]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/xilinx/xilinx_axienet_main.c
Merge tag 'for-v3.13-fixes' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
1 /*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
21 */
22
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/netdevice.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_platform.h>
30 #include <linux/of_address.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/phy.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36
37 #include "xilinx_axienet.h"
38
39 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40 #define TX_BD_NUM 64
41 #define RX_BD_NUM 128
42
43 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44 #define DRIVER_NAME "xaxienet"
45 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
46 #define DRIVER_VERSION "1.00a"
47
48 #define AXIENET_REGS_N 32
49
50 /* Match table for of_platform binding */
51 static struct of_device_id axienet_of_match[] = {
52 { .compatible = "xlnx,axi-ethernet-1.00.a", },
53 { .compatible = "xlnx,axi-ethernet-1.01.a", },
54 { .compatible = "xlnx,axi-ethernet-2.01.a", },
55 {},
56 };
57
58 MODULE_DEVICE_TABLE(of, axienet_of_match);
59
60 /* Option table for setting up Axi Ethernet hardware options */
61 static struct axienet_option axienet_options[] = {
62 /* Turn on jumbo packet support for both Rx and Tx */
63 {
64 .opt = XAE_OPTION_JUMBO,
65 .reg = XAE_TC_OFFSET,
66 .m_or = XAE_TC_JUM_MASK,
67 }, {
68 .opt = XAE_OPTION_JUMBO,
69 .reg = XAE_RCW1_OFFSET,
70 .m_or = XAE_RCW1_JUM_MASK,
71 }, { /* Turn on VLAN packet support for both Rx and Tx */
72 .opt = XAE_OPTION_VLAN,
73 .reg = XAE_TC_OFFSET,
74 .m_or = XAE_TC_VLAN_MASK,
75 }, {
76 .opt = XAE_OPTION_VLAN,
77 .reg = XAE_RCW1_OFFSET,
78 .m_or = XAE_RCW1_VLAN_MASK,
79 }, { /* Turn on FCS stripping on receive packets */
80 .opt = XAE_OPTION_FCS_STRIP,
81 .reg = XAE_RCW1_OFFSET,
82 .m_or = XAE_RCW1_FCS_MASK,
83 }, { /* Turn on FCS insertion on transmit packets */
84 .opt = XAE_OPTION_FCS_INSERT,
85 .reg = XAE_TC_OFFSET,
86 .m_or = XAE_TC_FCS_MASK,
87 }, { /* Turn off length/type field checking on receive packets */
88 .opt = XAE_OPTION_LENTYPE_ERR,
89 .reg = XAE_RCW1_OFFSET,
90 .m_or = XAE_RCW1_LT_DIS_MASK,
91 }, { /* Turn on Rx flow control */
92 .opt = XAE_OPTION_FLOW_CONTROL,
93 .reg = XAE_FCC_OFFSET,
94 .m_or = XAE_FCC_FCRX_MASK,
95 }, { /* Turn on Tx flow control */
96 .opt = XAE_OPTION_FLOW_CONTROL,
97 .reg = XAE_FCC_OFFSET,
98 .m_or = XAE_FCC_FCTX_MASK,
99 }, { /* Turn on promiscuous frame filtering */
100 .opt = XAE_OPTION_PROMISC,
101 .reg = XAE_FMI_OFFSET,
102 .m_or = XAE_FMI_PM_MASK,
103 }, { /* Enable transmitter */
104 .opt = XAE_OPTION_TXEN,
105 .reg = XAE_TC_OFFSET,
106 .m_or = XAE_TC_TX_MASK,
107 }, { /* Enable receiver */
108 .opt = XAE_OPTION_RXEN,
109 .reg = XAE_RCW1_OFFSET,
110 .m_or = XAE_RCW1_RX_MASK,
111 },
112 {}
113 };
114
115 /**
116 * axienet_dma_in32 - Memory mapped Axi DMA register read
117 * @lp: Pointer to axienet local structure
118 * @reg: Address offset from the base address of the Axi DMA core
119 *
120 * returns: The contents of the Axi DMA register
121 *
122 * This function returns the contents of the corresponding Axi DMA register.
123 */
124 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125 {
126 return in_be32(lp->dma_regs + reg);
127 }
128
129 /**
130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
131 * @lp: Pointer to axienet local structure
132 * @reg: Address offset from the base address of the Axi DMA core
133 * @value: Value to be written into the Axi DMA register
134 *
135 * This function writes the desired value into the corresponding Axi DMA
136 * register.
137 */
138 static inline void axienet_dma_out32(struct axienet_local *lp,
139 off_t reg, u32 value)
140 {
141 out_be32((lp->dma_regs + reg), value);
142 }
143
144 /**
145 * axienet_dma_bd_release - Release buffer descriptor rings
146 * @ndev: Pointer to the net_device structure
147 *
148 * This function is used to release the descriptors allocated in
149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150 * driver stop api is called.
151 */
152 static void axienet_dma_bd_release(struct net_device *ndev)
153 {
154 int i;
155 struct axienet_local *lp = netdev_priv(ndev);
156
157 for (i = 0; i < RX_BD_NUM; i++) {
158 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 lp->max_frm_size, DMA_FROM_DEVICE);
160 dev_kfree_skb((struct sk_buff *)
161 (lp->rx_bd_v[i].sw_id_offset));
162 }
163
164 if (lp->rx_bd_v) {
165 dma_free_coherent(ndev->dev.parent,
166 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 lp->rx_bd_v,
168 lp->rx_bd_p);
169 }
170 if (lp->tx_bd_v) {
171 dma_free_coherent(ndev->dev.parent,
172 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 lp->tx_bd_v,
174 lp->tx_bd_p);
175 }
176 }
177
178 /**
179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180 * @ndev: Pointer to the net_device structure
181 *
182 * returns: 0, on success
183 * -ENOMEM, on failure
184 *
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
188 */
189 static int axienet_dma_bd_init(struct net_device *ndev)
190 {
191 u32 cr;
192 int i;
193 struct sk_buff *skb;
194 struct axienet_local *lp = netdev_priv(ndev);
195
196 /* Reset the indexes which are used for accessing the BDs */
197 lp->tx_bd_ci = 0;
198 lp->tx_bd_tail = 0;
199 lp->rx_bd_ci = 0;
200
201 /*
202 * Allocate the Tx and Rx buffer descriptors.
203 */
204 lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
205 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206 &lp->tx_bd_p, GFP_KERNEL);
207 if (!lp->tx_bd_v)
208 goto out;
209
210 lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
211 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
212 &lp->rx_bd_p, GFP_KERNEL);
213 if (!lp->rx_bd_v)
214 goto out;
215
216 for (i = 0; i < TX_BD_NUM; i++) {
217 lp->tx_bd_v[i].next = lp->tx_bd_p +
218 sizeof(*lp->tx_bd_v) *
219 ((i + 1) % TX_BD_NUM);
220 }
221
222 for (i = 0; i < RX_BD_NUM; i++) {
223 lp->rx_bd_v[i].next = lp->rx_bd_p +
224 sizeof(*lp->rx_bd_v) *
225 ((i + 1) % RX_BD_NUM);
226
227 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
228 if (!skb)
229 goto out;
230
231 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
232 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
233 skb->data,
234 lp->max_frm_size,
235 DMA_FROM_DEVICE);
236 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
237 }
238
239 /* Start updating the Rx channel control register */
240 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
241 /* Update the interrupt coalesce count */
242 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
243 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
244 /* Update the delay timer count */
245 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
246 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
247 /* Enable coalesce, delay timer and error interrupts */
248 cr |= XAXIDMA_IRQ_ALL_MASK;
249 /* Write to the Rx channel control register */
250 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
251
252 /* Start updating the Tx channel control register */
253 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
254 /* Update the interrupt coalesce count */
255 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
256 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
257 /* Update the delay timer count */
258 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
259 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
260 /* Enable coalesce, delay timer and error interrupts */
261 cr |= XAXIDMA_IRQ_ALL_MASK;
262 /* Write to the Tx channel control register */
263 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
264
265 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
266 * halted state. This will make the Rx side ready for reception.*/
267 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
268 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
269 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
270 cr | XAXIDMA_CR_RUNSTOP_MASK);
271 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
272 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
273
274 /* Write to the RS (Run-stop) bit in the Tx channel control register.
275 * Tx channel is now ready to run. But only after we write to the
276 * tail pointer register that the Tx channel will start transmitting */
277 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
278 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
279 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
280 cr | XAXIDMA_CR_RUNSTOP_MASK);
281
282 return 0;
283 out:
284 axienet_dma_bd_release(ndev);
285 return -ENOMEM;
286 }
287
288 /**
289 * axienet_set_mac_address - Write the MAC address
290 * @ndev: Pointer to the net_device structure
291 * @address: 6 byte Address to be written as MAC address
292 *
293 * This function is called to initialize the MAC address of the Axi Ethernet
294 * core. It writes to the UAW0 and UAW1 registers of the core.
295 */
296 static void axienet_set_mac_address(struct net_device *ndev, void *address)
297 {
298 struct axienet_local *lp = netdev_priv(ndev);
299
300 if (address)
301 memcpy(ndev->dev_addr, address, ETH_ALEN);
302 if (!is_valid_ether_addr(ndev->dev_addr))
303 eth_random_addr(ndev->dev_addr);
304
305 /* Set up unicast MAC address filter set its mac address */
306 axienet_iow(lp, XAE_UAW0_OFFSET,
307 (ndev->dev_addr[0]) |
308 (ndev->dev_addr[1] << 8) |
309 (ndev->dev_addr[2] << 16) |
310 (ndev->dev_addr[3] << 24));
311 axienet_iow(lp, XAE_UAW1_OFFSET,
312 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
313 ~XAE_UAW1_UNICASTADDR_MASK) |
314 (ndev->dev_addr[4] |
315 (ndev->dev_addr[5] << 8))));
316 }
317
318 /**
319 * netdev_set_mac_address - Write the MAC address (from outside the driver)
320 * @ndev: Pointer to the net_device structure
321 * @p: 6 byte Address to be written as MAC address
322 *
323 * returns: 0 for all conditions. Presently, there is no failure case.
324 *
325 * This function is called to initialize the MAC address of the Axi Ethernet
326 * core. It calls the core specific axienet_set_mac_address. This is the
327 * function that goes into net_device_ops structure entry ndo_set_mac_address.
328 */
329 static int netdev_set_mac_address(struct net_device *ndev, void *p)
330 {
331 struct sockaddr *addr = p;
332 axienet_set_mac_address(ndev, addr->sa_data);
333 return 0;
334 }
335
336 /**
337 * axienet_set_multicast_list - Prepare the multicast table
338 * @ndev: Pointer to the net_device structure
339 *
340 * This function is called to initialize the multicast table during
341 * initialization. The Axi Ethernet basic multicast support has a four-entry
342 * multicast table which is initialized here. Additionally this function
343 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
344 * means whenever the multicast table entries need to be updated this
345 * function gets called.
346 */
347 static void axienet_set_multicast_list(struct net_device *ndev)
348 {
349 int i;
350 u32 reg, af0reg, af1reg;
351 struct axienet_local *lp = netdev_priv(ndev);
352
353 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
354 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
355 /* We must make the kernel realize we had to move into
356 * promiscuous mode. If it was a promiscuous mode request
357 * the flag is already set. If not we set it. */
358 ndev->flags |= IFF_PROMISC;
359 reg = axienet_ior(lp, XAE_FMI_OFFSET);
360 reg |= XAE_FMI_PM_MASK;
361 axienet_iow(lp, XAE_FMI_OFFSET, reg);
362 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
363 } else if (!netdev_mc_empty(ndev)) {
364 struct netdev_hw_addr *ha;
365
366 i = 0;
367 netdev_for_each_mc_addr(ha, ndev) {
368 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
369 break;
370
371 af0reg = (ha->addr[0]);
372 af0reg |= (ha->addr[1] << 8);
373 af0reg |= (ha->addr[2] << 16);
374 af0reg |= (ha->addr[3] << 24);
375
376 af1reg = (ha->addr[4]);
377 af1reg |= (ha->addr[5] << 8);
378
379 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
380 reg |= i;
381
382 axienet_iow(lp, XAE_FMI_OFFSET, reg);
383 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
384 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
385 i++;
386 }
387 } else {
388 reg = axienet_ior(lp, XAE_FMI_OFFSET);
389 reg &= ~XAE_FMI_PM_MASK;
390
391 axienet_iow(lp, XAE_FMI_OFFSET, reg);
392
393 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
394 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
395 reg |= i;
396
397 axienet_iow(lp, XAE_FMI_OFFSET, reg);
398 axienet_iow(lp, XAE_AF0_OFFSET, 0);
399 axienet_iow(lp, XAE_AF1_OFFSET, 0);
400 }
401
402 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
403 }
404 }
405
406 /**
407 * axienet_setoptions - Set an Axi Ethernet option
408 * @ndev: Pointer to the net_device structure
409 * @options: Option to be enabled/disabled
410 *
411 * The Axi Ethernet core has multiple features which can be selectively turned
412 * on or off. The typical options could be jumbo frame option, basic VLAN
413 * option, promiscuous mode option etc. This function is used to set or clear
414 * these options in the Axi Ethernet hardware. This is done through
415 * axienet_option structure .
416 */
417 static void axienet_setoptions(struct net_device *ndev, u32 options)
418 {
419 int reg;
420 struct axienet_local *lp = netdev_priv(ndev);
421 struct axienet_option *tp = &axienet_options[0];
422
423 while (tp->opt) {
424 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
425 if (options & tp->opt)
426 reg |= tp->m_or;
427 axienet_iow(lp, tp->reg, reg);
428 tp++;
429 }
430
431 lp->options |= options;
432 }
433
434 static void __axienet_device_reset(struct axienet_local *lp,
435 struct device *dev, off_t offset)
436 {
437 u32 timeout;
438 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
439 * process of Axi DMA takes a while to complete as all pending
440 * commands/transfers will be flushed or completed during this
441 * reset process. */
442 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
443 timeout = DELAY_OF_ONE_MILLISEC;
444 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
445 udelay(1);
446 if (--timeout == 0) {
447 dev_err(dev, "axienet_device_reset DMA "
448 "reset timeout!\n");
449 break;
450 }
451 }
452 }
453
454 /**
455 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
456 * @ndev: Pointer to the net_device structure
457 *
458 * This function is called to reset and initialize the Axi Ethernet core. This
459 * is typically called during initialization. It does a reset of the Axi DMA
460 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
461 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
462 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
463 * core.
464 */
465 static void axienet_device_reset(struct net_device *ndev)
466 {
467 u32 axienet_status;
468 struct axienet_local *lp = netdev_priv(ndev);
469
470 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
471 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
472
473 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
474 lp->options &= (~XAE_OPTION_JUMBO);
475
476 if ((ndev->mtu > XAE_MTU) &&
477 (ndev->mtu <= XAE_JUMBO_MTU) &&
478 (lp->jumbo_support)) {
479 lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
480 XAE_TRL_SIZE;
481 lp->options |= XAE_OPTION_JUMBO;
482 }
483
484 if (axienet_dma_bd_init(ndev)) {
485 dev_err(&ndev->dev, "axienet_device_reset descriptor "
486 "allocation failed\n");
487 }
488
489 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
490 axienet_status &= ~XAE_RCW1_RX_MASK;
491 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
492
493 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
494 if (axienet_status & XAE_INT_RXRJECT_MASK)
495 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
496
497 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
498
499 /* Sync default options with HW but leave receiver and
500 * transmitter disabled.*/
501 axienet_setoptions(ndev, lp->options &
502 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
503 axienet_set_mac_address(ndev, NULL);
504 axienet_set_multicast_list(ndev);
505 axienet_setoptions(ndev, lp->options);
506
507 ndev->trans_start = jiffies;
508 }
509
510 /**
511 * axienet_adjust_link - Adjust the PHY link speed/duplex.
512 * @ndev: Pointer to the net_device structure
513 *
514 * This function is called to change the speed and duplex setting after
515 * auto negotiation is done by the PHY. This is the function that gets
516 * registered with the PHY interface through the "of_phy_connect" call.
517 */
518 static void axienet_adjust_link(struct net_device *ndev)
519 {
520 u32 emmc_reg;
521 u32 link_state;
522 u32 setspeed = 1;
523 struct axienet_local *lp = netdev_priv(ndev);
524 struct phy_device *phy = lp->phy_dev;
525
526 link_state = phy->speed | (phy->duplex << 1) | phy->link;
527 if (lp->last_link != link_state) {
528 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
529 if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
530 setspeed = 0;
531 } else {
532 if ((phy->speed == SPEED_1000) &&
533 (lp->phy_type == XAE_PHY_TYPE_MII))
534 setspeed = 0;
535 }
536
537 if (setspeed == 1) {
538 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
539 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
540
541 switch (phy->speed) {
542 case SPEED_1000:
543 emmc_reg |= XAE_EMMC_LINKSPD_1000;
544 break;
545 case SPEED_100:
546 emmc_reg |= XAE_EMMC_LINKSPD_100;
547 break;
548 case SPEED_10:
549 emmc_reg |= XAE_EMMC_LINKSPD_10;
550 break;
551 default:
552 dev_err(&ndev->dev, "Speed other than 10, 100 "
553 "or 1Gbps is not supported\n");
554 break;
555 }
556
557 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
558 lp->last_link = link_state;
559 phy_print_status(phy);
560 } else {
561 dev_err(&ndev->dev, "Error setting Axi Ethernet "
562 "mac speed\n");
563 }
564 }
565 }
566
567 /**
568 * axienet_start_xmit_done - Invoked once a transmit is completed by the
569 * Axi DMA Tx channel.
570 * @ndev: Pointer to the net_device structure
571 *
572 * This function is invoked from the Axi DMA Tx isr to notify the completion
573 * of transmit operation. It clears fields in the corresponding Tx BDs and
574 * unmaps the corresponding buffer so that CPU can regain ownership of the
575 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
576 * required.
577 */
578 static void axienet_start_xmit_done(struct net_device *ndev)
579 {
580 u32 size = 0;
581 u32 packets = 0;
582 struct axienet_local *lp = netdev_priv(ndev);
583 struct axidma_bd *cur_p;
584 unsigned int status = 0;
585
586 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
587 status = cur_p->status;
588 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
589 dma_unmap_single(ndev->dev.parent, cur_p->phys,
590 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
591 DMA_TO_DEVICE);
592 if (cur_p->app4)
593 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
594 /*cur_p->phys = 0;*/
595 cur_p->app0 = 0;
596 cur_p->app1 = 0;
597 cur_p->app2 = 0;
598 cur_p->app4 = 0;
599 cur_p->status = 0;
600
601 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
602 packets++;
603
604 lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM;
605 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
606 status = cur_p->status;
607 }
608
609 ndev->stats.tx_packets += packets;
610 ndev->stats.tx_bytes += size;
611 netif_wake_queue(ndev);
612 }
613
614 /**
615 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
616 * @lp: Pointer to the axienet_local structure
617 * @num_frag: The number of BDs to check for
618 *
619 * returns: 0, on success
620 * NETDEV_TX_BUSY, if any of the descriptors are not free
621 *
622 * This function is invoked before BDs are allocated and transmission starts.
623 * This function returns 0 if a BD or group of BDs can be allocated for
624 * transmission. If the BD or any of the BDs are not free the function
625 * returns a busy status. This is invoked from axienet_start_xmit.
626 */
627 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
628 int num_frag)
629 {
630 struct axidma_bd *cur_p;
631 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
632 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
633 return NETDEV_TX_BUSY;
634 return 0;
635 }
636
637 /**
638 * axienet_start_xmit - Starts the transmission.
639 * @skb: sk_buff pointer that contains data to be Txed.
640 * @ndev: Pointer to net_device structure.
641 *
642 * returns: NETDEV_TX_OK, on success
643 * NETDEV_TX_BUSY, if any of the descriptors are not free
644 *
645 * This function is invoked from upper layers to initiate transmission. The
646 * function uses the next available free BDs and populates their fields to
647 * start the transmission. Additionally if checksum offloading is supported,
648 * it populates AXI Stream Control fields with appropriate values.
649 */
650 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
651 {
652 u32 ii;
653 u32 num_frag;
654 u32 csum_start_off;
655 u32 csum_index_off;
656 skb_frag_t *frag;
657 dma_addr_t tail_p;
658 struct axienet_local *lp = netdev_priv(ndev);
659 struct axidma_bd *cur_p;
660
661 num_frag = skb_shinfo(skb)->nr_frags;
662 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
663
664 if (axienet_check_tx_bd_space(lp, num_frag)) {
665 if (!netif_queue_stopped(ndev))
666 netif_stop_queue(ndev);
667 return NETDEV_TX_BUSY;
668 }
669
670 if (skb->ip_summed == CHECKSUM_PARTIAL) {
671 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
672 /* Tx Full Checksum Offload Enabled */
673 cur_p->app0 |= 2;
674 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
675 csum_start_off = skb_transport_offset(skb);
676 csum_index_off = csum_start_off + skb->csum_offset;
677 /* Tx Partial Checksum Offload Enabled */
678 cur_p->app0 |= 1;
679 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
680 }
681 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
682 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
683 }
684
685 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
686 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
687 skb_headlen(skb), DMA_TO_DEVICE);
688
689 for (ii = 0; ii < num_frag; ii++) {
690 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
691 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
692 frag = &skb_shinfo(skb)->frags[ii];
693 cur_p->phys = dma_map_single(ndev->dev.parent,
694 skb_frag_address(frag),
695 skb_frag_size(frag),
696 DMA_TO_DEVICE);
697 cur_p->cntrl = skb_frag_size(frag);
698 }
699
700 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
701 cur_p->app4 = (unsigned long)skb;
702
703 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
704 /* Start the transfer */
705 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
706 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
707
708 return NETDEV_TX_OK;
709 }
710
711 /**
712 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
713 * BD processing.
714 * @ndev: Pointer to net_device structure.
715 *
716 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
717 * does minimal processing and invokes "netif_rx" to complete further
718 * processing.
719 */
720 static void axienet_recv(struct net_device *ndev)
721 {
722 u32 length;
723 u32 csumstatus;
724 u32 size = 0;
725 u32 packets = 0;
726 dma_addr_t tail_p;
727 struct axienet_local *lp = netdev_priv(ndev);
728 struct sk_buff *skb, *new_skb;
729 struct axidma_bd *cur_p;
730
731 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
732 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
733
734 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
735 skb = (struct sk_buff *) (cur_p->sw_id_offset);
736 length = cur_p->app4 & 0x0000FFFF;
737
738 dma_unmap_single(ndev->dev.parent, cur_p->phys,
739 lp->max_frm_size,
740 DMA_FROM_DEVICE);
741
742 skb_put(skb, length);
743 skb->protocol = eth_type_trans(skb, ndev);
744 /*skb_checksum_none_assert(skb);*/
745 skb->ip_summed = CHECKSUM_NONE;
746
747 /* if we're doing Rx csum offload, set it up */
748 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
749 csumstatus = (cur_p->app2 &
750 XAE_FULL_CSUM_STATUS_MASK) >> 3;
751 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
752 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
753 skb->ip_summed = CHECKSUM_UNNECESSARY;
754 }
755 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
756 skb->protocol == __constant_htons(ETH_P_IP) &&
757 skb->len > 64) {
758 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
759 skb->ip_summed = CHECKSUM_COMPLETE;
760 }
761
762 netif_rx(skb);
763
764 size += length;
765 packets++;
766
767 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
768 if (!new_skb)
769 return;
770
771 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
772 lp->max_frm_size,
773 DMA_FROM_DEVICE);
774 cur_p->cntrl = lp->max_frm_size;
775 cur_p->status = 0;
776 cur_p->sw_id_offset = (u32) new_skb;
777
778 lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM;
779 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
780 }
781
782 ndev->stats.rx_packets += packets;
783 ndev->stats.rx_bytes += size;
784
785 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
786 }
787
788 /**
789 * axienet_tx_irq - Tx Done Isr.
790 * @irq: irq number
791 * @_ndev: net_device pointer
792 *
793 * returns: IRQ_HANDLED for all cases.
794 *
795 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
796 * to complete the BD processing.
797 */
798 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
799 {
800 u32 cr;
801 unsigned int status;
802 struct net_device *ndev = _ndev;
803 struct axienet_local *lp = netdev_priv(ndev);
804
805 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
806 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
807 axienet_start_xmit_done(lp->ndev);
808 goto out;
809 }
810 if (!(status & XAXIDMA_IRQ_ALL_MASK))
811 dev_err(&ndev->dev, "No interrupts asserted in Tx path");
812 if (status & XAXIDMA_IRQ_ERROR_MASK) {
813 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
814 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
815 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
816
817 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
818 /* Disable coalesce, delay timer and error interrupts */
819 cr &= (~XAXIDMA_IRQ_ALL_MASK);
820 /* Write to the Tx channel control register */
821 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
822
823 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
824 /* Disable coalesce, delay timer and error interrupts */
825 cr &= (~XAXIDMA_IRQ_ALL_MASK);
826 /* Write to the Rx channel control register */
827 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
828
829 tasklet_schedule(&lp->dma_err_tasklet);
830 }
831 out:
832 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
833 return IRQ_HANDLED;
834 }
835
836 /**
837 * axienet_rx_irq - Rx Isr.
838 * @irq: irq number
839 * @_ndev: net_device pointer
840 *
841 * returns: IRQ_HANDLED for all cases.
842 *
843 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
844 * processing.
845 */
846 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
847 {
848 u32 cr;
849 unsigned int status;
850 struct net_device *ndev = _ndev;
851 struct axienet_local *lp = netdev_priv(ndev);
852
853 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
854 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
855 axienet_recv(lp->ndev);
856 goto out;
857 }
858 if (!(status & XAXIDMA_IRQ_ALL_MASK))
859 dev_err(&ndev->dev, "No interrupts asserted in Rx path");
860 if (status & XAXIDMA_IRQ_ERROR_MASK) {
861 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
862 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
863 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
864
865 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
866 /* Disable coalesce, delay timer and error interrupts */
867 cr &= (~XAXIDMA_IRQ_ALL_MASK);
868 /* Finally write to the Tx channel control register */
869 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
870
871 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
872 /* Disable coalesce, delay timer and error interrupts */
873 cr &= (~XAXIDMA_IRQ_ALL_MASK);
874 /* write to the Rx channel control register */
875 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
876
877 tasklet_schedule(&lp->dma_err_tasklet);
878 }
879 out:
880 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
881 return IRQ_HANDLED;
882 }
883
884 static void axienet_dma_err_handler(unsigned long data);
885
886 /**
887 * axienet_open - Driver open routine.
888 * @ndev: Pointer to net_device structure
889 *
890 * returns: 0, on success.
891 * -ENODEV, if PHY cannot be connected to
892 * non-zero error value on failure
893 *
894 * This is the driver open routine. It calls phy_start to start the PHY device.
895 * It also allocates interrupt service routines, enables the interrupt lines
896 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
897 * descriptors are initialized.
898 */
899 static int axienet_open(struct net_device *ndev)
900 {
901 int ret, mdio_mcreg;
902 struct axienet_local *lp = netdev_priv(ndev);
903
904 dev_dbg(&ndev->dev, "axienet_open()\n");
905
906 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
907 ret = axienet_mdio_wait_until_ready(lp);
908 if (ret < 0)
909 return ret;
910 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
911 * When we do an Axi Ethernet reset, it resets the complete core
912 * including the MDIO. If MDIO is not disabled when the reset
913 * process is started, MDIO will be broken afterwards. */
914 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
915 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
916 axienet_device_reset(ndev);
917 /* Enable the MDIO */
918 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
919 ret = axienet_mdio_wait_until_ready(lp);
920 if (ret < 0)
921 return ret;
922
923 if (lp->phy_node) {
924 lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
925 axienet_adjust_link, 0,
926 PHY_INTERFACE_MODE_GMII);
927 if (!lp->phy_dev) {
928 dev_err(lp->dev, "of_phy_connect() failed\n");
929 return -ENODEV;
930 }
931 phy_start(lp->phy_dev);
932 }
933
934 /* Enable tasklets for Axi DMA error handling */
935 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
936 (unsigned long) lp);
937
938 /* Enable interrupts for Axi DMA Tx */
939 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
940 if (ret)
941 goto err_tx_irq;
942 /* Enable interrupts for Axi DMA Rx */
943 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
944 if (ret)
945 goto err_rx_irq;
946
947 return 0;
948
949 err_rx_irq:
950 free_irq(lp->tx_irq, ndev);
951 err_tx_irq:
952 if (lp->phy_dev)
953 phy_disconnect(lp->phy_dev);
954 lp->phy_dev = NULL;
955 tasklet_kill(&lp->dma_err_tasklet);
956 dev_err(lp->dev, "request_irq() failed\n");
957 return ret;
958 }
959
960 /**
961 * axienet_stop - Driver stop routine.
962 * @ndev: Pointer to net_device structure
963 *
964 * returns: 0, on success.
965 *
966 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
967 * device. It also removes the interrupt handlers and disables the interrupts.
968 * The Axi DMA Tx/Rx BDs are released.
969 */
970 static int axienet_stop(struct net_device *ndev)
971 {
972 u32 cr;
973 struct axienet_local *lp = netdev_priv(ndev);
974
975 dev_dbg(&ndev->dev, "axienet_close()\n");
976
977 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
978 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
979 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
980 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
981 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
982 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
983 axienet_setoptions(ndev, lp->options &
984 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
985
986 tasklet_kill(&lp->dma_err_tasklet);
987
988 free_irq(lp->tx_irq, ndev);
989 free_irq(lp->rx_irq, ndev);
990
991 if (lp->phy_dev)
992 phy_disconnect(lp->phy_dev);
993 lp->phy_dev = NULL;
994
995 axienet_dma_bd_release(ndev);
996 return 0;
997 }
998
999 /**
1000 * axienet_change_mtu - Driver change mtu routine.
1001 * @ndev: Pointer to net_device structure
1002 * @new_mtu: New mtu value to be applied
1003 *
1004 * returns: Always returns 0 (success).
1005 *
1006 * This is the change mtu driver routine. It checks if the Axi Ethernet
1007 * hardware supports jumbo frames before changing the mtu. This can be
1008 * called only when the device is not up.
1009 */
1010 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1011 {
1012 struct axienet_local *lp = netdev_priv(ndev);
1013
1014 if (netif_running(ndev))
1015 return -EBUSY;
1016 if (lp->jumbo_support) {
1017 if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1018 return -EINVAL;
1019 ndev->mtu = new_mtu;
1020 } else {
1021 if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1022 return -EINVAL;
1023 ndev->mtu = new_mtu;
1024 }
1025
1026 return 0;
1027 }
1028
1029 #ifdef CONFIG_NET_POLL_CONTROLLER
1030 /**
1031 * axienet_poll_controller - Axi Ethernet poll mechanism.
1032 * @ndev: Pointer to net_device structure
1033 *
1034 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1035 * to polling the ISRs and are enabled back after the polling is done.
1036 */
1037 static void axienet_poll_controller(struct net_device *ndev)
1038 {
1039 struct axienet_local *lp = netdev_priv(ndev);
1040 disable_irq(lp->tx_irq);
1041 disable_irq(lp->rx_irq);
1042 axienet_rx_irq(lp->tx_irq, ndev);
1043 axienet_tx_irq(lp->rx_irq, ndev);
1044 enable_irq(lp->tx_irq);
1045 enable_irq(lp->rx_irq);
1046 }
1047 #endif
1048
1049 static const struct net_device_ops axienet_netdev_ops = {
1050 .ndo_open = axienet_open,
1051 .ndo_stop = axienet_stop,
1052 .ndo_start_xmit = axienet_start_xmit,
1053 .ndo_change_mtu = axienet_change_mtu,
1054 .ndo_set_mac_address = netdev_set_mac_address,
1055 .ndo_validate_addr = eth_validate_addr,
1056 .ndo_set_rx_mode = axienet_set_multicast_list,
1057 #ifdef CONFIG_NET_POLL_CONTROLLER
1058 .ndo_poll_controller = axienet_poll_controller,
1059 #endif
1060 };
1061
1062 /**
1063 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1064 * @ndev: Pointer to net_device structure
1065 * @ecmd: Pointer to ethtool_cmd structure
1066 *
1067 * This implements ethtool command for getting PHY settings. If PHY could
1068 * not be found, the function returns -ENODEV. This function calls the
1069 * relevant PHY ethtool API to get the PHY settings.
1070 * Issue "ethtool ethX" under linux prompt to execute this function.
1071 */
1072 static int axienet_ethtools_get_settings(struct net_device *ndev,
1073 struct ethtool_cmd *ecmd)
1074 {
1075 struct axienet_local *lp = netdev_priv(ndev);
1076 struct phy_device *phydev = lp->phy_dev;
1077 if (!phydev)
1078 return -ENODEV;
1079 return phy_ethtool_gset(phydev, ecmd);
1080 }
1081
1082 /**
1083 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1084 * @ndev: Pointer to net_device structure
1085 * @ecmd: Pointer to ethtool_cmd structure
1086 *
1087 * This implements ethtool command for setting various PHY settings. If PHY
1088 * could not be found, the function returns -ENODEV. This function calls the
1089 * relevant PHY ethtool API to set the PHY.
1090 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1091 * function.
1092 */
1093 static int axienet_ethtools_set_settings(struct net_device *ndev,
1094 struct ethtool_cmd *ecmd)
1095 {
1096 struct axienet_local *lp = netdev_priv(ndev);
1097 struct phy_device *phydev = lp->phy_dev;
1098 if (!phydev)
1099 return -ENODEV;
1100 return phy_ethtool_sset(phydev, ecmd);
1101 }
1102
1103 /**
1104 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1105 * @ndev: Pointer to net_device structure
1106 * @ed: Pointer to ethtool_drvinfo structure
1107 *
1108 * This implements ethtool command for getting the driver information.
1109 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1110 */
1111 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1112 struct ethtool_drvinfo *ed)
1113 {
1114 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1115 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1116 ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1117 }
1118
1119 /**
1120 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1121 * AxiEthernet core.
1122 * @ndev: Pointer to net_device structure
1123 *
1124 * This implements ethtool command for getting the total register length
1125 * information.
1126 */
1127 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1128 {
1129 return sizeof(u32) * AXIENET_REGS_N;
1130 }
1131
1132 /**
1133 * axienet_ethtools_get_regs - Dump the contents of all registers present
1134 * in AxiEthernet core.
1135 * @ndev: Pointer to net_device structure
1136 * @regs: Pointer to ethtool_regs structure
1137 * @ret: Void pointer used to return the contents of the registers.
1138 *
1139 * This implements ethtool command for getting the Axi Ethernet register dump.
1140 * Issue "ethtool -d ethX" to execute this function.
1141 */
1142 static void axienet_ethtools_get_regs(struct net_device *ndev,
1143 struct ethtool_regs *regs, void *ret)
1144 {
1145 u32 *data = (u32 *) ret;
1146 size_t len = sizeof(u32) * AXIENET_REGS_N;
1147 struct axienet_local *lp = netdev_priv(ndev);
1148
1149 regs->version = 0;
1150 regs->len = len;
1151
1152 memset(data, 0, len);
1153 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1154 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1155 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1156 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1157 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1158 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1159 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1160 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1161 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1162 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1163 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1164 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1165 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1166 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1167 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1168 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1169 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1170 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1171 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1172 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1173 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1174 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1175 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1176 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1177 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1178 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1179 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1180 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1181 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1182 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1183 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1184 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1185 }
1186
1187 /**
1188 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1189 * Tx and Rx paths.
1190 * @ndev: Pointer to net_device structure
1191 * @epauseparm: Pointer to ethtool_pauseparam structure.
1192 *
1193 * This implements ethtool command for getting axi ethernet pause frame
1194 * setting. Issue "ethtool -a ethX" to execute this function.
1195 */
1196 static void
1197 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1198 struct ethtool_pauseparam *epauseparm)
1199 {
1200 u32 regval;
1201 struct axienet_local *lp = netdev_priv(ndev);
1202 epauseparm->autoneg = 0;
1203 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1204 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1205 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1206 }
1207
1208 /**
1209 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1210 * settings.
1211 * @ndev: Pointer to net_device structure
1212 * @epauseparam:Pointer to ethtool_pauseparam structure
1213 *
1214 * This implements ethtool command for enabling flow control on Rx and Tx
1215 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1216 * function.
1217 */
1218 static int
1219 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1220 struct ethtool_pauseparam *epauseparm)
1221 {
1222 u32 regval = 0;
1223 struct axienet_local *lp = netdev_priv(ndev);
1224
1225 if (netif_running(ndev)) {
1226 printk(KERN_ERR "%s: Please stop netif before applying "
1227 "configruation\n", ndev->name);
1228 return -EFAULT;
1229 }
1230
1231 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1232 if (epauseparm->tx_pause)
1233 regval |= XAE_FCC_FCTX_MASK;
1234 else
1235 regval &= ~XAE_FCC_FCTX_MASK;
1236 if (epauseparm->rx_pause)
1237 regval |= XAE_FCC_FCRX_MASK;
1238 else
1239 regval &= ~XAE_FCC_FCRX_MASK;
1240 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1241
1242 return 0;
1243 }
1244
1245 /**
1246 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1247 * @ndev: Pointer to net_device structure
1248 * @ecoalesce: Pointer to ethtool_coalesce structure
1249 *
1250 * This implements ethtool command for getting the DMA interrupt coalescing
1251 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1252 * execute this function.
1253 */
1254 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1255 struct ethtool_coalesce *ecoalesce)
1256 {
1257 u32 regval = 0;
1258 struct axienet_local *lp = netdev_priv(ndev);
1259 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1260 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1261 >> XAXIDMA_COALESCE_SHIFT;
1262 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1263 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1264 >> XAXIDMA_COALESCE_SHIFT;
1265 return 0;
1266 }
1267
1268 /**
1269 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1270 * @ndev: Pointer to net_device structure
1271 * @ecoalesce: Pointer to ethtool_coalesce structure
1272 *
1273 * This implements ethtool command for setting the DMA interrupt coalescing
1274 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1275 * prompt to execute this function.
1276 */
1277 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1278 struct ethtool_coalesce *ecoalesce)
1279 {
1280 struct axienet_local *lp = netdev_priv(ndev);
1281
1282 if (netif_running(ndev)) {
1283 printk(KERN_ERR "%s: Please stop netif before applying "
1284 "configruation\n", ndev->name);
1285 return -EFAULT;
1286 }
1287
1288 if ((ecoalesce->rx_coalesce_usecs) ||
1289 (ecoalesce->rx_coalesce_usecs_irq) ||
1290 (ecoalesce->rx_max_coalesced_frames_irq) ||
1291 (ecoalesce->tx_coalesce_usecs) ||
1292 (ecoalesce->tx_coalesce_usecs_irq) ||
1293 (ecoalesce->tx_max_coalesced_frames_irq) ||
1294 (ecoalesce->stats_block_coalesce_usecs) ||
1295 (ecoalesce->use_adaptive_rx_coalesce) ||
1296 (ecoalesce->use_adaptive_tx_coalesce) ||
1297 (ecoalesce->pkt_rate_low) ||
1298 (ecoalesce->rx_coalesce_usecs_low) ||
1299 (ecoalesce->rx_max_coalesced_frames_low) ||
1300 (ecoalesce->tx_coalesce_usecs_low) ||
1301 (ecoalesce->tx_max_coalesced_frames_low) ||
1302 (ecoalesce->pkt_rate_high) ||
1303 (ecoalesce->rx_coalesce_usecs_high) ||
1304 (ecoalesce->rx_max_coalesced_frames_high) ||
1305 (ecoalesce->tx_coalesce_usecs_high) ||
1306 (ecoalesce->tx_max_coalesced_frames_high) ||
1307 (ecoalesce->rate_sample_interval))
1308 return -EOPNOTSUPP;
1309 if (ecoalesce->rx_max_coalesced_frames)
1310 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1311 if (ecoalesce->tx_max_coalesced_frames)
1312 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1313
1314 return 0;
1315 }
1316
1317 static struct ethtool_ops axienet_ethtool_ops = {
1318 .get_settings = axienet_ethtools_get_settings,
1319 .set_settings = axienet_ethtools_set_settings,
1320 .get_drvinfo = axienet_ethtools_get_drvinfo,
1321 .get_regs_len = axienet_ethtools_get_regs_len,
1322 .get_regs = axienet_ethtools_get_regs,
1323 .get_link = ethtool_op_get_link,
1324 .get_pauseparam = axienet_ethtools_get_pauseparam,
1325 .set_pauseparam = axienet_ethtools_set_pauseparam,
1326 .get_coalesce = axienet_ethtools_get_coalesce,
1327 .set_coalesce = axienet_ethtools_set_coalesce,
1328 };
1329
1330 /**
1331 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1332 * @data: Data passed
1333 *
1334 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1335 * Tx/Rx BDs.
1336 */
1337 static void axienet_dma_err_handler(unsigned long data)
1338 {
1339 u32 axienet_status;
1340 u32 cr, i;
1341 int mdio_mcreg;
1342 struct axienet_local *lp = (struct axienet_local *) data;
1343 struct net_device *ndev = lp->ndev;
1344 struct axidma_bd *cur_p;
1345
1346 axienet_setoptions(ndev, lp->options &
1347 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1348 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1349 axienet_mdio_wait_until_ready(lp);
1350 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1351 * When we do an Axi Ethernet reset, it resets the complete core
1352 * including the MDIO. So if MDIO is not disabled when the reset
1353 * process is started, MDIO will be broken afterwards. */
1354 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1355 ~XAE_MDIO_MC_MDIOEN_MASK));
1356
1357 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1358 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1359
1360 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1361 axienet_mdio_wait_until_ready(lp);
1362
1363 for (i = 0; i < TX_BD_NUM; i++) {
1364 cur_p = &lp->tx_bd_v[i];
1365 if (cur_p->phys)
1366 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1367 (cur_p->cntrl &
1368 XAXIDMA_BD_CTRL_LENGTH_MASK),
1369 DMA_TO_DEVICE);
1370 if (cur_p->app4)
1371 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1372 cur_p->phys = 0;
1373 cur_p->cntrl = 0;
1374 cur_p->status = 0;
1375 cur_p->app0 = 0;
1376 cur_p->app1 = 0;
1377 cur_p->app2 = 0;
1378 cur_p->app3 = 0;
1379 cur_p->app4 = 0;
1380 cur_p->sw_id_offset = 0;
1381 }
1382
1383 for (i = 0; i < RX_BD_NUM; i++) {
1384 cur_p = &lp->rx_bd_v[i];
1385 cur_p->status = 0;
1386 cur_p->app0 = 0;
1387 cur_p->app1 = 0;
1388 cur_p->app2 = 0;
1389 cur_p->app3 = 0;
1390 cur_p->app4 = 0;
1391 }
1392
1393 lp->tx_bd_ci = 0;
1394 lp->tx_bd_tail = 0;
1395 lp->rx_bd_ci = 0;
1396
1397 /* Start updating the Rx channel control register */
1398 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1399 /* Update the interrupt coalesce count */
1400 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1401 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1402 /* Update the delay timer count */
1403 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1404 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1405 /* Enable coalesce, delay timer and error interrupts */
1406 cr |= XAXIDMA_IRQ_ALL_MASK;
1407 /* Finally write to the Rx channel control register */
1408 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1409
1410 /* Start updating the Tx channel control register */
1411 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1412 /* Update the interrupt coalesce count */
1413 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1414 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1415 /* Update the delay timer count */
1416 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1417 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1418 /* Enable coalesce, delay timer and error interrupts */
1419 cr |= XAXIDMA_IRQ_ALL_MASK;
1420 /* Finally write to the Tx channel control register */
1421 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1422
1423 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1424 * halted state. This will make the Rx side ready for reception.*/
1425 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1426 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1427 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1428 cr | XAXIDMA_CR_RUNSTOP_MASK);
1429 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1430 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1431
1432 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1433 * Tx channel is now ready to run. But only after we write to the
1434 * tail pointer register that the Tx channel will start transmitting */
1435 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1436 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1437 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1438 cr | XAXIDMA_CR_RUNSTOP_MASK);
1439
1440 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1441 axienet_status &= ~XAE_RCW1_RX_MASK;
1442 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1443
1444 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1445 if (axienet_status & XAE_INT_RXRJECT_MASK)
1446 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1447 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1448
1449 /* Sync default options with HW but leave receiver and
1450 * transmitter disabled.*/
1451 axienet_setoptions(ndev, lp->options &
1452 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1453 axienet_set_mac_address(ndev, NULL);
1454 axienet_set_multicast_list(ndev);
1455 axienet_setoptions(ndev, lp->options);
1456 }
1457
1458 /**
1459 * axienet_of_probe - Axi Ethernet probe function.
1460 * @op: Pointer to platform device structure.
1461 * @match: Pointer to device id structure
1462 *
1463 * returns: 0, on success
1464 * Non-zero error value on failure.
1465 *
1466 * This is the probe routine for Axi Ethernet driver. This is called before
1467 * any other driver routines are invoked. It allocates and sets up the Ethernet
1468 * device. Parses through device tree and populates fields of
1469 * axienet_local. It registers the Ethernet device.
1470 */
1471 static int axienet_of_probe(struct platform_device *op)
1472 {
1473 __be32 *p;
1474 int size, ret = 0;
1475 struct device_node *np;
1476 struct axienet_local *lp;
1477 struct net_device *ndev;
1478 const void *addr;
1479
1480 ndev = alloc_etherdev(sizeof(*lp));
1481 if (!ndev)
1482 return -ENOMEM;
1483
1484 ether_setup(ndev);
1485 platform_set_drvdata(op, ndev);
1486
1487 SET_NETDEV_DEV(ndev, &op->dev);
1488 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1489 ndev->features = NETIF_F_SG;
1490 ndev->netdev_ops = &axienet_netdev_ops;
1491 ndev->ethtool_ops = &axienet_ethtool_ops;
1492
1493 lp = netdev_priv(ndev);
1494 lp->ndev = ndev;
1495 lp->dev = &op->dev;
1496 lp->options = XAE_OPTION_DEFAULTS;
1497 /* Map device registers */
1498 lp->regs = of_iomap(op->dev.of_node, 0);
1499 if (!lp->regs) {
1500 dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1501 goto nodev;
1502 }
1503 /* Setup checksum offload, but default to off if not specified */
1504 lp->features = 0;
1505
1506 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1507 if (p) {
1508 switch (be32_to_cpup(p)) {
1509 case 1:
1510 lp->csum_offload_on_tx_path =
1511 XAE_FEATURE_PARTIAL_TX_CSUM;
1512 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1513 /* Can checksum TCP/UDP over IPv4. */
1514 ndev->features |= NETIF_F_IP_CSUM;
1515 break;
1516 case 2:
1517 lp->csum_offload_on_tx_path =
1518 XAE_FEATURE_FULL_TX_CSUM;
1519 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1520 /* Can checksum TCP/UDP over IPv4. */
1521 ndev->features |= NETIF_F_IP_CSUM;
1522 break;
1523 default:
1524 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1525 }
1526 }
1527 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1528 if (p) {
1529 switch (be32_to_cpup(p)) {
1530 case 1:
1531 lp->csum_offload_on_rx_path =
1532 XAE_FEATURE_PARTIAL_RX_CSUM;
1533 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1534 break;
1535 case 2:
1536 lp->csum_offload_on_rx_path =
1537 XAE_FEATURE_FULL_RX_CSUM;
1538 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1539 break;
1540 default:
1541 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1542 }
1543 }
1544 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1545 * a larger Rx/Tx Memory. Typically, the size must be more than or
1546 * equal to 16384 bytes, so that we can enable jumbo option and start
1547 * supporting jumbo frames. Here we check for memory allocated for
1548 * Rx/Tx in the hardware from the device-tree and accordingly set
1549 * flags. */
1550 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1551 if (p) {
1552 if ((be32_to_cpup(p)) >= 0x4000)
1553 lp->jumbo_support = 1;
1554 }
1555 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1556 NULL);
1557 if (p)
1558 lp->temac_type = be32_to_cpup(p);
1559 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1560 if (p)
1561 lp->phy_type = be32_to_cpup(p);
1562
1563 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1564 np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1565 if (!np) {
1566 dev_err(&op->dev, "could not find DMA node\n");
1567 goto err_iounmap;
1568 }
1569 lp->dma_regs = of_iomap(np, 0);
1570 if (lp->dma_regs) {
1571 dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1572 } else {
1573 dev_err(&op->dev, "unable to map DMA registers\n");
1574 of_node_put(np);
1575 }
1576 lp->rx_irq = irq_of_parse_and_map(np, 1);
1577 lp->tx_irq = irq_of_parse_and_map(np, 0);
1578 of_node_put(np);
1579 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1580 dev_err(&op->dev, "could not determine irqs\n");
1581 ret = -ENOMEM;
1582 goto err_iounmap_2;
1583 }
1584
1585 /* Retrieve the MAC address */
1586 addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1587 if ((!addr) || (size != 6)) {
1588 dev_err(&op->dev, "could not find MAC address\n");
1589 ret = -ENODEV;
1590 goto err_iounmap_2;
1591 }
1592 axienet_set_mac_address(ndev, (void *) addr);
1593
1594 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1595 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1596
1597 lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1598 ret = axienet_mdio_setup(lp, op->dev.of_node);
1599 if (ret)
1600 dev_warn(&op->dev, "error registering MDIO bus\n");
1601
1602 ret = register_netdev(lp->ndev);
1603 if (ret) {
1604 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1605 goto err_iounmap_2;
1606 }
1607
1608 return 0;
1609
1610 err_iounmap_2:
1611 if (lp->dma_regs)
1612 iounmap(lp->dma_regs);
1613 err_iounmap:
1614 iounmap(lp->regs);
1615 nodev:
1616 free_netdev(ndev);
1617 ndev = NULL;
1618 return ret;
1619 }
1620
1621 static int axienet_of_remove(struct platform_device *op)
1622 {
1623 struct net_device *ndev = platform_get_drvdata(op);
1624 struct axienet_local *lp = netdev_priv(ndev);
1625
1626 axienet_mdio_teardown(lp);
1627 unregister_netdev(ndev);
1628
1629 if (lp->phy_node)
1630 of_node_put(lp->phy_node);
1631 lp->phy_node = NULL;
1632
1633 iounmap(lp->regs);
1634 if (lp->dma_regs)
1635 iounmap(lp->dma_regs);
1636 free_netdev(ndev);
1637
1638 return 0;
1639 }
1640
1641 static struct platform_driver axienet_of_driver = {
1642 .probe = axienet_of_probe,
1643 .remove = axienet_of_remove,
1644 .driver = {
1645 .owner = THIS_MODULE,
1646 .name = "xilinx_axienet",
1647 .of_match_table = axienet_of_match,
1648 },
1649 };
1650
1651 module_platform_driver(axienet_of_driver);
1652
1653 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1654 MODULE_AUTHOR("Xilinx");
1655 MODULE_LICENSE("GPL");