]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/tundra/tsi108_eth.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / tundra / tsi108_eth.c
1 /*******************************************************************************
2
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
24 *
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30 *
31 */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/interrupt.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/gfp.h>
51
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54
55 #include "tsi108_eth.h"
56
57 #define MII_READ_DELAY 10000 /* max link wait time in msec */
58
59 #define TSI108_RXRING_LEN 256
60
61 /* NOTE: The driver currently does not support receiving packets
62 * larger than the buffer size, so don't decrease this (unless you
63 * want to add such support).
64 */
65 #define TSI108_RXBUF_SIZE 1536
66
67 #define TSI108_TXRING_LEN 256
68
69 #define TSI108_TX_INT_FREQ 64
70
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76
77 struct tsi108_prv_data {
78 void __iomem *regs; /* Base of normal regs */
79 void __iomem *phyregs; /* Base of register bank used for PHY access */
80
81 struct net_device *dev;
82 struct napi_struct napi;
83
84 unsigned int phy; /* Index of PHY for this interface */
85 unsigned int irq_num;
86 unsigned int id;
87 unsigned int phy_type;
88
89 struct timer_list timer;/* Timer that triggers the check phy function */
90 unsigned int rxtail; /* Next entry in rxring to read */
91 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
92 unsigned int rxfree; /* Number of free, allocated RX buffers */
93
94 unsigned int rxpending; /* Non-zero if there are still descriptors
95 * to be processed from a previous descriptor
96 * interrupt condition that has been cleared */
97
98 unsigned int txtail; /* Next TX descriptor to check status on */
99 unsigned int txhead; /* Next TX descriptor to use */
100
101 /* Number of free TX descriptors. This could be calculated from
102 * rxhead and rxtail if one descriptor were left unused to disambiguate
103 * full and empty conditions, but it's simpler to just keep track
104 * explicitly. */
105
106 unsigned int txfree;
107
108 unsigned int phy_ok; /* The PHY is currently powered on. */
109
110 /* PHY status (duplex is 1 for half, 2 for full,
111 * so that the default 0 indicates that neither has
112 * yet been configured). */
113
114 unsigned int link_up;
115 unsigned int speed;
116 unsigned int duplex;
117
118 tx_desc *txring;
119 rx_desc *rxring;
120 struct sk_buff *txskbs[TSI108_TXRING_LEN];
121 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122
123 dma_addr_t txdma, rxdma;
124
125 /* txlock nests in misclock and phy_lock */
126
127 spinlock_t txlock, misclock;
128
129 /* stats is used to hold the upper bits of each hardware counter,
130 * and tmpstats is used to hold the full values for returning
131 * to the caller of get_stats(). They must be separate in case
132 * an overflow interrupt occurs before the stats are consumed.
133 */
134
135 struct net_device_stats stats;
136 struct net_device_stats tmpstats;
137
138 /* These stats are kept separate in hardware, thus require individual
139 * fields for handling carry. They are combined in get_stats.
140 */
141
142 unsigned long rx_fcs; /* Add to rx_frame_errors */
143 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
144 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
145 unsigned long rx_underruns; /* Add to rx_length_errors */
146 unsigned long rx_overruns; /* Add to rx_length_errors */
147
148 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
149 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
150
151 unsigned long mc_hash[16];
152 u32 msg_enable; /* debug message level */
153 struct mii_if_info mii_if;
154 unsigned int init_media;
155 };
156
157 /* Structure for a device driver */
158
159 static struct platform_driver tsi_eth_driver = {
160 .probe = tsi108_init_one,
161 .remove = tsi108_ether_remove,
162 .driver = {
163 .name = "tsi-ethernet",
164 },
165 };
166
167 static void tsi108_timed_checker(unsigned long dev_ptr);
168
169 #ifdef DEBUG
170 static void dump_eth_one(struct net_device *dev)
171 {
172 struct tsi108_prv_data *data = netdev_priv(dev);
173
174 printk("Dumping %s...\n", dev->name);
175 printk("intstat %x intmask %x phy_ok %d"
176 " link %d speed %d duplex %d\n",
177 TSI_READ(TSI108_EC_INTSTAT),
178 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
179 data->link_up, data->speed, data->duplex);
180
181 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
182 data->txhead, data->txtail, data->txfree,
183 TSI_READ(TSI108_EC_TXSTAT),
184 TSI_READ(TSI108_EC_TXESTAT),
185 TSI_READ(TSI108_EC_TXERR));
186
187 printk("RX: head %d, tail %d, free %d, stat %x,"
188 " estat %x, err %x, pending %d\n\n",
189 data->rxhead, data->rxtail, data->rxfree,
190 TSI_READ(TSI108_EC_RXSTAT),
191 TSI_READ(TSI108_EC_RXESTAT),
192 TSI_READ(TSI108_EC_RXERR), data->rxpending);
193 }
194 #endif
195
196 /* Synchronization is needed between the thread and up/down events.
197 * Note that the PHY is accessed through the same registers for both
198 * interfaces, so this can't be made interface-specific.
199 */
200
201 static DEFINE_SPINLOCK(phy_lock);
202
203 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
204 {
205 unsigned i;
206
207 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
208 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
209 (reg << TSI108_MAC_MII_ADDR_REG));
210 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
211 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
212 for (i = 0; i < 100; i++) {
213 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
214 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
215 break;
216 udelay(10);
217 }
218
219 if (i == 100)
220 return 0xffff;
221 else
222 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
223 }
224
225 static void tsi108_write_mii(struct tsi108_prv_data *data,
226 int reg, u16 val)
227 {
228 unsigned i = 100;
229 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
230 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
231 (reg << TSI108_MAC_MII_ADDR_REG));
232 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
233 while (i--) {
234 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
235 TSI108_MAC_MII_IND_BUSY))
236 break;
237 udelay(10);
238 }
239 }
240
241 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
242 {
243 struct tsi108_prv_data *data = netdev_priv(dev);
244 return tsi108_read_mii(data, reg);
245 }
246
247 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
248 {
249 struct tsi108_prv_data *data = netdev_priv(dev);
250 tsi108_write_mii(data, reg, val);
251 }
252
253 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
254 int reg, u16 val)
255 {
256 unsigned i = 1000;
257 TSI_WRITE(TSI108_MAC_MII_ADDR,
258 (0x1e << TSI108_MAC_MII_ADDR_PHY)
259 | (reg << TSI108_MAC_MII_ADDR_REG));
260 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
261 while(i--) {
262 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
263 return;
264 udelay(10);
265 }
266 printk(KERN_ERR "%s function time out\n", __func__);
267 }
268
269 static int mii_speed(struct mii_if_info *mii)
270 {
271 int advert, lpa, val, media;
272 int lpa2 = 0;
273 int speed;
274
275 if (!mii_link_ok(mii))
276 return 0;
277
278 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
279 if ((val & BMSR_ANEGCOMPLETE) == 0)
280 return 0;
281
282 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
283 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
284 media = mii_nway_result(advert & lpa);
285
286 if (mii->supports_gmii)
287 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
288
289 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
290 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
291 return speed;
292 }
293
294 static void tsi108_check_phy(struct net_device *dev)
295 {
296 struct tsi108_prv_data *data = netdev_priv(dev);
297 u32 mac_cfg2_reg, portctrl_reg;
298 u32 duplex;
299 u32 speed;
300 unsigned long flags;
301
302 spin_lock_irqsave(&phy_lock, flags);
303
304 if (!data->phy_ok)
305 goto out;
306
307 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
308 data->init_media = 0;
309
310 if (netif_carrier_ok(dev)) {
311
312 speed = mii_speed(&data->mii_if);
313
314 if ((speed != data->speed) || duplex) {
315
316 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
317 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
318
319 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
320
321 if (speed == 1000) {
322 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
323 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
324 } else {
325 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
326 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
327 }
328
329 data->speed = speed;
330
331 if (data->mii_if.full_duplex) {
332 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
333 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
334 data->duplex = 2;
335 } else {
336 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
337 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
338 data->duplex = 1;
339 }
340
341 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
342 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
343 }
344
345 if (data->link_up == 0) {
346 /* The manual says it can take 3-4 usecs for the speed change
347 * to take effect.
348 */
349 udelay(5);
350
351 spin_lock(&data->txlock);
352 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
353 netif_wake_queue(dev);
354
355 data->link_up = 1;
356 spin_unlock(&data->txlock);
357 }
358 } else {
359 if (data->link_up == 1) {
360 netif_stop_queue(dev);
361 data->link_up = 0;
362 printk(KERN_NOTICE "%s : link is down\n", dev->name);
363 }
364
365 goto out;
366 }
367
368
369 out:
370 spin_unlock_irqrestore(&phy_lock, flags);
371 }
372
373 static inline void
374 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
375 unsigned long *upper)
376 {
377 if (carry & carry_bit)
378 *upper += carry_shift;
379 }
380
381 static void tsi108_stat_carry(struct net_device *dev)
382 {
383 struct tsi108_prv_data *data = netdev_priv(dev);
384 u32 carry1, carry2;
385
386 spin_lock_irq(&data->misclock);
387
388 carry1 = TSI_READ(TSI108_STAT_CARRY1);
389 carry2 = TSI_READ(TSI108_STAT_CARRY2);
390
391 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
392 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
393
394 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
395 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
396
397 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
398 TSI108_STAT_RXPKTS_CARRY,
399 &data->stats.rx_packets);
400
401 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
402 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
403
404 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
405 TSI108_STAT_RXMCAST_CARRY,
406 &data->stats.multicast);
407
408 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
409 TSI108_STAT_RXALIGN_CARRY,
410 &data->stats.rx_frame_errors);
411
412 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
413 TSI108_STAT_RXLENGTH_CARRY,
414 &data->stats.rx_length_errors);
415
416 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
417 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
418
419 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
420 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
421
422 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
423 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
424
425 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
426 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
427
428 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
429 TSI108_STAT_RXDROP_CARRY,
430 &data->stats.rx_missed_errors);
431
432 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
433 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
434
435 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
436 TSI108_STAT_TXPKTS_CARRY,
437 &data->stats.tx_packets);
438
439 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
440 TSI108_STAT_TXEXDEF_CARRY,
441 &data->stats.tx_aborted_errors);
442
443 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
444 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
445
446 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
447 TSI108_STAT_TXTCOL_CARRY,
448 &data->stats.collisions);
449
450 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
451 TSI108_STAT_TXPAUSEDROP_CARRY,
452 &data->tx_pause_drop);
453
454 spin_unlock_irq(&data->misclock);
455 }
456
457 /* Read a stat counter atomically with respect to carries.
458 * data->misclock must be held.
459 */
460 static inline unsigned long
461 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
462 int carry_shift, unsigned long *upper)
463 {
464 int carryreg;
465 unsigned long val;
466
467 if (reg < 0xb0)
468 carryreg = TSI108_STAT_CARRY1;
469 else
470 carryreg = TSI108_STAT_CARRY2;
471
472 again:
473 val = TSI_READ(reg) | *upper;
474
475 /* Check to see if it overflowed, but the interrupt hasn't
476 * been serviced yet. If so, handle the carry here, and
477 * try again.
478 */
479
480 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
481 *upper += carry_shift;
482 TSI_WRITE(carryreg, carry_bit);
483 goto again;
484 }
485
486 return val;
487 }
488
489 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
490 {
491 unsigned long excol;
492
493 struct tsi108_prv_data *data = netdev_priv(dev);
494 spin_lock_irq(&data->misclock);
495
496 data->tmpstats.rx_packets =
497 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
498 TSI108_STAT_CARRY1_RXPKTS,
499 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
500
501 data->tmpstats.tx_packets =
502 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
503 TSI108_STAT_CARRY2_TXPKTS,
504 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
505
506 data->tmpstats.rx_bytes =
507 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
508 TSI108_STAT_CARRY1_RXBYTES,
509 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
510
511 data->tmpstats.tx_bytes =
512 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
513 TSI108_STAT_CARRY2_TXBYTES,
514 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
515
516 data->tmpstats.multicast =
517 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
518 TSI108_STAT_CARRY1_RXMCAST,
519 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
520
521 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
522 TSI108_STAT_CARRY2_TXEXCOL,
523 TSI108_STAT_TXEXCOL_CARRY,
524 &data->tx_coll_abort);
525
526 data->tmpstats.collisions =
527 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
528 TSI108_STAT_CARRY2_TXTCOL,
529 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
530
531 data->tmpstats.collisions += excol;
532
533 data->tmpstats.rx_length_errors =
534 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
535 TSI108_STAT_CARRY1_RXLENGTH,
536 TSI108_STAT_RXLENGTH_CARRY,
537 &data->stats.rx_length_errors);
538
539 data->tmpstats.rx_length_errors +=
540 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
541 TSI108_STAT_CARRY1_RXRUNT,
542 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
543
544 data->tmpstats.rx_length_errors +=
545 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
546 TSI108_STAT_CARRY1_RXJUMBO,
547 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
548
549 data->tmpstats.rx_frame_errors =
550 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
551 TSI108_STAT_CARRY1_RXALIGN,
552 TSI108_STAT_RXALIGN_CARRY,
553 &data->stats.rx_frame_errors);
554
555 data->tmpstats.rx_frame_errors +=
556 tsi108_read_stat(data, TSI108_STAT_RXFCS,
557 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
558 &data->rx_fcs);
559
560 data->tmpstats.rx_frame_errors +=
561 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
562 TSI108_STAT_CARRY1_RXFRAG,
563 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
564
565 data->tmpstats.rx_missed_errors =
566 tsi108_read_stat(data, TSI108_STAT_RXDROP,
567 TSI108_STAT_CARRY1_RXDROP,
568 TSI108_STAT_RXDROP_CARRY,
569 &data->stats.rx_missed_errors);
570
571 /* These three are maintained by software. */
572 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
573 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
574
575 data->tmpstats.tx_aborted_errors =
576 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
577 TSI108_STAT_CARRY2_TXEXDEF,
578 TSI108_STAT_TXEXDEF_CARRY,
579 &data->stats.tx_aborted_errors);
580
581 data->tmpstats.tx_aborted_errors +=
582 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
583 TSI108_STAT_CARRY2_TXPAUSE,
584 TSI108_STAT_TXPAUSEDROP_CARRY,
585 &data->tx_pause_drop);
586
587 data->tmpstats.tx_aborted_errors += excol;
588
589 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
590 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
591 data->tmpstats.rx_crc_errors +
592 data->tmpstats.rx_frame_errors +
593 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
594
595 spin_unlock_irq(&data->misclock);
596 return &data->tmpstats;
597 }
598
599 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
600 {
601 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
602 TSI108_EC_RXQ_PTRHIGH_VALID);
603
604 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
605 | TSI108_EC_RXCTRL_QUEUE0);
606 }
607
608 static void tsi108_restart_tx(struct tsi108_prv_data * data)
609 {
610 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
611 TSI108_EC_TXQ_PTRHIGH_VALID);
612
613 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
614 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
615 }
616
617 /* txlock must be held by caller, with IRQs disabled, and
618 * with permission to re-enable them when the lock is dropped.
619 */
620 static void tsi108_complete_tx(struct net_device *dev)
621 {
622 struct tsi108_prv_data *data = netdev_priv(dev);
623 int tx;
624 struct sk_buff *skb;
625 int release = 0;
626
627 while (!data->txfree || data->txhead != data->txtail) {
628 tx = data->txtail;
629
630 if (data->txring[tx].misc & TSI108_TX_OWN)
631 break;
632
633 skb = data->txskbs[tx];
634
635 if (!(data->txring[tx].misc & TSI108_TX_OK))
636 printk("%s: bad tx packet, misc %x\n",
637 dev->name, data->txring[tx].misc);
638
639 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
640 data->txfree++;
641
642 if (data->txring[tx].misc & TSI108_TX_EOF) {
643 dev_kfree_skb_any(skb);
644 release++;
645 }
646 }
647
648 if (release) {
649 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
650 netif_wake_queue(dev);
651 }
652 }
653
654 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
655 {
656 struct tsi108_prv_data *data = netdev_priv(dev);
657 int frags = skb_shinfo(skb)->nr_frags + 1;
658 int i;
659
660 if (!data->phy_ok && net_ratelimit())
661 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
662
663 if (!data->link_up) {
664 printk(KERN_ERR "%s: Transmit while link is down!\n",
665 dev->name);
666 netif_stop_queue(dev);
667 return NETDEV_TX_BUSY;
668 }
669
670 if (data->txfree < MAX_SKB_FRAGS + 1) {
671 netif_stop_queue(dev);
672
673 if (net_ratelimit())
674 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
675 dev->name);
676 return NETDEV_TX_BUSY;
677 }
678
679 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
680 netif_stop_queue(dev);
681 }
682
683 spin_lock_irq(&data->txlock);
684
685 for (i = 0; i < frags; i++) {
686 int misc = 0;
687 int tx = data->txhead;
688
689 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
690 * the interrupt bit. TX descriptor-complete interrupts are
691 * enabled when the queue fills up, and masked when there is
692 * still free space. This way, when saturating the outbound
693 * link, the tx interrupts are kept to a reasonable level.
694 * When the queue is not full, reclamation of skbs still occurs
695 * as new packets are transmitted, or on a queue-empty
696 * interrupt.
697 */
698
699 if ((tx % TSI108_TX_INT_FREQ == 0) &&
700 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
701 misc = TSI108_TX_INT;
702
703 data->txskbs[tx] = skb;
704
705 if (i == 0) {
706 data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
707 skb_headlen(skb), DMA_TO_DEVICE);
708 data->txring[tx].len = skb_headlen(skb);
709 misc |= TSI108_TX_SOF;
710 } else {
711 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
712
713 data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
714 0,
715 skb_frag_size(frag),
716 DMA_TO_DEVICE);
717 data->txring[tx].len = skb_frag_size(frag);
718 }
719
720 if (i == frags - 1)
721 misc |= TSI108_TX_EOF;
722
723 if (netif_msg_pktdata(data)) {
724 int i;
725 printk("%s: Tx Frame contents (%d)\n", dev->name,
726 skb->len);
727 for (i = 0; i < skb->len; i++)
728 printk(" %2.2x", skb->data[i]);
729 printk(".\n");
730 }
731 data->txring[tx].misc = misc | TSI108_TX_OWN;
732
733 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
734 data->txfree--;
735 }
736
737 tsi108_complete_tx(dev);
738
739 /* This must be done after the check for completed tx descriptors,
740 * so that the tail pointer is correct.
741 */
742
743 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
744 tsi108_restart_tx(data);
745
746 spin_unlock_irq(&data->txlock);
747 return NETDEV_TX_OK;
748 }
749
750 static int tsi108_complete_rx(struct net_device *dev, int budget)
751 {
752 struct tsi108_prv_data *data = netdev_priv(dev);
753 int done = 0;
754
755 while (data->rxfree && done != budget) {
756 int rx = data->rxtail;
757 struct sk_buff *skb;
758
759 if (data->rxring[rx].misc & TSI108_RX_OWN)
760 break;
761
762 skb = data->rxskbs[rx];
763 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
764 data->rxfree--;
765 done++;
766
767 if (data->rxring[rx].misc & TSI108_RX_BAD) {
768 spin_lock_irq(&data->misclock);
769
770 if (data->rxring[rx].misc & TSI108_RX_CRC)
771 data->stats.rx_crc_errors++;
772 if (data->rxring[rx].misc & TSI108_RX_OVER)
773 data->stats.rx_fifo_errors++;
774
775 spin_unlock_irq(&data->misclock);
776
777 dev_kfree_skb_any(skb);
778 continue;
779 }
780 if (netif_msg_pktdata(data)) {
781 int i;
782 printk("%s: Rx Frame contents (%d)\n",
783 dev->name, data->rxring[rx].len);
784 for (i = 0; i < data->rxring[rx].len; i++)
785 printk(" %2.2x", skb->data[i]);
786 printk(".\n");
787 }
788
789 skb_put(skb, data->rxring[rx].len);
790 skb->protocol = eth_type_trans(skb, dev);
791 netif_receive_skb(skb);
792 }
793
794 return done;
795 }
796
797 static int tsi108_refill_rx(struct net_device *dev, int budget)
798 {
799 struct tsi108_prv_data *data = netdev_priv(dev);
800 int done = 0;
801
802 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
803 int rx = data->rxhead;
804 struct sk_buff *skb;
805
806 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
807 data->rxskbs[rx] = skb;
808 if (!skb)
809 break;
810
811 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
812 TSI108_RX_SKB_SIZE,
813 DMA_FROM_DEVICE);
814
815 /* Sometimes the hardware sets blen to zero after packet
816 * reception, even though the manual says that it's only ever
817 * modified by the driver.
818 */
819
820 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
821 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
822
823 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
824 data->rxfree++;
825 done++;
826 }
827
828 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
829 TSI108_EC_RXSTAT_QUEUE0))
830 tsi108_restart_rx(data, dev);
831
832 return done;
833 }
834
835 static int tsi108_poll(struct napi_struct *napi, int budget)
836 {
837 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
838 struct net_device *dev = data->dev;
839 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
840 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
841 int num_received = 0, num_filled = 0;
842
843 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
844 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
845
846 TSI_WRITE(TSI108_EC_RXESTAT, estat);
847 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
848
849 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
850 num_received = tsi108_complete_rx(dev, budget);
851
852 /* This should normally fill no more slots than the number of
853 * packets received in tsi108_complete_rx(). The exception
854 * is when we previously ran out of memory for RX SKBs. In that
855 * case, it's helpful to obey the budget, not only so that the
856 * CPU isn't hogged, but so that memory (which may still be low)
857 * is not hogged by one device.
858 *
859 * A work unit is considered to be two SKBs to allow us to catch
860 * up when the ring has shrunk due to out-of-memory but we're
861 * still removing the full budget's worth of packets each time.
862 */
863
864 if (data->rxfree < TSI108_RXRING_LEN)
865 num_filled = tsi108_refill_rx(dev, budget * 2);
866
867 if (intstat & TSI108_INT_RXERROR) {
868 u32 err = TSI_READ(TSI108_EC_RXERR);
869 TSI_WRITE(TSI108_EC_RXERR, err);
870
871 if (err) {
872 if (net_ratelimit())
873 printk(KERN_DEBUG "%s: RX error %x\n",
874 dev->name, err);
875
876 if (!(TSI_READ(TSI108_EC_RXSTAT) &
877 TSI108_EC_RXSTAT_QUEUE0))
878 tsi108_restart_rx(data, dev);
879 }
880 }
881
882 if (intstat & TSI108_INT_RXOVERRUN) {
883 spin_lock_irq(&data->misclock);
884 data->stats.rx_fifo_errors++;
885 spin_unlock_irq(&data->misclock);
886 }
887
888 if (num_received < budget) {
889 data->rxpending = 0;
890 napi_complete(napi);
891
892 TSI_WRITE(TSI108_EC_INTMASK,
893 TSI_READ(TSI108_EC_INTMASK)
894 & ~(TSI108_INT_RXQUEUE0
895 | TSI108_INT_RXTHRESH |
896 TSI108_INT_RXOVERRUN |
897 TSI108_INT_RXERROR |
898 TSI108_INT_RXWAIT));
899 } else {
900 data->rxpending = 1;
901 }
902
903 return num_received;
904 }
905
906 static void tsi108_rx_int(struct net_device *dev)
907 {
908 struct tsi108_prv_data *data = netdev_priv(dev);
909
910 /* A race could cause dev to already be scheduled, so it's not an
911 * error if that happens (and interrupts shouldn't be re-masked,
912 * because that can cause harmful races, if poll has already
913 * unmasked them but not cleared LINK_STATE_SCHED).
914 *
915 * This can happen if this code races with tsi108_poll(), which masks
916 * the interrupts after tsi108_irq_one() read the mask, but before
917 * napi_schedule is called. It could also happen due to calls
918 * from tsi108_check_rxring().
919 */
920
921 if (napi_schedule_prep(&data->napi)) {
922 /* Mask, rather than ack, the receive interrupts. The ack
923 * will happen in tsi108_poll().
924 */
925
926 TSI_WRITE(TSI108_EC_INTMASK,
927 TSI_READ(TSI108_EC_INTMASK) |
928 TSI108_INT_RXQUEUE0
929 | TSI108_INT_RXTHRESH |
930 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
931 TSI108_INT_RXWAIT);
932 __napi_schedule(&data->napi);
933 } else {
934 if (!netif_running(dev)) {
935 /* This can happen if an interrupt occurs while the
936 * interface is being brought down, as the START
937 * bit is cleared before the stop function is called.
938 *
939 * In this case, the interrupts must be masked, or
940 * they will continue indefinitely.
941 *
942 * There's a race here if the interface is brought down
943 * and then up in rapid succession, as the device could
944 * be made running after the above check and before
945 * the masking below. This will only happen if the IRQ
946 * thread has a lower priority than the task brining
947 * up the interface. Fixing this race would likely
948 * require changes in generic code.
949 */
950
951 TSI_WRITE(TSI108_EC_INTMASK,
952 TSI_READ
953 (TSI108_EC_INTMASK) |
954 TSI108_INT_RXQUEUE0 |
955 TSI108_INT_RXTHRESH |
956 TSI108_INT_RXOVERRUN |
957 TSI108_INT_RXERROR |
958 TSI108_INT_RXWAIT);
959 }
960 }
961 }
962
963 /* If the RX ring has run out of memory, try periodically
964 * to allocate some more, as otherwise poll would never
965 * get called (apart from the initial end-of-queue condition).
966 *
967 * This is called once per second (by default) from the thread.
968 */
969
970 static void tsi108_check_rxring(struct net_device *dev)
971 {
972 struct tsi108_prv_data *data = netdev_priv(dev);
973
974 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
975 * directly, so as to keep the receive path single-threaded
976 * (and thus not needing a lock).
977 */
978
979 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
980 tsi108_rx_int(dev);
981 }
982
983 static void tsi108_tx_int(struct net_device *dev)
984 {
985 struct tsi108_prv_data *data = netdev_priv(dev);
986 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
987
988 TSI_WRITE(TSI108_EC_TXESTAT, estat);
989 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
990 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
991 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
992 u32 err = TSI_READ(TSI108_EC_TXERR);
993 TSI_WRITE(TSI108_EC_TXERR, err);
994
995 if (err && net_ratelimit())
996 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
997 }
998
999 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1000 spin_lock(&data->txlock);
1001 tsi108_complete_tx(dev);
1002 spin_unlock(&data->txlock);
1003 }
1004 }
1005
1006
1007 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1008 {
1009 struct net_device *dev = dev_id;
1010 struct tsi108_prv_data *data = netdev_priv(dev);
1011 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1012
1013 if (!(stat & TSI108_INT_ANY))
1014 return IRQ_NONE; /* Not our interrupt */
1015
1016 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1017
1018 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1019 TSI108_INT_TXERROR))
1020 tsi108_tx_int(dev);
1021 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1022 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1023 TSI108_INT_RXERROR))
1024 tsi108_rx_int(dev);
1025
1026 if (stat & TSI108_INT_SFN) {
1027 if (net_ratelimit())
1028 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1029 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1030 }
1031
1032 if (stat & TSI108_INT_STATCARRY) {
1033 tsi108_stat_carry(dev);
1034 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1035 }
1036
1037 return IRQ_HANDLED;
1038 }
1039
1040 static void tsi108_stop_ethernet(struct net_device *dev)
1041 {
1042 struct tsi108_prv_data *data = netdev_priv(dev);
1043 int i = 1000;
1044 /* Disable all TX and RX queues ... */
1045 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1046 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1047
1048 /* ...and wait for them to become idle */
1049 while(i--) {
1050 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1051 break;
1052 udelay(10);
1053 }
1054 i = 1000;
1055 while(i--){
1056 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1057 return;
1058 udelay(10);
1059 }
1060 printk(KERN_ERR "%s function time out\n", __func__);
1061 }
1062
1063 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1064 {
1065 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1066 udelay(100);
1067 TSI_WRITE(TSI108_MAC_CFG1, 0);
1068
1069 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1070 udelay(100);
1071 TSI_WRITE(TSI108_EC_PORTCTRL,
1072 TSI_READ(TSI108_EC_PORTCTRL) &
1073 ~TSI108_EC_PORTCTRL_STATRST);
1074
1075 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1076 udelay(100);
1077 TSI_WRITE(TSI108_EC_TXCFG,
1078 TSI_READ(TSI108_EC_TXCFG) &
1079 ~TSI108_EC_TXCFG_RST);
1080
1081 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1082 udelay(100);
1083 TSI_WRITE(TSI108_EC_RXCFG,
1084 TSI_READ(TSI108_EC_RXCFG) &
1085 ~TSI108_EC_RXCFG_RST);
1086
1087 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1088 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1089 TSI108_MAC_MII_MGMT_RST);
1090 udelay(100);
1091 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1092 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1093 ~(TSI108_MAC_MII_MGMT_RST |
1094 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1095 }
1096
1097 static int tsi108_get_mac(struct net_device *dev)
1098 {
1099 struct tsi108_prv_data *data = netdev_priv(dev);
1100 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1101 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1102
1103 /* Note that the octets are reversed from what the manual says,
1104 * producing an even weirder ordering...
1105 */
1106 if (word2 == 0 && word1 == 0) {
1107 dev->dev_addr[0] = 0x00;
1108 dev->dev_addr[1] = 0x06;
1109 dev->dev_addr[2] = 0xd2;
1110 dev->dev_addr[3] = 0x00;
1111 dev->dev_addr[4] = 0x00;
1112 if (0x8 == data->phy)
1113 dev->dev_addr[5] = 0x01;
1114 else
1115 dev->dev_addr[5] = 0x02;
1116
1117 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1118
1119 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1120 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1121
1122 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1123 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1124 } else {
1125 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1126 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1127 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1128 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1129 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1130 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1131 }
1132
1133 if (!is_valid_ether_addr(dev->dev_addr)) {
1134 printk(KERN_ERR
1135 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1136 dev->name, word1, word2);
1137 return -EINVAL;
1138 }
1139
1140 return 0;
1141 }
1142
1143 static int tsi108_set_mac(struct net_device *dev, void *addr)
1144 {
1145 struct tsi108_prv_data *data = netdev_priv(dev);
1146 u32 word1, word2;
1147 int i;
1148
1149 if (!is_valid_ether_addr(addr))
1150 return -EADDRNOTAVAIL;
1151
1152 for (i = 0; i < 6; i++)
1153 /* +2 is for the offset of the HW addr type */
1154 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1155
1156 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1157
1158 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1159 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1160
1161 spin_lock_irq(&data->misclock);
1162 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1163 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1164 spin_lock(&data->txlock);
1165
1166 if (data->txfree && data->link_up)
1167 netif_wake_queue(dev);
1168
1169 spin_unlock(&data->txlock);
1170 spin_unlock_irq(&data->misclock);
1171 return 0;
1172 }
1173
1174 /* Protected by dev->xmit_lock. */
1175 static void tsi108_set_rx_mode(struct net_device *dev)
1176 {
1177 struct tsi108_prv_data *data = netdev_priv(dev);
1178 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1179
1180 if (dev->flags & IFF_PROMISC) {
1181 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1182 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1183 goto out;
1184 }
1185
1186 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1187
1188 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1189 int i;
1190 struct netdev_hw_addr *ha;
1191 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1192
1193 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1194
1195 netdev_for_each_mc_addr(ha, dev) {
1196 u32 hash, crc;
1197
1198 crc = ether_crc(6, ha->addr);
1199 hash = crc >> 23;
1200 __set_bit(hash, &data->mc_hash[0]);
1201 }
1202
1203 TSI_WRITE(TSI108_EC_HASHADDR,
1204 TSI108_EC_HASHADDR_AUTOINC |
1205 TSI108_EC_HASHADDR_MCAST);
1206
1207 for (i = 0; i < 16; i++) {
1208 /* The manual says that the hardware may drop
1209 * back-to-back writes to the data register.
1210 */
1211 udelay(1);
1212 TSI_WRITE(TSI108_EC_HASHDATA,
1213 data->mc_hash[i]);
1214 }
1215 }
1216
1217 out:
1218 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1219 }
1220
1221 static void tsi108_init_phy(struct net_device *dev)
1222 {
1223 struct tsi108_prv_data *data = netdev_priv(dev);
1224 u32 i = 0;
1225 u16 phyval = 0;
1226 unsigned long flags;
1227
1228 spin_lock_irqsave(&phy_lock, flags);
1229
1230 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1231 while (--i) {
1232 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1233 break;
1234 udelay(10);
1235 }
1236 if (i == 0)
1237 printk(KERN_ERR "%s function time out\n", __func__);
1238
1239 if (data->phy_type == TSI108_PHY_BCM54XX) {
1240 tsi108_write_mii(data, 0x09, 0x0300);
1241 tsi108_write_mii(data, 0x10, 0x1020);
1242 tsi108_write_mii(data, 0x1c, 0x8c00);
1243 }
1244
1245 tsi108_write_mii(data,
1246 MII_BMCR,
1247 BMCR_ANENABLE | BMCR_ANRESTART);
1248 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1249 cpu_relax();
1250
1251 /* Set G/MII mode and receive clock select in TBI control #2. The
1252 * second port won't work if this isn't done, even though we don't
1253 * use TBI mode.
1254 */
1255
1256 tsi108_write_tbi(data, 0x11, 0x30);
1257
1258 /* FIXME: It seems to take more than 2 back-to-back reads to the
1259 * PHY_STAT register before the link up status bit is set.
1260 */
1261
1262 data->link_up = 0;
1263
1264 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1265 BMSR_LSTATUS)) {
1266 if (i++ > (MII_READ_DELAY / 10)) {
1267 break;
1268 }
1269 spin_unlock_irqrestore(&phy_lock, flags);
1270 msleep(10);
1271 spin_lock_irqsave(&phy_lock, flags);
1272 }
1273
1274 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1275 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1276 data->phy_ok = 1;
1277 data->init_media = 1;
1278 spin_unlock_irqrestore(&phy_lock, flags);
1279 }
1280
1281 static void tsi108_kill_phy(struct net_device *dev)
1282 {
1283 struct tsi108_prv_data *data = netdev_priv(dev);
1284 unsigned long flags;
1285
1286 spin_lock_irqsave(&phy_lock, flags);
1287 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1288 data->phy_ok = 0;
1289 spin_unlock_irqrestore(&phy_lock, flags);
1290 }
1291
1292 static int tsi108_open(struct net_device *dev)
1293 {
1294 int i;
1295 struct tsi108_prv_data *data = netdev_priv(dev);
1296 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1297 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1298
1299 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1300 if (i != 0) {
1301 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1302 data->id, data->irq_num);
1303 return i;
1304 } else {
1305 dev->irq = data->irq_num;
1306 printk(KERN_NOTICE
1307 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1308 data->id, dev->irq, dev->name);
1309 }
1310
1311 data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
1312 GFP_KERNEL);
1313 if (!data->rxring)
1314 return -ENOMEM;
1315
1316 data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
1317 GFP_KERNEL);
1318 if (!data->txring) {
1319 pci_free_consistent(NULL, rxring_size, data->rxring,
1320 data->rxdma);
1321 return -ENOMEM;
1322 }
1323
1324 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1325 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1326 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1327 data->rxring[i].vlan = 0;
1328 }
1329
1330 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1331
1332 data->rxtail = 0;
1333 data->rxhead = 0;
1334
1335 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1336 struct sk_buff *skb;
1337
1338 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1339 if (!skb) {
1340 /* Bah. No memory for now, but maybe we'll get
1341 * some more later.
1342 * For now, we'll live with the smaller ring.
1343 */
1344 printk(KERN_WARNING
1345 "%s: Could only allocate %d receive skb(s).\n",
1346 dev->name, i);
1347 data->rxhead = i;
1348 break;
1349 }
1350
1351 data->rxskbs[i] = skb;
1352 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1353 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1354 }
1355
1356 data->rxfree = i;
1357 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1358
1359 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1360 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1361 data->txring[i].misc = 0;
1362 }
1363
1364 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1365 data->txtail = 0;
1366 data->txhead = 0;
1367 data->txfree = TSI108_TXRING_LEN;
1368 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1369 tsi108_init_phy(dev);
1370
1371 napi_enable(&data->napi);
1372
1373 setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1374 mod_timer(&data->timer, jiffies + 1);
1375
1376 tsi108_restart_rx(data, dev);
1377
1378 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1379
1380 TSI_WRITE(TSI108_EC_INTMASK,
1381 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1382 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1383 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1384 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1385
1386 TSI_WRITE(TSI108_MAC_CFG1,
1387 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1388 netif_start_queue(dev);
1389 return 0;
1390 }
1391
1392 static int tsi108_close(struct net_device *dev)
1393 {
1394 struct tsi108_prv_data *data = netdev_priv(dev);
1395
1396 netif_stop_queue(dev);
1397 napi_disable(&data->napi);
1398
1399 del_timer_sync(&data->timer);
1400
1401 tsi108_stop_ethernet(dev);
1402 tsi108_kill_phy(dev);
1403 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1404 TSI_WRITE(TSI108_MAC_CFG1, 0);
1405
1406 /* Check for any pending TX packets, and drop them. */
1407
1408 while (!data->txfree || data->txhead != data->txtail) {
1409 int tx = data->txtail;
1410 struct sk_buff *skb;
1411 skb = data->txskbs[tx];
1412 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1413 data->txfree++;
1414 dev_kfree_skb(skb);
1415 }
1416
1417 free_irq(data->irq_num, dev);
1418
1419 /* Discard the RX ring. */
1420
1421 while (data->rxfree) {
1422 int rx = data->rxtail;
1423 struct sk_buff *skb;
1424
1425 skb = data->rxskbs[rx];
1426 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1427 data->rxfree--;
1428 dev_kfree_skb(skb);
1429 }
1430
1431 dma_free_coherent(0,
1432 TSI108_RXRING_LEN * sizeof(rx_desc),
1433 data->rxring, data->rxdma);
1434 dma_free_coherent(0,
1435 TSI108_TXRING_LEN * sizeof(tx_desc),
1436 data->txring, data->txdma);
1437
1438 return 0;
1439 }
1440
1441 static void tsi108_init_mac(struct net_device *dev)
1442 {
1443 struct tsi108_prv_data *data = netdev_priv(dev);
1444
1445 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1446 TSI108_MAC_CFG2_PADCRC);
1447
1448 TSI_WRITE(TSI108_EC_TXTHRESH,
1449 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1450 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1451
1452 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1453 ~(TSI108_STAT_CARRY1_RXBYTES |
1454 TSI108_STAT_CARRY1_RXPKTS |
1455 TSI108_STAT_CARRY1_RXFCS |
1456 TSI108_STAT_CARRY1_RXMCAST |
1457 TSI108_STAT_CARRY1_RXALIGN |
1458 TSI108_STAT_CARRY1_RXLENGTH |
1459 TSI108_STAT_CARRY1_RXRUNT |
1460 TSI108_STAT_CARRY1_RXJUMBO |
1461 TSI108_STAT_CARRY1_RXFRAG |
1462 TSI108_STAT_CARRY1_RXJABBER |
1463 TSI108_STAT_CARRY1_RXDROP));
1464
1465 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1466 ~(TSI108_STAT_CARRY2_TXBYTES |
1467 TSI108_STAT_CARRY2_TXPKTS |
1468 TSI108_STAT_CARRY2_TXEXDEF |
1469 TSI108_STAT_CARRY2_TXEXCOL |
1470 TSI108_STAT_CARRY2_TXTCOL |
1471 TSI108_STAT_CARRY2_TXPAUSE));
1472
1473 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1474 TSI_WRITE(TSI108_MAC_CFG1, 0);
1475
1476 TSI_WRITE(TSI108_EC_RXCFG,
1477 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1478
1479 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1480 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1481 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1482 TSI108_EC_TXQ_CFG_SFNPORT));
1483
1484 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1485 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1486 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1487 TSI108_EC_RXQ_CFG_SFNPORT));
1488
1489 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1490 TSI108_EC_TXQ_BUFCFG_BURST256 |
1491 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1492 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1493
1494 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1495 TSI108_EC_RXQ_BUFCFG_BURST256 |
1496 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1497 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1498
1499 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1500 }
1501
1502 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1503 {
1504 struct tsi108_prv_data *data = netdev_priv(dev);
1505 unsigned long flags;
1506 int rc;
1507
1508 spin_lock_irqsave(&data->txlock, flags);
1509 rc = mii_ethtool_gset(&data->mii_if, cmd);
1510 spin_unlock_irqrestore(&data->txlock, flags);
1511
1512 return rc;
1513 }
1514
1515 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1516 {
1517 struct tsi108_prv_data *data = netdev_priv(dev);
1518 unsigned long flags;
1519 int rc;
1520
1521 spin_lock_irqsave(&data->txlock, flags);
1522 rc = mii_ethtool_sset(&data->mii_if, cmd);
1523 spin_unlock_irqrestore(&data->txlock, flags);
1524
1525 return rc;
1526 }
1527
1528 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1529 {
1530 struct tsi108_prv_data *data = netdev_priv(dev);
1531 if (!netif_running(dev))
1532 return -EINVAL;
1533 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1534 }
1535
1536 static const struct ethtool_ops tsi108_ethtool_ops = {
1537 .get_link = ethtool_op_get_link,
1538 .get_settings = tsi108_get_settings,
1539 .set_settings = tsi108_set_settings,
1540 };
1541
1542 static const struct net_device_ops tsi108_netdev_ops = {
1543 .ndo_open = tsi108_open,
1544 .ndo_stop = tsi108_close,
1545 .ndo_start_xmit = tsi108_send_packet,
1546 .ndo_set_rx_mode = tsi108_set_rx_mode,
1547 .ndo_get_stats = tsi108_get_stats,
1548 .ndo_do_ioctl = tsi108_do_ioctl,
1549 .ndo_set_mac_address = tsi108_set_mac,
1550 .ndo_validate_addr = eth_validate_addr,
1551 .ndo_change_mtu = eth_change_mtu,
1552 };
1553
1554 static int
1555 tsi108_init_one(struct platform_device *pdev)
1556 {
1557 struct net_device *dev = NULL;
1558 struct tsi108_prv_data *data = NULL;
1559 hw_info *einfo;
1560 int err = 0;
1561
1562 einfo = dev_get_platdata(&pdev->dev);
1563
1564 if (NULL == einfo) {
1565 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1566 pdev->id);
1567 return -ENODEV;
1568 }
1569
1570 /* Create an ethernet device instance */
1571
1572 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1573 if (!dev)
1574 return -ENOMEM;
1575
1576 printk("tsi108_eth%d: probe...\n", pdev->id);
1577 data = netdev_priv(dev);
1578 data->dev = dev;
1579
1580 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1581 pdev->id, einfo->regs, einfo->phyregs,
1582 einfo->phy, einfo->irq_num);
1583
1584 data->regs = ioremap(einfo->regs, 0x400);
1585 if (NULL == data->regs) {
1586 err = -ENOMEM;
1587 goto regs_fail;
1588 }
1589
1590 data->phyregs = ioremap(einfo->phyregs, 0x400);
1591 if (NULL == data->phyregs) {
1592 err = -ENOMEM;
1593 goto phyregs_fail;
1594 }
1595 /* MII setup */
1596 data->mii_if.dev = dev;
1597 data->mii_if.mdio_read = tsi108_mdio_read;
1598 data->mii_if.mdio_write = tsi108_mdio_write;
1599 data->mii_if.phy_id = einfo->phy;
1600 data->mii_if.phy_id_mask = 0x1f;
1601 data->mii_if.reg_num_mask = 0x1f;
1602
1603 data->phy = einfo->phy;
1604 data->phy_type = einfo->phy_type;
1605 data->irq_num = einfo->irq_num;
1606 data->id = pdev->id;
1607 netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1608 dev->netdev_ops = &tsi108_netdev_ops;
1609 dev->ethtool_ops = &tsi108_ethtool_ops;
1610
1611 /* Apparently, the Linux networking code won't use scatter-gather
1612 * if the hardware doesn't do checksums. However, it's faster
1613 * to checksum in place and use SG, as (among other reasons)
1614 * the cache won't be dirtied (which then has to be flushed
1615 * before DMA). The checksumming is done by the driver (via
1616 * a new function skb_csum_dev() in net/core/skbuff.c).
1617 */
1618
1619 dev->features = NETIF_F_HIGHDMA;
1620
1621 spin_lock_init(&data->txlock);
1622 spin_lock_init(&data->misclock);
1623
1624 tsi108_reset_ether(data);
1625 tsi108_kill_phy(dev);
1626
1627 if ((err = tsi108_get_mac(dev)) != 0) {
1628 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1629 dev->name);
1630 goto register_fail;
1631 }
1632
1633 tsi108_init_mac(dev);
1634 err = register_netdev(dev);
1635 if (err) {
1636 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1637 dev->name);
1638 goto register_fail;
1639 }
1640
1641 platform_set_drvdata(pdev, dev);
1642 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1643 dev->name, dev->dev_addr);
1644 #ifdef DEBUG
1645 data->msg_enable = DEBUG;
1646 dump_eth_one(dev);
1647 #endif
1648
1649 return 0;
1650
1651 register_fail:
1652 iounmap(data->phyregs);
1653
1654 phyregs_fail:
1655 iounmap(data->regs);
1656
1657 regs_fail:
1658 free_netdev(dev);
1659 return err;
1660 }
1661
1662 /* There's no way to either get interrupts from the PHY when
1663 * something changes, or to have the Tsi108 automatically communicate
1664 * with the PHY to reconfigure itself.
1665 *
1666 * Thus, we have to do it using a timer.
1667 */
1668
1669 static void tsi108_timed_checker(unsigned long dev_ptr)
1670 {
1671 struct net_device *dev = (struct net_device *)dev_ptr;
1672 struct tsi108_prv_data *data = netdev_priv(dev);
1673
1674 tsi108_check_phy(dev);
1675 tsi108_check_rxring(dev);
1676 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1677 }
1678
1679 static int tsi108_ether_remove(struct platform_device *pdev)
1680 {
1681 struct net_device *dev = platform_get_drvdata(pdev);
1682 struct tsi108_prv_data *priv = netdev_priv(dev);
1683
1684 unregister_netdev(dev);
1685 tsi108_stop_ethernet(dev);
1686 iounmap(priv->regs);
1687 iounmap(priv->phyregs);
1688 free_netdev(dev);
1689
1690 return 0;
1691 }
1692 module_platform_driver(tsi_eth_driver);
1693
1694 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1695 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1696 MODULE_LICENSE("GPL");
1697 MODULE_ALIAS("platform:tsi-ethernet");