299 /* Frame Descriptor bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
310 #define FD_BDCnt_SHIFT 16
311
312 /* Buffer Descriptor bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
317 #define BD_RxBDID_SHIFT 16
318 #define BD_RxBDSeqN_SHIFT 24
319
320
321 /* Some useful constants. */
322
323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 Tx_En) /* maybe 0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD (Int_NRAbtEn | \
330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
332 Int_STargAbtEn | \
333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
336
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE 32
339 #define TX_THRESHOLD 1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM 128 /* < 256 */
348 #define RX_FD_NUM 256 /* >= 32 */
349 #define TX_FD_NUM 128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE \
354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE \
357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
360 #define NAPI_WEIGHT 16
361
362 struct TxFD {
363 struct FDesc fd;
364 struct BDesc bd;
365 struct BDesc unused;
366 };
367
368 struct RxFD {
369 struct FDesc fd;
370 struct BDesc bd[0]; /* variable length */
371 };
372
373 struct FrFD {
374 struct FDesc fd;
375 struct BDesc bd[RX_BUF_NUM];
376 };
377
378
379 #define tc_readl(addr) ioread32(addr)
380 #define tc_writel(d, addr) iowrite32(d, addr)
381
382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
383
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 struct pci_dev *pci_dev;
387
388 struct net_device *dev;
389 struct napi_struct napi;
390
391 /* statistics */
392 struct {
393 int max_tx_qlen;
394 int tx_ints;
395 int rx_ints;
396 int tx_underrun;
397 } lstats;
398
399 /* Tx control lock. This protects the transmit buffer ring
400 * state along with the "tx full" state of the driver. This
401 * means all netif_queue flow control actions are protected
402 * by this lock as well.
403 */
404 spinlock_t lock;
405 spinlock_t rx_lock;
406
407 struct mii_bus *mii_bus;
408 int duplex;
409 int speed;
410 int link;
411 struct work_struct restart_work;
412
413 /*
414 * Transmitting: Batch Mode.
415 * 1 BD in 1 TxFD.
416 * Receiving: Non-Packing Mode.
417 * 1 circular FD for Free Buffer List.
418 * RX_BUF_NUM BD in Free Buffer FD.
419 * One Free Buffer BD has ETH_FRAME_LEN data buffer.
420 */
421 void *fd_buf; /* for TxFD, RxFD, FrFD */
422 dma_addr_t fd_buf_dma;
423 struct TxFD *tfd_base;
424 unsigned int tfd_start;
425 unsigned int tfd_end;
426 struct RxFD *rfd_base;
427 struct RxFD *rfd_limit;
428 struct RxFD *rfd_cur;
429 struct FrFD *fbl_ptr;
430 unsigned int fbl_count;
431 struct {
432 struct sk_buff *skb;
433 dma_addr_t skb_dma;
434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435 u32 msg_enable;
436 enum tc35815_chiptype chiptype;
437 };
438
439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440 {
441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442 }
443 #ifdef DEBUG
444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445 {
446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447 }
448 #endif
449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450 struct pci_dev *hwdev,
451 dma_addr_t *dma_handle)
452 {
453 struct sk_buff *skb;
454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455 if (!skb)
456 return NULL;
457 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
458 PCI_DMA_FROMDEVICE);
459 if (pci_dma_mapping_error(hwdev, *dma_handle)) {
460 dev_kfree_skb_any(skb);
461 return NULL;
462 }
463 skb_reserve(skb, 2); /* make IP header 4byte aligned */
464 return skb;
465 }
466
467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468 {
469 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
470 PCI_DMA_FROMDEVICE);
471 dev_kfree_skb_any(skb);
472 }
473
474 /* Index to functions, as function prototypes. */
475
476 static int tc35815_open(struct net_device *dev);
477 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
478 static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
479 static int tc35815_rx(struct net_device *dev, int limit);
480 static int tc35815_poll(struct napi_struct *napi, int budget);
481 static void tc35815_txdone(struct net_device *dev);
482 static int tc35815_close(struct net_device *dev);
483 static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
484 static void tc35815_set_multicast_list(struct net_device *dev);
485 static void tc35815_tx_timeout(struct net_device *dev);
486 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
487 #ifdef CONFIG_NET_POLL_CONTROLLER
488 static void tc35815_poll_controller(struct net_device *dev);
489 #endif
490 static const struct ethtool_ops tc35815_ethtool_ops;
491
492 /* Example routines you must write ;->. */
493 static void tc35815_chip_reset(struct net_device *dev);
494 static void tc35815_chip_init(struct net_device *dev);
495
496 #ifdef DEBUG
497 static void panic_queues(struct net_device *dev);
498 #endif
499
500 static void tc35815_restart_work(struct work_struct *work);
501
502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503 {
504 struct net_device *dev = bus->priv;
505 struct tc35815_regs __iomem *tr =
506 (struct tc35815_regs __iomem *)dev->base_addr;
507 unsigned long timeout = jiffies + HZ;
508
509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510 udelay(12); /* it takes 32 x 400ns at least */
511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512 if (time_after(jiffies, timeout))
513 return -EIO;
514 cpu_relax();
515 }
516 return tc_readl(&tr->MD_Data) & 0xffff;
517 }
518
519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520 {
521 struct net_device *dev = bus->priv;
522 struct tc35815_regs __iomem *tr =
523 (struct tc35815_regs __iomem *)dev->base_addr;
524 unsigned long timeout = jiffies + HZ;
525
526 tc_writel(val, &tr->MD_Data);
527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528 &tr->MD_CA);
529 udelay(12); /* it takes 32 x 400ns at least */
530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531 if (time_after(jiffies, timeout))
532 return -EIO;
533 cpu_relax();
534 }
535 return 0;
536 }
537
538 static void tc_handle_link_change(struct net_device *dev)
539 {
540 struct tc35815_local *lp = netdev_priv(dev);
541 struct phy_device *phydev = dev->phydev;
542 unsigned long flags;
543 int status_change = 0;
544
545 spin_lock_irqsave(&lp->lock, flags);
546 if (phydev->link &&
547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548 struct tc35815_regs __iomem *tr =
549 (struct tc35815_regs __iomem *)dev->base_addr;
550 u32 reg;
551
552 reg = tc_readl(&tr->MAC_Ctl);
553 reg |= MAC_HaltReq;
554 tc_writel(reg, &tr->MAC_Ctl);
555 if (phydev->duplex == DUPLEX_FULL)
556 reg |= MAC_FullDup;
557 else
558 reg &= ~MAC_FullDup;
559 tc_writel(reg, &tr->MAC_Ctl);
560 reg &= ~MAC_HaltReq;
561 tc_writel(reg, &tr->MAC_Ctl);
562
563 /*
564 * TX4939 PCFG.SPEEDn bit will be changed on
565 * NETDEV_CHANGE event.
566 */
567 /*
568 * WORKAROUND: enable LostCrS only if half duplex
569 * operation.
570 * (TX4939 does not have EnLCarr)
571 */
572 if (phydev->duplex == DUPLEX_HALF &&
573 lp->chiptype != TC35815_TX4939)
574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575 &tr->Tx_Ctl);
576
577 lp->speed = phydev->speed;
578 lp->duplex = phydev->duplex;
579 status_change = 1;
580 }
581
582 if (phydev->link != lp->link) {
583 if (phydev->link) {
584 /* delayed promiscuous enabling */
585 if (dev->flags & IFF_PROMISC)
586 tc35815_set_multicast_list(dev);
587 } else {
588 lp->speed = 0;
589 lp->duplex = -1;
590 }
591 lp->link = phydev->link;
592
593 status_change = 1;
594 }
595 spin_unlock_irqrestore(&lp->lock, flags);
596
597 if (status_change && netif_msg_link(lp)) {
598 phy_print_status(phydev);
599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600 dev->name,
601 phy_read(phydev, MII_BMCR),
602 phy_read(phydev, MII_BMSR),
603 phy_read(phydev, MII_LPA));
604 }
605 }
606
607 static int tc_mii_probe(struct net_device *dev)
608 {
609 struct tc35815_local *lp = netdev_priv(dev);
610 struct phy_device *phydev;
611 u32 dropmask;
612
613 phydev = phy_find_first(lp->mii_bus);
614 if (!phydev) {
615 printk(KERN_ERR "%s: no PHY found\n", dev->name);
616 return -ENODEV;
617 }
618
619 /* attach the mac to the phy */
620 phydev = phy_connect(dev, phydev_name(phydev),
621 &tc_handle_link_change,
622 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623 if (IS_ERR(phydev)) {
624 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625 return PTR_ERR(phydev);
626 }
627
628 phy_attached_info(phydev);
629
630 /* mask with MAC supported features */
631 phydev->supported &= PHY_BASIC_FEATURES;
632 dropmask = 0;
633 if (options.speed == 10)
634 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
635 else if (options.speed == 100)
636 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
637 if (options.duplex == 1)
638 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
639 else if (options.duplex == 2)
640 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
641 phydev->supported &= ~dropmask;
642 phydev->advertising = phydev->supported;
643
644 lp->link = 0;
645 lp->speed = 0;
646 lp->duplex = -1;
647
648 return 0;
649 }
650
651 static int tc_mii_init(struct net_device *dev)
652 {
653 struct tc35815_local *lp = netdev_priv(dev);
654 int err;
655
656 lp->mii_bus = mdiobus_alloc();
657 if (lp->mii_bus == NULL) {
658 err = -ENOMEM;
659 goto err_out;
660 }
661
662 lp->mii_bus->name = "tc35815_mii_bus";
663 lp->mii_bus->read = tc_mdio_read;
664 lp->mii_bus->write = tc_mdio_write;
665 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
666 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
667 lp->mii_bus->priv = dev;
668 lp->mii_bus->parent = &lp->pci_dev->dev;
669 err = mdiobus_register(lp->mii_bus);
670 if (err)
671 goto err_out_free_mii_bus;
672 err = tc_mii_probe(dev);
673 if (err)
674 goto err_out_unregister_bus;
675 return 0;
676
677 err_out_unregister_bus:
678 mdiobus_unregister(lp->mii_bus);
679 err_out_free_mii_bus:
680 mdiobus_free(lp->mii_bus);
681 err_out:
682 return err;
683 }
684
685 #ifdef CONFIG_CPU_TX49XX
686 /*
687 * Find a platform_device providing a MAC address. The platform code
688 * should provide a "tc35815-mac" device with a MAC address in its
689 * platform_data.
690 */
691 static int tc35815_mac_match(struct device *dev, void *data)
692 {
693 struct platform_device *plat_dev = to_platform_device(dev);
694 struct pci_dev *pci_dev = data;
695 unsigned int id = pci_dev->irq;
696 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
697 }
698
699 static int tc35815_read_plat_dev_addr(struct net_device *dev)
700 {
701 struct tc35815_local *lp = netdev_priv(dev);
702 struct device *pd = bus_find_device(&platform_bus_type, NULL,
703 lp->pci_dev, tc35815_mac_match);
704 if (pd) {
705 if (pd->platform_data)
706 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
707 put_device(pd);
708 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
709 }
710 return -ENODEV;
711 }
712 #else
713 static int tc35815_read_plat_dev_addr(struct net_device *dev)
714 {
715 return -ENODEV;
716 }
717 #endif
718
719 static int tc35815_init_dev_addr(struct net_device *dev)
720 {
721 struct tc35815_regs __iomem *tr =
722 (struct tc35815_regs __iomem *)dev->base_addr;
723 int i;
724
725 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
726 ;
727 for (i = 0; i < 6; i += 2) {
728 unsigned short data;
729 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
730 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
731 ;
732 data = tc_readl(&tr->PROM_Data);
733 dev->dev_addr[i] = data & 0xff;
734 dev->dev_addr[i+1] = data >> 8;
735 }
736 if (!is_valid_ether_addr(dev->dev_addr))
737 return tc35815_read_plat_dev_addr(dev);
738 return 0;
739 }
740
741 static const struct net_device_ops tc35815_netdev_ops = {
742 .ndo_open = tc35815_open,
743 .ndo_stop = tc35815_close,
744 .ndo_start_xmit = tc35815_send_packet,
745 .ndo_get_stats = tc35815_get_stats,
746 .ndo_set_rx_mode = tc35815_set_multicast_list,
747 .ndo_tx_timeout = tc35815_tx_timeout,
748 .ndo_do_ioctl = tc35815_ioctl,
749 .ndo_validate_addr = eth_validate_addr,
750 .ndo_set_mac_address = eth_mac_addr,
751 #ifdef CONFIG_NET_POLL_CONTROLLER
752 .ndo_poll_controller = tc35815_poll_controller,
753 #endif
754 };
755
756 static int tc35815_init_one(struct pci_dev *pdev,
757 const struct pci_device_id *ent)
758 {
759 void __iomem *ioaddr = NULL;
760 struct net_device *dev;
761 struct tc35815_local *lp;
762 int rc;
763
764 static int printed_version;
765 if (!printed_version++) {
766 printk(version);
767 dev_printk(KERN_DEBUG, &pdev->dev,
768 "speed:%d duplex:%d\n",
769 options.speed, options.duplex);
770 }
771
772 if (!pdev->irq) {
773 dev_warn(&pdev->dev, "no IRQ assigned.\n");
774 return -ENODEV;
775 }
776
777 /* dev zeroed in alloc_etherdev */
778 dev = alloc_etherdev(sizeof(*lp));
779 if (dev == NULL)
780 return -ENOMEM;
781
782 SET_NETDEV_DEV(dev, &pdev->dev);
783 lp = netdev_priv(dev);
784 lp->dev = dev;
785
786 /* enable device (incl. PCI PM wakeup), and bus-mastering */
787 rc = pcim_enable_device(pdev);
788 if (rc)
789 goto err_out;
790 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
791 if (rc)
792 goto err_out;
793 pci_set_master(pdev);
794 ioaddr = pcim_iomap_table(pdev)[1];
795
796 /* Initialize the device structure. */
797 dev->netdev_ops = &tc35815_netdev_ops;
798 dev->ethtool_ops = &tc35815_ethtool_ops;
799 dev->watchdog_timeo = TC35815_TX_TIMEOUT;
800 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
801
802 dev->irq = pdev->irq;
803 dev->base_addr = (unsigned long)ioaddr;
804
805 INIT_WORK(&lp->restart_work, tc35815_restart_work);
806 spin_lock_init(&lp->lock);
807 spin_lock_init(&lp->rx_lock);
808 lp->pci_dev = pdev;
809 lp->chiptype = ent->driver_data;
810
811 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
812 pci_set_drvdata(pdev, dev);
813
814 /* Soft reset the chip. */
815 tc35815_chip_reset(dev);
816
817 /* Retrieve the ethernet address. */
818 if (tc35815_init_dev_addr(dev)) {
819 dev_warn(&pdev->dev, "not valid ether addr\n");
820 eth_hw_addr_random(dev);
821 }
822
823 rc = register_netdev(dev);
824 if (rc)
825 goto err_out;
826
827 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
828 dev->name,
829 chip_info[ent->driver_data].name,
830 dev->base_addr,
831 dev->dev_addr,
832 dev->irq);
833
834 rc = tc_mii_init(dev);
835 if (rc)
836 goto err_out_unregister;
837
838 return 0;
839
840 err_out_unregister:
841 unregister_netdev(dev);
842 err_out:
843 free_netdev(dev);
844 return rc;
845 }
846
847
848 static void tc35815_remove_one(struct pci_dev *pdev)
849 {
850 struct net_device *dev = pci_get_drvdata(pdev);
851 struct tc35815_local *lp = netdev_priv(dev);
852
853 phy_disconnect(dev->phydev);
854 mdiobus_unregister(lp->mii_bus);
855 mdiobus_free(lp->mii_bus);
856 unregister_netdev(dev);
857 free_netdev(dev);
858 }
859
860 static int
861 tc35815_init_queues(struct net_device *dev)
862 {
863 struct tc35815_local *lp = netdev_priv(dev);
864 int i;
865 unsigned long fd_addr;
866
867 if (!lp->fd_buf) {
868 BUG_ON(sizeof(struct FDesc) +
869 sizeof(struct BDesc) * RX_BUF_NUM +
870 sizeof(struct FDesc) * RX_FD_NUM +
871 sizeof(struct TxFD) * TX_FD_NUM >
872 PAGE_SIZE * FD_PAGE_NUM);
873
874 lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
875 PAGE_SIZE * FD_PAGE_NUM,
876 &lp->fd_buf_dma);
877 if (!lp->fd_buf)
878 return -ENOMEM;
879 for (i = 0; i < RX_BUF_NUM; i++) {
880 lp->rx_skbs[i].skb =
881 alloc_rxbuf_skb(dev, lp->pci_dev,
882 &lp->rx_skbs[i].skb_dma);
883 if (!lp->rx_skbs[i].skb) {
884 while (--i >= 0) {
885 free_rxbuf_skb(lp->pci_dev,
886 lp->rx_skbs[i].skb,
887 lp->rx_skbs[i].skb_dma);
888 lp->rx_skbs[i].skb = NULL;
889 }
890 pci_free_consistent(lp->pci_dev,
891 PAGE_SIZE * FD_PAGE_NUM,
892 lp->fd_buf,
893 lp->fd_buf_dma);
894 lp->fd_buf = NULL;
895 return -ENOMEM;
896 }
897 }
898 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
899 dev->name, lp->fd_buf);
900 printk("\n");
901 } else {
902 for (i = 0; i < FD_PAGE_NUM; i++)
903 clear_page((void *)((unsigned long)lp->fd_buf +
904 i * PAGE_SIZE));
905 }
906 fd_addr = (unsigned long)lp->fd_buf;
907
908 /* Free Descriptors (for Receive) */
909 lp->rfd_base = (struct RxFD *)fd_addr;
910 fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
911 for (i = 0; i < RX_FD_NUM; i++)
912 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
913 lp->rfd_cur = lp->rfd_base;
914 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
915
916 /* Transmit Descriptors */
917 lp->tfd_base = (struct TxFD *)fd_addr;
918 fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
919 for (i = 0; i < TX_FD_NUM; i++) {
920 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
921 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
922 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
923 }
924 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
925 lp->tfd_start = 0;
926 lp->tfd_end = 0;
927
928 /* Buffer List (for Receive) */
929 lp->fbl_ptr = (struct FrFD *)fd_addr;
930 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
931 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
932 /*
933 * move all allocated skbs to head of rx_skbs[] array.
934 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
935 * tc35815_rx() had failed.
936 */
937 lp->fbl_count = 0;
938 for (i = 0; i < RX_BUF_NUM; i++) {
939 if (lp->rx_skbs[i].skb) {
940 if (i != lp->fbl_count) {
941 lp->rx_skbs[lp->fbl_count].skb =
942 lp->rx_skbs[i].skb;
943 lp->rx_skbs[lp->fbl_count].skb_dma =
944 lp->rx_skbs[i].skb_dma;
945 }
946 lp->fbl_count++;
947 }
948 }
949 for (i = 0; i < RX_BUF_NUM; i++) {
950 if (i >= lp->fbl_count) {
951 lp->fbl_ptr->bd[i].BuffData = 0;
952 lp->fbl_ptr->bd[i].BDCtl = 0;
953 continue;
954 }
955 lp->fbl_ptr->bd[i].BuffData =
956 cpu_to_le32(lp->rx_skbs[i].skb_dma);
957 /* BDID is index of FrFD.bd[] */
958 lp->fbl_ptr->bd[i].BDCtl =
959 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
960 RX_BUF_SIZE);
961 }
962
963 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
964 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
965 return 0;
966 }
967
968 static void
969 tc35815_clear_queues(struct net_device *dev)
970 {
971 struct tc35815_local *lp = netdev_priv(dev);
972 int i;
973
974 for (i = 0; i < TX_FD_NUM; i++) {
975 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
976 struct sk_buff *skb =
977 fdsystem != 0xffffffff ?
978 lp->tx_skbs[fdsystem].skb : NULL;
979 #ifdef DEBUG
980 if (lp->tx_skbs[i].skb != skb) {
981 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
982 panic_queues(dev);
983 }
984 #else
985 BUG_ON(lp->tx_skbs[i].skb != skb);
986 #endif
987 if (skb) {
988 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
989 lp->tx_skbs[i].skb = NULL;
990 lp->tx_skbs[i].skb_dma = 0;
991 dev_kfree_skb_any(skb);
992 }
993 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
994 }
995
996 tc35815_init_queues(dev);
997 }
998
999 static void
1000 tc35815_free_queues(struct net_device *dev)
1001 {
1002 struct tc35815_local *lp = netdev_priv(dev);
1003 int i;
1004
1005 if (lp->tfd_base) {
1006 for (i = 0; i < TX_FD_NUM; i++) {
1007 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1008 struct sk_buff *skb =
1009 fdsystem != 0xffffffff ?
1010 lp->tx_skbs[fdsystem].skb : NULL;
1011 #ifdef DEBUG
1012 if (lp->tx_skbs[i].skb != skb) {
1013 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1014 panic_queues(dev);
1015 }
1016 #else
1017 BUG_ON(lp->tx_skbs[i].skb != skb);
1018 #endif
1019 if (skb) {
1020 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1021 dev_kfree_skb(skb);
1022 lp->tx_skbs[i].skb = NULL;
1023 lp->tx_skbs[i].skb_dma = 0;
1024 }
1025 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1026 }
1027 }
1028
1029 lp->rfd_base = NULL;
1030 lp->rfd_limit = NULL;
1031 lp->rfd_cur = NULL;
1032 lp->fbl_ptr = NULL;
1033
1034 for (i = 0; i < RX_BUF_NUM; i++) {
1035 if (lp->rx_skbs[i].skb) {
1036 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1037 lp->rx_skbs[i].skb_dma);
1038 lp->rx_skbs[i].skb = NULL;
1039 }
1040 }
1041 if (lp->fd_buf) {
1042 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1043 lp->fd_buf, lp->fd_buf_dma);
1044 lp->fd_buf = NULL;
1045 }
1046 }
1047
1048 static void
1049 dump_txfd(struct TxFD *fd)
1050 {
1051 printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1052 le32_to_cpu(fd->fd.FDNext),
1053 le32_to_cpu(fd->fd.FDSystem),
1054 le32_to_cpu(fd->fd.FDStat),
1055 le32_to_cpu(fd->fd.FDCtl));
1056 printk("BD: ");
1057 printk(" %08x %08x",
1058 le32_to_cpu(fd->bd.BuffData),
1059 le32_to_cpu(fd->bd.BDCtl));
1060 printk("\n");
1061 }
1062
1063 static int
1064 dump_rxfd(struct RxFD *fd)
1065 {
1066 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1067 if (bd_count > 8)
1068 bd_count = 8;
1069 printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1070 le32_to_cpu(fd->fd.FDNext),
1071 le32_to_cpu(fd->fd.FDSystem),
1072 le32_to_cpu(fd->fd.FDStat),
1073 le32_to_cpu(fd->fd.FDCtl));
1074 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1075 return 0;
1076 printk("BD: ");
1077 for (i = 0; i < bd_count; i++)
1078 printk(" %08x %08x",
1079 le32_to_cpu(fd->bd[i].BuffData),
1080 le32_to_cpu(fd->bd[i].BDCtl));
1081 printk("\n");
1082 return bd_count;
1083 }
1084
1085 #ifdef DEBUG
1086 static void
1087 dump_frfd(struct FrFD *fd)
1088 {
1089 int i;
1090 printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1091 le32_to_cpu(fd->fd.FDNext),
1092 le32_to_cpu(fd->fd.FDSystem),
1093 le32_to_cpu(fd->fd.FDStat),
1094 le32_to_cpu(fd->fd.FDCtl));
1095 printk("BD: ");
1096 for (i = 0; i < RX_BUF_NUM; i++)
1097 printk(" %08x %08x",
1098 le32_to_cpu(fd->bd[i].BuffData),
1099 le32_to_cpu(fd->bd[i].BDCtl));
1100 printk("\n");
1101 }
1102
1103 static void
1104 panic_queues(struct net_device *dev)
1105 {
1106 struct tc35815_local *lp = netdev_priv(dev);
1107 int i;
1108
1109 printk("TxFD base %p, start %u, end %u\n",
1110 lp->tfd_base, lp->tfd_start, lp->tfd_end);
1111 printk("RxFD base %p limit %p cur %p\n",
1112 lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1113 printk("FrFD %p\n", lp->fbl_ptr);
1114 for (i = 0; i < TX_FD_NUM; i++)
1115 dump_txfd(&lp->tfd_base[i]);
1116 for (i = 0; i < RX_FD_NUM; i++) {
1117 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1118 i += (bd_count + 1) / 2; /* skip BDs */
1119 }
1120 dump_frfd(lp->fbl_ptr);
1121 panic("%s: Illegal queue state.", dev->name);
1122 }
1123 #endif
1124
1125 static void print_eth(const u8 *add)
1126 {
1127 printk(KERN_DEBUG "print_eth(%p)\n", add);
1128 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1129 add + 6, add, add[12], add[13]);
1130 }
1131
1132 static int tc35815_tx_full(struct net_device *dev)
1133 {
1134 struct tc35815_local *lp = netdev_priv(dev);
1135 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1136 }
1137
1138 static void tc35815_restart(struct net_device *dev)
1139 {
1140 struct tc35815_local *lp = netdev_priv(dev);
1141 int ret;
1142
1143 if (dev->phydev) {
1144 ret = phy_init_hw(dev->phydev);
1145 if (ret)
1146 printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1147 }
1148
1149 spin_lock_bh(&lp->rx_lock);
1150 spin_lock_irq(&lp->lock);
1151 tc35815_chip_reset(dev);
1152 tc35815_clear_queues(dev);
1153 tc35815_chip_init(dev);
1154 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1155 tc35815_set_multicast_list(dev);
1156 spin_unlock_irq(&lp->lock);
1157 spin_unlock_bh(&lp->rx_lock);
1158
1159 netif_wake_queue(dev);
1160 }
1161
1162 static void tc35815_restart_work(struct work_struct *work)
1163 {
1164 struct tc35815_local *lp =
1165 container_of(work, struct tc35815_local, restart_work);
1166 struct net_device *dev = lp->dev;
1167
1168 tc35815_restart(dev);
1169 }
1170
1171 static void tc35815_schedule_restart(struct net_device *dev)
1172 {
1173 struct tc35815_local *lp = netdev_priv(dev);
1174 struct tc35815_regs __iomem *tr =
1175 (struct tc35815_regs __iomem *)dev->base_addr;
1176 unsigned long flags;
1177
1178 /* disable interrupts */
1179 spin_lock_irqsave(&lp->lock, flags);
1180 tc_writel(0, &tr->Int_En);
1181 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1182 schedule_work(&lp->restart_work);
1183 spin_unlock_irqrestore(&lp->lock, flags);
1184 }
1185
1186 static void tc35815_tx_timeout(struct net_device *dev)
1187 {
1188 struct tc35815_regs __iomem *tr =
1189 (struct tc35815_regs __iomem *)dev->base_addr;
1190
1191 printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1192 dev->name, tc_readl(&tr->Tx_Stat));
1193
1194 /* Try to restart the adaptor. */
1195 tc35815_schedule_restart(dev);
1196 dev->stats.tx_errors++;
1197 }
1198
1199 /*
1200 * Open/initialize the controller. This is called (in the current kernel)
1201 * sometime after booting when the 'ifconfig' program is run.
1202 *
1203 * This routine should set everything up anew at each open, even
1204 * registers that "should" only need to be set once at boot, so that
1205 * there is non-reboot way to recover if something goes wrong.
1206 */
1207 static int
1208 tc35815_open(struct net_device *dev)
1209 {
1210 struct tc35815_local *lp = netdev_priv(dev);
1211
1212 /*
1213 * This is used if the interrupt line can turned off (shared).
1214 * See 3c503.c for an example of selecting the IRQ at config-time.
1215 */
1216 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1217 dev->name, dev))
1218 return -EAGAIN;
1219
1220 tc35815_chip_reset(dev);
1221
1222 if (tc35815_init_queues(dev) != 0) {
1223 free_irq(dev->irq, dev);
1224 return -EAGAIN;
1225 }
1226
1227 napi_enable(&lp->napi);
1228
1229 /* Reset the hardware here. Don't forget to set the station address. */
1230 spin_lock_irq(&lp->lock);
1231 tc35815_chip_init(dev);
1232 spin_unlock_irq(&lp->lock);
1233
1234 netif_carrier_off(dev);
1235 /* schedule a link state check */
1236 phy_start(dev->phydev);
1237
1238 /* We are now ready to accept transmit requeusts from
1239 * the queueing layer of the networking.
1240 */
1241 netif_start_queue(dev);
1242
1243 return 0;
1244 }
1245
1246 /* This will only be invoked if your driver is _not_ in XOFF state.
1247 * What this means is that you need not check it, and that this
1248 * invariant will hold if you make sure that the netif_*_queue()
1249 * calls are done at the proper times.
1250 */
1251 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1252 {
1253 struct tc35815_local *lp = netdev_priv(dev);
1254 struct TxFD *txfd;
1255 unsigned long flags;
1256
1257 /* If some error occurs while trying to transmit this
1258 * packet, you should return '1' from this function.
1259 * In such a case you _may not_ do anything to the
1260 * SKB, it is still owned by the network queueing
1261 * layer when an error is returned. This means you
1262 * may not modify any SKB fields, you may not free
1263 * the SKB, etc.
1264 */
1265
1266 /* This is the most common case for modern hardware.
1267 * The spinlock protects this code from the TX complete
1268 * hardware interrupt handler. Queue flow control is
1269 * thus managed under this lock as well.
1270 */
1271 spin_lock_irqsave(&lp->lock, flags);
1272
1273 /* failsafe... (handle txdone now if half of FDs are used) */
1274 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1275 TX_FD_NUM / 2)
1276 tc35815_txdone(dev);
1277
1278 if (netif_msg_pktdata(lp))
1279 print_eth(skb->data);
1280 #ifdef DEBUG
1281 if (lp->tx_skbs[lp->tfd_start].skb) {
1282 printk("%s: tx_skbs conflict.\n", dev->name);
1283 panic_queues(dev);
1284 }
1285 #else
1286 BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1287 #endif
1288 lp->tx_skbs[lp->tfd_start].skb = skb;
1289 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1290
1291 /*add to ring */
1292 txfd = &lp->tfd_base[lp->tfd_start];
1293 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1294 txfd->bd.BDCtl = cpu_to_le32(skb->len);
1295 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1296 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1297
1298 if (lp->tfd_start == lp->tfd_end) {
1299 struct tc35815_regs __iomem *tr =
1300 (struct tc35815_regs __iomem *)dev->base_addr;
1301 /* Start DMA Transmitter. */
1302 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1303 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1304 if (netif_msg_tx_queued(lp)) {
1305 printk("%s: starting TxFD.\n", dev->name);
1306 dump_txfd(txfd);
1307 }
1308 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1309 } else {
1310 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1311 if (netif_msg_tx_queued(lp)) {
1312 printk("%s: queueing TxFD.\n", dev->name);
1313 dump_txfd(txfd);
1314 }
1315 }
1316 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1317
1318 /* If we just used up the very last entry in the
1319 * TX ring on this device, tell the queueing
1320 * layer to send no more.
1321 */
1322 if (tc35815_tx_full(dev)) {
1323 if (netif_msg_tx_queued(lp))
1324 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1325 netif_stop_queue(dev);
1326 }
1327
1328 /* When the TX completion hw interrupt arrives, this
1329 * is when the transmit statistics are updated.
1330 */
1331
1332 spin_unlock_irqrestore(&lp->lock, flags);
1333 return NETDEV_TX_OK;
1334 }
1335
1336 #define FATAL_ERROR_INT \
1337 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1338 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1339 {
1340 static int count;
1341 printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1342 dev->name, status);
1343 if (status & Int_IntPCI)
1344 printk(" IntPCI");
1345 if (status & Int_DmParErr)
1346 printk(" DmParErr");
1347 if (status & Int_IntNRAbt)
1348 printk(" IntNRAbt");
1349 printk("\n");
1350 if (count++ > 100)
1351 panic("%s: Too many fatal errors.", dev->name);
1352 printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1353 /* Try to restart the adaptor. */
1354 tc35815_schedule_restart(dev);
1355 }
1356
1357 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1358 {
1359 struct tc35815_local *lp = netdev_priv(dev);
1360 int ret = -1;
1361
1362 /* Fatal errors... */
1363 if (status & FATAL_ERROR_INT) {
1364 tc35815_fatal_error_interrupt(dev, status);
1365 return 0;
1366 }
1367 /* recoverable errors */
1368 if (status & Int_IntFDAEx) {
1369 if (netif_msg_rx_err(lp))
1370 dev_warn(&dev->dev,
1371 "Free Descriptor Area Exhausted (%#x).\n",
1372 status);
1373 dev->stats.rx_dropped++;
1374 ret = 0;
1375 }
1376 if (status & Int_IntBLEx) {
1377 if (netif_msg_rx_err(lp))
1378 dev_warn(&dev->dev,
1379 "Buffer List Exhausted (%#x).\n",
1380 status);
1381 dev->stats.rx_dropped++;
1382 ret = 0;
1383 }
1384 if (status & Int_IntExBD) {
1385 if (netif_msg_rx_err(lp))
1386 dev_warn(&dev->dev,
1387 "Excessive Buffer Descriptors (%#x).\n",
1388 status);
1389 dev->stats.rx_length_errors++;
1390 ret = 0;
1391 }
1392
1393 /* normal notification */
1394 if (status & Int_IntMacRx) {
1395 /* Got a packet(s). */
1396 ret = tc35815_rx(dev, limit);
1397 lp->lstats.rx_ints++;
1398 }
1399 if (status & Int_IntMacTx) {
1400 /* Transmit complete. */
1401 lp->lstats.tx_ints++;
1402 spin_lock_irq(&lp->lock);
1403 tc35815_txdone(dev);
1404 spin_unlock_irq(&lp->lock);
1405 if (ret < 0)
1406 ret = 0;
1407 }
1408 return ret;
1409 }
1410
1411 /*
1412 * The typical workload of the driver:
1413 * Handle the network interface interrupts.
1414 */
1415 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1416 {
1417 struct net_device *dev = dev_id;
1418 struct tc35815_local *lp = netdev_priv(dev);
1419 struct tc35815_regs __iomem *tr =
1420 (struct tc35815_regs __iomem *)dev->base_addr;
1421 u32 dmactl = tc_readl(&tr->DMA_Ctl);
1422
1423 if (!(dmactl & DMA_IntMask)) {
1424 /* disable interrupts */
1425 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1426 if (napi_schedule_prep(&lp->napi))
1427 __napi_schedule(&lp->napi);
1428 else {
1429 printk(KERN_ERR "%s: interrupt taken in poll\n",
1430 dev->name);
1431 BUG();
1432 }
1433 (void)tc_readl(&tr->Int_Src); /* flush */
1434 return IRQ_HANDLED;
1435 }
1436 return IRQ_NONE;
1437 }
1438
1439 #ifdef CONFIG_NET_POLL_CONTROLLER
1440 static void tc35815_poll_controller(struct net_device *dev)
1441 {
1442 disable_irq(dev->irq);
1443 tc35815_interrupt(dev->irq, dev);
1444 enable_irq(dev->irq);
1445 }
1446 #endif
1447
1448 /* We have a good packet(s), get it/them out of the buffers. */
1449 static int
1450 tc35815_rx(struct net_device *dev, int limit)
1451 {
1452 struct tc35815_local *lp = netdev_priv(dev);
1453 unsigned int fdctl;
1454 int i;
1455 int received = 0;
1456
1457 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1458 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1459 int pkt_len = fdctl & FD_FDLength_MASK;
1460 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1461 #ifdef DEBUG
1462 struct RxFD *next_rfd;
1463 #endif
1464 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1465 pkt_len -= ETH_FCS_LEN;
1466 #endif
1467
1468 if (netif_msg_rx_status(lp))
1469 dump_rxfd(lp->rfd_cur);
1470 if (status & Rx_Good) {
1471 struct sk_buff *skb;
1472 unsigned char *data;
1473 int cur_bd;
1474
1475 if (--limit < 0)
1476 break;
1477 BUG_ON(bd_count > 1);
1478 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1479 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1480 #ifdef DEBUG
1481 if (cur_bd >= RX_BUF_NUM) {
1482 printk("%s: invalid BDID.\n", dev->name);
1483 panic_queues(dev);
1484 }
1485 BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1486 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1487 if (!lp->rx_skbs[cur_bd].skb) {
1488 printk("%s: NULL skb.\n", dev->name);
1489 panic_queues(dev);
1490 }
1491 #else
1492 BUG_ON(cur_bd >= RX_BUF_NUM);
1493 #endif
1494 skb = lp->rx_skbs[cur_bd].skb;
1495 prefetch(skb->data);
1496 lp->rx_skbs[cur_bd].skb = NULL;
1497 pci_unmap_single(lp->pci_dev,
1498 lp->rx_skbs[cur_bd].skb_dma,
1499 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1500 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1501 memmove(skb->data, skb->data - NET_IP_ALIGN,
1502 pkt_len);
1503 data = skb_put(skb, pkt_len);
1504 if (netif_msg_pktdata(lp))
1505 print_eth(data);
1506 skb->protocol = eth_type_trans(skb, dev);
1507 netif_receive_skb(skb);
1508 received++;
1509 dev->stats.rx_packets++;
1510 dev->stats.rx_bytes += pkt_len;
1511 } else {
1512 dev->stats.rx_errors++;
1513 if (netif_msg_rx_err(lp))
1514 dev_info(&dev->dev, "Rx error (status %x)\n",
1515 status & Rx_Stat_Mask);
1516 /* WORKAROUND: LongErr and CRCErr means Overflow. */
1517 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1518 status &= ~(Rx_LongErr|Rx_CRCErr);
1519 status |= Rx_Over;
1520 }
1521 if (status & Rx_LongErr)
1522 dev->stats.rx_length_errors++;
1523 if (status & Rx_Over)
1524 dev->stats.rx_fifo_errors++;
1525 if (status & Rx_CRCErr)
1526 dev->stats.rx_crc_errors++;
1527 if (status & Rx_Align)
1528 dev->stats.rx_frame_errors++;
1529 }
1530
1531 if (bd_count > 0) {
1532 /* put Free Buffer back to controller */
1533 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1534 unsigned char id =
1535 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1536 #ifdef DEBUG
1537 if (id >= RX_BUF_NUM) {
1538 printk("%s: invalid BDID.\n", dev->name);
1539 panic_queues(dev);
1540 }
1541 #else
1542 BUG_ON(id >= RX_BUF_NUM);
1543 #endif
1544 /* free old buffers */
1545 lp->fbl_count--;
1546 while (lp->fbl_count < RX_BUF_NUM)
1547 {
1548 unsigned char curid =
1549 (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1550 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1551 #ifdef DEBUG
1552 bdctl = le32_to_cpu(bd->BDCtl);
1553 if (bdctl & BD_CownsBD) {
1554 printk("%s: Freeing invalid BD.\n",
1555 dev->name);
1556 panic_queues(dev);
1557 }
1558 #endif
1559 /* pass BD to controller */
1560 if (!lp->rx_skbs[curid].skb) {
1561 lp->rx_skbs[curid].skb =
1562 alloc_rxbuf_skb(dev,
1563 lp->pci_dev,
1564 &lp->rx_skbs[curid].skb_dma);
1565 if (!lp->rx_skbs[curid].skb)
1566 break; /* try on next reception */
1567 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1568 }
1569 /* Note: BDLength was modified by chip. */
1570 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1571 (curid << BD_RxBDID_SHIFT) |
1572 RX_BUF_SIZE);
1573 lp->fbl_count++;
1574 }
1575 }
1576
1577 /* put RxFD back to controller */
1578 #ifdef DEBUG
1579 next_rfd = fd_bus_to_virt(lp,
1580 le32_to_cpu(lp->rfd_cur->fd.FDNext));
1581 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1582 printk("%s: RxFD FDNext invalid.\n", dev->name);
1583 panic_queues(dev);
1584 }
1585 #endif
1586 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1587 /* pass FD to controller */
1588 #ifdef DEBUG
1589 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1590 #else
1591 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1592 #endif
1593 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1594 lp->rfd_cur++;
1595 }
1596 if (lp->rfd_cur > lp->rfd_limit)
1597 lp->rfd_cur = lp->rfd_base;
1598 #ifdef DEBUG
1599 if (lp->rfd_cur != next_rfd)
1600 printk("rfd_cur = %p, next_rfd %p\n",
1601 lp->rfd_cur, next_rfd);
1602 #endif
1603 }
1604
1605 return received;
1606 }
1607
1608 static int tc35815_poll(struct napi_struct *napi, int budget)
1609 {
1610 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1611 struct net_device *dev = lp->dev;
1612 struct tc35815_regs __iomem *tr =
1613 (struct tc35815_regs __iomem *)dev->base_addr;
1614 int received = 0, handled;
1615 u32 status;
1616
1617 if (budget <= 0)
1618 return received;
1619
1620 spin_lock(&lp->rx_lock);
1621 status = tc_readl(&tr->Int_Src);
1622 do {
1623 /* BLEx, FDAEx will be cleared later */
1624 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1625 &tr->Int_Src); /* write to clear */
1626
1627 handled = tc35815_do_interrupt(dev, status, budget - received);
1628 if (status & (Int_BLEx | Int_FDAEx))
1629 tc_writel(status & (Int_BLEx | Int_FDAEx),
1630 &tr->Int_Src);
1631 if (handled >= 0) {
1632 received += handled;
1633 if (received >= budget)
1634 break;
1635 }
1636 status = tc_readl(&tr->Int_Src);
1637 } while (status);
1638 spin_unlock(&lp->rx_lock);
1639
1640 if (received < budget) {
1641 napi_complete_done(napi, received);
1642 /* enable interrupts */
1643 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1644 }
1645 return received;
1646 }
1647
1648 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1649
1650 static void
1651 tc35815_check_tx_stat(struct net_device *dev, int status)
1652 {
1653 struct tc35815_local *lp = netdev_priv(dev);
1654 const char *msg = NULL;
1655
1656 /* count collisions */
1657 if (status & Tx_ExColl)
1658 dev->stats.collisions += 16;
1659 if (status & Tx_TxColl_MASK)
1660 dev->stats.collisions += status & Tx_TxColl_MASK;
1661
1662 /* TX4939 does not have NCarr */
1663 if (lp->chiptype == TC35815_TX4939)
1664 status &= ~Tx_NCarr;
1665 /* WORKAROUND: ignore LostCrS in full duplex operation */
1666 if (!lp->link || lp->duplex == DUPLEX_FULL)
1667 status &= ~Tx_NCarr;
1668
1669 if (!(status & TX_STA_ERR)) {
1670 /* no error. */
1671 dev->stats.tx_packets++;
1672 return;
1673 }
1674
1675 dev->stats.tx_errors++;
1676 if (status & Tx_ExColl) {
1677 dev->stats.tx_aborted_errors++;
1678 msg = "Excessive Collision.";
1679 }
1680 if (status & Tx_Under) {
1681 dev->stats.tx_fifo_errors++;
1682 msg = "Tx FIFO Underrun.";
1683 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1684 lp->lstats.tx_underrun++;
1685 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1686 struct tc35815_regs __iomem *tr =
1687 (struct tc35815_regs __iomem *)dev->base_addr;
1688 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1689 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1690 }
1691 }
1692 }
1693 if (status & Tx_Defer) {
1694 dev->stats.tx_fifo_errors++;
1695 msg = "Excessive Deferral.";
1696 }
1697 if (status & Tx_NCarr) {
1698 dev->stats.tx_carrier_errors++;
1699 msg = "Lost Carrier Sense.";
1700 }
1701 if (status & Tx_LateColl) {
1702 dev->stats.tx_aborted_errors++;
1703 msg = "Late Collision.";
1704 }
1705 if (status & Tx_TxPar) {
1706 dev->stats.tx_fifo_errors++;
1707 msg = "Transmit Parity Error.";
1708 }
1709 if (status & Tx_SQErr) {
1710 dev->stats.tx_heartbeat_errors++;
1711 msg = "Signal Quality Error.";
1712 }
1713 if (msg && netif_msg_tx_err(lp))
1714 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1715 }
1716
1717 /* This handles TX complete events posted by the device
1718 * via interrupts.
1719 */
1720 static void
1721 tc35815_txdone(struct net_device *dev)
1722 {
1723 struct tc35815_local *lp = netdev_priv(dev);
1724 struct TxFD *txfd;
1725 unsigned int fdctl;
1726
1727 txfd = &lp->tfd_base[lp->tfd_end];
1728 while (lp->tfd_start != lp->tfd_end &&
1729 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1730 int status = le32_to_cpu(txfd->fd.FDStat);
1731 struct sk_buff *skb;
1732 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1733 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1734
1735 if (netif_msg_tx_done(lp)) {
1736 printk("%s: complete TxFD.\n", dev->name);
1737 dump_txfd(txfd);
1738 }
1739 tc35815_check_tx_stat(dev, status);
1740
1741 skb = fdsystem != 0xffffffff ?
1742 lp->tx_skbs[fdsystem].skb : NULL;
1743 #ifdef DEBUG
1744 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1745 printk("%s: tx_skbs mismatch.\n", dev->name);
1746 panic_queues(dev);
1747 }
1748 #else
1749 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1750 #endif
1751 if (skb) {
1752 dev->stats.tx_bytes += skb->len;
1753 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1754 lp->tx_skbs[lp->tfd_end].skb = NULL;
1755 lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1756 dev_kfree_skb_any(skb);
1757 }
1758 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1759
1760 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1761 txfd = &lp->tfd_base[lp->tfd_end];
1762 #ifdef DEBUG
1763 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1764 printk("%s: TxFD FDNext invalid.\n", dev->name);
1765 panic_queues(dev);
1766 }
1767 #endif
1768 if (fdnext & FD_Next_EOL) {
1769 /* DMA Transmitter has been stopping... */
1770 if (lp->tfd_end != lp->tfd_start) {
1771 struct tc35815_regs __iomem *tr =
1772 (struct tc35815_regs __iomem *)dev->base_addr;
1773 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1774 struct TxFD *txhead = &lp->tfd_base[head];
1775 int qlen = (lp->tfd_start + TX_FD_NUM
1776 - lp->tfd_end) % TX_FD_NUM;
1777
1778 #ifdef DEBUG
1779 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1780 printk("%s: TxFD FDCtl invalid.\n", dev->name);
1781 panic_queues(dev);
1782 }
1783 #endif
1784 /* log max queue length */
1785 if (lp->lstats.max_tx_qlen < qlen)
1786 lp->lstats.max_tx_qlen = qlen;
1787
1788
1789 /* start DMA Transmitter again */
1790 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1791 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1792 if (netif_msg_tx_queued(lp)) {
1793 printk("%s: start TxFD on queue.\n",
1794 dev->name);
1795 dump_txfd(txfd);
1796 }
1797 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1798 }
1799 break;
1800 }
1801 }
1802
1803 /* If we had stopped the queue due to a "tx full"
1804 * condition, and space has now been made available,
1805 * wake up the queue.
1806 */
1807 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1808 netif_wake_queue(dev);
1809 }
1810
1811 /* The inverse routine to tc35815_open(). */
1812 static int
1813 tc35815_close(struct net_device *dev)
1814 {
1815 struct tc35815_local *lp = netdev_priv(dev);
1816
1817 netif_stop_queue(dev);
1818 napi_disable(&lp->napi);
1819 if (dev->phydev)
1820 phy_stop(dev->phydev);
1821 cancel_work_sync(&lp->restart_work);
1822
1823 /* Flush the Tx and disable Rx here. */
1824 tc35815_chip_reset(dev);
1825 free_irq(dev->irq, dev);
1826
1827 tc35815_free_queues(dev);
1828
1829 return 0;
1830
1831 }
1832
1833 /*
1834 * Get the current statistics.
1835 * This may be called with the card open or closed.
1836 */
1837 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1838 {
1839 struct tc35815_regs __iomem *tr =
1840 (struct tc35815_regs __iomem *)dev->base_addr;
1841 if (netif_running(dev))
1842 /* Update the statistics from the device registers. */
1843 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1844
1845 return &dev->stats;
1846 }
1847
1848 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1849 {
1850 struct tc35815_local *lp = netdev_priv(dev);
1851 struct tc35815_regs __iomem *tr =
1852 (struct tc35815_regs __iomem *)dev->base_addr;
1853 int cam_index = index * 6;
1854 u32 cam_data;
1855 u32 saved_addr;
1856
1857 saved_addr = tc_readl(&tr->CAM_Adr);
1858
1859 if (netif_msg_hw(lp))
1860 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1861 dev->name, index, addr);
1862 if (index & 1) {
1863 /* read modify write */
1864 tc_writel(cam_index - 2, &tr->CAM_Adr);
1865 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1866 cam_data |= addr[0] << 8 | addr[1];
1867 tc_writel(cam_data, &tr->CAM_Data);
1868 /* write whole word */
1869 tc_writel(cam_index + 2, &tr->CAM_Adr);
1870 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1871 tc_writel(cam_data, &tr->CAM_Data);
1872 } else {
1873 /* write whole word */
1874 tc_writel(cam_index, &tr->CAM_Adr);
1875 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1876 tc_writel(cam_data, &tr->CAM_Data);
1877 /* read modify write */
1878 tc_writel(cam_index + 4, &tr->CAM_Adr);
1879 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1880 cam_data |= addr[4] << 24 | (addr[5] << 16);
1881 tc_writel(cam_data, &tr->CAM_Data);
1882 }
1883
1884 tc_writel(saved_addr, &tr->CAM_Adr);
1885 }
1886
1887
1888 /*
1889 * Set or clear the multicast filter for this adaptor.
1890 * num_addrs == -1 Promiscuous mode, receive all packets
1891 * num_addrs == 0 Normal mode, clear multicast list
1892 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1893 * and do best-effort filtering.
1894 */
1895 static void
1896 tc35815_set_multicast_list(struct net_device *dev)
1897 {
1898 struct tc35815_regs __iomem *tr =
1899 (struct tc35815_regs __iomem *)dev->base_addr;
1900
1901 if (dev->flags & IFF_PROMISC) {
1902 /* With some (all?) 100MHalf HUB, controller will hang
1903 * if we enabled promiscuous mode before linkup... */
1904 struct tc35815_local *lp = netdev_priv(dev);
1905
1906 if (!lp->link)
1907 return;
1908 /* Enable promiscuous mode */
1909 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1910 } else if ((dev->flags & IFF_ALLMULTI) ||
1911 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1912 /* CAM 0, 1, 20 are reserved. */
1913 /* Disable promiscuous mode, use normal mode. */
1914 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1915 } else if (!netdev_mc_empty(dev)) {
1916 struct netdev_hw_addr *ha;
1917 int i;
1918 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1919
1920 tc_writel(0, &tr->CAM_Ctl);
1921 /* Walk the address list, and load the filter */
1922 i = 0;
1923 netdev_for_each_mc_addr(ha, dev) {
1924 /* entry 0,1 is reserved. */
1925 tc35815_set_cam_entry(dev, i + 2, ha->addr);
1926 ena_bits |= CAM_Ena_Bit(i + 2);
1927 i++;
1928 }
1929 tc_writel(ena_bits, &tr->CAM_Ena);
1930 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1931 } else {
1932 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1933 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1934 }
1935 }
1936
1937 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1938 {
1939 struct tc35815_local *lp = netdev_priv(dev);
1940
1941 strlcpy(info->driver, MODNAME, sizeof(info->driver));
1942 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1943 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1944 }
1945
1946 static u32 tc35815_get_msglevel(struct net_device *dev)
1947 {
1948 struct tc35815_local *lp = netdev_priv(dev);
1949 return lp->msg_enable;
1950 }
1951
1952 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1953 {
1954 struct tc35815_local *lp = netdev_priv(dev);
1955 lp->msg_enable = datum;
1956 }
1957
1958 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1959 {
1960 struct tc35815_local *lp = netdev_priv(dev);
1961
1962 switch (sset) {
1963 case ETH_SS_STATS:
1964 return sizeof(lp->lstats) / sizeof(int);
1965 default:
1966 return -EOPNOTSUPP;
1967 }
1968 }
1969
1970 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1971 {
1972 struct tc35815_local *lp = netdev_priv(dev);
1973 data[0] = lp->lstats.max_tx_qlen;
1974 data[1] = lp->lstats.tx_ints;
1975 data[2] = lp->lstats.rx_ints;
1976 data[3] = lp->lstats.tx_underrun;
1977 }
1978
1979 static struct {
1980 const char str[ETH_GSTRING_LEN];
1981 } ethtool_stats_keys[] = {
1982 { "max_tx_qlen" },
1983 { "tx_ints" },
1984 { "rx_ints" },
1985 { "tx_underrun" },
1986 };
1987
1988 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1989 {
1990 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
1991 }
1992
1993 static const struct ethtool_ops tc35815_ethtool_ops = {
1994 .get_drvinfo = tc35815_get_drvinfo,
1995 .get_link = ethtool_op_get_link,
1996 .get_msglevel = tc35815_get_msglevel,
1997 .set_msglevel = tc35815_set_msglevel,
1998 .get_strings = tc35815_get_strings,
1999 .get_sset_count = tc35815_get_sset_count,
2000 .get_ethtool_stats = tc35815_get_ethtool_stats,
2001 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2002 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2003 };
2004
2005 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2006 {
2007 if (!netif_running(dev))
2008 return -EINVAL;
2009 if (!dev->phydev)
2010 return -ENODEV;
2011 return phy_mii_ioctl(dev->phydev, rq, cmd);
2012 }
2013
2014 static void tc35815_chip_reset(struct net_device *dev)
2015 {
2016 struct tc35815_regs __iomem *tr =
2017 (struct tc35815_regs __iomem *)dev->base_addr;
2018 int i;
2019 /* reset the controller */
2020 tc_writel(MAC_Reset, &tr->MAC_Ctl);
2021 udelay(4); /* 3200ns */
2022 i = 0;
2023 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2024 if (i++ > 100) {
2025 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2026 break;
2027 }
2028 mdelay(1);
2029 }
2030 tc_writel(0, &tr->MAC_Ctl);
2031
2032 /* initialize registers to default value */
2033 tc_writel(0, &tr->DMA_Ctl);
2034 tc_writel(0, &tr->TxThrsh);
2035 tc_writel(0, &tr->TxPollCtr);
2036 tc_writel(0, &tr->RxFragSize);
2037 tc_writel(0, &tr->Int_En);
2038 tc_writel(0, &tr->FDA_Bas);
2039 tc_writel(0, &tr->FDA_Lim);
2040 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
2041 tc_writel(0, &tr->CAM_Ctl);
2042 tc_writel(0, &tr->Tx_Ctl);
2043 tc_writel(0, &tr->Rx_Ctl);
2044 tc_writel(0, &tr->CAM_Ena);
2045 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
2046
2047 /* initialize internal SRAM */
2048 tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2049 for (i = 0; i < 0x1000; i += 4) {
2050 tc_writel(i, &tr->CAM_Adr);
2051 tc_writel(0, &tr->CAM_Data);
2052 }
2053 tc_writel(0, &tr->DMA_Ctl);
2054 }
2055
2056 static void tc35815_chip_init(struct net_device *dev)
2057 {
2058 struct tc35815_local *lp = netdev_priv(dev);
2059 struct tc35815_regs __iomem *tr =
2060 (struct tc35815_regs __iomem *)dev->base_addr;
2061 unsigned long txctl = TX_CTL_CMD;
2062
2063 /* load station address to CAM */
2064 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2065
2066 /* Enable CAM (broadcast and unicast) */
2067 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2068 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2069
2070 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2071 if (HAVE_DMA_RXALIGN(lp))
2072 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2073 else
2074 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2075 tc_writel(0, &tr->TxPollCtr); /* Batch mode */
2076 tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2077 tc_writel(INT_EN_CMD, &tr->Int_En);
2078
2079 /* set queues */
2080 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2081 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2082 &tr->FDA_Lim);
2083 /*
2084 * Activation method:
2085 * First, enable the MAC Transmitter and the DMA Receive circuits.
2086 * Then enable the DMA Transmitter and the MAC Receive circuits.
2087 */
2088 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
2089 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2090
2091 /* start MAC transmitter */
2092 /* TX4939 does not have EnLCarr */
2093 if (lp->chiptype == TC35815_TX4939)
2094 txctl &= ~Tx_EnLCarr;
2095 /* WORKAROUND: ignore LostCrS in full duplex operation */
2096 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2097 txctl &= ~Tx_EnLCarr;
2098 tc_writel(txctl, &tr->Tx_Ctl);
2099 }
2100
2101 #ifdef CONFIG_PM
2102 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2103 {
2104 struct net_device *dev = pci_get_drvdata(pdev);
2105 struct tc35815_local *lp = netdev_priv(dev);
2106 unsigned long flags;
2107
2108 pci_save_state(pdev);
2109 if (!netif_running(dev))
2110 return 0;
2111 netif_device_detach(dev);
2112 if (dev->phydev)
2113 phy_stop(dev->phydev);
2114 spin_lock_irqsave(&lp->lock, flags);
2115 tc35815_chip_reset(dev);
2116 spin_unlock_irqrestore(&lp->lock, flags);
2117 pci_set_power_state(pdev, PCI_D3hot);
2118 return 0;
2119 }
2120
2121 static int tc35815_resume(struct pci_dev *pdev)
2122 {
2123 struct net_device *dev = pci_get_drvdata(pdev);
2124
2125 pci_restore_state(pdev);
2126 if (!netif_running(dev))
2127 return 0;
2128 pci_set_power_state(pdev, PCI_D0);
2129 tc35815_restart(dev);
2130 netif_carrier_off(dev);
2131 if (dev->phydev)
2132 phy_start(dev->phydev);
2133 netif_device_attach(dev);
2134 return 0;
2135 }
2136 #endif /* CONFIG_PM */
2137
2138 static struct pci_driver tc35815_pci_driver = {
2139 .name = MODNAME,
2140 .id_table = tc35815_pci_tbl,
2141 .probe = tc35815_init_one,
2142 .remove = tc35815_remove_one,
2143 #ifdef CONFIG_PM
2144 .suspend = tc35815_suspend,
2145 .resume = tc35815_resume,
2146 #endif
2147 };
2148
2149 module_param_named(speed, options.speed, int, 0);
2150 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2151 module_param_named(duplex, options.duplex, int, 0);
2152 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2153
2154 module_pci_driver(tc35815_pci_driver);
2155 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2156 MODULE_LICENSE("GPL");