]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/fec.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / fec.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/clk.h>
42 #include <linux/platform_device.h>
43 #include <linux/phy.h>
44 #include <linux/fec.h>
45
46 #include <asm/cacheflush.h>
47
48 #ifndef CONFIG_ARCH_MXC
49 #include <asm/coldfire.h>
50 #include <asm/mcfsim.h>
51 #endif
52
53 #include "fec.h"
54
55 #ifdef CONFIG_ARCH_MXC
56 #include <mach/hardware.h>
57 #define FEC_ALIGNMENT 0xf
58 #else
59 #define FEC_ALIGNMENT 0x3
60 #endif
61
62 /*
63 * Define the fixed address of the FEC hardware.
64 */
65 #if defined(CONFIG_M5272)
66
67 static unsigned char fec_mac_default[] = {
68 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
69 };
70
71 /*
72 * Some hardware gets it MAC address out of local flash memory.
73 * if this is non-zero then assume it is the address to get MAC from.
74 */
75 #if defined(CONFIG_NETtel)
76 #define FEC_FLASHMAC 0xf0006006
77 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
78 #define FEC_FLASHMAC 0xf0006000
79 #elif defined(CONFIG_CANCam)
80 #define FEC_FLASHMAC 0xf0020000
81 #elif defined (CONFIG_M5272C3)
82 #define FEC_FLASHMAC (0xffe04000 + 4)
83 #elif defined(CONFIG_MOD5272)
84 #define FEC_FLASHMAC 0xffc0406b
85 #else
86 #define FEC_FLASHMAC 0
87 #endif
88 #endif /* CONFIG_M5272 */
89
90 /* The number of Tx and Rx buffers. These are allocated from the page
91 * pool. The code may assume these are power of two, so it it best
92 * to keep them that size.
93 * We don't need to allocate pages for the transmitter. We just use
94 * the skbuffer directly.
95 */
96 #define FEC_ENET_RX_PAGES 8
97 #define FEC_ENET_RX_FRSIZE 2048
98 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
99 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
100 #define FEC_ENET_TX_FRSIZE 2048
101 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
102 #define TX_RING_SIZE 16 /* Must be power of two */
103 #define TX_RING_MOD_MASK 15 /* for this to work */
104
105 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
106 #error "FEC: descriptor ring size constants too large"
107 #endif
108
109 /* Interrupt events/masks. */
110 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
111 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
112 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
113 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
114 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
115 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
116 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
117 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
118 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
119 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
120
121 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
122
123 /* The FEC stores dest/src/type, data, and checksum for receive packets.
124 */
125 #define PKT_MAXBUF_SIZE 1518
126 #define PKT_MINBUF_SIZE 64
127 #define PKT_MAXBLR_SIZE 1520
128
129
130 /*
131 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
132 * size bits. Other FEC hardware does not, so we need to take that into
133 * account when setting it.
134 */
135 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
136 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
137 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
138 #else
139 #define OPT_FRAME_SIZE 0
140 #endif
141
142 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
143 * tx_bd_base always point to the base of the buffer descriptors. The
144 * cur_rx and cur_tx point to the currently available buffer.
145 * The dirty_tx tracks the current buffer that is being sent by the
146 * controller. The cur_tx and dirty_tx are equal under both completely
147 * empty and completely full conditions. The empty/ready indicator in
148 * the buffer descriptor determines the actual condition.
149 */
150 struct fec_enet_private {
151 /* Hardware registers of the FEC device */
152 void __iomem *hwp;
153
154 struct net_device *netdev;
155
156 struct clk *clk;
157
158 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
159 unsigned char *tx_bounce[TX_RING_SIZE];
160 struct sk_buff* tx_skbuff[TX_RING_SIZE];
161 struct sk_buff* rx_skbuff[RX_RING_SIZE];
162 ushort skb_cur;
163 ushort skb_dirty;
164
165 /* CPM dual port RAM relative addresses */
166 dma_addr_t bd_dma;
167 /* Address of Rx and Tx buffers */
168 struct bufdesc *rx_bd_base;
169 struct bufdesc *tx_bd_base;
170 /* The next free ring entry */
171 struct bufdesc *cur_rx, *cur_tx;
172 /* The ring entries to be free()ed */
173 struct bufdesc *dirty_tx;
174
175 uint tx_full;
176 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
177 spinlock_t hw_lock;
178
179 struct platform_device *pdev;
180
181 int opened;
182
183 /* Phylib and MDIO interface */
184 struct mii_bus *mii_bus;
185 struct phy_device *phy_dev;
186 int mii_timeout;
187 uint phy_speed;
188 phy_interface_t phy_interface;
189 int index;
190 int link;
191 int full_duplex;
192 struct completion mdio_done;
193 };
194
195 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
196 static void fec_enet_tx(struct net_device *dev);
197 static void fec_enet_rx(struct net_device *dev);
198 static int fec_enet_close(struct net_device *dev);
199 static void fec_restart(struct net_device *dev, int duplex);
200 static void fec_stop(struct net_device *dev);
201
202 /* FEC MII MMFR bits definition */
203 #define FEC_MMFR_ST (1 << 30)
204 #define FEC_MMFR_OP_READ (2 << 28)
205 #define FEC_MMFR_OP_WRITE (1 << 28)
206 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
207 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
208 #define FEC_MMFR_TA (2 << 16)
209 #define FEC_MMFR_DATA(v) (v & 0xffff)
210
211 #define FEC_MII_TIMEOUT 1000 /* us */
212
213 /* Transmitter timeout */
214 #define TX_TIMEOUT (2 * HZ)
215
216 static netdev_tx_t
217 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
218 {
219 struct fec_enet_private *fep = netdev_priv(dev);
220 struct bufdesc *bdp;
221 void *bufaddr;
222 unsigned short status;
223 unsigned long flags;
224
225 if (!fep->link) {
226 /* Link is down or autonegotiation is in progress. */
227 return NETDEV_TX_BUSY;
228 }
229
230 spin_lock_irqsave(&fep->hw_lock, flags);
231 /* Fill in a Tx ring entry */
232 bdp = fep->cur_tx;
233
234 status = bdp->cbd_sc;
235
236 if (status & BD_ENET_TX_READY) {
237 /* Ooops. All transmit buffers are full. Bail out.
238 * This should not happen, since dev->tbusy should be set.
239 */
240 printk("%s: tx queue full!.\n", dev->name);
241 spin_unlock_irqrestore(&fep->hw_lock, flags);
242 return NETDEV_TX_BUSY;
243 }
244
245 /* Clear all of the status flags */
246 status &= ~BD_ENET_TX_STATS;
247
248 /* Set buffer length and buffer pointer */
249 bufaddr = skb->data;
250 bdp->cbd_datlen = skb->len;
251
252 /*
253 * On some FEC implementations data must be aligned on
254 * 4-byte boundaries. Use bounce buffers to copy data
255 * and get it aligned. Ugh.
256 */
257 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
258 unsigned int index;
259 index = bdp - fep->tx_bd_base;
260 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
261 bufaddr = fep->tx_bounce[index];
262 }
263
264 /* Save skb pointer */
265 fep->tx_skbuff[fep->skb_cur] = skb;
266
267 dev->stats.tx_bytes += skb->len;
268 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
269
270 /* Push the data cache so the CPM does not get stale memory
271 * data.
272 */
273 bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
274 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
275
276 /* Send it on its way. Tell FEC it's ready, interrupt when done,
277 * it's the last BD of the frame, and to put the CRC on the end.
278 */
279 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
280 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
281 bdp->cbd_sc = status;
282
283 /* Trigger transmission start */
284 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
285
286 /* If this was the last BD in the ring, start at the beginning again. */
287 if (status & BD_ENET_TX_WRAP)
288 bdp = fep->tx_bd_base;
289 else
290 bdp++;
291
292 if (bdp == fep->dirty_tx) {
293 fep->tx_full = 1;
294 netif_stop_queue(dev);
295 }
296
297 fep->cur_tx = bdp;
298
299 spin_unlock_irqrestore(&fep->hw_lock, flags);
300
301 return NETDEV_TX_OK;
302 }
303
304 static void
305 fec_timeout(struct net_device *dev)
306 {
307 struct fec_enet_private *fep = netdev_priv(dev);
308
309 dev->stats.tx_errors++;
310
311 fec_restart(dev, fep->full_duplex);
312 netif_wake_queue(dev);
313 }
314
315 static irqreturn_t
316 fec_enet_interrupt(int irq, void * dev_id)
317 {
318 struct net_device *dev = dev_id;
319 struct fec_enet_private *fep = netdev_priv(dev);
320 uint int_events;
321 irqreturn_t ret = IRQ_NONE;
322
323 do {
324 int_events = readl(fep->hwp + FEC_IEVENT);
325 writel(int_events, fep->hwp + FEC_IEVENT);
326
327 if (int_events & FEC_ENET_RXF) {
328 ret = IRQ_HANDLED;
329 fec_enet_rx(dev);
330 }
331
332 /* Transmit OK, or non-fatal error. Update the buffer
333 * descriptors. FEC handles all errors, we just discover
334 * them as part of the transmit process.
335 */
336 if (int_events & FEC_ENET_TXF) {
337 ret = IRQ_HANDLED;
338 fec_enet_tx(dev);
339 }
340
341 if (int_events & FEC_ENET_MII) {
342 ret = IRQ_HANDLED;
343 complete(&fep->mdio_done);
344 }
345 } while (int_events);
346
347 return ret;
348 }
349
350
351 static void
352 fec_enet_tx(struct net_device *dev)
353 {
354 struct fec_enet_private *fep;
355 struct bufdesc *bdp;
356 unsigned short status;
357 struct sk_buff *skb;
358
359 fep = netdev_priv(dev);
360 spin_lock(&fep->hw_lock);
361 bdp = fep->dirty_tx;
362
363 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
364 if (bdp == fep->cur_tx && fep->tx_full == 0)
365 break;
366
367 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
368 bdp->cbd_bufaddr = 0;
369
370 skb = fep->tx_skbuff[fep->skb_dirty];
371 /* Check for errors. */
372 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
373 BD_ENET_TX_RL | BD_ENET_TX_UN |
374 BD_ENET_TX_CSL)) {
375 dev->stats.tx_errors++;
376 if (status & BD_ENET_TX_HB) /* No heartbeat */
377 dev->stats.tx_heartbeat_errors++;
378 if (status & BD_ENET_TX_LC) /* Late collision */
379 dev->stats.tx_window_errors++;
380 if (status & BD_ENET_TX_RL) /* Retrans limit */
381 dev->stats.tx_aborted_errors++;
382 if (status & BD_ENET_TX_UN) /* Underrun */
383 dev->stats.tx_fifo_errors++;
384 if (status & BD_ENET_TX_CSL) /* Carrier lost */
385 dev->stats.tx_carrier_errors++;
386 } else {
387 dev->stats.tx_packets++;
388 }
389
390 if (status & BD_ENET_TX_READY)
391 printk("HEY! Enet xmit interrupt and TX_READY.\n");
392
393 /* Deferred means some collisions occurred during transmit,
394 * but we eventually sent the packet OK.
395 */
396 if (status & BD_ENET_TX_DEF)
397 dev->stats.collisions++;
398
399 /* Free the sk buffer associated with this last transmit */
400 dev_kfree_skb_any(skb);
401 fep->tx_skbuff[fep->skb_dirty] = NULL;
402 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
403
404 /* Update pointer to next buffer descriptor to be transmitted */
405 if (status & BD_ENET_TX_WRAP)
406 bdp = fep->tx_bd_base;
407 else
408 bdp++;
409
410 /* Since we have freed up a buffer, the ring is no longer full
411 */
412 if (fep->tx_full) {
413 fep->tx_full = 0;
414 if (netif_queue_stopped(dev))
415 netif_wake_queue(dev);
416 }
417 }
418 fep->dirty_tx = bdp;
419 spin_unlock(&fep->hw_lock);
420 }
421
422
423 /* During a receive, the cur_rx points to the current incoming buffer.
424 * When we update through the ring, if the next incoming buffer has
425 * not been given to the system, we just set the empty indicator,
426 * effectively tossing the packet.
427 */
428 static void
429 fec_enet_rx(struct net_device *dev)
430 {
431 struct fec_enet_private *fep = netdev_priv(dev);
432 struct bufdesc *bdp;
433 unsigned short status;
434 struct sk_buff *skb;
435 ushort pkt_len;
436 __u8 *data;
437
438 #ifdef CONFIG_M532x
439 flush_cache_all();
440 #endif
441
442 spin_lock(&fep->hw_lock);
443
444 /* First, grab all of the stats for the incoming packet.
445 * These get messed up if we get called due to a busy condition.
446 */
447 bdp = fep->cur_rx;
448
449 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
450
451 /* Since we have allocated space to hold a complete frame,
452 * the last indicator should be set.
453 */
454 if ((status & BD_ENET_RX_LAST) == 0)
455 printk("FEC ENET: rcv is not +last\n");
456
457 if (!fep->opened)
458 goto rx_processing_done;
459
460 /* Check for errors. */
461 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
462 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
463 dev->stats.rx_errors++;
464 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
465 /* Frame too long or too short. */
466 dev->stats.rx_length_errors++;
467 }
468 if (status & BD_ENET_RX_NO) /* Frame alignment */
469 dev->stats.rx_frame_errors++;
470 if (status & BD_ENET_RX_CR) /* CRC Error */
471 dev->stats.rx_crc_errors++;
472 if (status & BD_ENET_RX_OV) /* FIFO overrun */
473 dev->stats.rx_fifo_errors++;
474 }
475
476 /* Report late collisions as a frame error.
477 * On this error, the BD is closed, but we don't know what we
478 * have in the buffer. So, just drop this frame on the floor.
479 */
480 if (status & BD_ENET_RX_CL) {
481 dev->stats.rx_errors++;
482 dev->stats.rx_frame_errors++;
483 goto rx_processing_done;
484 }
485
486 /* Process the incoming frame. */
487 dev->stats.rx_packets++;
488 pkt_len = bdp->cbd_datlen;
489 dev->stats.rx_bytes += pkt_len;
490 data = (__u8*)__va(bdp->cbd_bufaddr);
491
492 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
493 DMA_FROM_DEVICE);
494
495 /* This does 16 byte alignment, exactly what we need.
496 * The packet length includes FCS, but we don't want to
497 * include that when passing upstream as it messes up
498 * bridging applications.
499 */
500 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
501
502 if (unlikely(!skb)) {
503 printk("%s: Memory squeeze, dropping packet.\n",
504 dev->name);
505 dev->stats.rx_dropped++;
506 } else {
507 skb_reserve(skb, NET_IP_ALIGN);
508 skb_put(skb, pkt_len - 4); /* Make room */
509 skb_copy_to_linear_data(skb, data, pkt_len - 4);
510 skb->protocol = eth_type_trans(skb, dev);
511 netif_rx(skb);
512 }
513
514 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
515 DMA_FROM_DEVICE);
516 rx_processing_done:
517 /* Clear the status flags for this buffer */
518 status &= ~BD_ENET_RX_STATS;
519
520 /* Mark the buffer empty */
521 status |= BD_ENET_RX_EMPTY;
522 bdp->cbd_sc = status;
523
524 /* Update BD pointer to next entry */
525 if (status & BD_ENET_RX_WRAP)
526 bdp = fep->rx_bd_base;
527 else
528 bdp++;
529 /* Doing this here will keep the FEC running while we process
530 * incoming frames. On a heavily loaded network, we should be
531 * able to keep up at the expense of system resources.
532 */
533 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
534 }
535 fep->cur_rx = bdp;
536
537 spin_unlock(&fep->hw_lock);
538 }
539
540 /* ------------------------------------------------------------------------- */
541 #ifdef CONFIG_M5272
542 static void __inline__ fec_get_mac(struct net_device *dev)
543 {
544 struct fec_enet_private *fep = netdev_priv(dev);
545 unsigned char *iap, tmpaddr[ETH_ALEN];
546
547 if (FEC_FLASHMAC) {
548 /*
549 * Get MAC address from FLASH.
550 * If it is all 1's or 0's, use the default.
551 */
552 iap = (unsigned char *)FEC_FLASHMAC;
553 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
554 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
555 iap = fec_mac_default;
556 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
557 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
558 iap = fec_mac_default;
559 } else {
560 *((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
561 *((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
562 iap = &tmpaddr[0];
563 }
564
565 memcpy(dev->dev_addr, iap, ETH_ALEN);
566
567 /* Adjust MAC if using default MAC address */
568 if (iap == fec_mac_default)
569 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
570 }
571 #endif
572
573 /* ------------------------------------------------------------------------- */
574
575 /*
576 * Phy section
577 */
578 static void fec_enet_adjust_link(struct net_device *dev)
579 {
580 struct fec_enet_private *fep = netdev_priv(dev);
581 struct phy_device *phy_dev = fep->phy_dev;
582 unsigned long flags;
583
584 int status_change = 0;
585
586 spin_lock_irqsave(&fep->hw_lock, flags);
587
588 /* Prevent a state halted on mii error */
589 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
590 phy_dev->state = PHY_RESUMING;
591 goto spin_unlock;
592 }
593
594 /* Duplex link change */
595 if (phy_dev->link) {
596 if (fep->full_duplex != phy_dev->duplex) {
597 fec_restart(dev, phy_dev->duplex);
598 status_change = 1;
599 }
600 }
601
602 /* Link on or off change */
603 if (phy_dev->link != fep->link) {
604 fep->link = phy_dev->link;
605 if (phy_dev->link)
606 fec_restart(dev, phy_dev->duplex);
607 else
608 fec_stop(dev);
609 status_change = 1;
610 }
611
612 spin_unlock:
613 spin_unlock_irqrestore(&fep->hw_lock, flags);
614
615 if (status_change)
616 phy_print_status(phy_dev);
617 }
618
619 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
620 {
621 struct fec_enet_private *fep = bus->priv;
622 unsigned long time_left;
623
624 fep->mii_timeout = 0;
625 init_completion(&fep->mdio_done);
626
627 /* start a read op */
628 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
629 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
630 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
631
632 /* wait for end of transfer */
633 time_left = wait_for_completion_timeout(&fep->mdio_done,
634 usecs_to_jiffies(FEC_MII_TIMEOUT));
635 if (time_left == 0) {
636 fep->mii_timeout = 1;
637 printk(KERN_ERR "FEC: MDIO read timeout\n");
638 return -ETIMEDOUT;
639 }
640
641 /* return value */
642 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
643 }
644
645 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
646 u16 value)
647 {
648 struct fec_enet_private *fep = bus->priv;
649 unsigned long time_left;
650
651 fep->mii_timeout = 0;
652 init_completion(&fep->mdio_done);
653
654 /* start a read op */
655 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
656 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
657 FEC_MMFR_TA | FEC_MMFR_DATA(value),
658 fep->hwp + FEC_MII_DATA);
659
660 /* wait for end of transfer */
661 time_left = wait_for_completion_timeout(&fep->mdio_done,
662 usecs_to_jiffies(FEC_MII_TIMEOUT));
663 if (time_left == 0) {
664 fep->mii_timeout = 1;
665 printk(KERN_ERR "FEC: MDIO write timeout\n");
666 return -ETIMEDOUT;
667 }
668
669 return 0;
670 }
671
672 static int fec_enet_mdio_reset(struct mii_bus *bus)
673 {
674 return 0;
675 }
676
677 static int fec_enet_mii_probe(struct net_device *dev)
678 {
679 struct fec_enet_private *fep = netdev_priv(dev);
680 struct phy_device *phy_dev = NULL;
681 int ret;
682
683 fep->phy_dev = NULL;
684
685 /* find the first phy */
686 phy_dev = phy_find_first(fep->mii_bus);
687 if (!phy_dev) {
688 printk(KERN_ERR "%s: no PHY found\n", dev->name);
689 return -ENODEV;
690 }
691
692 /* attach the mac to the phy */
693 ret = phy_connect_direct(dev, phy_dev,
694 &fec_enet_adjust_link, 0,
695 PHY_INTERFACE_MODE_MII);
696 if (ret) {
697 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
698 return ret;
699 }
700
701 /* mask with MAC supported features */
702 phy_dev->supported &= PHY_BASIC_FEATURES;
703 phy_dev->advertising = phy_dev->supported;
704
705 fep->phy_dev = phy_dev;
706 fep->link = 0;
707 fep->full_duplex = 0;
708
709 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
710 "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
711 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
712 fep->phy_dev->irq);
713
714 return 0;
715 }
716
717 static int fec_enet_mii_init(struct platform_device *pdev)
718 {
719 struct net_device *dev = platform_get_drvdata(pdev);
720 struct fec_enet_private *fep = netdev_priv(dev);
721 int err = -ENXIO, i;
722
723 fep->mii_timeout = 0;
724
725 /*
726 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
727 */
728 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
729 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
730
731 fep->mii_bus = mdiobus_alloc();
732 if (fep->mii_bus == NULL) {
733 err = -ENOMEM;
734 goto err_out;
735 }
736
737 fep->mii_bus->name = "fec_enet_mii_bus";
738 fep->mii_bus->read = fec_enet_mdio_read;
739 fep->mii_bus->write = fec_enet_mdio_write;
740 fep->mii_bus->reset = fec_enet_mdio_reset;
741 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id);
742 fep->mii_bus->priv = fep;
743 fep->mii_bus->parent = &pdev->dev;
744
745 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
746 if (!fep->mii_bus->irq) {
747 err = -ENOMEM;
748 goto err_out_free_mdiobus;
749 }
750
751 for (i = 0; i < PHY_MAX_ADDR; i++)
752 fep->mii_bus->irq[i] = PHY_POLL;
753
754 platform_set_drvdata(dev, fep->mii_bus);
755
756 if (mdiobus_register(fep->mii_bus))
757 goto err_out_free_mdio_irq;
758
759 return 0;
760
761 err_out_free_mdio_irq:
762 kfree(fep->mii_bus->irq);
763 err_out_free_mdiobus:
764 mdiobus_free(fep->mii_bus);
765 err_out:
766 return err;
767 }
768
769 static void fec_enet_mii_remove(struct fec_enet_private *fep)
770 {
771 if (fep->phy_dev)
772 phy_disconnect(fep->phy_dev);
773 mdiobus_unregister(fep->mii_bus);
774 kfree(fep->mii_bus->irq);
775 mdiobus_free(fep->mii_bus);
776 }
777
778 static int fec_enet_get_settings(struct net_device *dev,
779 struct ethtool_cmd *cmd)
780 {
781 struct fec_enet_private *fep = netdev_priv(dev);
782 struct phy_device *phydev = fep->phy_dev;
783
784 if (!phydev)
785 return -ENODEV;
786
787 return phy_ethtool_gset(phydev, cmd);
788 }
789
790 static int fec_enet_set_settings(struct net_device *dev,
791 struct ethtool_cmd *cmd)
792 {
793 struct fec_enet_private *fep = netdev_priv(dev);
794 struct phy_device *phydev = fep->phy_dev;
795
796 if (!phydev)
797 return -ENODEV;
798
799 return phy_ethtool_sset(phydev, cmd);
800 }
801
802 static void fec_enet_get_drvinfo(struct net_device *dev,
803 struct ethtool_drvinfo *info)
804 {
805 struct fec_enet_private *fep = netdev_priv(dev);
806
807 strcpy(info->driver, fep->pdev->dev.driver->name);
808 strcpy(info->version, "Revision: 1.0");
809 strcpy(info->bus_info, dev_name(&dev->dev));
810 }
811
812 static struct ethtool_ops fec_enet_ethtool_ops = {
813 .get_settings = fec_enet_get_settings,
814 .set_settings = fec_enet_set_settings,
815 .get_drvinfo = fec_enet_get_drvinfo,
816 .get_link = ethtool_op_get_link,
817 };
818
819 static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
820 {
821 struct fec_enet_private *fep = netdev_priv(dev);
822 struct phy_device *phydev = fep->phy_dev;
823
824 if (!netif_running(dev))
825 return -EINVAL;
826
827 if (!phydev)
828 return -ENODEV;
829
830 return phy_mii_ioctl(phydev, rq, cmd);
831 }
832
833 static void fec_enet_free_buffers(struct net_device *dev)
834 {
835 struct fec_enet_private *fep = netdev_priv(dev);
836 int i;
837 struct sk_buff *skb;
838 struct bufdesc *bdp;
839
840 bdp = fep->rx_bd_base;
841 for (i = 0; i < RX_RING_SIZE; i++) {
842 skb = fep->rx_skbuff[i];
843
844 if (bdp->cbd_bufaddr)
845 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
846 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
847 if (skb)
848 dev_kfree_skb(skb);
849 bdp++;
850 }
851
852 bdp = fep->tx_bd_base;
853 for (i = 0; i < TX_RING_SIZE; i++)
854 kfree(fep->tx_bounce[i]);
855 }
856
857 static int fec_enet_alloc_buffers(struct net_device *dev)
858 {
859 struct fec_enet_private *fep = netdev_priv(dev);
860 int i;
861 struct sk_buff *skb;
862 struct bufdesc *bdp;
863
864 bdp = fep->rx_bd_base;
865 for (i = 0; i < RX_RING_SIZE; i++) {
866 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
867 if (!skb) {
868 fec_enet_free_buffers(dev);
869 return -ENOMEM;
870 }
871 fep->rx_skbuff[i] = skb;
872
873 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
874 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
875 bdp->cbd_sc = BD_ENET_RX_EMPTY;
876 bdp++;
877 }
878
879 /* Set the last buffer to wrap. */
880 bdp--;
881 bdp->cbd_sc |= BD_SC_WRAP;
882
883 bdp = fep->tx_bd_base;
884 for (i = 0; i < TX_RING_SIZE; i++) {
885 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
886
887 bdp->cbd_sc = 0;
888 bdp->cbd_bufaddr = 0;
889 bdp++;
890 }
891
892 /* Set the last buffer to wrap. */
893 bdp--;
894 bdp->cbd_sc |= BD_SC_WRAP;
895
896 return 0;
897 }
898
899 static int
900 fec_enet_open(struct net_device *dev)
901 {
902 struct fec_enet_private *fep = netdev_priv(dev);
903 int ret;
904
905 /* I should reset the ring buffers here, but I don't yet know
906 * a simple way to do that.
907 */
908
909 ret = fec_enet_alloc_buffers(dev);
910 if (ret)
911 return ret;
912
913 /* Probe and connect to PHY when open the interface */
914 ret = fec_enet_mii_probe(dev);
915 if (ret) {
916 fec_enet_free_buffers(dev);
917 return ret;
918 }
919 phy_start(fep->phy_dev);
920 netif_start_queue(dev);
921 fep->opened = 1;
922 return 0;
923 }
924
925 static int
926 fec_enet_close(struct net_device *dev)
927 {
928 struct fec_enet_private *fep = netdev_priv(dev);
929
930 /* Don't know what to do yet. */
931 fep->opened = 0;
932 netif_stop_queue(dev);
933 fec_stop(dev);
934
935 if (fep->phy_dev)
936 phy_disconnect(fep->phy_dev);
937
938 fec_enet_free_buffers(dev);
939
940 return 0;
941 }
942
943 /* Set or clear the multicast filter for this adaptor.
944 * Skeleton taken from sunlance driver.
945 * The CPM Ethernet implementation allows Multicast as well as individual
946 * MAC address filtering. Some of the drivers check to make sure it is
947 * a group multicast address, and discard those that are not. I guess I
948 * will do the same for now, but just remove the test if you want
949 * individual filtering as well (do the upper net layers want or support
950 * this kind of feature?).
951 */
952
953 #define HASH_BITS 6 /* #bits in hash */
954 #define CRC32_POLY 0xEDB88320
955
956 static void set_multicast_list(struct net_device *dev)
957 {
958 struct fec_enet_private *fep = netdev_priv(dev);
959 struct netdev_hw_addr *ha;
960 unsigned int i, bit, data, crc, tmp;
961 unsigned char hash;
962
963 if (dev->flags & IFF_PROMISC) {
964 tmp = readl(fep->hwp + FEC_R_CNTRL);
965 tmp |= 0x8;
966 writel(tmp, fep->hwp + FEC_R_CNTRL);
967 return;
968 }
969
970 tmp = readl(fep->hwp + FEC_R_CNTRL);
971 tmp &= ~0x8;
972 writel(tmp, fep->hwp + FEC_R_CNTRL);
973
974 if (dev->flags & IFF_ALLMULTI) {
975 /* Catch all multicast addresses, so set the
976 * filter to all 1's
977 */
978 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
979 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
980
981 return;
982 }
983
984 /* Clear filter and add the addresses in hash register
985 */
986 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
987 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
988
989 netdev_for_each_mc_addr(ha, dev) {
990 /* Only support group multicast for now */
991 if (!(ha->addr[0] & 1))
992 continue;
993
994 /* calculate crc32 value of mac address */
995 crc = 0xffffffff;
996
997 for (i = 0; i < dev->addr_len; i++) {
998 data = ha->addr[i];
999 for (bit = 0; bit < 8; bit++, data >>= 1) {
1000 crc = (crc >> 1) ^
1001 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1002 }
1003 }
1004
1005 /* only upper 6 bits (HASH_BITS) are used
1006 * which point to specific bit in he hash registers
1007 */
1008 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1009
1010 if (hash > 31) {
1011 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1012 tmp |= 1 << (hash - 32);
1013 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1014 } else {
1015 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1016 tmp |= 1 << hash;
1017 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1018 }
1019 }
1020 }
1021
1022 /* Set a MAC change in hardware. */
1023 static int
1024 fec_set_mac_address(struct net_device *dev, void *p)
1025 {
1026 struct fec_enet_private *fep = netdev_priv(dev);
1027 struct sockaddr *addr = p;
1028
1029 if (!is_valid_ether_addr(addr->sa_data))
1030 return -EADDRNOTAVAIL;
1031
1032 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1033
1034 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1035 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1036 fep->hwp + FEC_ADDR_LOW);
1037 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
1038 fep->hwp + FEC_ADDR_HIGH);
1039 return 0;
1040 }
1041
1042 static const struct net_device_ops fec_netdev_ops = {
1043 .ndo_open = fec_enet_open,
1044 .ndo_stop = fec_enet_close,
1045 .ndo_start_xmit = fec_enet_start_xmit,
1046 .ndo_set_multicast_list = set_multicast_list,
1047 .ndo_change_mtu = eth_change_mtu,
1048 .ndo_validate_addr = eth_validate_addr,
1049 .ndo_tx_timeout = fec_timeout,
1050 .ndo_set_mac_address = fec_set_mac_address,
1051 .ndo_do_ioctl = fec_enet_ioctl,
1052 };
1053
1054 /*
1055 * XXX: We need to clean up on failure exits here.
1056 *
1057 * index is only used in legacy code
1058 */
1059 static int fec_enet_init(struct net_device *dev, int index)
1060 {
1061 struct fec_enet_private *fep = netdev_priv(dev);
1062 struct bufdesc *cbd_base;
1063 struct bufdesc *bdp;
1064 int i;
1065
1066 /* Allocate memory for buffer descriptors. */
1067 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1068 GFP_KERNEL);
1069 if (!cbd_base) {
1070 printk("FEC: allocate descriptor memory failed?\n");
1071 return -ENOMEM;
1072 }
1073
1074 spin_lock_init(&fep->hw_lock);
1075
1076 fep->index = index;
1077 fep->hwp = (void __iomem *)dev->base_addr;
1078 fep->netdev = dev;
1079
1080 /* Set the Ethernet address */
1081 #ifdef CONFIG_M5272
1082 fec_get_mac(dev);
1083 #else
1084 {
1085 unsigned long l;
1086 l = readl(fep->hwp + FEC_ADDR_LOW);
1087 dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1088 dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1089 dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1090 dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
1091 l = readl(fep->hwp + FEC_ADDR_HIGH);
1092 dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1093 dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1094 }
1095 #endif
1096
1097 /* Set receive and transmit descriptor base. */
1098 fep->rx_bd_base = cbd_base;
1099 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1100
1101 /* The FEC Ethernet specific entries in the device structure */
1102 dev->watchdog_timeo = TX_TIMEOUT;
1103 dev->netdev_ops = &fec_netdev_ops;
1104 dev->ethtool_ops = &fec_enet_ethtool_ops;
1105
1106 /* Initialize the receive buffer descriptors. */
1107 bdp = fep->rx_bd_base;
1108 for (i = 0; i < RX_RING_SIZE; i++) {
1109
1110 /* Initialize the BD for every fragment in the page. */
1111 bdp->cbd_sc = 0;
1112 bdp++;
1113 }
1114
1115 /* Set the last buffer to wrap */
1116 bdp--;
1117 bdp->cbd_sc |= BD_SC_WRAP;
1118
1119 /* ...and the same for transmit */
1120 bdp = fep->tx_bd_base;
1121 for (i = 0; i < TX_RING_SIZE; i++) {
1122
1123 /* Initialize the BD for every fragment in the page. */
1124 bdp->cbd_sc = 0;
1125 bdp->cbd_bufaddr = 0;
1126 bdp++;
1127 }
1128
1129 /* Set the last buffer to wrap */
1130 bdp--;
1131 bdp->cbd_sc |= BD_SC_WRAP;
1132
1133 fec_restart(dev, 0);
1134
1135 return 0;
1136 }
1137
1138 /* This function is called to start or restart the FEC during a link
1139 * change. This only happens when switching between half and full
1140 * duplex.
1141 */
1142 static void
1143 fec_restart(struct net_device *dev, int duplex)
1144 {
1145 struct fec_enet_private *fep = netdev_priv(dev);
1146 int i;
1147
1148 /* Whack a reset. We should wait for this. */
1149 writel(1, fep->hwp + FEC_ECNTRL);
1150 udelay(10);
1151
1152 /* Clear any outstanding interrupt. */
1153 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1154
1155 /* Reset all multicast. */
1156 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1157 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1158 #ifndef CONFIG_M5272
1159 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1160 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1161 #endif
1162
1163 /* Set maximum receive buffer size. */
1164 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1165
1166 /* Set receive and transmit descriptor base. */
1167 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
1168 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
1169 fep->hwp + FEC_X_DES_START);
1170
1171 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1172 fep->cur_rx = fep->rx_bd_base;
1173
1174 /* Reset SKB transmit buffers. */
1175 fep->skb_cur = fep->skb_dirty = 0;
1176 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1177 if (fep->tx_skbuff[i]) {
1178 dev_kfree_skb_any(fep->tx_skbuff[i]);
1179 fep->tx_skbuff[i] = NULL;
1180 }
1181 }
1182
1183 /* Enable MII mode */
1184 if (duplex) {
1185 /* MII enable / FD enable */
1186 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1187 writel(0x04, fep->hwp + FEC_X_CNTRL);
1188 } else {
1189 /* MII enable / No Rcv on Xmit */
1190 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1191 writel(0x0, fep->hwp + FEC_X_CNTRL);
1192 }
1193 fep->full_duplex = duplex;
1194
1195 /* Set MII speed */
1196 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1197
1198 #ifdef FEC_MIIGSK_ENR
1199 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
1200 /* disable the gasket and wait */
1201 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1202 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1203 udelay(1);
1204
1205 /* configure the gasket: RMII, 50 MHz, no loopback, no echo */
1206 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
1207
1208 /* re-enable the gasket */
1209 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1210 }
1211 #endif
1212
1213 /* And last, enable the transmit and receive processing */
1214 writel(2, fep->hwp + FEC_ECNTRL);
1215 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1216
1217 /* Enable interrupts we wish to service */
1218 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1219 }
1220
1221 static void
1222 fec_stop(struct net_device *dev)
1223 {
1224 struct fec_enet_private *fep = netdev_priv(dev);
1225
1226 /* We cannot expect a graceful transmit stop without link !!! */
1227 if (fep->link) {
1228 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1229 udelay(10);
1230 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1231 printk("fec_stop : Graceful transmit stop did not complete !\n");
1232 }
1233
1234 /* Whack a reset. We should wait for this. */
1235 writel(1, fep->hwp + FEC_ECNTRL);
1236 udelay(10);
1237 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1238 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1239 }
1240
1241 static int __devinit
1242 fec_probe(struct platform_device *pdev)
1243 {
1244 struct fec_enet_private *fep;
1245 struct fec_platform_data *pdata;
1246 struct net_device *ndev;
1247 int i, irq, ret = 0;
1248 struct resource *r;
1249
1250 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1251 if (!r)
1252 return -ENXIO;
1253
1254 r = request_mem_region(r->start, resource_size(r), pdev->name);
1255 if (!r)
1256 return -EBUSY;
1257
1258 /* Init network device */
1259 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1260 if (!ndev)
1261 return -ENOMEM;
1262
1263 SET_NETDEV_DEV(ndev, &pdev->dev);
1264
1265 /* setup board info structure */
1266 fep = netdev_priv(ndev);
1267 memset(fep, 0, sizeof(*fep));
1268
1269 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
1270 fep->pdev = pdev;
1271
1272 if (!ndev->base_addr) {
1273 ret = -ENOMEM;
1274 goto failed_ioremap;
1275 }
1276
1277 platform_set_drvdata(pdev, ndev);
1278
1279 pdata = pdev->dev.platform_data;
1280 if (pdata)
1281 fep->phy_interface = pdata->phy;
1282
1283 /* This device has up to three irqs on some platforms */
1284 for (i = 0; i < 3; i++) {
1285 irq = platform_get_irq(pdev, i);
1286 if (i && irq < 0)
1287 break;
1288 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1289 if (ret) {
1290 while (i >= 0) {
1291 irq = platform_get_irq(pdev, i);
1292 free_irq(irq, ndev);
1293 i--;
1294 }
1295 goto failed_irq;
1296 }
1297 }
1298
1299 fep->clk = clk_get(&pdev->dev, "fec_clk");
1300 if (IS_ERR(fep->clk)) {
1301 ret = PTR_ERR(fep->clk);
1302 goto failed_clk;
1303 }
1304 clk_enable(fep->clk);
1305
1306 ret = fec_enet_init(ndev, 0);
1307 if (ret)
1308 goto failed_init;
1309
1310 ret = fec_enet_mii_init(pdev);
1311 if (ret)
1312 goto failed_mii_init;
1313
1314 ret = register_netdev(ndev);
1315 if (ret)
1316 goto failed_register;
1317
1318 return 0;
1319
1320 failed_register:
1321 fec_enet_mii_remove(fep);
1322 failed_mii_init:
1323 failed_init:
1324 clk_disable(fep->clk);
1325 clk_put(fep->clk);
1326 failed_clk:
1327 for (i = 0; i < 3; i++) {
1328 irq = platform_get_irq(pdev, i);
1329 if (irq > 0)
1330 free_irq(irq, ndev);
1331 }
1332 failed_irq:
1333 iounmap((void __iomem *)ndev->base_addr);
1334 failed_ioremap:
1335 free_netdev(ndev);
1336
1337 return ret;
1338 }
1339
1340 static int __devexit
1341 fec_drv_remove(struct platform_device *pdev)
1342 {
1343 struct net_device *ndev = platform_get_drvdata(pdev);
1344 struct fec_enet_private *fep = netdev_priv(ndev);
1345
1346 platform_set_drvdata(pdev, NULL);
1347
1348 fec_stop(ndev);
1349 fec_enet_mii_remove(fep);
1350 clk_disable(fep->clk);
1351 clk_put(fep->clk);
1352 iounmap((void __iomem *)ndev->base_addr);
1353 unregister_netdev(ndev);
1354 free_netdev(ndev);
1355 return 0;
1356 }
1357
1358 #ifdef CONFIG_PM
1359 static int
1360 fec_suspend(struct device *dev)
1361 {
1362 struct net_device *ndev = dev_get_drvdata(dev);
1363 struct fec_enet_private *fep;
1364
1365 if (ndev) {
1366 fep = netdev_priv(ndev);
1367 if (netif_running(ndev))
1368 fec_enet_close(ndev);
1369 clk_disable(fep->clk);
1370 }
1371 return 0;
1372 }
1373
1374 static int
1375 fec_resume(struct device *dev)
1376 {
1377 struct net_device *ndev = dev_get_drvdata(dev);
1378 struct fec_enet_private *fep;
1379
1380 if (ndev) {
1381 fep = netdev_priv(ndev);
1382 clk_enable(fep->clk);
1383 if (netif_running(ndev))
1384 fec_enet_open(ndev);
1385 }
1386 return 0;
1387 }
1388
1389 static const struct dev_pm_ops fec_pm_ops = {
1390 .suspend = fec_suspend,
1391 .resume = fec_resume,
1392 .freeze = fec_suspend,
1393 .thaw = fec_resume,
1394 .poweroff = fec_suspend,
1395 .restore = fec_resume,
1396 };
1397 #endif
1398
1399 static struct platform_driver fec_driver = {
1400 .driver = {
1401 .name = "fec",
1402 .owner = THIS_MODULE,
1403 #ifdef CONFIG_PM
1404 .pm = &fec_pm_ops,
1405 #endif
1406 },
1407 .probe = fec_probe,
1408 .remove = __devexit_p(fec_drv_remove),
1409 };
1410
1411 static int __init
1412 fec_enet_module_init(void)
1413 {
1414 printk(KERN_INFO "FEC Ethernet Driver\n");
1415
1416 return platform_driver_register(&fec_driver);
1417 }
1418
1419 static void __exit
1420 fec_enet_cleanup(void)
1421 {
1422 platform_driver_unregister(&fec_driver);
1423 }
1424
1425 module_exit(fec_enet_cleanup);
1426 module_init(fec_enet_module_init);
1427
1428 MODULE_LICENSE("GPL");