]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/fddi/defxx.c
PCI: Remove DEFINE_PCI_DEVICE_TABLE macro use
[mirror_ubuntu-bionic-kernel.git] / drivers / net / fddi / defxx.c
1 /*
2 * File Name:
3 * defxx.c
4 *
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
7 *
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
14 * adapters include:
15 *
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
19 *
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
32 *
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 * driver.
39 *
40 * Adapter Probe -
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
44 *
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
54 *
55 * Driver Open/Close -
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
62 * example:
63 * ifconfig fddi0 up
64 * ifconfig fddi0 down
65 * ifconfig fddi0 up
66 *
67 * Driver Shutdown -
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
78 *
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
84 *
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
90 *
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
94 *
95 * Control Functions -
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
102 *
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
107 *
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
116 *
117 * Receive Path -
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
132 * some point.
133 *
134 * Transmit Path -
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
140 *
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
149 * sets these bytes.
150 *
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
158 *
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
169 *
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
184 * override support.
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
196 * 14 Jun 2005 macro Use irqreturn_t.
197 * 23 Oct 2006 macro Big-endian host support.
198 * 14 Dec 2006 macro TURBOchannel support.
199 * 01 Jul 2014 macro Fixes for DMA on 64-bit hosts.
200 */
201
202 /* Include files */
203 #include <linux/bitops.h>
204 #include <linux/compiler.h>
205 #include <linux/delay.h>
206 #include <linux/dma-mapping.h>
207 #include <linux/eisa.h>
208 #include <linux/errno.h>
209 #include <linux/fddidevice.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
220
221 #include <asm/byteorder.h>
222 #include <asm/io.h>
223
224 #include "defxx.h"
225
226 /* Version information string should be updated prior to each new release! */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.11"
229 #define DRV_RELDATE "2014/07/01"
230
231 static char version[] =
232 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233 " Lawrence V. Stefani and others\n";
234
235 #define DYNAMIC_BUFFERS 1
236
237 #define SKBUFF_RX_COPYBREAK 200
238 /*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244 #ifdef CONFIG_EISA
245 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246 #else
247 #define DFX_BUS_EISA(dev) 0
248 #endif
249
250 #ifdef CONFIG_TC
251 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252 #else
253 #define DFX_BUS_TC(dev) 0
254 #endif
255
256 #ifdef CONFIG_DEFXX_MMIO
257 #define DFX_MMIO 1
258 #else
259 #define DFX_MMIO 0
260 #endif
261
262 /* Define module-wide (static) routines */
263
264 static void dfx_bus_init(struct net_device *dev);
265 static void dfx_bus_uninit(struct net_device *dev);
266 static void dfx_bus_config_check(DFX_board_t *bp);
267
268 static int dfx_driver_init(struct net_device *dev,
269 const char *print_name,
270 resource_size_t bar_start);
271 static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
272
273 static int dfx_open(struct net_device *dev);
274 static int dfx_close(struct net_device *dev);
275
276 static void dfx_int_pr_halt_id(DFX_board_t *bp);
277 static void dfx_int_type_0_process(DFX_board_t *bp);
278 static void dfx_int_common(struct net_device *dev);
279 static irqreturn_t dfx_interrupt(int irq, void *dev_id);
280
281 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
282 static void dfx_ctl_set_multicast_list(struct net_device *dev);
283 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
284 static int dfx_ctl_update_cam(DFX_board_t *bp);
285 static int dfx_ctl_update_filters(DFX_board_t *bp);
286
287 static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
288 static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
289 static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
290 static int dfx_hw_adap_state_rd(DFX_board_t *bp);
291 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292
293 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
294 static void dfx_rcv_queue_process(DFX_board_t *bp);
295 #ifdef DYNAMIC_BUFFERS
296 static void dfx_rcv_flush(DFX_board_t *bp);
297 #else
298 static inline void dfx_rcv_flush(DFX_board_t *bp) {}
299 #endif
300
301 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
302 struct net_device *dev);
303 static int dfx_xmt_done(DFX_board_t *bp);
304 static void dfx_xmt_flush(DFX_board_t *bp);
305
306 /* Define module-wide (static) variables */
307
308 static struct pci_driver dfx_pci_driver;
309 static struct eisa_driver dfx_eisa_driver;
310 static struct tc_driver dfx_tc_driver;
311
312
313 /*
314 * =======================
315 * = dfx_port_write_long =
316 * = dfx_port_read_long =
317 * =======================
318 *
319 * Overview:
320 * Routines for reading and writing values from/to adapter
321 *
322 * Returns:
323 * None
324 *
325 * Arguments:
326 * bp - pointer to board information
327 * offset - register offset from base I/O address
328 * data - for dfx_port_write_long, this is a value to write;
329 * for dfx_port_read_long, this is a pointer to store
330 * the read value
331 *
332 * Functional Description:
333 * These routines perform the correct operation to read or write
334 * the adapter register.
335 *
336 * EISA port block base addresses are based on the slot number in which the
337 * controller is installed. For example, if the EISA controller is installed
338 * in slot 4, the port block base address is 0x4000. If the controller is
339 * installed in slot 2, the port block base address is 0x2000, and so on.
340 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
341 * registers using the register offsets defined in DEFXX.H.
342 *
343 * PCI port block base addresses are assigned by the PCI BIOS or system
344 * firmware. There is one 128 byte port block which can be accessed. It
345 * allows for I/O mapping of both PDQ and PFI registers using the register
346 * offsets defined in DEFXX.H.
347 *
348 * Return Codes:
349 * None
350 *
351 * Assumptions:
352 * bp->base is a valid base I/O address for this adapter.
353 * offset is a valid register offset for this adapter.
354 *
355 * Side Effects:
356 * Rather than produce macros for these functions, these routines
357 * are defined using "inline" to ensure that the compiler will
358 * generate inline code and not waste a procedure call and return.
359 * This provides all the benefits of macros, but with the
360 * advantage of strict data type checking.
361 */
362
363 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364 {
365 writel(data, bp->base.mem + offset);
366 mb();
367 }
368
369 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370 {
371 outl(data, bp->base.port + offset);
372 }
373
374 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375 {
376 struct device __maybe_unused *bdev = bp->bus_dev;
377 int dfx_bus_tc = DFX_BUS_TC(bdev);
378 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379
380 if (dfx_use_mmio)
381 dfx_writel(bp, offset, data);
382 else
383 dfx_outl(bp, offset, data);
384 }
385
386
387 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388 {
389 mb();
390 *data = readl(bp->base.mem + offset);
391 }
392
393 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394 {
395 *data = inl(bp->base.port + offset);
396 }
397
398 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399 {
400 struct device __maybe_unused *bdev = bp->bus_dev;
401 int dfx_bus_tc = DFX_BUS_TC(bdev);
402 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403
404 if (dfx_use_mmio)
405 dfx_readl(bp, offset, data);
406 else
407 dfx_inl(bp, offset, data);
408 }
409
410
411 /*
412 * ================
413 * = dfx_get_bars =
414 * ================
415 *
416 * Overview:
417 * Retrieves the address range used to access control and status
418 * registers.
419 *
420 * Returns:
421 * None
422 *
423 * Arguments:
424 * bdev - pointer to device information
425 * bar_start - pointer to store the start address
426 * bar_len - pointer to store the length of the area
427 *
428 * Assumptions:
429 * I am sure there are some.
430 *
431 * Side Effects:
432 * None
433 */
434 static void dfx_get_bars(struct device *bdev,
435 resource_size_t *bar_start, resource_size_t *bar_len)
436 {
437 int dfx_bus_pci = dev_is_pci(bdev);
438 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
439 int dfx_bus_tc = DFX_BUS_TC(bdev);
440 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441
442 if (dfx_bus_pci) {
443 int num = dfx_use_mmio ? 0 : 1;
444
445 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
446 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
447 }
448 if (dfx_bus_eisa) {
449 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
450 resource_size_t bar;
451
452 if (dfx_use_mmio) {
453 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
454 bar <<= 8;
455 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
456 bar <<= 8;
457 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
458 bar <<= 16;
459 *bar_start = bar;
460 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
461 bar <<= 8;
462 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
463 bar <<= 8;
464 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
465 bar <<= 16;
466 *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
467 } else {
468 *bar_start = base_addr;
469 *bar_len = PI_ESIC_K_CSR_IO_LEN;
470 }
471 }
472 if (dfx_bus_tc) {
473 *bar_start = to_tc_dev(bdev)->resource.start +
474 PI_TC_K_CSR_OFFSET;
475 *bar_len = PI_TC_K_CSR_LEN;
476 }
477 }
478
479 static const struct net_device_ops dfx_netdev_ops = {
480 .ndo_open = dfx_open,
481 .ndo_stop = dfx_close,
482 .ndo_start_xmit = dfx_xmt_queue_pkt,
483 .ndo_get_stats = dfx_ctl_get_stats,
484 .ndo_set_rx_mode = dfx_ctl_set_multicast_list,
485 .ndo_set_mac_address = dfx_ctl_set_mac_address,
486 };
487
488 /*
489 * ================
490 * = dfx_register =
491 * ================
492 *
493 * Overview:
494 * Initializes a supported FDDI controller
495 *
496 * Returns:
497 * Condition code
498 *
499 * Arguments:
500 * bdev - pointer to device information
501 *
502 * Functional Description:
503 *
504 * Return Codes:
505 * 0 - This device (fddi0, fddi1, etc) configured successfully
506 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
507 *
508 * Assumptions:
509 * It compiles so it should work :-( (PCI cards do :-)
510 *
511 * Side Effects:
512 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
513 * initialized and the board resources are read and stored in
514 * the device structure.
515 */
516 static int dfx_register(struct device *bdev)
517 {
518 static int version_disp;
519 int dfx_bus_pci = dev_is_pci(bdev);
520 int dfx_bus_tc = DFX_BUS_TC(bdev);
521 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
522 const char *print_name = dev_name(bdev);
523 struct net_device *dev;
524 DFX_board_t *bp; /* board pointer */
525 resource_size_t bar_start = 0; /* pointer to port */
526 resource_size_t bar_len = 0; /* resource length */
527 int alloc_size; /* total buffer size used */
528 struct resource *region;
529 int err = 0;
530
531 if (!version_disp) { /* display version info if adapter is found */
532 version_disp = 1; /* set display flag to TRUE so that */
533 printk(version); /* we only display this string ONCE */
534 }
535
536 dev = alloc_fddidev(sizeof(*bp));
537 if (!dev) {
538 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
539 print_name);
540 return -ENOMEM;
541 }
542
543 /* Enable PCI device. */
544 if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
545 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
546 print_name);
547 goto err_out;
548 }
549
550 SET_NETDEV_DEV(dev, bdev);
551
552 bp = netdev_priv(dev);
553 bp->bus_dev = bdev;
554 dev_set_drvdata(bdev, dev);
555
556 dfx_get_bars(bdev, &bar_start, &bar_len);
557
558 if (dfx_use_mmio)
559 region = request_mem_region(bar_start, bar_len, print_name);
560 else
561 region = request_region(bar_start, bar_len, print_name);
562 if (!region) {
563 printk(KERN_ERR "%s: Cannot reserve I/O resource "
564 "0x%lx @ 0x%lx, aborting\n",
565 print_name, (long)bar_len, (long)bar_start);
566 err = -EBUSY;
567 goto err_out_disable;
568 }
569
570 /* Set up I/O base address. */
571 if (dfx_use_mmio) {
572 bp->base.mem = ioremap_nocache(bar_start, bar_len);
573 if (!bp->base.mem) {
574 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
575 err = -ENOMEM;
576 goto err_out_region;
577 }
578 } else {
579 bp->base.port = bar_start;
580 dev->base_addr = bar_start;
581 }
582
583 /* Initialize new device structure */
584 dev->netdev_ops = &dfx_netdev_ops;
585
586 if (dfx_bus_pci)
587 pci_set_master(to_pci_dev(bdev));
588
589 if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
590 err = -ENODEV;
591 goto err_out_unmap;
592 }
593
594 err = register_netdev(dev);
595 if (err)
596 goto err_out_kfree;
597
598 printk("%s: registered as %s\n", print_name, dev->name);
599 return 0;
600
601 err_out_kfree:
602 alloc_size = sizeof(PI_DESCR_BLOCK) +
603 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
604 #ifndef DYNAMIC_BUFFERS
605 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
606 #endif
607 sizeof(PI_CONSUMER_BLOCK) +
608 (PI_ALIGN_K_DESC_BLK - 1);
609 if (bp->kmalloced)
610 dma_free_coherent(bdev, alloc_size,
611 bp->kmalloced, bp->kmalloced_dma);
612
613 err_out_unmap:
614 if (dfx_use_mmio)
615 iounmap(bp->base.mem);
616
617 err_out_region:
618 if (dfx_use_mmio)
619 release_mem_region(bar_start, bar_len);
620 else
621 release_region(bar_start, bar_len);
622
623 err_out_disable:
624 if (dfx_bus_pci)
625 pci_disable_device(to_pci_dev(bdev));
626
627 err_out:
628 free_netdev(dev);
629 return err;
630 }
631
632
633 /*
634 * ================
635 * = dfx_bus_init =
636 * ================
637 *
638 * Overview:
639 * Initializes the bus-specific controller logic.
640 *
641 * Returns:
642 * None
643 *
644 * Arguments:
645 * dev - pointer to device information
646 *
647 * Functional Description:
648 * Determine and save adapter IRQ in device table,
649 * then perform bus-specific logic initialization.
650 *
651 * Return Codes:
652 * None
653 *
654 * Assumptions:
655 * bp->base has already been set with the proper
656 * base I/O address for this device.
657 *
658 * Side Effects:
659 * Interrupts are enabled at the adapter bus-specific logic.
660 * Note: Interrupts at the DMA engine (PDQ chip) are not
661 * enabled yet.
662 */
663
664 static void dfx_bus_init(struct net_device *dev)
665 {
666 DFX_board_t *bp = netdev_priv(dev);
667 struct device *bdev = bp->bus_dev;
668 int dfx_bus_pci = dev_is_pci(bdev);
669 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
670 int dfx_bus_tc = DFX_BUS_TC(bdev);
671 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
672 u8 val;
673
674 DBG_printk("In dfx_bus_init...\n");
675
676 /* Initialize a pointer back to the net_device struct */
677 bp->dev = dev;
678
679 /* Initialize adapter based on bus type */
680
681 if (dfx_bus_tc)
682 dev->irq = to_tc_dev(bdev)->interrupt;
683 if (dfx_bus_eisa) {
684 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
685
686 /* Get the interrupt level from the ESIC chip. */
687 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
688 val &= PI_CONFIG_STAT_0_M_IRQ;
689 val >>= PI_CONFIG_STAT_0_V_IRQ;
690
691 switch (val) {
692 case PI_CONFIG_STAT_0_IRQ_K_9:
693 dev->irq = 9;
694 break;
695
696 case PI_CONFIG_STAT_0_IRQ_K_10:
697 dev->irq = 10;
698 break;
699
700 case PI_CONFIG_STAT_0_IRQ_K_11:
701 dev->irq = 11;
702 break;
703
704 case PI_CONFIG_STAT_0_IRQ_K_15:
705 dev->irq = 15;
706 break;
707 }
708
709 /*
710 * Enable memory decoding (MEMCS0) and/or port decoding
711 * (IOCS1/IOCS0) as appropriate in Function Control
712 * Register. One of the port chip selects seems to be
713 * used for the Burst Holdoff register, but this bit of
714 * documentation is missing and as yet it has not been
715 * determined which of the two. This is also the reason
716 * the size of the decoded port range is twice as large
717 * as one required by the PDQ.
718 */
719
720 /* Set the decode range of the board. */
721 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
722 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
723 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
724 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
725 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
726 val = PI_ESIC_K_CSR_IO_LEN - 1;
727 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
728 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
729 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
730 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
731
732 /* Enable the decoders. */
733 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
734 if (dfx_use_mmio)
735 val |= PI_FUNCTION_CNTRL_M_MEMCS0;
736 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
737
738 /*
739 * Enable access to the rest of the module
740 * (including PDQ and packet memory).
741 */
742 val = PI_SLOT_CNTRL_M_ENB;
743 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
744
745 /*
746 * Map PDQ registers into memory or port space. This is
747 * done with a bit in the Burst Holdoff register.
748 */
749 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
750 if (dfx_use_mmio)
751 val |= PI_BURST_HOLDOFF_V_MEM_MAP;
752 else
753 val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
754 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
755
756 /* Enable interrupts at EISA bus interface chip (ESIC) */
757 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
758 val |= PI_CONFIG_STAT_0_M_INT_ENB;
759 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
760 }
761 if (dfx_bus_pci) {
762 struct pci_dev *pdev = to_pci_dev(bdev);
763
764 /* Get the interrupt level from the PCI Configuration Table */
765
766 dev->irq = pdev->irq;
767
768 /* Check Latency Timer and set if less than minimal */
769
770 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
771 if (val < PFI_K_LAT_TIMER_MIN) {
772 val = PFI_K_LAT_TIMER_DEF;
773 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
774 }
775
776 /* Enable interrupts at PCI bus interface chip (PFI) */
777 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
778 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
779 }
780 }
781
782 /*
783 * ==================
784 * = dfx_bus_uninit =
785 * ==================
786 *
787 * Overview:
788 * Uninitializes the bus-specific controller logic.
789 *
790 * Returns:
791 * None
792 *
793 * Arguments:
794 * dev - pointer to device information
795 *
796 * Functional Description:
797 * Perform bus-specific logic uninitialization.
798 *
799 * Return Codes:
800 * None
801 *
802 * Assumptions:
803 * bp->base has already been set with the proper
804 * base I/O address for this device.
805 *
806 * Side Effects:
807 * Interrupts are disabled at the adapter bus-specific logic.
808 */
809
810 static void dfx_bus_uninit(struct net_device *dev)
811 {
812 DFX_board_t *bp = netdev_priv(dev);
813 struct device *bdev = bp->bus_dev;
814 int dfx_bus_pci = dev_is_pci(bdev);
815 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
816 u8 val;
817
818 DBG_printk("In dfx_bus_uninit...\n");
819
820 /* Uninitialize adapter based on bus type */
821
822 if (dfx_bus_eisa) {
823 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
824
825 /* Disable interrupts at EISA bus interface chip (ESIC) */
826 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
827 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
828 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
829 }
830 if (dfx_bus_pci) {
831 /* Disable interrupts at PCI bus interface chip (PFI) */
832 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
833 }
834 }
835
836
837 /*
838 * ========================
839 * = dfx_bus_config_check =
840 * ========================
841 *
842 * Overview:
843 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
844 * are illegal, then this routine will set new defaults.
845 *
846 * Returns:
847 * None
848 *
849 * Arguments:
850 * bp - pointer to board information
851 *
852 * Functional Description:
853 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
854 * PDQ, and all FDDI PCI controllers, all values are legal.
855 *
856 * Return Codes:
857 * None
858 *
859 * Assumptions:
860 * dfx_adap_init has NOT been called yet so burst size and other items have
861 * not been set.
862 *
863 * Side Effects:
864 * None
865 */
866
867 static void dfx_bus_config_check(DFX_board_t *bp)
868 {
869 struct device __maybe_unused *bdev = bp->bus_dev;
870 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
871 int status; /* return code from adapter port control call */
872 u32 host_data; /* LW data returned from port control call */
873
874 DBG_printk("In dfx_bus_config_check...\n");
875
876 /* Configuration check only valid for EISA adapter */
877
878 if (dfx_bus_eisa) {
879 /*
880 * First check if revision 2 EISA controller. Rev. 1 cards used
881 * PDQ revision B, so no workaround needed in this case. Rev. 3
882 * cards used PDQ revision E, so no workaround needed in this
883 * case, either. Only Rev. 2 cards used either Rev. D or E
884 * chips, so we must verify the chip revision on Rev. 2 cards.
885 */
886 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
887 /*
888 * Revision 2 FDDI EISA controller found,
889 * so let's check PDQ revision of adapter.
890 */
891 status = dfx_hw_port_ctrl_req(bp,
892 PI_PCTRL_M_SUB_CMD,
893 PI_SUB_CMD_K_PDQ_REV_GET,
894 0,
895 &host_data);
896 if ((status != DFX_K_SUCCESS) || (host_data == 2))
897 {
898 /*
899 * Either we couldn't determine the PDQ revision, or
900 * we determined that it is at revision D. In either case,
901 * we need to implement the workaround.
902 */
903
904 /* Ensure that the burst size is set to 8 longwords or less */
905
906 switch (bp->burst_size)
907 {
908 case PI_PDATA_B_DMA_BURST_SIZE_32:
909 case PI_PDATA_B_DMA_BURST_SIZE_16:
910 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
911 break;
912
913 default:
914 break;
915 }
916
917 /* Ensure that full-duplex mode is not enabled */
918
919 bp->full_duplex_enb = PI_SNMP_K_FALSE;
920 }
921 }
922 }
923 }
924
925
926 /*
927 * ===================
928 * = dfx_driver_init =
929 * ===================
930 *
931 * Overview:
932 * Initializes remaining adapter board structure information
933 * and makes sure adapter is in a safe state prior to dfx_open().
934 *
935 * Returns:
936 * Condition code
937 *
938 * Arguments:
939 * dev - pointer to device information
940 * print_name - printable device name
941 *
942 * Functional Description:
943 * This function allocates additional resources such as the host memory
944 * blocks needed by the adapter (eg. descriptor and consumer blocks).
945 * Remaining bus initialization steps are also completed. The adapter
946 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
947 * must call dfx_open() to open the adapter and bring it on-line.
948 *
949 * Return Codes:
950 * DFX_K_SUCCESS - initialization succeeded
951 * DFX_K_FAILURE - initialization failed - could not allocate memory
952 * or read adapter MAC address
953 *
954 * Assumptions:
955 * Memory allocated from pci_alloc_consistent() call is physically
956 * contiguous, locked memory.
957 *
958 * Side Effects:
959 * Adapter is reset and should be in DMA_UNAVAILABLE state before
960 * returning from this routine.
961 */
962
963 static int dfx_driver_init(struct net_device *dev, const char *print_name,
964 resource_size_t bar_start)
965 {
966 DFX_board_t *bp = netdev_priv(dev);
967 struct device *bdev = bp->bus_dev;
968 int dfx_bus_pci = dev_is_pci(bdev);
969 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
970 int dfx_bus_tc = DFX_BUS_TC(bdev);
971 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
972 int alloc_size; /* total buffer size needed */
973 char *top_v, *curr_v; /* virtual addrs into memory block */
974 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
975 u32 data; /* host data register value */
976 __le32 le32;
977 char *board_name = NULL;
978
979 DBG_printk("In dfx_driver_init...\n");
980
981 /* Initialize bus-specific hardware registers */
982
983 dfx_bus_init(dev);
984
985 /*
986 * Initialize default values for configurable parameters
987 *
988 * Note: All of these parameters are ones that a user may
989 * want to customize. It'd be nice to break these
990 * out into Space.c or someplace else that's more
991 * accessible/understandable than this file.
992 */
993
994 bp->full_duplex_enb = PI_SNMP_K_FALSE;
995 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
996 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
997 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
998
999 /*
1000 * Ensure that HW configuration is OK
1001 *
1002 * Note: Depending on the hardware revision, we may need to modify
1003 * some of the configurable parameters to workaround hardware
1004 * limitations. We'll perform this configuration check AFTER
1005 * setting the parameters to their default values.
1006 */
1007
1008 dfx_bus_config_check(bp);
1009
1010 /* Disable PDQ interrupts first */
1011
1012 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1013
1014 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1015
1016 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1017
1018 /* Read the factory MAC address from the adapter then save it */
1019
1020 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1021 &data) != DFX_K_SUCCESS) {
1022 printk("%s: Could not read adapter factory MAC address!\n",
1023 print_name);
1024 return DFX_K_FAILURE;
1025 }
1026 le32 = cpu_to_le32(data);
1027 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1028
1029 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1030 &data) != DFX_K_SUCCESS) {
1031 printk("%s: Could not read adapter factory MAC address!\n",
1032 print_name);
1033 return DFX_K_FAILURE;
1034 }
1035 le32 = cpu_to_le32(data);
1036 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1037
1038 /*
1039 * Set current address to factory address
1040 *
1041 * Note: Node address override support is handled through
1042 * dfx_ctl_set_mac_address.
1043 */
1044
1045 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1046 if (dfx_bus_tc)
1047 board_name = "DEFTA";
1048 if (dfx_bus_eisa)
1049 board_name = "DEFEA";
1050 if (dfx_bus_pci)
1051 board_name = "DEFPA";
1052 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1053 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1054 (long long)bar_start, dev->irq, dev->dev_addr);
1055
1056 /*
1057 * Get memory for descriptor block, consumer block, and other buffers
1058 * that need to be DMA read or written to by the adapter.
1059 */
1060
1061 alloc_size = sizeof(PI_DESCR_BLOCK) +
1062 PI_CMD_REQ_K_SIZE_MAX +
1063 PI_CMD_RSP_K_SIZE_MAX +
1064 #ifndef DYNAMIC_BUFFERS
1065 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1066 #endif
1067 sizeof(PI_CONSUMER_BLOCK) +
1068 (PI_ALIGN_K_DESC_BLK - 1);
1069 bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1070 &bp->kmalloced_dma,
1071 GFP_ATOMIC);
1072 if (top_v == NULL)
1073 return DFX_K_FAILURE;
1074
1075 top_p = bp->kmalloced_dma; /* get physical address of buffer */
1076
1077 /*
1078 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1079 * plus the amount of memory needed was allocated. The physical address
1080 * is now 8K aligned. By carving up the memory in a specific order,
1081 * we'll guarantee the alignment requirements for all other structures.
1082 *
1083 * Note: If the assumptions change regarding the non-paged, non-cached,
1084 * physically contiguous nature of the memory block or the address
1085 * alignments, then we'll need to implement a different algorithm
1086 * for allocating the needed memory.
1087 */
1088
1089 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1090 curr_v = top_v + (curr_p - top_p);
1091
1092 /* Reserve space for descriptor block */
1093
1094 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1095 bp->descr_block_phys = curr_p;
1096 curr_v += sizeof(PI_DESCR_BLOCK);
1097 curr_p += sizeof(PI_DESCR_BLOCK);
1098
1099 /* Reserve space for command request buffer */
1100
1101 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1102 bp->cmd_req_phys = curr_p;
1103 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1104 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1105
1106 /* Reserve space for command response buffer */
1107
1108 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1109 bp->cmd_rsp_phys = curr_p;
1110 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1111 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1112
1113 /* Reserve space for the LLC host receive queue buffers */
1114
1115 bp->rcv_block_virt = curr_v;
1116 bp->rcv_block_phys = curr_p;
1117
1118 #ifndef DYNAMIC_BUFFERS
1119 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1120 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1121 #endif
1122
1123 /* Reserve space for the consumer block */
1124
1125 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1126 bp->cons_block_phys = curr_p;
1127
1128 /* Display virtual and physical addresses if debug driver */
1129
1130 DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1131 print_name, bp->descr_block_virt, &bp->descr_block_phys);
1132 DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1133 print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1134 DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1135 print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1136 DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1137 print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1138 DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1139 print_name, bp->cons_block_virt, &bp->cons_block_phys);
1140
1141 return DFX_K_SUCCESS;
1142 }
1143
1144
1145 /*
1146 * =================
1147 * = dfx_adap_init =
1148 * =================
1149 *
1150 * Overview:
1151 * Brings the adapter to the link avail/link unavailable state.
1152 *
1153 * Returns:
1154 * Condition code
1155 *
1156 * Arguments:
1157 * bp - pointer to board information
1158 * get_buffers - non-zero if buffers to be allocated
1159 *
1160 * Functional Description:
1161 * Issues the low-level firmware/hardware calls necessary to bring
1162 * the adapter up, or to properly reset and restore adapter during
1163 * run-time.
1164 *
1165 * Return Codes:
1166 * DFX_K_SUCCESS - Adapter brought up successfully
1167 * DFX_K_FAILURE - Adapter initialization failed
1168 *
1169 * Assumptions:
1170 * bp->reset_type should be set to a valid reset type value before
1171 * calling this routine.
1172 *
1173 * Side Effects:
1174 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1175 * upon a successful return of this routine.
1176 */
1177
1178 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1179 {
1180 DBG_printk("In dfx_adap_init...\n");
1181
1182 /* Disable PDQ interrupts first */
1183
1184 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1185
1186 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1187
1188 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1189 {
1190 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1191 return DFX_K_FAILURE;
1192 }
1193
1194 /*
1195 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1196 * so we'll acknowledge all Type 0 interrupts now before continuing.
1197 */
1198
1199 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1200
1201 /*
1202 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1203 *
1204 * Note: We only need to clear host copies of these registers. The PDQ reset
1205 * takes care of the on-board register values.
1206 */
1207
1208 bp->cmd_req_reg.lword = 0;
1209 bp->cmd_rsp_reg.lword = 0;
1210 bp->rcv_xmt_reg.lword = 0;
1211
1212 /* Clear consumer block before going to DMA_AVAILABLE state */
1213
1214 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1215
1216 /* Initialize the DMA Burst Size */
1217
1218 if (dfx_hw_port_ctrl_req(bp,
1219 PI_PCTRL_M_SUB_CMD,
1220 PI_SUB_CMD_K_BURST_SIZE_SET,
1221 bp->burst_size,
1222 NULL) != DFX_K_SUCCESS)
1223 {
1224 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1225 return DFX_K_FAILURE;
1226 }
1227
1228 /*
1229 * Set base address of Consumer Block
1230 *
1231 * Assumption: 32-bit physical address of consumer block is 64 byte
1232 * aligned. That is, bits 0-5 of the address must be zero.
1233 */
1234
1235 if (dfx_hw_port_ctrl_req(bp,
1236 PI_PCTRL_M_CONS_BLOCK,
1237 bp->cons_block_phys,
1238 0,
1239 NULL) != DFX_K_SUCCESS)
1240 {
1241 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1242 return DFX_K_FAILURE;
1243 }
1244
1245 /*
1246 * Set the base address of Descriptor Block and bring adapter
1247 * to DMA_AVAILABLE state.
1248 *
1249 * Note: We also set the literal and data swapping requirements
1250 * in this command.
1251 *
1252 * Assumption: 32-bit physical address of descriptor block
1253 * is 8Kbyte aligned.
1254 */
1255 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1256 (u32)(bp->descr_block_phys |
1257 PI_PDATA_A_INIT_M_BSWAP_INIT),
1258 0, NULL) != DFX_K_SUCCESS) {
1259 printk("%s: Could not set descriptor block address!\n",
1260 bp->dev->name);
1261 return DFX_K_FAILURE;
1262 }
1263
1264 /* Set transmit flush timeout value */
1265
1266 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1267 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1268 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1269 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1270 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1271 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1272 {
1273 printk("%s: DMA command request failed!\n", bp->dev->name);
1274 return DFX_K_FAILURE;
1275 }
1276
1277 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1278
1279 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1280 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1281 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1282 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1283 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1284 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1285 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1286 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1287 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1288 {
1289 printk("%s: DMA command request failed!\n", bp->dev->name);
1290 return DFX_K_FAILURE;
1291 }
1292
1293 /* Initialize adapter CAM */
1294
1295 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1296 {
1297 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1298 return DFX_K_FAILURE;
1299 }
1300
1301 /* Initialize adapter filters */
1302
1303 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1304 {
1305 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1306 return DFX_K_FAILURE;
1307 }
1308
1309 /*
1310 * Remove any existing dynamic buffers (i.e. if the adapter is being
1311 * reinitialized)
1312 */
1313
1314 if (get_buffers)
1315 dfx_rcv_flush(bp);
1316
1317 /* Initialize receive descriptor block and produce buffers */
1318
1319 if (dfx_rcv_init(bp, get_buffers))
1320 {
1321 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1322 if (get_buffers)
1323 dfx_rcv_flush(bp);
1324 return DFX_K_FAILURE;
1325 }
1326
1327 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1328
1329 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1330 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1331 {
1332 printk("%s: Start command failed\n", bp->dev->name);
1333 if (get_buffers)
1334 dfx_rcv_flush(bp);
1335 return DFX_K_FAILURE;
1336 }
1337
1338 /* Initialization succeeded, reenable PDQ interrupts */
1339
1340 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1341 return DFX_K_SUCCESS;
1342 }
1343
1344
1345 /*
1346 * ============
1347 * = dfx_open =
1348 * ============
1349 *
1350 * Overview:
1351 * Opens the adapter
1352 *
1353 * Returns:
1354 * Condition code
1355 *
1356 * Arguments:
1357 * dev - pointer to device information
1358 *
1359 * Functional Description:
1360 * This function brings the adapter to an operational state.
1361 *
1362 * Return Codes:
1363 * 0 - Adapter was successfully opened
1364 * -EAGAIN - Could not register IRQ or adapter initialization failed
1365 *
1366 * Assumptions:
1367 * This routine should only be called for a device that was
1368 * initialized successfully.
1369 *
1370 * Side Effects:
1371 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1372 * if the open is successful.
1373 */
1374
1375 static int dfx_open(struct net_device *dev)
1376 {
1377 DFX_board_t *bp = netdev_priv(dev);
1378 int ret;
1379
1380 DBG_printk("In dfx_open...\n");
1381
1382 /* Register IRQ - support shared interrupts by passing device ptr */
1383
1384 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1385 dev);
1386 if (ret) {
1387 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1388 return ret;
1389 }
1390
1391 /*
1392 * Set current address to factory MAC address
1393 *
1394 * Note: We've already done this step in dfx_driver_init.
1395 * However, it's possible that a user has set a node
1396 * address override, then closed and reopened the
1397 * adapter. Unless we reset the device address field
1398 * now, we'll continue to use the existing modified
1399 * address.
1400 */
1401
1402 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1403
1404 /* Clear local unicast/multicast address tables and counts */
1405
1406 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1407 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1408 bp->uc_count = 0;
1409 bp->mc_count = 0;
1410
1411 /* Disable promiscuous filter settings */
1412
1413 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1414 bp->group_prom = PI_FSTATE_K_BLOCK;
1415
1416 spin_lock_init(&bp->lock);
1417
1418 /* Reset and initialize adapter */
1419
1420 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1421 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1422 {
1423 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1424 free_irq(dev->irq, dev);
1425 return -EAGAIN;
1426 }
1427
1428 /* Set device structure info */
1429 netif_start_queue(dev);
1430 return 0;
1431 }
1432
1433
1434 /*
1435 * =============
1436 * = dfx_close =
1437 * =============
1438 *
1439 * Overview:
1440 * Closes the device/module.
1441 *
1442 * Returns:
1443 * Condition code
1444 *
1445 * Arguments:
1446 * dev - pointer to device information
1447 *
1448 * Functional Description:
1449 * This routine closes the adapter and brings it to a safe state.
1450 * The interrupt service routine is deregistered with the OS.
1451 * The adapter can be opened again with another call to dfx_open().
1452 *
1453 * Return Codes:
1454 * Always return 0.
1455 *
1456 * Assumptions:
1457 * No further requests for this adapter are made after this routine is
1458 * called. dfx_open() can be called to reset and reinitialize the
1459 * adapter.
1460 *
1461 * Side Effects:
1462 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1463 * routine.
1464 */
1465
1466 static int dfx_close(struct net_device *dev)
1467 {
1468 DFX_board_t *bp = netdev_priv(dev);
1469
1470 DBG_printk("In dfx_close...\n");
1471
1472 /* Disable PDQ interrupts first */
1473
1474 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1475
1476 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1477
1478 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1479
1480 /*
1481 * Flush any pending transmit buffers
1482 *
1483 * Note: It's important that we flush the transmit buffers
1484 * BEFORE we clear our copy of the Type 2 register.
1485 * Otherwise, we'll have no idea how many buffers
1486 * we need to free.
1487 */
1488
1489 dfx_xmt_flush(bp);
1490
1491 /*
1492 * Clear Type 1 and Type 2 registers after adapter reset
1493 *
1494 * Note: Even though we're closing the adapter, it's
1495 * possible that an interrupt will occur after
1496 * dfx_close is called. Without some assurance to
1497 * the contrary we want to make sure that we don't
1498 * process receive and transmit LLC frames and update
1499 * the Type 2 register with bad information.
1500 */
1501
1502 bp->cmd_req_reg.lword = 0;
1503 bp->cmd_rsp_reg.lword = 0;
1504 bp->rcv_xmt_reg.lword = 0;
1505
1506 /* Clear consumer block for the same reason given above */
1507
1508 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1509
1510 /* Release all dynamically allocate skb in the receive ring. */
1511
1512 dfx_rcv_flush(bp);
1513
1514 /* Clear device structure flags */
1515
1516 netif_stop_queue(dev);
1517
1518 /* Deregister (free) IRQ */
1519
1520 free_irq(dev->irq, dev);
1521
1522 return 0;
1523 }
1524
1525
1526 /*
1527 * ======================
1528 * = dfx_int_pr_halt_id =
1529 * ======================
1530 *
1531 * Overview:
1532 * Displays halt id's in string form.
1533 *
1534 * Returns:
1535 * None
1536 *
1537 * Arguments:
1538 * bp - pointer to board information
1539 *
1540 * Functional Description:
1541 * Determine current halt id and display appropriate string.
1542 *
1543 * Return Codes:
1544 * None
1545 *
1546 * Assumptions:
1547 * None
1548 *
1549 * Side Effects:
1550 * None
1551 */
1552
1553 static void dfx_int_pr_halt_id(DFX_board_t *bp)
1554 {
1555 PI_UINT32 port_status; /* PDQ port status register value */
1556 PI_UINT32 halt_id; /* PDQ port status halt ID */
1557
1558 /* Read the latest port status */
1559
1560 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1561
1562 /* Display halt state transition information */
1563
1564 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1565 switch (halt_id)
1566 {
1567 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1568 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1569 break;
1570
1571 case PI_HALT_ID_K_PARITY_ERROR:
1572 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1573 break;
1574
1575 case PI_HALT_ID_K_HOST_DIR_HALT:
1576 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1577 break;
1578
1579 case PI_HALT_ID_K_SW_FAULT:
1580 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1581 break;
1582
1583 case PI_HALT_ID_K_HW_FAULT:
1584 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1585 break;
1586
1587 case PI_HALT_ID_K_PC_TRACE:
1588 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1589 break;
1590
1591 case PI_HALT_ID_K_DMA_ERROR:
1592 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1593 break;
1594
1595 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1596 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1597 break;
1598
1599 case PI_HALT_ID_K_BUS_EXCEPTION:
1600 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1601 break;
1602
1603 default:
1604 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1605 break;
1606 }
1607 }
1608
1609
1610 /*
1611 * ==========================
1612 * = dfx_int_type_0_process =
1613 * ==========================
1614 *
1615 * Overview:
1616 * Processes Type 0 interrupts.
1617 *
1618 * Returns:
1619 * None
1620 *
1621 * Arguments:
1622 * bp - pointer to board information
1623 *
1624 * Functional Description:
1625 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1626 * is a serious fault on the adapter, then an error message is displayed
1627 * and the adapter is reset.
1628 *
1629 * One tricky potential timing window is the rapid succession of "link avail"
1630 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1631 * interrupt must be done before reading the state from the Port Status
1632 * register. This is true because a state change could occur after reading
1633 * the data, but before acknowledging the interrupt. If this state change
1634 * does happen, it would be lost because the driver is using the old state,
1635 * and it will never know about the new state because it subsequently
1636 * acknowledges the state change interrupt.
1637 *
1638 * INCORRECT CORRECT
1639 * read type 0 int reasons read type 0 int reasons
1640 * read adapter state ack type 0 interrupts
1641 * ack type 0 interrupts read adapter state
1642 * ... process interrupt ... ... process interrupt ...
1643 *
1644 * Return Codes:
1645 * None
1646 *
1647 * Assumptions:
1648 * None
1649 *
1650 * Side Effects:
1651 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1652 * or if the port status indicates that the adapter is halted. The driver
1653 * is responsible for reinitializing the adapter with the current CAM
1654 * contents and adapter filter settings.
1655 */
1656
1657 static void dfx_int_type_0_process(DFX_board_t *bp)
1658
1659 {
1660 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1661 PI_UINT32 state; /* current adap state (from port status) */
1662
1663 /*
1664 * Read host interrupt Type 0 register to determine which Type 0
1665 * interrupts are pending. Immediately write it back out to clear
1666 * those interrupts.
1667 */
1668
1669 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1670 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1671
1672 /* Check for Type 0 error interrupts */
1673
1674 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1675 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1676 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1677 {
1678 /* Check for Non-Existent Memory error */
1679
1680 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1681 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1682
1683 /* Check for Packet Memory Parity error */
1684
1685 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1686 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1687
1688 /* Check for Host Bus Parity error */
1689
1690 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1691 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1692
1693 /* Reset adapter and bring it back on-line */
1694
1695 bp->link_available = PI_K_FALSE; /* link is no longer available */
1696 bp->reset_type = 0; /* rerun on-board diagnostics */
1697 printk("%s: Resetting adapter...\n", bp->dev->name);
1698 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1699 {
1700 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1701 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1702 return;
1703 }
1704 printk("%s: Adapter reset successful!\n", bp->dev->name);
1705 return;
1706 }
1707
1708 /* Check for transmit flush interrupt */
1709
1710 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1711 {
1712 /* Flush any pending xmt's and acknowledge the flush interrupt */
1713
1714 bp->link_available = PI_K_FALSE; /* link is no longer available */
1715 dfx_xmt_flush(bp); /* flush any outstanding packets */
1716 (void) dfx_hw_port_ctrl_req(bp,
1717 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1718 0,
1719 0,
1720 NULL);
1721 }
1722
1723 /* Check for adapter state change */
1724
1725 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1726 {
1727 /* Get latest adapter state */
1728
1729 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1730 if (state == PI_STATE_K_HALTED)
1731 {
1732 /*
1733 * Adapter has transitioned to HALTED state, try to reset
1734 * adapter to bring it back on-line. If reset fails,
1735 * leave the adapter in the broken state.
1736 */
1737
1738 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1739 dfx_int_pr_halt_id(bp); /* display halt id as string */
1740
1741 /* Reset adapter and bring it back on-line */
1742
1743 bp->link_available = PI_K_FALSE; /* link is no longer available */
1744 bp->reset_type = 0; /* rerun on-board diagnostics */
1745 printk("%s: Resetting adapter...\n", bp->dev->name);
1746 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1747 {
1748 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1749 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1750 return;
1751 }
1752 printk("%s: Adapter reset successful!\n", bp->dev->name);
1753 }
1754 else if (state == PI_STATE_K_LINK_AVAIL)
1755 {
1756 bp->link_available = PI_K_TRUE; /* set link available flag */
1757 }
1758 }
1759 }
1760
1761
1762 /*
1763 * ==================
1764 * = dfx_int_common =
1765 * ==================
1766 *
1767 * Overview:
1768 * Interrupt service routine (ISR)
1769 *
1770 * Returns:
1771 * None
1772 *
1773 * Arguments:
1774 * bp - pointer to board information
1775 *
1776 * Functional Description:
1777 * This is the ISR which processes incoming adapter interrupts.
1778 *
1779 * Return Codes:
1780 * None
1781 *
1782 * Assumptions:
1783 * This routine assumes PDQ interrupts have not been disabled.
1784 * When interrupts are disabled at the PDQ, the Port Status register
1785 * is automatically cleared. This routine uses the Port Status
1786 * register value to determine whether a Type 0 interrupt occurred,
1787 * so it's important that adapter interrupts are not normally
1788 * enabled/disabled at the PDQ.
1789 *
1790 * It's vital that this routine is NOT reentered for the
1791 * same board and that the OS is not in another section of
1792 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1793 * different thread.
1794 *
1795 * Side Effects:
1796 * Pending interrupts are serviced. Depending on the type of
1797 * interrupt, acknowledging and clearing the interrupt at the
1798 * PDQ involves writing a register to clear the interrupt bit
1799 * or updating completion indices.
1800 */
1801
1802 static void dfx_int_common(struct net_device *dev)
1803 {
1804 DFX_board_t *bp = netdev_priv(dev);
1805 PI_UINT32 port_status; /* Port Status register */
1806
1807 /* Process xmt interrupts - frequent case, so always call this routine */
1808
1809 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1810 netif_wake_queue(dev);
1811
1812 /* Process rcv interrupts - frequent case, so always call this routine */
1813
1814 dfx_rcv_queue_process(bp); /* service received LLC frames */
1815
1816 /*
1817 * Transmit and receive producer and completion indices are updated on the
1818 * adapter by writing to the Type 2 Producer register. Since the frequent
1819 * case is that we'll be processing either LLC transmit or receive buffers,
1820 * we'll optimize I/O writes by doing a single register write here.
1821 */
1822
1823 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1824
1825 /* Read PDQ Port Status register to find out which interrupts need processing */
1826
1827 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1828
1829 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1830
1831 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1832 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1833 }
1834
1835
1836 /*
1837 * =================
1838 * = dfx_interrupt =
1839 * =================
1840 *
1841 * Overview:
1842 * Interrupt processing routine
1843 *
1844 * Returns:
1845 * Whether a valid interrupt was seen.
1846 *
1847 * Arguments:
1848 * irq - interrupt vector
1849 * dev_id - pointer to device information
1850 *
1851 * Functional Description:
1852 * This routine calls the interrupt processing routine for this adapter. It
1853 * disables and reenables adapter interrupts, as appropriate. We can support
1854 * shared interrupts since the incoming dev_id pointer provides our device
1855 * structure context.
1856 *
1857 * Return Codes:
1858 * IRQ_HANDLED - an IRQ was handled.
1859 * IRQ_NONE - no IRQ was handled.
1860 *
1861 * Assumptions:
1862 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1863 * on Intel-based systems) is done by the operating system outside this
1864 * routine.
1865 *
1866 * System interrupts are enabled through this call.
1867 *
1868 * Side Effects:
1869 * Interrupts are disabled, then reenabled at the adapter.
1870 */
1871
1872 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1873 {
1874 struct net_device *dev = dev_id;
1875 DFX_board_t *bp = netdev_priv(dev);
1876 struct device *bdev = bp->bus_dev;
1877 int dfx_bus_pci = dev_is_pci(bdev);
1878 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1879 int dfx_bus_tc = DFX_BUS_TC(bdev);
1880
1881 /* Service adapter interrupts */
1882
1883 if (dfx_bus_pci) {
1884 u32 status;
1885
1886 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1887 if (!(status & PFI_STATUS_M_PDQ_INT))
1888 return IRQ_NONE;
1889
1890 spin_lock(&bp->lock);
1891
1892 /* Disable PDQ-PFI interrupts at PFI */
1893 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1894 PFI_MODE_M_DMA_ENB);
1895
1896 /* Call interrupt service routine for this adapter */
1897 dfx_int_common(dev);
1898
1899 /* Clear PDQ interrupt status bit and reenable interrupts */
1900 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1901 PFI_STATUS_M_PDQ_INT);
1902 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1903 (PFI_MODE_M_PDQ_INT_ENB |
1904 PFI_MODE_M_DMA_ENB));
1905
1906 spin_unlock(&bp->lock);
1907 }
1908 if (dfx_bus_eisa) {
1909 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1910 u8 status;
1911
1912 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1913 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1914 return IRQ_NONE;
1915
1916 spin_lock(&bp->lock);
1917
1918 /* Disable interrupts at the ESIC */
1919 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1920 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1921
1922 /* Call interrupt service routine for this adapter */
1923 dfx_int_common(dev);
1924
1925 /* Reenable interrupts at the ESIC */
1926 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1927 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1928 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1929
1930 spin_unlock(&bp->lock);
1931 }
1932 if (dfx_bus_tc) {
1933 u32 status;
1934
1935 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1936 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1937 PI_PSTATUS_M_XMT_DATA_PENDING |
1938 PI_PSTATUS_M_SMT_HOST_PENDING |
1939 PI_PSTATUS_M_UNSOL_PENDING |
1940 PI_PSTATUS_M_CMD_RSP_PENDING |
1941 PI_PSTATUS_M_CMD_REQ_PENDING |
1942 PI_PSTATUS_M_TYPE_0_PENDING)))
1943 return IRQ_NONE;
1944
1945 spin_lock(&bp->lock);
1946
1947 /* Call interrupt service routine for this adapter */
1948 dfx_int_common(dev);
1949
1950 spin_unlock(&bp->lock);
1951 }
1952
1953 return IRQ_HANDLED;
1954 }
1955
1956
1957 /*
1958 * =====================
1959 * = dfx_ctl_get_stats =
1960 * =====================
1961 *
1962 * Overview:
1963 * Get statistics for FDDI adapter
1964 *
1965 * Returns:
1966 * Pointer to FDDI statistics structure
1967 *
1968 * Arguments:
1969 * dev - pointer to device information
1970 *
1971 * Functional Description:
1972 * Gets current MIB objects from adapter, then
1973 * returns FDDI statistics structure as defined
1974 * in if_fddi.h.
1975 *
1976 * Note: Since the FDDI statistics structure is
1977 * still new and the device structure doesn't
1978 * have an FDDI-specific get statistics handler,
1979 * we'll return the FDDI statistics structure as
1980 * a pointer to an Ethernet statistics structure.
1981 * That way, at least the first part of the statistics
1982 * structure can be decoded properly, and it allows
1983 * "smart" applications to perform a second cast to
1984 * decode the FDDI-specific statistics.
1985 *
1986 * We'll have to pay attention to this routine as the
1987 * device structure becomes more mature and LAN media
1988 * independent.
1989 *
1990 * Return Codes:
1991 * None
1992 *
1993 * Assumptions:
1994 * None
1995 *
1996 * Side Effects:
1997 * None
1998 */
1999
2000 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2001 {
2002 DFX_board_t *bp = netdev_priv(dev);
2003
2004 /* Fill the bp->stats structure with driver-maintained counters */
2005
2006 bp->stats.gen.rx_packets = bp->rcv_total_frames;
2007 bp->stats.gen.tx_packets = bp->xmt_total_frames;
2008 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
2009 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
2010 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
2011 bp->rcv_frame_status_errors +
2012 bp->rcv_length_errors;
2013 bp->stats.gen.tx_errors = bp->xmt_length_errors;
2014 bp->stats.gen.rx_dropped = bp->rcv_discards;
2015 bp->stats.gen.tx_dropped = bp->xmt_discards;
2016 bp->stats.gen.multicast = bp->rcv_multicast_frames;
2017 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
2018
2019 /* Get FDDI SMT MIB objects */
2020
2021 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2022 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2023 return (struct net_device_stats *)&bp->stats;
2024
2025 /* Fill the bp->stats structure with the SMT MIB object values */
2026
2027 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2028 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2029 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2030 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2031 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2032 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2033 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2034 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2035 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2036 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2037 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2038 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2039 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2040 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2041 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2042 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2043 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2044 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2045 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2046 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2047 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2048 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2049 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2050 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2051 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2052 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2053 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2054 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2055 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2056 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2057 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2058 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2059 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2060 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2061 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2062 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2063 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2064 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2065 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2066 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2067 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2068 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2069 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2070 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2071 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2072 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2073 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2074 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2075 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2076 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2077 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2078 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2079 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2080 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2081 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2082 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2083 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2084 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2085 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2086 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2087 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2088 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2089 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2090 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2091 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2092 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2093 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2094 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2095 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2096 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2097 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2098 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2099 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2100 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2101 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2102 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2103 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2104 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2105 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2106 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2107 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2108 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2109 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2110 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2111 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2112 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2113 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2114 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2115 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2116 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2117 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2118 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2119
2120 /* Get FDDI counters */
2121
2122 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2123 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2124 return (struct net_device_stats *)&bp->stats;
2125
2126 /* Fill the bp->stats structure with the FDDI counter values */
2127
2128 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2129 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2130 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2131 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2132 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2133 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2134 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2135 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2136 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2137 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2138 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2139
2140 return (struct net_device_stats *)&bp->stats;
2141 }
2142
2143
2144 /*
2145 * ==============================
2146 * = dfx_ctl_set_multicast_list =
2147 * ==============================
2148 *
2149 * Overview:
2150 * Enable/Disable LLC frame promiscuous mode reception
2151 * on the adapter and/or update multicast address table.
2152 *
2153 * Returns:
2154 * None
2155 *
2156 * Arguments:
2157 * dev - pointer to device information
2158 *
2159 * Functional Description:
2160 * This routine follows a fairly simple algorithm for setting the
2161 * adapter filters and CAM:
2162 *
2163 * if IFF_PROMISC flag is set
2164 * enable LLC individual/group promiscuous mode
2165 * else
2166 * disable LLC individual/group promiscuous mode
2167 * if number of incoming multicast addresses >
2168 * (CAM max size - number of unicast addresses in CAM)
2169 * enable LLC group promiscuous mode
2170 * set driver-maintained multicast address count to zero
2171 * else
2172 * disable LLC group promiscuous mode
2173 * set driver-maintained multicast address count to incoming count
2174 * update adapter CAM
2175 * update adapter filters
2176 *
2177 * Return Codes:
2178 * None
2179 *
2180 * Assumptions:
2181 * Multicast addresses are presented in canonical (LSB) format.
2182 *
2183 * Side Effects:
2184 * On-board adapter CAM and filters are updated.
2185 */
2186
2187 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2188 {
2189 DFX_board_t *bp = netdev_priv(dev);
2190 int i; /* used as index in for loop */
2191 struct netdev_hw_addr *ha;
2192
2193 /* Enable LLC frame promiscuous mode, if necessary */
2194
2195 if (dev->flags & IFF_PROMISC)
2196 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2197
2198 /* Else, update multicast address table */
2199
2200 else
2201 {
2202 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2203 /*
2204 * Check whether incoming multicast address count exceeds table size
2205 *
2206 * Note: The adapters utilize an on-board 64 entry CAM for
2207 * supporting perfect filtering of multicast packets
2208 * and bridge functions when adding unicast addresses.
2209 * There is no hash function available. To support
2210 * additional multicast addresses, the all multicast
2211 * filter (LLC group promiscuous mode) must be enabled.
2212 *
2213 * The firmware reserves two CAM entries for SMT-related
2214 * multicast addresses, which leaves 62 entries available.
2215 * The following code ensures that we're not being asked
2216 * to add more than 62 addresses to the CAM. If we are,
2217 * the driver will enable the all multicast filter.
2218 * Should the number of multicast addresses drop below
2219 * the high water mark, the filter will be disabled and
2220 * perfect filtering will be used.
2221 */
2222
2223 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2224 {
2225 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2226 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2227 }
2228 else
2229 {
2230 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
2231 bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */
2232 }
2233
2234 /* Copy addresses to multicast address table, then update adapter CAM */
2235
2236 i = 0;
2237 netdev_for_each_mc_addr(ha, dev)
2238 memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2239 ha->addr, FDDI_K_ALEN);
2240
2241 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2242 {
2243 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2244 }
2245 else
2246 {
2247 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2248 }
2249 }
2250
2251 /* Update adapter filters */
2252
2253 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2254 {
2255 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2256 }
2257 else
2258 {
2259 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2260 }
2261 }
2262
2263
2264 /*
2265 * ===========================
2266 * = dfx_ctl_set_mac_address =
2267 * ===========================
2268 *
2269 * Overview:
2270 * Add node address override (unicast address) to adapter
2271 * CAM and update dev_addr field in device table.
2272 *
2273 * Returns:
2274 * None
2275 *
2276 * Arguments:
2277 * dev - pointer to device information
2278 * addr - pointer to sockaddr structure containing unicast address to add
2279 *
2280 * Functional Description:
2281 * The adapter supports node address overrides by adding one or more
2282 * unicast addresses to the adapter CAM. This is similar to adding
2283 * multicast addresses. In this routine we'll update the driver and
2284 * device structures with the new address, then update the adapter CAM
2285 * to ensure that the adapter will copy and strip frames destined and
2286 * sourced by that address.
2287 *
2288 * Return Codes:
2289 * Always returns zero.
2290 *
2291 * Assumptions:
2292 * The address pointed to by addr->sa_data is a valid unicast
2293 * address and is presented in canonical (LSB) format.
2294 *
2295 * Side Effects:
2296 * On-board adapter CAM is updated. On-board adapter filters
2297 * may be updated.
2298 */
2299
2300 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2301 {
2302 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2303 DFX_board_t *bp = netdev_priv(dev);
2304
2305 /* Copy unicast address to driver-maintained structs and update count */
2306
2307 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2308 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2309 bp->uc_count = 1;
2310
2311 /*
2312 * Verify we're not exceeding the CAM size by adding unicast address
2313 *
2314 * Note: It's possible that before entering this routine we've
2315 * already filled the CAM with 62 multicast addresses.
2316 * Since we need to place the node address override into
2317 * the CAM, we have to check to see that we're not
2318 * exceeding the CAM size. If we are, we have to enable
2319 * the LLC group (multicast) promiscuous mode filter as
2320 * in dfx_ctl_set_multicast_list.
2321 */
2322
2323 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2324 {
2325 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2326 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2327
2328 /* Update adapter filters */
2329
2330 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2331 {
2332 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2333 }
2334 else
2335 {
2336 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2337 }
2338 }
2339
2340 /* Update adapter CAM with new unicast address */
2341
2342 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2343 {
2344 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2345 }
2346 else
2347 {
2348 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2349 }
2350 return 0; /* always return zero */
2351 }
2352
2353
2354 /*
2355 * ======================
2356 * = dfx_ctl_update_cam =
2357 * ======================
2358 *
2359 * Overview:
2360 * Procedure to update adapter CAM (Content Addressable Memory)
2361 * with desired unicast and multicast address entries.
2362 *
2363 * Returns:
2364 * Condition code
2365 *
2366 * Arguments:
2367 * bp - pointer to board information
2368 *
2369 * Functional Description:
2370 * Updates adapter CAM with current contents of board structure
2371 * unicast and multicast address tables. Since there are only 62
2372 * free entries in CAM, this routine ensures that the command
2373 * request buffer is not overrun.
2374 *
2375 * Return Codes:
2376 * DFX_K_SUCCESS - Request succeeded
2377 * DFX_K_FAILURE - Request failed
2378 *
2379 * Assumptions:
2380 * All addresses being added (unicast and multicast) are in canonical
2381 * order.
2382 *
2383 * Side Effects:
2384 * On-board adapter CAM is updated.
2385 */
2386
2387 static int dfx_ctl_update_cam(DFX_board_t *bp)
2388 {
2389 int i; /* used as index */
2390 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2391
2392 /*
2393 * Fill in command request information
2394 *
2395 * Note: Even though both the unicast and multicast address
2396 * table entries are stored as contiguous 6 byte entries,
2397 * the firmware address filter set command expects each
2398 * entry to be two longwords (8 bytes total). We must be
2399 * careful to only copy the six bytes of each unicast and
2400 * multicast table entry into each command entry. This
2401 * is also why we must first clear the entire command
2402 * request buffer.
2403 */
2404
2405 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2406 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2407 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2408
2409 /* Now add unicast addresses to command request buffer, if any */
2410
2411 for (i=0; i < (int)bp->uc_count; i++)
2412 {
2413 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2414 {
2415 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2416 p_addr++; /* point to next command entry */
2417 }
2418 }
2419
2420 /* Now add multicast addresses to command request buffer, if any */
2421
2422 for (i=0; i < (int)bp->mc_count; i++)
2423 {
2424 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2425 {
2426 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2427 p_addr++; /* point to next command entry */
2428 }
2429 }
2430
2431 /* Issue command to update adapter CAM, then return */
2432
2433 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2434 return DFX_K_FAILURE;
2435 return DFX_K_SUCCESS;
2436 }
2437
2438
2439 /*
2440 * ==========================
2441 * = dfx_ctl_update_filters =
2442 * ==========================
2443 *
2444 * Overview:
2445 * Procedure to update adapter filters with desired
2446 * filter settings.
2447 *
2448 * Returns:
2449 * Condition code
2450 *
2451 * Arguments:
2452 * bp - pointer to board information
2453 *
2454 * Functional Description:
2455 * Enables or disables filter using current filter settings.
2456 *
2457 * Return Codes:
2458 * DFX_K_SUCCESS - Request succeeded.
2459 * DFX_K_FAILURE - Request failed.
2460 *
2461 * Assumptions:
2462 * We must always pass up packets destined to the broadcast
2463 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2464 * broadcast filter enabled.
2465 *
2466 * Side Effects:
2467 * On-board adapter filters are updated.
2468 */
2469
2470 static int dfx_ctl_update_filters(DFX_board_t *bp)
2471 {
2472 int i = 0; /* used as index */
2473
2474 /* Fill in command request information */
2475
2476 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2477
2478 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2479
2480 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2481 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2482
2483 /* Initialize LLC Individual/Group Promiscuous filter */
2484
2485 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2486 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2487
2488 /* Initialize LLC Group Promiscuous filter */
2489
2490 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2491 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2492
2493 /* Terminate the item code list */
2494
2495 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2496
2497 /* Issue command to update adapter filters, then return */
2498
2499 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2500 return DFX_K_FAILURE;
2501 return DFX_K_SUCCESS;
2502 }
2503
2504
2505 /*
2506 * ======================
2507 * = dfx_hw_dma_cmd_req =
2508 * ======================
2509 *
2510 * Overview:
2511 * Sends PDQ DMA command to adapter firmware
2512 *
2513 * Returns:
2514 * Condition code
2515 *
2516 * Arguments:
2517 * bp - pointer to board information
2518 *
2519 * Functional Description:
2520 * The command request and response buffers are posted to the adapter in the manner
2521 * described in the PDQ Port Specification:
2522 *
2523 * 1. Command Response Buffer is posted to adapter.
2524 * 2. Command Request Buffer is posted to adapter.
2525 * 3. Command Request consumer index is polled until it indicates that request
2526 * buffer has been DMA'd to adapter.
2527 * 4. Command Response consumer index is polled until it indicates that response
2528 * buffer has been DMA'd from adapter.
2529 *
2530 * This ordering ensures that a response buffer is already available for the firmware
2531 * to use once it's done processing the request buffer.
2532 *
2533 * Return Codes:
2534 * DFX_K_SUCCESS - DMA command succeeded
2535 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2536 * DFX_K_HW_TIMEOUT - DMA command timed out
2537 *
2538 * Assumptions:
2539 * Command request buffer has already been filled with desired DMA command.
2540 *
2541 * Side Effects:
2542 * None
2543 */
2544
2545 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2546 {
2547 int status; /* adapter status */
2548 int timeout_cnt; /* used in for loops */
2549
2550 /* Make sure the adapter is in a state that we can issue the DMA command in */
2551
2552 status = dfx_hw_adap_state_rd(bp);
2553 if ((status == PI_STATE_K_RESET) ||
2554 (status == PI_STATE_K_HALTED) ||
2555 (status == PI_STATE_K_DMA_UNAVAIL) ||
2556 (status == PI_STATE_K_UPGRADE))
2557 return DFX_K_OUTSTATE;
2558
2559 /* Put response buffer on the command response queue */
2560
2561 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2562 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2563 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2564
2565 /* Bump (and wrap) the producer index and write out to register */
2566
2567 bp->cmd_rsp_reg.index.prod += 1;
2568 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2569 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2570
2571 /* Put request buffer on the command request queue */
2572
2573 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2574 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2575 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2576
2577 /* Bump (and wrap) the producer index and write out to register */
2578
2579 bp->cmd_req_reg.index.prod += 1;
2580 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2581 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2582
2583 /*
2584 * Here we wait for the command request consumer index to be equal
2585 * to the producer, indicating that the adapter has DMAed the request.
2586 */
2587
2588 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2589 {
2590 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2591 break;
2592 udelay(100); /* wait for 100 microseconds */
2593 }
2594 if (timeout_cnt == 0)
2595 return DFX_K_HW_TIMEOUT;
2596
2597 /* Bump (and wrap) the completion index and write out to register */
2598
2599 bp->cmd_req_reg.index.comp += 1;
2600 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2601 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2602
2603 /*
2604 * Here we wait for the command response consumer index to be equal
2605 * to the producer, indicating that the adapter has DMAed the response.
2606 */
2607
2608 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2609 {
2610 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2611 break;
2612 udelay(100); /* wait for 100 microseconds */
2613 }
2614 if (timeout_cnt == 0)
2615 return DFX_K_HW_TIMEOUT;
2616
2617 /* Bump (and wrap) the completion index and write out to register */
2618
2619 bp->cmd_rsp_reg.index.comp += 1;
2620 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2621 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2622 return DFX_K_SUCCESS;
2623 }
2624
2625
2626 /*
2627 * ========================
2628 * = dfx_hw_port_ctrl_req =
2629 * ========================
2630 *
2631 * Overview:
2632 * Sends PDQ port control command to adapter firmware
2633 *
2634 * Returns:
2635 * Host data register value in host_data if ptr is not NULL
2636 *
2637 * Arguments:
2638 * bp - pointer to board information
2639 * command - port control command
2640 * data_a - port data A register value
2641 * data_b - port data B register value
2642 * host_data - ptr to host data register value
2643 *
2644 * Functional Description:
2645 * Send generic port control command to adapter by writing
2646 * to various PDQ port registers, then polling for completion.
2647 *
2648 * Return Codes:
2649 * DFX_K_SUCCESS - port control command succeeded
2650 * DFX_K_HW_TIMEOUT - port control command timed out
2651 *
2652 * Assumptions:
2653 * None
2654 *
2655 * Side Effects:
2656 * None
2657 */
2658
2659 static int dfx_hw_port_ctrl_req(
2660 DFX_board_t *bp,
2661 PI_UINT32 command,
2662 PI_UINT32 data_a,
2663 PI_UINT32 data_b,
2664 PI_UINT32 *host_data
2665 )
2666
2667 {
2668 PI_UINT32 port_cmd; /* Port Control command register value */
2669 int timeout_cnt; /* used in for loops */
2670
2671 /* Set Command Error bit in command longword */
2672
2673 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2674
2675 /* Issue port command to the adapter */
2676
2677 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2678 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2679 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2680
2681 /* Now wait for command to complete */
2682
2683 if (command == PI_PCTRL_M_BLAST_FLASH)
2684 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2685 else
2686 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2687
2688 for (; timeout_cnt > 0; timeout_cnt--)
2689 {
2690 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2691 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2692 break;
2693 udelay(100); /* wait for 100 microseconds */
2694 }
2695 if (timeout_cnt == 0)
2696 return DFX_K_HW_TIMEOUT;
2697
2698 /*
2699 * If the address of host_data is non-zero, assume caller has supplied a
2700 * non NULL pointer, and return the contents of the HOST_DATA register in
2701 * it.
2702 */
2703
2704 if (host_data != NULL)
2705 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2706 return DFX_K_SUCCESS;
2707 }
2708
2709
2710 /*
2711 * =====================
2712 * = dfx_hw_adap_reset =
2713 * =====================
2714 *
2715 * Overview:
2716 * Resets adapter
2717 *
2718 * Returns:
2719 * None
2720 *
2721 * Arguments:
2722 * bp - pointer to board information
2723 * type - type of reset to perform
2724 *
2725 * Functional Description:
2726 * Issue soft reset to adapter by writing to PDQ Port Reset
2727 * register. Use incoming reset type to tell adapter what
2728 * kind of reset operation to perform.
2729 *
2730 * Return Codes:
2731 * None
2732 *
2733 * Assumptions:
2734 * This routine merely issues a soft reset to the adapter.
2735 * It is expected that after this routine returns, the caller
2736 * will appropriately poll the Port Status register for the
2737 * adapter to enter the proper state.
2738 *
2739 * Side Effects:
2740 * Internal adapter registers are cleared.
2741 */
2742
2743 static void dfx_hw_adap_reset(
2744 DFX_board_t *bp,
2745 PI_UINT32 type
2746 )
2747
2748 {
2749 /* Set Reset type and assert reset */
2750
2751 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2752 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2753
2754 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2755
2756 udelay(20);
2757
2758 /* Deassert reset */
2759
2760 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2761 }
2762
2763
2764 /*
2765 * ========================
2766 * = dfx_hw_adap_state_rd =
2767 * ========================
2768 *
2769 * Overview:
2770 * Returns current adapter state
2771 *
2772 * Returns:
2773 * Adapter state per PDQ Port Specification
2774 *
2775 * Arguments:
2776 * bp - pointer to board information
2777 *
2778 * Functional Description:
2779 * Reads PDQ Port Status register and returns adapter state.
2780 *
2781 * Return Codes:
2782 * None
2783 *
2784 * Assumptions:
2785 * None
2786 *
2787 * Side Effects:
2788 * None
2789 */
2790
2791 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2792 {
2793 PI_UINT32 port_status; /* Port Status register value */
2794
2795 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2796 return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2797 }
2798
2799
2800 /*
2801 * =====================
2802 * = dfx_hw_dma_uninit =
2803 * =====================
2804 *
2805 * Overview:
2806 * Brings adapter to DMA_UNAVAILABLE state
2807 *
2808 * Returns:
2809 * Condition code
2810 *
2811 * Arguments:
2812 * bp - pointer to board information
2813 * type - type of reset to perform
2814 *
2815 * Functional Description:
2816 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2817 * 1. Set reset type bit in Port Data A Register then reset adapter.
2818 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2819 *
2820 * Return Codes:
2821 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2822 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2823 *
2824 * Assumptions:
2825 * None
2826 *
2827 * Side Effects:
2828 * Internal adapter registers are cleared.
2829 */
2830
2831 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2832 {
2833 int timeout_cnt; /* used in for loops */
2834
2835 /* Set reset type bit and reset adapter */
2836
2837 dfx_hw_adap_reset(bp, type);
2838
2839 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2840
2841 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2842 {
2843 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2844 break;
2845 udelay(100); /* wait for 100 microseconds */
2846 }
2847 if (timeout_cnt == 0)
2848 return DFX_K_HW_TIMEOUT;
2849 return DFX_K_SUCCESS;
2850 }
2851
2852 /*
2853 * Align an sk_buff to a boundary power of 2
2854 *
2855 */
2856 #ifdef DYNAMIC_BUFFERS
2857 static void my_skb_align(struct sk_buff *skb, int n)
2858 {
2859 unsigned long x = (unsigned long)skb->data;
2860 unsigned long v;
2861
2862 v = ALIGN(x, n); /* Where we want to be */
2863
2864 skb_reserve(skb, v - x);
2865 }
2866 #endif
2867
2868 /*
2869 * ================
2870 * = dfx_rcv_init =
2871 * ================
2872 *
2873 * Overview:
2874 * Produces buffers to adapter LLC Host receive descriptor block
2875 *
2876 * Returns:
2877 * None
2878 *
2879 * Arguments:
2880 * bp - pointer to board information
2881 * get_buffers - non-zero if buffers to be allocated
2882 *
2883 * Functional Description:
2884 * This routine can be called during dfx_adap_init() or during an adapter
2885 * reset. It initializes the descriptor block and produces all allocated
2886 * LLC Host queue receive buffers.
2887 *
2888 * Return Codes:
2889 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2890 * dynamic buffer allocation). If the buffer allocation failed, the
2891 * already allocated buffers will not be released and the caller should do
2892 * this.
2893 *
2894 * Assumptions:
2895 * The PDQ has been reset and the adapter and driver maintained Type 2
2896 * register indices are cleared.
2897 *
2898 * Side Effects:
2899 * Receive buffers are posted to the adapter LLC queue and the adapter
2900 * is notified.
2901 */
2902
2903 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2904 {
2905 int i, j; /* used in for loop */
2906
2907 /*
2908 * Since each receive buffer is a single fragment of same length, initialize
2909 * first longword in each receive descriptor for entire LLC Host descriptor
2910 * block. Also initialize second longword in each receive descriptor with
2911 * physical address of receive buffer. We'll always allocate receive
2912 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2913 * block and produce new receive buffers by simply updating the receive
2914 * producer index.
2915 *
2916 * Assumptions:
2917 * To support all shipping versions of PDQ, the receive buffer size
2918 * must be mod 128 in length and the physical address must be 128 byte
2919 * aligned. In other words, bits 0-6 of the length and address must
2920 * be zero for the following descriptor field entries to be correct on
2921 * all PDQ-based boards. We guaranteed both requirements during
2922 * driver initialization when we allocated memory for the receive buffers.
2923 */
2924
2925 if (get_buffers) {
2926 #ifdef DYNAMIC_BUFFERS
2927 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2928 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2929 {
2930 struct sk_buff *newskb;
2931 dma_addr_t dma_addr;
2932
2933 newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
2934 GFP_NOIO);
2935 if (!newskb)
2936 return -ENOMEM;
2937 /*
2938 * align to 128 bytes for compatibility with
2939 * the old EISA boards.
2940 */
2941
2942 my_skb_align(newskb, 128);
2943 dma_addr = dma_map_single(bp->bus_dev,
2944 newskb->data,
2945 PI_RCV_DATA_K_SIZE_MAX,
2946 DMA_FROM_DEVICE);
2947 if (dma_mapping_error(bp->bus_dev, dma_addr)) {
2948 dev_kfree_skb(newskb);
2949 return -ENOMEM;
2950 }
2951 bp->descr_block_virt->rcv_data[i + j].long_0 =
2952 (u32)(PI_RCV_DESCR_M_SOP |
2953 ((PI_RCV_DATA_K_SIZE_MAX /
2954 PI_ALIGN_K_RCV_DATA_BUFF) <<
2955 PI_RCV_DESCR_V_SEG_LEN));
2956 bp->descr_block_virt->rcv_data[i + j].long_1 =
2957 (u32)dma_addr;
2958
2959 /*
2960 * p_rcv_buff_va is only used inside the
2961 * kernel so we put the skb pointer here.
2962 */
2963 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2964 }
2965 #else
2966 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2967 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2968 {
2969 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2970 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2971 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2972 bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2973 }
2974 #endif
2975 }
2976
2977 /* Update receive producer and Type 2 register */
2978
2979 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2980 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2981 return 0;
2982 }
2983
2984
2985 /*
2986 * =========================
2987 * = dfx_rcv_queue_process =
2988 * =========================
2989 *
2990 * Overview:
2991 * Process received LLC frames.
2992 *
2993 * Returns:
2994 * None
2995 *
2996 * Arguments:
2997 * bp - pointer to board information
2998 *
2999 * Functional Description:
3000 * Received LLC frames are processed until there are no more consumed frames.
3001 * Once all frames are processed, the receive buffers are returned to the
3002 * adapter. Note that this algorithm fixes the length of time that can be spent
3003 * in this routine, because there are a fixed number of receive buffers to
3004 * process and buffers are not produced until this routine exits and returns
3005 * to the ISR.
3006 *
3007 * Return Codes:
3008 * None
3009 *
3010 * Assumptions:
3011 * None
3012 *
3013 * Side Effects:
3014 * None
3015 */
3016
3017 static void dfx_rcv_queue_process(
3018 DFX_board_t *bp
3019 )
3020
3021 {
3022 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3023 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3024 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3025 struct sk_buff *skb = NULL; /* pointer to a sk_buff to hold incoming packet data */
3026
3027 /* Service all consumed LLC receive frames */
3028
3029 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3030 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3031 {
3032 /* Process any errors */
3033 dma_addr_t dma_addr;
3034 int entry;
3035
3036 entry = bp->rcv_xmt_reg.index.rcv_comp;
3037 #ifdef DYNAMIC_BUFFERS
3038 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3039 #else
3040 p_buff = bp->p_rcv_buff_va[entry];
3041 #endif
3042 dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3043 dma_sync_single_for_cpu(bp->bus_dev,
3044 dma_addr + RCV_BUFF_K_DESCR,
3045 sizeof(u32),
3046 DMA_FROM_DEVICE);
3047 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3048
3049 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3050 {
3051 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3052 bp->rcv_crc_errors++;
3053 else
3054 bp->rcv_frame_status_errors++;
3055 }
3056 else
3057 {
3058 int rx_in_place = 0;
3059
3060 /* The frame was received without errors - verify packet length */
3061
3062 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3063 pkt_len -= 4; /* subtract 4 byte CRC */
3064 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3065 bp->rcv_length_errors++;
3066 else{
3067 #ifdef DYNAMIC_BUFFERS
3068 struct sk_buff *newskb = NULL;
3069
3070 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3071 dma_addr_t new_dma_addr;
3072
3073 newskb = netdev_alloc_skb(bp->dev,
3074 NEW_SKB_SIZE);
3075 if (newskb){
3076 my_skb_align(newskb, 128);
3077 new_dma_addr = dma_map_single(
3078 bp->bus_dev,
3079 newskb->data,
3080 PI_RCV_DATA_K_SIZE_MAX,
3081 DMA_FROM_DEVICE);
3082 if (dma_mapping_error(
3083 bp->bus_dev,
3084 new_dma_addr)) {
3085 dev_kfree_skb(newskb);
3086 newskb = NULL;
3087 }
3088 }
3089 if (newskb) {
3090 rx_in_place = 1;
3091
3092 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3093 dma_unmap_single(bp->bus_dev,
3094 dma_addr,
3095 PI_RCV_DATA_K_SIZE_MAX,
3096 DMA_FROM_DEVICE);
3097 skb_reserve(skb, RCV_BUFF_K_PADDING);
3098 bp->p_rcv_buff_va[entry] = (char *)newskb;
3099 bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3100 }
3101 }
3102 if (!newskb)
3103 #endif
3104 /* Alloc new buffer to pass up,
3105 * add room for PRH. */
3106 skb = netdev_alloc_skb(bp->dev,
3107 pkt_len + 3);
3108 if (skb == NULL)
3109 {
3110 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3111 bp->rcv_discards++;
3112 break;
3113 }
3114 else {
3115 if (!rx_in_place) {
3116 /* Receive buffer allocated, pass receive packet up */
3117 dma_sync_single_for_cpu(
3118 bp->bus_dev,
3119 dma_addr +
3120 RCV_BUFF_K_PADDING,
3121 pkt_len + 3,
3122 DMA_FROM_DEVICE);
3123
3124 skb_copy_to_linear_data(skb,
3125 p_buff + RCV_BUFF_K_PADDING,
3126 pkt_len + 3);
3127 }
3128
3129 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3130 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
3131 skb->protocol = fddi_type_trans(skb, bp->dev);
3132 bp->rcv_total_bytes += skb->len;
3133 netif_rx(skb);
3134
3135 /* Update the rcv counters */
3136 bp->rcv_total_frames++;
3137 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3138 bp->rcv_multicast_frames++;
3139 }
3140 }
3141 }
3142
3143 /*
3144 * Advance the producer (for recycling) and advance the completion
3145 * (for servicing received frames). Note that it is okay to
3146 * advance the producer without checking that it passes the
3147 * completion index because they are both advanced at the same
3148 * rate.
3149 */
3150
3151 bp->rcv_xmt_reg.index.rcv_prod += 1;
3152 bp->rcv_xmt_reg.index.rcv_comp += 1;
3153 }
3154 }
3155
3156
3157 /*
3158 * =====================
3159 * = dfx_xmt_queue_pkt =
3160 * =====================
3161 *
3162 * Overview:
3163 * Queues packets for transmission
3164 *
3165 * Returns:
3166 * Condition code
3167 *
3168 * Arguments:
3169 * skb - pointer to sk_buff to queue for transmission
3170 * dev - pointer to device information
3171 *
3172 * Functional Description:
3173 * Here we assume that an incoming skb transmit request
3174 * is contained in a single physically contiguous buffer
3175 * in which the virtual address of the start of packet
3176 * (skb->data) can be converted to a physical address
3177 * by using pci_map_single().
3178 *
3179 * Since the adapter architecture requires a three byte
3180 * packet request header to prepend the start of packet,
3181 * we'll write the three byte field immediately prior to
3182 * the FC byte. This assumption is valid because we've
3183 * ensured that dev->hard_header_len includes three pad
3184 * bytes. By posting a single fragment to the adapter,
3185 * we'll reduce the number of descriptor fetches and
3186 * bus traffic needed to send the request.
3187 *
3188 * Also, we can't free the skb until after it's been DMA'd
3189 * out by the adapter, so we'll queue it in the driver and
3190 * return it in dfx_xmt_done.
3191 *
3192 * Return Codes:
3193 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3194 * 1 - caller should requeue the sk_buff for later transmission
3195 *
3196 * Assumptions:
3197 * First and foremost, we assume the incoming skb pointer
3198 * is NOT NULL and is pointing to a valid sk_buff structure.
3199 *
3200 * The outgoing packet is complete, starting with the
3201 * frame control byte including the last byte of data,
3202 * but NOT including the 4 byte CRC. We'll let the
3203 * adapter hardware generate and append the CRC.
3204 *
3205 * The entire packet is stored in one physically
3206 * contiguous buffer which is not cached and whose
3207 * 32-bit physical address can be determined.
3208 *
3209 * It's vital that this routine is NOT reentered for the
3210 * same board and that the OS is not in another section of
3211 * code (eg. dfx_int_common) for the same board on a
3212 * different thread.
3213 *
3214 * Side Effects:
3215 * None
3216 */
3217
3218 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3219 struct net_device *dev)
3220 {
3221 DFX_board_t *bp = netdev_priv(dev);
3222 u8 prod; /* local transmit producer index */
3223 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3224 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3225 dma_addr_t dma_addr;
3226 unsigned long flags;
3227
3228 netif_stop_queue(dev);
3229
3230 /*
3231 * Verify that incoming transmit request is OK
3232 *
3233 * Note: The packet size check is consistent with other
3234 * Linux device drivers, although the correct packet
3235 * size should be verified before calling the
3236 * transmit routine.
3237 */
3238
3239 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3240 {
3241 printk("%s: Invalid packet length - %u bytes\n",
3242 dev->name, skb->len);
3243 bp->xmt_length_errors++; /* bump error counter */
3244 netif_wake_queue(dev);
3245 dev_kfree_skb(skb);
3246 return NETDEV_TX_OK; /* return "success" */
3247 }
3248 /*
3249 * See if adapter link is available, if not, free buffer
3250 *
3251 * Note: If the link isn't available, free buffer and return 0
3252 * rather than tell the upper layer to requeue the packet.
3253 * The methodology here is that by the time the link
3254 * becomes available, the packet to be sent will be
3255 * fairly stale. By simply dropping the packet, the
3256 * higher layer protocols will eventually time out
3257 * waiting for response packets which it won't receive.
3258 */
3259
3260 if (bp->link_available == PI_K_FALSE)
3261 {
3262 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3263 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3264 else
3265 {
3266 bp->xmt_discards++; /* bump error counter */
3267 dev_kfree_skb(skb); /* free sk_buff now */
3268 netif_wake_queue(dev);
3269 return NETDEV_TX_OK; /* return "success" */
3270 }
3271 }
3272
3273 /* Write the three PRH bytes immediately before the FC byte */
3274
3275 skb_push(skb, 3);
3276 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3277 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3278 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3279
3280 dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3281 DMA_TO_DEVICE);
3282 if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3283 skb_pull(skb, 3);
3284 return NETDEV_TX_BUSY;
3285 }
3286
3287 spin_lock_irqsave(&bp->lock, flags);
3288
3289 /* Get the current producer and the next free xmt data descriptor */
3290
3291 prod = bp->rcv_xmt_reg.index.xmt_prod;
3292 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3293
3294 /*
3295 * Get pointer to auxiliary queue entry to contain information
3296 * for this packet.
3297 *
3298 * Note: The current xmt producer index will become the
3299 * current xmt completion index when we complete this
3300 * packet later on. So, we'll get the pointer to the
3301 * next auxiliary queue entry now before we bump the
3302 * producer index.
3303 */
3304
3305 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3306
3307 /*
3308 * Write the descriptor with buffer info and bump producer
3309 *
3310 * Note: Since we need to start DMA from the packet request
3311 * header, we'll add 3 bytes to the DMA buffer length,
3312 * and we'll determine the physical address of the
3313 * buffer from the PRH, not skb->data.
3314 *
3315 * Assumptions:
3316 * 1. Packet starts with the frame control (FC) byte
3317 * at skb->data.
3318 * 2. The 4-byte CRC is not appended to the buffer or
3319 * included in the length.
3320 * 3. Packet length (skb->len) is from FC to end of
3321 * data, inclusive.
3322 * 4. The packet length does not exceed the maximum
3323 * FDDI LLC frame length of 4491 bytes.
3324 * 5. The entire packet is contained in a physically
3325 * contiguous, non-cached, locked memory space
3326 * comprised of a single buffer pointed to by
3327 * skb->data.
3328 * 6. The physical address of the start of packet
3329 * can be determined from the virtual address
3330 * by using pci_map_single() and is only 32-bits
3331 * wide.
3332 */
3333
3334 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3335 p_xmt_descr->long_1 = (u32)dma_addr;
3336
3337 /*
3338 * Verify that descriptor is actually available
3339 *
3340 * Note: If descriptor isn't available, return 1 which tells
3341 * the upper layer to requeue the packet for later
3342 * transmission.
3343 *
3344 * We need to ensure that the producer never reaches the
3345 * completion, except to indicate that the queue is empty.
3346 */
3347
3348 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3349 {
3350 skb_pull(skb,3);
3351 spin_unlock_irqrestore(&bp->lock, flags);
3352 return NETDEV_TX_BUSY; /* requeue packet for later */
3353 }
3354
3355 /*
3356 * Save info for this packet for xmt done indication routine
3357 *
3358 * Normally, we'd save the producer index in the p_xmt_drv_descr
3359 * structure so that we'd have it handy when we complete this
3360 * packet later (in dfx_xmt_done). However, since the current
3361 * transmit architecture guarantees a single fragment for the
3362 * entire packet, we can simply bump the completion index by
3363 * one (1) for each completed packet.
3364 *
3365 * Note: If this assumption changes and we're presented with
3366 * an inconsistent number of transmit fragments for packet
3367 * data, we'll need to modify this code to save the current
3368 * transmit producer index.
3369 */
3370
3371 p_xmt_drv_descr->p_skb = skb;
3372
3373 /* Update Type 2 register */
3374
3375 bp->rcv_xmt_reg.index.xmt_prod = prod;
3376 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3377 spin_unlock_irqrestore(&bp->lock, flags);
3378 netif_wake_queue(dev);
3379 return NETDEV_TX_OK; /* packet queued to adapter */
3380 }
3381
3382
3383 /*
3384 * ================
3385 * = dfx_xmt_done =
3386 * ================
3387 *
3388 * Overview:
3389 * Processes all frames that have been transmitted.
3390 *
3391 * Returns:
3392 * None
3393 *
3394 * Arguments:
3395 * bp - pointer to board information
3396 *
3397 * Functional Description:
3398 * For all consumed transmit descriptors that have not
3399 * yet been completed, we'll free the skb we were holding
3400 * onto using dev_kfree_skb and bump the appropriate
3401 * counters.
3402 *
3403 * Return Codes:
3404 * None
3405 *
3406 * Assumptions:
3407 * The Type 2 register is not updated in this routine. It is
3408 * assumed that it will be updated in the ISR when dfx_xmt_done
3409 * returns.
3410 *
3411 * Side Effects:
3412 * None
3413 */
3414
3415 static int dfx_xmt_done(DFX_board_t *bp)
3416 {
3417 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3418 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3419 u8 comp; /* local transmit completion index */
3420 int freed = 0; /* buffers freed */
3421
3422 /* Service all consumed transmit frames */
3423
3424 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3425 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3426 {
3427 /* Get pointer to the transmit driver descriptor block information */
3428
3429 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3430
3431 /* Increment transmit counters */
3432
3433 bp->xmt_total_frames++;
3434 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3435
3436 /* Return skb to operating system */
3437 comp = bp->rcv_xmt_reg.index.xmt_comp;
3438 dma_unmap_single(bp->bus_dev,
3439 bp->descr_block_virt->xmt_data[comp].long_1,
3440 p_xmt_drv_descr->p_skb->len,
3441 DMA_TO_DEVICE);
3442 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3443
3444 /*
3445 * Move to start of next packet by updating completion index
3446 *
3447 * Here we assume that a transmit packet request is always
3448 * serviced by posting one fragment. We can therefore
3449 * simplify the completion code by incrementing the
3450 * completion index by one. This code will need to be
3451 * modified if this assumption changes. See comments
3452 * in dfx_xmt_queue_pkt for more details.
3453 */
3454
3455 bp->rcv_xmt_reg.index.xmt_comp += 1;
3456 freed++;
3457 }
3458 return freed;
3459 }
3460
3461
3462 /*
3463 * =================
3464 * = dfx_rcv_flush =
3465 * =================
3466 *
3467 * Overview:
3468 * Remove all skb's in the receive ring.
3469 *
3470 * Returns:
3471 * None
3472 *
3473 * Arguments:
3474 * bp - pointer to board information
3475 *
3476 * Functional Description:
3477 * Free's all the dynamically allocated skb's that are
3478 * currently attached to the device receive ring. This
3479 * function is typically only used when the device is
3480 * initialized or reinitialized.
3481 *
3482 * Return Codes:
3483 * None
3484 *
3485 * Side Effects:
3486 * None
3487 */
3488 #ifdef DYNAMIC_BUFFERS
3489 static void dfx_rcv_flush( DFX_board_t *bp )
3490 {
3491 int i, j;
3492
3493 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3494 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3495 {
3496 struct sk_buff *skb;
3497 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3498 if (skb) {
3499 dma_unmap_single(bp->bus_dev,
3500 bp->descr_block_virt->rcv_data[i+j].long_1,
3501 PI_RCV_DATA_K_SIZE_MAX,
3502 DMA_FROM_DEVICE);
3503 dev_kfree_skb(skb);
3504 }
3505 bp->p_rcv_buff_va[i+j] = NULL;
3506 }
3507
3508 }
3509 #endif /* DYNAMIC_BUFFERS */
3510
3511 /*
3512 * =================
3513 * = dfx_xmt_flush =
3514 * =================
3515 *
3516 * Overview:
3517 * Processes all frames whether they've been transmitted
3518 * or not.
3519 *
3520 * Returns:
3521 * None
3522 *
3523 * Arguments:
3524 * bp - pointer to board information
3525 *
3526 * Functional Description:
3527 * For all produced transmit descriptors that have not
3528 * yet been completed, we'll free the skb we were holding
3529 * onto using dev_kfree_skb and bump the appropriate
3530 * counters. Of course, it's possible that some of
3531 * these transmit requests actually did go out, but we
3532 * won't make that distinction here. Finally, we'll
3533 * update the consumer index to match the producer.
3534 *
3535 * Return Codes:
3536 * None
3537 *
3538 * Assumptions:
3539 * This routine does NOT update the Type 2 register. It
3540 * is assumed that this routine is being called during a
3541 * transmit flush interrupt, or a shutdown or close routine.
3542 *
3543 * Side Effects:
3544 * None
3545 */
3546
3547 static void dfx_xmt_flush( DFX_board_t *bp )
3548 {
3549 u32 prod_cons; /* rcv/xmt consumer block longword */
3550 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3551 u8 comp; /* local transmit completion index */
3552
3553 /* Flush all outstanding transmit frames */
3554
3555 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3556 {
3557 /* Get pointer to the transmit driver descriptor block information */
3558
3559 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3560
3561 /* Return skb to operating system */
3562 comp = bp->rcv_xmt_reg.index.xmt_comp;
3563 dma_unmap_single(bp->bus_dev,
3564 bp->descr_block_virt->xmt_data[comp].long_1,
3565 p_xmt_drv_descr->p_skb->len,
3566 DMA_TO_DEVICE);
3567 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3568
3569 /* Increment transmit error counter */
3570
3571 bp->xmt_discards++;
3572
3573 /*
3574 * Move to start of next packet by updating completion index
3575 *
3576 * Here we assume that a transmit packet request is always
3577 * serviced by posting one fragment. We can therefore
3578 * simplify the completion code by incrementing the
3579 * completion index by one. This code will need to be
3580 * modified if this assumption changes. See comments
3581 * in dfx_xmt_queue_pkt for more details.
3582 */
3583
3584 bp->rcv_xmt_reg.index.xmt_comp += 1;
3585 }
3586
3587 /* Update the transmit consumer index in the consumer block */
3588
3589 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3590 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3591 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3592 }
3593
3594 /*
3595 * ==================
3596 * = dfx_unregister =
3597 * ==================
3598 *
3599 * Overview:
3600 * Shuts down an FDDI controller
3601 *
3602 * Returns:
3603 * Condition code
3604 *
3605 * Arguments:
3606 * bdev - pointer to device information
3607 *
3608 * Functional Description:
3609 *
3610 * Return Codes:
3611 * None
3612 *
3613 * Assumptions:
3614 * It compiles so it should work :-( (PCI cards do :-)
3615 *
3616 * Side Effects:
3617 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3618 * freed.
3619 */
3620 static void dfx_unregister(struct device *bdev)
3621 {
3622 struct net_device *dev = dev_get_drvdata(bdev);
3623 DFX_board_t *bp = netdev_priv(dev);
3624 int dfx_bus_pci = dev_is_pci(bdev);
3625 int dfx_bus_tc = DFX_BUS_TC(bdev);
3626 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3627 resource_size_t bar_start = 0; /* pointer to port */
3628 resource_size_t bar_len = 0; /* resource length */
3629 int alloc_size; /* total buffer size used */
3630
3631 unregister_netdev(dev);
3632
3633 alloc_size = sizeof(PI_DESCR_BLOCK) +
3634 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3635 #ifndef DYNAMIC_BUFFERS
3636 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3637 #endif
3638 sizeof(PI_CONSUMER_BLOCK) +
3639 (PI_ALIGN_K_DESC_BLK - 1);
3640 if (bp->kmalloced)
3641 dma_free_coherent(bdev, alloc_size,
3642 bp->kmalloced, bp->kmalloced_dma);
3643
3644 dfx_bus_uninit(dev);
3645
3646 dfx_get_bars(bdev, &bar_start, &bar_len);
3647 if (dfx_use_mmio) {
3648 iounmap(bp->base.mem);
3649 release_mem_region(bar_start, bar_len);
3650 } else
3651 release_region(bar_start, bar_len);
3652
3653 if (dfx_bus_pci)
3654 pci_disable_device(to_pci_dev(bdev));
3655
3656 free_netdev(dev);
3657 }
3658
3659
3660 static int __maybe_unused dfx_dev_register(struct device *);
3661 static int __maybe_unused dfx_dev_unregister(struct device *);
3662
3663 #ifdef CONFIG_PCI
3664 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3665 static void dfx_pci_unregister(struct pci_dev *);
3666
3667 static const struct pci_device_id dfx_pci_table[] = {
3668 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3669 { }
3670 };
3671 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3672
3673 static struct pci_driver dfx_pci_driver = {
3674 .name = "defxx",
3675 .id_table = dfx_pci_table,
3676 .probe = dfx_pci_register,
3677 .remove = dfx_pci_unregister,
3678 };
3679
3680 static int dfx_pci_register(struct pci_dev *pdev,
3681 const struct pci_device_id *ent)
3682 {
3683 return dfx_register(&pdev->dev);
3684 }
3685
3686 static void dfx_pci_unregister(struct pci_dev *pdev)
3687 {
3688 dfx_unregister(&pdev->dev);
3689 }
3690 #endif /* CONFIG_PCI */
3691
3692 #ifdef CONFIG_EISA
3693 static struct eisa_device_id dfx_eisa_table[] = {
3694 { "DEC3001", DEFEA_PROD_ID_1 },
3695 { "DEC3002", DEFEA_PROD_ID_2 },
3696 { "DEC3003", DEFEA_PROD_ID_3 },
3697 { "DEC3004", DEFEA_PROD_ID_4 },
3698 { }
3699 };
3700 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3701
3702 static struct eisa_driver dfx_eisa_driver = {
3703 .id_table = dfx_eisa_table,
3704 .driver = {
3705 .name = "defxx",
3706 .bus = &eisa_bus_type,
3707 .probe = dfx_dev_register,
3708 .remove = dfx_dev_unregister,
3709 },
3710 };
3711 #endif /* CONFIG_EISA */
3712
3713 #ifdef CONFIG_TC
3714 static struct tc_device_id const dfx_tc_table[] = {
3715 { "DEC ", "PMAF-FA " },
3716 { "DEC ", "PMAF-FD " },
3717 { "DEC ", "PMAF-FS " },
3718 { "DEC ", "PMAF-FU " },
3719 { }
3720 };
3721 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3722
3723 static struct tc_driver dfx_tc_driver = {
3724 .id_table = dfx_tc_table,
3725 .driver = {
3726 .name = "defxx",
3727 .bus = &tc_bus_type,
3728 .probe = dfx_dev_register,
3729 .remove = dfx_dev_unregister,
3730 },
3731 };
3732 #endif /* CONFIG_TC */
3733
3734 static int __maybe_unused dfx_dev_register(struct device *dev)
3735 {
3736 int status;
3737
3738 status = dfx_register(dev);
3739 if (!status)
3740 get_device(dev);
3741 return status;
3742 }
3743
3744 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3745 {
3746 put_device(dev);
3747 dfx_unregister(dev);
3748 return 0;
3749 }
3750
3751
3752 static int dfx_init(void)
3753 {
3754 int status;
3755
3756 status = pci_register_driver(&dfx_pci_driver);
3757 if (!status)
3758 status = eisa_driver_register(&dfx_eisa_driver);
3759 if (!status)
3760 status = tc_register_driver(&dfx_tc_driver);
3761 return status;
3762 }
3763
3764 static void dfx_cleanup(void)
3765 {
3766 tc_unregister_driver(&dfx_tc_driver);
3767 eisa_driver_unregister(&dfx_eisa_driver);
3768 pci_unregister_driver(&dfx_pci_driver);
3769 }
3770
3771 module_init(dfx_init);
3772 module_exit(dfx_cleanup);
3773 MODULE_AUTHOR("Lawrence V. Stefani");
3774 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3775 DRV_VERSION " " DRV_RELDATE);
3776 MODULE_LICENSE("GPL");